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Abstract

The aim of this thesis was to examine how the visual acuity in the predatory reduviid

Platymeris biguttatus increases throughout larval development. For this purpose,

morphological examinations of the most important eye-parameters, a behavioural choice and

optokinetic experiments were conducted. Eye-parameters, such as facet diameter,

interommatidial angle and number of ommatidia, were investigated for all five larval stages

and the adult animals. Adults and third-instar larvae were tested in the behavioural experiment

but only adults in the optokinetic experiment. The behavioural choice experiment was based

on the assumption that Platymeris biguttatus, like its reduviid relative Triatoma infestans,

would exhibit a photonegative reaction and be attracted to a dark stimulus when exposed to

bright light. The bugs were compelled to run in a V-shaped arena to either an aisle containing

a dark stripe or an aisle without such a stimulus. The optokinetic response experiment was

based on Bernd Hassestein’s (1949) experiment. The morphological data showed that facet

diameter and the number of ommatidia increase more or less continuously from one instar to

the other and in apparent relation to the body size parameter tibia length. However, the

interommatidial angle does not develop continuously. The number of facets increases from

about 105 in the first larval stage to a mean of 880 in the adult animal. Throughout the bug’s

development, the facet diameter increases from 34µm to 69µm, and the interommatidial angle

in the anterior part of the eye decreases from 10.4° to 3.7°. In the behavioural choice

experiment, adult P. biguttatus chose the aisle containing the stimulus significantly more

often than the aisle lacking the stimulus – down to stimulus sizes of 1.5°. A grey back panel,

which was placed in the aisle lacking the stimulus, severely diminished the likelihood of the

bug choosing the aisle with the stimulus. Larval animals of the 3rd instar could only be shown

to react to a stimulus 15° wide. In the optokinetic response experiment adult animals showed

significant reactions when exposed to gratings composed of black and white stripes as narrow

as 1.5°. Particularities of the development of eye parameters and the significance of the results

of the behavioural tests are discussed.
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1 Introduction

Bugs of the genus Platymeris are skilled predators that inject a highly effective poison into

their prey (Edwards 1961). P. biguttatus preys on other arthropods and, along with the

majority of reduviines, displays a feeding behaviour that is termed “wait and grab” (Haridass

et al. 1987). Edwards (1962) studied the hunting behaviour of Platymeris rhadamantus and

observed that these bugs approach their prey in a series of short, quick movements and that

their pouncing behaviour is triggered by the preys’ movement. Very little movement is

needed to trigger the pounce that leads to the assassin bug grabbing its prey and injecting its

venom. Edwards’ studies on Platymeris rhadamantus concur closely with my own

observations on the hunting behaviour of P. biguttatus. These two species resemble each other

and differ only in body size, P. biguttatus being slightly larger, and in the colour of spots on

their elytra and bands on their femura. Both elytra spots and femoral bands are yellow in P.

biguttatus and red in P. rhadamantus. This resemblance along with the comparison of the

description of the behaviour of P. rhadamantus and my own observations of P. biguttatus led

me to assume that they hunt and behave in similar ways.

The speed and precision with which Platymeris bugs hunt their prey is impressive. To catch

prey in this manner is crucial for the survival of Platymeris bugs and demands a certain

degree of sensual accuracy. Platymeris biguttatus possesses large, prominent eyes which has

led to the assumption that vision is a major aspect in this hunting behaviour.

An assassin bug’s eyes, along with its antennae and tibial combs, are essential for prey

location, as has been shown in studies on the reduviid Rhynocoris kumarii (Claver and

Ambrose 2001).

Studies on the importance of visual stimuli in the hunting behaviour of arthropod hunting

bugs have shown that impaired vision seriously affects predatory behaviour (Awan et al.

1989, Freund and Olmsted 2000, Haridass 1985).

The eyes of heteropterans, such as P. biguttatus, are complex eyes of the acone apposition

type, which means that each ommatidia is composed of six peripheral and two central

rhabdomeres which form an open rhabdom (Deckert and Göllner-Scheiding 2003).

In compound eyes, as opposed to single-chambered eyes, the size of the eye is more of a

dominant factor for the quality of vision. The reason for this is that compound eyes employ

multiple optical systems - ommatidia - with multiple lenses, where each lens (in apposition

eyes) forms a tiny image. The rhabdom, situated within a single ommatidium, is the sampling

unit of a compound eye and the interommatidial angle (ΔΦ) determines how fine the image is

sampled (Land and Nilsson 2002).
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Some eye-parameters are especially important in achieving acuity and eye size is the limiting

factor to these parameters. The most important eye parameters are: lens diameter,

photoreceptor diameter and the angular spacing between receptors (Kirschfeld 1971, 1976,

Land 1997).

The spacing of the receptors determines how finely images can be resolved. The amount of

light reaching the receptors, which is dependent on lens diameter, is important because at low

light levels the ability to resolve contrasts declines due to photon numbers being too low to

provide statistically reliable signals (Land 1997).

Due to the wave nature of light, the resolution of small lenses is severely limited. Diffraction

is the reason why lenses are not practical below a certain size, which explains why ommatidia

cannot simply be made smaller in order to improve resolution (Mallock 1894). To increase

resolution in a compound eye, it is necessary to increase the number of ommatidia in the eye

as well as the size of the single ommatidia, which is why eye-size is such an important factor

for insects (Land 1997, Mallock 1894). The positive correlation between body size and acuity

has been shown in studies on mantispids (Kral et. al. 2000) and bumblebees (Spaethe and

Chittka 2003).

These limitations of the apposition compound eye affect all hemipterans. Predators are more

affected by these limitations than animals that pursue a different feeding-mode. Since eye-size

is such an important factor in the compound eye, larvae are under even greater duress.

In hemimetabolic insects, such as bugs, eye development is especially interesting since it

unravels in distinct, abrupt steps, and much more gradually than in holometabolic insects.

In holometabolic insects, such as bees, beetles, butterflies and flies, a single dramatic event

metamorphosis separates the larvae from the adult animal. During metamorphosis the eyes, as

well as the whole body change in a single step. Quite commonly, the larvae look nothing like

the adults and are adapted to different habitats and food sources (Truman and Riddiford

1999). In contrast, the larvae of hemimetabolic insects, such as bugs, cockroaches, crickets,

mantispids etc., largely resemble the adult animals and often pursue the same trades.

Regarding Platymeris biguttatus this means that even the youngest larvae are predatory and

are confronted with the task of finding and catching suitable prey. The early larval stages of

P. biguttatus are tiny in comparison to the adults. Adults can reach sizes up to 40mm, while

larvae of the first instar are no greater than 6mm. The eyes of these larvae are accordingly

smaller than those of the adults, and the decrease in size of an apposition compound eye by a
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given factor results in a decrease of the eye’s resolution by the square of the same factor

(Land 1997).

Nevertheless, these tiny larvae must catch prey. Furthermore, the prey they catch must be

roughly their own size (Li et. al. 2010), despite the fact that it is more difficult to visually

locate small prey than large prey which the adult bugs hunt. How do these larvae manage to

localise their food? How do their eyes develop over time to deal with this task?

The size of an eye is limited and the two most important qualities of the eye - acuity and

sensitivity - compete against each other for the available space. The number of facets and the

interommatidial angle are parameters that have the greatest impact on acuity, whereas the

facet diameter has great impact on the eye’s sensitivity.

Larvae of hemimetabolic insects undergo a series of ecdyses to grow, and with each ecdysis

the larvae develops a step closer to assuming the habitus of the imagines. Along with the

overall growth of the animal, its eyes grow - not consistently, but in distinct steps with each

ecdysis.

The question that arises from these circumstances, and the larvae’s need to find prey, is how

do these eye parameters develop from one instar to the next. Does the number of ommatidia

increase more rapidly than the diameter of the facets? Do these parameters develop

continuously and more or less parallel from one instar to the next or does one parameter

change dramatically during the early stages of larval development while another changes at

the final stages? Can a trade-off between resolution and sensitivity be identified by regarding

the development of the compound eyes of P. biguttatus? How does the eye development

affect the animals’ ability to spot single objects and resolve gratings?

To find out how well Platymeris biguttatus sees and how its eyesight develops during its

larval development, several approaches were used in the course of this thesis.

Morphological measurements of the eye and body, and behavioural experiments, a choice

experiment and an optokinetic reaction experiment, were performed.

Morphological examinations were conducted on all five instars and the adult animals, the

behavioural choice experiments were tested on adult animals and 3rd instar larvae only, and

for the optokinetic experiment only adult animals were tested.

The behavioural experiments could not be conducted in the style of von Frisch and similar

experiments, which rely on the animal’s ability to learn, since bugs have not demonstrated

this kind of behaviour. In addition, Platymeris biguttatus is a predatory animal and need not
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be fed frequently, which would almost certainly make it nearly impossible to train these bugs

using food rewards.

In this thesis the behavioural experiment on Platymeris biguttatus was a spontaneous

preference test based on the assumption that the animals would seek to flee into darkness

when exposed to bright surroundings without cover. The stimuli used consisted of black

pieces of paper in an otherwise white arena. The aim of the behavioural choice experiment

was to ascertain the smallest size of an object for it to be detected by adults and larvae. It is

therefore a single-object detection experiment.

In contrast, the optokinetic experiment was applied to collect information on the maximum

resolvable spatial frequency (minimum separable) of Platymeris biguttatus.

This method to determine an animal´s visual acuity was developed by Bernd Hassestein

(1949) in his doctoral work on the beetle Chlorophanus viridis. The experimental set-up of

the Y-maze globe allows scientists to determine an animal’s maximum resolvable spatial

frequency (minimum separable) in an almost non-invasive manner and has been used, adapted

and applied to many animals with various stimuli since then (Kaiser 1974, Lazzari and Nunez

1989, Lott et al. 2006, Fenk and Schmid 2010).

The basis for the optokinetic test is that the composition of a grating of dark and light stripes

can only be resolved reliably if there are two receptors (ommatidia) to view each cycle of the

grating, one for the dark and one for the light stripe (Land 1997). This means that the spacing

of the receptors in any given eye can be mathematically derived if the finest grating, which

the aforementioned eye is able to detect, is known.

2 Material and Methods

2.1 Study site and animals

All morphological measurements and the behavioural choice experiments were conducted in a

laboratory at the University of Vienna, Austria. The optokinetic response experiment was

performed in Leverkusen, Germany.

Platymeris biguttatus belongs to the subfamily Reduviinae (Reduviidae, Heteroptera), is well

known to terrarium owners and quite easy to keep. The animals are predatory and to my

knowledge they accept as prey any living insect that is commonly available in pet-shops; even

animals considerably larger than themselves.
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The development from egg to adult requires a little more than 8 months, during which the

animals undergo a series of five ecdyses. Adult animals can live up to two years after the last

ecdysis (Li et al. 2010), which makes them suitable for long-term behavioural experiments.

The animal´s size reaches up to 4cm and makes them quite easy to handle and observe, while

the pace of the development provides sufficient time to conduct behavioural experiments on

single larvae with only a remote risk of the animals going into ecdysis before the test runs are

completed.

Studies on this animal are relatively scarce, but a comparatively new study on the biology of

these bugs was recently conducted by Li et al. (2010), while a number of studies have been

made on P. biguttatus´s close relative Platymeris rhadamantus (Edwards 1961, 1962).

Animals used in the experiments and morphological study were bought as larvae at pet fairs,

ordered from a breeder in Germany or bred at the University.

For morphological measurements, whole animals and exuviae were used. Adult animals and

larvae were killed, preserved in70% ethanol solution, then pinned through the abdomen and

dried. Exuviae were collected from the terrariums and measured as soon as possible.

In the behavioural choice experiments, adult Platymeris biguttatus and larvae of the third

instar were used. The bugs were kept in two plastic terrariums and were fed alternately on

meal-worm beetle larvae, cockroaches and house crickets. Animals were kept at room

temperature. The terrariums’ bottoms were covered with a layer of bark mulch that covered a

layer of quartz-sand. Pieces of bark, wood or cardboard were supplied to provide hiding

places for the animals. Light was provided for 12 hours every day, using a time-switch. Water

was supplied daily via a spray bottle to keep humidity high. Eggs and young larvae in general

were not removed from the terrariums and kept with the adults.

Adult bugs were individually marked, using Edding touch-up pencils of various colours.

Markings were drawn onto the animal´s pronotum.

Larvae that were destined for the behavioural tests were removed from the adult terrariums

and kept individually in small, numbered, transparent boxes. The larvae boxes were

essentially the same as the terrariums, but smaller and with the identical arrangement of bark

mulch over quartz-sand. The feeding and watering scheme was the same that was used with

the adults, although smaller prey was used to feed the larvae. Larvae were held under the

same 12:12 light/dark schedule as the adults.

Adult bugs are easily recognizable, since they possess fully developed wings. In contrast,

larvae cannot be easily assigned to one particular instar. Therefore, photographs of the live
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larvae were taken using a binocular stereoscope, and the pronotum width and tibia length

were measured and used to identify the larval stage (Figure 1).

Larvae were usually put into the individual boxes while still in their second instar, which

proved useful for two reasons. (i) The exuviae could be assigned to individual bugs after

ecdysis into third instar. This was important because the exuvial tibia could be used to

conclusively determine the larval stage of the animal. (ii) As soon as the animal was observed

to have concluded the ecdysis, tests could begin the following day, which maximised the time

in which trials could be performed before the next ecdysis.

If a larva died or began its ecdysis while tested, the trial series was discarded, unless at least

eight out of ten tests were already concluded.

Fifteen adult Platymeris biguttatus were used in the optokinetic response experiment. The

animals were kept and fed in the same way as in the choice experiment. Eggs and young

larvae were not removed from the terrariums but kept with the adults.

To identify each bug individually a small piece of cardboard with a number on it was glued to

the pronotum using beeswax and an electric soldering iron. The cardboard additionally served

to fixate the animals in the arena with a small clip linked to a piece of wire.

2.2 Morphology

Morphological measurements were done using a Nikon 5m2-U binocular, a Nikon

MicrophotoT FXA microscope, a micrometer and the image-processing program ImageJ.

To make estimates about Platymeris biguttatus´ eye development and acuity, several

parameters were chosen and examined for each instar. The parameters chosen were: pronotum

width at its widest point, fore tibia length, number of facets, facet diameter and

interommatidial angle. Pronotum width and tibia length have been used previously to estimate

body size in the milkweed bug Lygaeus kalmia (Fox and Caldwell 1994).

Pronotum width was measured by taking photographs of the animals and comparing distances

on the photographs with a photograph of a standardized scale using ImageJ (Figure 1)

Tibia length measurements were done in essentially the same way as pronotum width

measurements (Figure 2) the only difference being that for tibia measurements either the left

or right fore-tibia of either a dead bug or an exuviae was used. The tibiae had to be cut off in

order to be photographed, whereas for pronotum width measurements the animals were left

intact.
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Figure 1 Photographs used for measurements of tibia length (a) and pronotum width (b). The tibia (a)
was taken from an exuviae shortly after ecdysis, the photograph used for the pronotum width was
taken of a live larva of the 3rd instar. The red lines indicate where the measures were taken using the
program ImageJ.

To count the number of facets or ommatidia in one eye of the animals, it was necessary to

produce a picture in which all facets could be seen clearly. Due to the curved surface of the

eyes of Platymeris biguttatus, this could not be achieved by simply photographing the eye.

Therefore an imprint of one eye of each specimen was made using commercially available,

clear nail polish. The nail polish was spread over the eye, and pulled off as soon as it was dry

enough. The resulting imprint was then incised, flattened, transferred onto an object slide and

photographed using a camera mounted onto a Nikon MicrophotoT FXA microscope. If the

imprint was too large to fit on to a single photograph, several pictures were taken and stitched

together using Adobe Photoshop (Figure 2).
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Figure 2 Picture used for counting the number of facets in the eye of an adult specimen of Platymeris biguttatus.
The picture is a composite of five photographs of a nail polish imprint of the compound eye. Photographs were
taken using a digital camera mounted onto a microscope.

This approach worked quite well for adult animals and the fifth, fourth and third instar. Using

nail polish on the first and second larval stages, however, turned out to be impractical. Since

the exoskeleton of these animals was so small and weak, it was not possible to remove the

dried nail polish from the eye without excessive tearing.

Therefore, exuviae were used to count facets. The corneal lenses of larvae are, along with the

rest of the exuviae, shed off by the animal during ecdysis. These corneal lenses were extracted

carefully from the exuviae, put onto an object slide, embedded in nail polish and

photographed. In the course of the embedding, the array of corneal lenses was deliberately
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crushed using the covering glass, so that it would lie flatly on the slide, allowing for a more

focused picture (Figure 3).

Figure 3 Photograph of facets taken from the exuviae of a Platymeris biguttatus larva after its first ecdysis. The
cornea was deliberately broken so that the corneal lenses could lie flat on the object slide, thus allowing for a
more focused picture. The photograph was taken using a binocular and a digital Nikon camera.

The facet diameter was determined by taking pictures of the eye and measuring the width of

four facets in a row, using ImageJ, and dividing the measured value by four. For this purpose

pictures of corneal lenses from exuviae were used, as well as pictures taken from pinned

animals.

The interommatidial angle was estimated by taking pictures of the bug’s eye from the dorsal

view (Figure 4). This was done for the anterior and dorsal part of the eye. The next step was

to fit a circle to cling to the row of ommatidia using ImageJ plug in “Circle Fit”, which gives

the central point of the described circle. Using that central point and two points lying in the

middle of two ommatidia on the circle, the angle enclosed by those two ommatidia was

calculated. That angle was then divided by the number of ommatidia enclosed in the angle to
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obtain an estimation of the interommatidial angle (ΔΦ). Ommatidia used for these

calculations had to be at least 4 ommatidia apart.

Figure 4 Picture used to assess the interommatidial angle in the frontal region of the eye. The central point of the
osculant circle touching the facets on that part of the eye was established using the ImageJ plug-in “Circle Fit”.
The angle between two facets, at least 4 facets apart (α), was calculated and divided by the number of facets
included in that angle to obtain the interommatidial angle. The red line depicts a section of the circle used to
calculate the interommatidial angle and the angle α enclosing four ommatidia touching that circle. The red lines
in the picture were not produced by the ImageJ plug in “Circle Fit” but were added to the photograph for
illustration purposes only.

2.3 Behavioural Experiment

The behavioural experiments were conducted in a simple V-shaped arena. The V consisted of

two aisles, 30cm squared, meeting at a 90 degree angle (Figure 5). The walls of the arena

were 30cm high. The whole arena was lined with white photocopy paper. The backplane of

one of the two aisles contained the stimulus: a black bar; the other back wall was either kept

white or was covered with grey paper, matching the percentage of darkened surface of the

other backplane.
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Figure 5 Photograph of the V-shaped arena used in the behavioural experiment. Stimulus attached to the
backplane of the left aisle of the arena.

Adults were tested on six different stripe sizes. When seen from the entrance to the aisle the

bars enclosed a visual angle of 30°, 10°, 5°, 3°, 1.5° and 0.5° respectively in the horizontal

plane. Larvae were tested against the same set of stripes, except that instead of 0.5° a 15°

degree stripe was used since after evaluating the results from the tests with adult animals, it

was determined that the larvae could not resolve visual angles smaller than 3°.

The assumption behind the experiment was that the bugs would seek to flee or take shelter

when being exposed to the very bright surroundings of the arena, since reduviids are known to

show photonegative-reactions (Reisenman and Lazzari 2006). If that were the case, the

animals should run into the aisle holding the dark stripe more often than into the other aisle,

as long as they can perceive the stripe. To rule out the possibility that the bugs reacted to one

aisle being darker than the other due to the black bar on its back panel, a second series of tests

was performed in which a grey sheet of paper was placed on the back wall of the non-stimulus

aisle that matched the percentage of blackness in the stimulus aisle.

Each individual was randomly tested 10 times for each stripe width during the experiment,

resulting in a total of 60 trials for each individual. Whether the stripe was to be positioned in

the right or left aisle was decided by a coin toss.

The bugs were placed into the arena using a non-transparent cup, and manoeuvred into the

centre point between the two arms of the arena. At the beginning of each test the cup was

removed. If the bug ran into one of the aisles before a minute had passed, the trial was

stopped and considered successful. Which aisle the bug entered was recorded. The animal was
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then returned back to the starting position if another test was to be made, or put back into the

terrarium if not. Each individual was tested no more than five times per day.

Quite often the animals would not move on their own account, but remained at the same

place. In that case after 30 seconds, an attempt was made to startle them by either blowing on

them or nudging them with a ruler. To ensure that they were not pushed in any direction when

nudging them, they were nudged squarely on the prothorax from directly above.

2.4 Optokinetic Response Experiment

The testing arena consisted of a cylindrical drum measuring 30cm in diameter and 30cm in

height. The drum was set to spin in motion by means of a small electric motor and gears

connected by hard rubber bands. The turning speed of the drum was controlled via an

adjustable power supply unit and the setting of the gears (Figure 6). The drum’s inside wall

was clad with interchangeable gratings of varying fineness, made either of white cardboard

with black stripes attached to the cardboard, or printed black and white stripes, producing a

regular pattern with alternating black and white stripes of the same dimension.

Figure 6 Setup of the optokinetic reaction experiment: LS, Light source; B Bug fixated to mounting via piece of
cardboard glued to its pronotum, clamp and wire; CS , Cut section - depiction of view into the drum to show
grating and bug; Gr, Grating; D, Drum; G, Gears; E, Electric engine; PS, Power supply; SW, Switch allowing to
arrange drum to turn clockwise or counter clockwise without shifting cables; RB, Rubber bands connecting
engine, gears and drum; Gb, Globe held by tested bug; M, Mounting
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The bugs were led to grab onto a table tennis ball, draped in crepe paper for better grip. They

were then tethered in the centre of the arena via a small clamp which held the cardboard on

the back of the animal and which was bound to the mounting by wire. The table tennis ball

was used instead of a Y-maze globe since preliminary studies showed that the bugs would not

run along the Y-maze.

After arranging the bug to hang in the arena with the ball at its feet, as depicted in Figure 6,

the drum was set in motion and the grating started to spin.

If the tethered bug tried to move in the direction of the spinning grating, it would move the

ball in the opposite direction of the drum. This behaviour was interpreted to be an optokinetic

reaction. Usually before the bug moved its feet and the globe with them, movement of the

antenna and head could be observed.

In preliminary tests the bugs were exposed to gratings of varying fineness moving at two

different frequencies, 7Hz and 48Hz. The animals performed equally well at both frequencies,

which is why a frequency of 20Hz was chosen for the test set-up. This value was chosen to

avoid either getting too close to the cut-off frequency off the animals’ eyes, at which the black

and white bars would be flickering past the animals too fast to be resolved by the eye, or

going too slowly to incite reaction from the animals.

Four different gratings and a grey background were tested. The single bars of the gratings

amounted to a visual angle of 15°, 5.5°, 3°, and 1.5° when seen from the centre of the arena.

Consequently the periods of the gratings were 30°, 11°, 6° and 3°, respectively.

The grey background used as a control was designed to match the brightness of the gratings,

50% white and 50% black, and moved at the same speed as the widest grating (15°).

Each animal was tested once a day only and was exposed to three consecutive runs on that

occasion. Preliminary tests indicated that longer or more frequent stimulation in the drum lead

to diminishing reactions. After setting the drum in motion, the bug and the globe were

observed for a maximum of thirty seconds if a distinct spinning, i.e. rotation of the globe more

than 180 degrees in either direction, occurred.

The direction of the turn, or the absence of a distinct spin, were recorded.
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2.5 Statistics

To find out whether the results of the behavioural choice experiment differed significantly

from chance, a one-sample t-test was conducted using SPSS. The expected value used in this

test was 0.5 (50%) – based on the assumption that without any stimulus the bug would choose

randomly between the two aisles. The level of confidence was set to be 0.05 (5%).

To evaluate the results of the optokinetic response experiment a two-sided sign-test was

conducted. The level of confidence was set to be 0.01 (1%). Morphological data was collected

and analysed using Microsoft Excel.
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3 Results

3.1 Results of Morphological Study

By plotting tibia length against pronotum width of the examined animals, six distinct groups

could be identified (Figure 7). The six clusters seen in Figure 7 represent the five larval stages

of Platymeris biguttatus (L1-L5) and the adult stage (A).

Figure 7 Graphical depiction of tibia length compared with pronotum width of each developmental stage of
Platymeris biguttatus. The pronotum width is applied on the X-axis; Tibia length is applied on the Y-axis. L1 to
L5, first to fifth larval stage; A, Adult; N= Number of animals measured per developmental stage. Each dot in
the diagram represents the tibia length and pronotum width of a single animal at the respective developmental
stage.

The same data was used to create Figure 8. In Figure 8 mean values of tibia length and

pronotum width were used, and the standard deviation is given by the error bars.
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Figure 8 Graph of mean tibia length plotted against the mean width of the pronotum for each developmental
stage. Pronotum width is applied on the Y-axis, tibia length on the X-axis. L1-L5, first to fifth larval stage; A,
Adult. Each dot in the diagram represents the arithmetic mean of the tibia length and pronotum width for the
respective developmental stage; the horizontal error bars for each dot depict the standard deviation of the
arithmetic mean. N= Number of animals measured for each developmental stage, all measures in millimetre.

The correlation between tibia length, pronotum width and stage of development in Platymeris

biguttatus was used to determine the exact larval stage which a larva was currently going

through. This was crucial to the behavioural experiment since only 3rd instar larvae and adult

animals were used (see below). Adult animals can be easily identified by the presence of fully

mature wings; however young larvae of the 2nd, 3rd and 4th instar are difficult to distinguish.

To ascertain to which instar a larvae belongs, the larvae were kept individually. Photos of

their pronotum were taken before and after ecdysis to determine its width. After ecdysis the

exuviae were collected, and the front tibia measured. These measurements were compared

with the data in Figure 8 and used to confirm an animal’s current developmental stage.

The number of facets found in a single eye of Platymeris biguttatus increases throughout its

larval development (Table 1). The mean number of facets composing one eye of a first instar

larvae amounts to a rounded 106, the number of ommatidia in a 3rd instar larvae is 325, and

the eye of an adult animal is composed of about 880 ommatidia. As is shown in Figure 9 the

number of facets seems to increase linearly with the tibia length.
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Figure 9 Graphical depiction of mean tibia length compared with the mean number of facets in one eye of each
stage of development. The horizontal error bars for each dot depict the standard deviation of the arithmetic mean.
L1 - L5, first to fifth larval stage; A, Adult; N= Number of animals measured per developmental stage.

Measurements of the facet diameter show that the diameter of facets increases during

development. The mean value doubles from 34 micrometres in the first instar to 69

micrometres in the adult bugs (Table 1, Figure 10). The increase in facet diameter does not

appear to be as linear as is the case with the increase of facet numbers throughout the animal´s

development.
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Figure 10 Graphical depiction of mean tibia length compared with the mean facet diameter in the eye of each
developmental stage. The facet diameter is applied on the X-axis; tibia length on the Y-axis. L1 - L5, first to fifth
larval stage; A, Adult; N= Number of animals measured per developmental stage.

Figure 11 shows the mean interommatidial angle of each developmental stage of Platymeris

biguttatus, measured for two regions of the eye (anterior, posterior) and compared with tibia

length. The interommatidial angle in both the anterior and posterior part of the eye declines

from one instar to the next.

The interommatidial angle of the caudal part of the eye is larger than that of the rostral part,

except for the first instar, where the interommatidial angle of the rostral part is larger. The

interommatidial angles range from 12.5° in the first instar to 3.7° in the adults (Table 1).
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Figure 11 Graphical depiction of mean tibia length compared with the interommatidial angle measured at the
rostral and caudal part of the eye of each developmental stage. Dots represent the interommatidial angles of the
anterior, cross-marks (X) that of the posterior part of the eye. The interommatidial angle is applied on the Y-axis;
tibia length is applied on the X-axis. L1 to L5, first to fifth larval stage; A, Adult. Each dot in the diagram
represents the arithmetic mean of the tibia length and interommatidial angle of a particular developmental stage,
the horizontal error bars for each dot depict the standard deviation of the arithmetic mean. Standard deviations of
the interommatidial angle are given as vertical bars. Measures of tibia length are given in millimetre,
interommatidial angle in angular degree. N= Number of animals measured per developmental stage.

When measurements taken on the eye are compared with each other and not with tibia length,

it is apparent that the number of facets, and therefore the number of ommatidia and the

diameter of the facets increase more or less continuously, while the decrease of the

interommatidial angle diminishes toward the adult state.

This trend is particularly apparent when the graphs in Figure 12 and Figure 13 are viewed.

Obviously, the interommatidial angle nearly reaches its minimum at the 5th instar, while the

number of facets and the size of the lenses increase to the last ecdysis.
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Figure 12 Graphical depiction of the mean interommatidial angle compared with the mean facet diameter in the
eye of each developmental stage. Each dot in the diagram represents the arithmetic mean of the interommatidial
angle and facet diameter of a larval stage or the imagines, the error bars on each dot depict the standard deviation
of the arithmetic mean. Standard deviations of facet diameter are given as horizontal bars , standard deviations of
the interommatidial angle as vertical bars . N= Number of animals measured per developmental stage.
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Figure 13 Graphical depiction of the mean interommatidial angle compared with the mean number of facets in
the eye of each developmental stage. Each dot in the diagram represents the arithmetic mean of the
interommatidial angle and the number of facets for each developmental stage, the error bars on each dot depict
the standard deviation of the arithmetic mean. Standard deviations of facet number are given as horizontal bars,
standard deviations of the interommatidial angle as vertical bars. N= Number of animals measured per
developmental stage.

Table 1 Mean-values (MV) and standard-deviations (+/-) of the parameters tibia length (Tib L), pronotum width
(Pro W), facet number (Fac No), facet diameter (Fac D), anterior and posterior inter-ommatidial – angle (IOA
and IOP) in mm in all stages of development. L1-L5 Larval stages 1-5, A – Adult.

L1 L2 L3 L4 L5 A

MV +/- MV +/- MV +/- MV +/- MV +/- MV +/-

Tib L 1.91 0.10 2.59 0.19 3.63 0.16 4.99 0.18 6.84 0.38 8.40 0.22
Pro W 1.04 0.07 1.59 0.08 2.41 0.04 3.56 0.06 5.28 0.06 5.70 0.20
Fac No 105.9 21.4 207.0 11.5 325.2 17.6 490.9 50.8 721.8 56.9 879.6 31.4
Fac D 0.034 0.002 0.042 0.001 0.046 0.002 0.055 0.003 0.059 0.003 0.069 0.003
IOA 10.38 1.80 7.18 0.61 6.32 1.03 5.48 1.09 4.22 0.52 3.66 0.63

IOP 9.81 1.70 7.55 1.29 7.06 0.76 6.47 0.92 5.62 0.96 4.74 0.90

To provide a general view of the development of all eye-parameters Table 1 gives the mean-
values of all eye-parameters for all developmental stages.

3.2 Results of Behavioural Experiment

To evaluate the data gathered from the behavioural experiment, the performance of each

tested bug was calculated for every bar-size. The performance is the percentage of test runs

for each given stripe size, to which the bug chose to run into the aisle where the bar was fixed.

These performance values were put together into groups according to bar size; the mean
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values and standard deviation were calculated (Figure 14, Table 2). To determine whether the

mean values differed significantly from chance results, a one-sample t-test was conducted

using SPSS. The expected value used in this test was 0.5 (50%) – based on the assumption

that without any stimulus the bug would randomly choose between the two aisles. The level

of confidence was set to be 0.05 (5%).

The best performance was observed in adult animals, when tested against a white background.

The one-sample t-test showed that the bugs, when confronted with a stimulus as narrow as

1.5° chose the aisle containing the stimulus significantly more often than the aisle lacking the

stimulus. The performance was above 60% for all tested stripe sizes, except for the smallest

size, which from the entrance to the aisle could be seen at an angle of 0.5°.

For example, in 71.9% of the trials, the animal ran into the aisle with the black strip when

tested with the broadest stripe, which amounted to 30° of visual angle (Table 2, Figure 14). In

69.1% of the trials, the assassin bug ran into the aisle containing the stripe when the stripe

amounted to 10° of visual angle.

The percentage of trials in which the bug ran into the aisle containing the stripe was always

lower when the aisle lacking the stripe was grey instead of white. The t-test showed that only

when confronted with the broadest stimulus did the bugs chose significantly more often the

aisle with the black stimulus than the aisle with the grey backplane.

Larval bugs of the third instar were tested in the same way as the adults, but performed poorer

in every aspect. As evident in Table 2 and Figure 14, the percentage of larval bugs choosing

to run into the aisle holding the black stripe is lower than that of the adult animals throughout

the entirety of the test-setup. The broadest stripe attracted the larvae in 60.5 % of all runs.

However the percentage of larval bugs choosing the aisle with the stripe when the stripe was

15° wide was 64.3 – higher than when the 30° stripe was used. The test runs using the black

15° stimulus in one aisle and the white backplane in the other aisle was also the only series of

runs in which the results differed significantly from randomness. The results of all other

groups do not differ significantly from random.

When larvae were used, no significant results could be derived from any of the test conditions

in which a grey backplane was fixed in the aisle lacking the stimulus.
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Figure 14 Graphical depiction of the mean performance of adult and larval Platymeris biguttatus in various
behavioural test conditions. Blue lines show the performance of adult individuals, orange lines those of third
instar larvae. Solid lines represent the performance attained in those tests in which the empty aisle had a white
back wall, broken lines represent tests where the back wall lacking the stripe was covered with grey paper that
matched the amount of darkness of the striped aisle. Red dashed line indicates a performance 0f 60%.

Table 2 Mean values of the performance of adult and 3rd instar Platymeris biguttatus in the behavioural
experiment. Numbers in the top row indicate the angular degree at which the tested stripe was visible from the
entrance of the aisle. N indicates the number of animals tested; A Adult; L Larvae of 3rd instar. W White, G Grey
indicate colours of the back wall of aisle lacking the black stripe. Cross-marks (X) indicate no tests performed.

30.00 15.00 10.00 5.00 3.00 1.50 0.50 N
Ad W 71.90 14.62 X X 69.10 17.00 62.70 12.72 60.80 14.24 66.40 22.92 57.80 17.63 11,00
Ad G 61.00 13.05 X X 55.60 15.62 57.30 11.04 58.50 14.65 55.90 16.34 47.80 15.76 11,00
L W 60.50 14.67 64.30 15.17 57.60 18.71 47.80 17.87 51.50 18.74 47.20 19.18 X X 9,00
L G 51.30 15.53 58.80 17.27 60.00 11.95 46.30 15.06 56.30 16.85 47.50 18.32 X X 8,00
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3.3 Results of Optokinetic Response Experiment

Figure 15 Graphical depiction of the mean performance of adult Platymeris biguttatus in the optokinetic
experiment showing the mean percentage of turning-movements that matched the direction in which the drum
was turned (with rotation). Values on the X-axis represent the broadness of the stripes that made up the grating
of the drum, in angular degree as seen from the centre of the drum. The gratings from left to right: 1,5°,
3°,5,5°,15°. The grey background that the animals were exposed to is depicted as 0°, since an infinitely fine
grating of black and white bars would be perceived as grey. Standard deviations of the mean values are depicted
as vertical error-bars at the corresponding point in the graph, N= Number of animals with at least one evaluable
run at the given grating.

When exposed to the finest grating used, in which every bar enclosed a visual angle of 1.5°, a

mean value of 88% of all countable turning-movements occurred in the direction that would

have enabled the animal to follow the motion of the drum had it not been fixed in space by the

clamp and mounting. The movements of the gratings, which consisted of bars 15° and 5.5°

broad, were met with movements going “with the drum” in over of 80% of cases. The only

grating, in which less than 80% (68.8%) of the movements went with the drum, contained

bars 3° broad.

In contrast, the bugs did go against the drum more often than with it when the drum was lined

with the grey background instead of a grating, as evident in Figure 15.

It is also notable that the animals’ disposition to rotate the ball at all coincided with the

broadness of the bars that make up the grating. The number of bugs that moved the ball (N)

was highest when the coarsest grating (15°) was used. With this stripe width, all 15 bugs
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moved the ball at least once in the course of the 10 runs (see Table 4, Supplements). The

number of bugs that moved the ball in at least one of the 10 runs for every grating diminishes

as the grating becomes finer. Using the 5.5°, 3° and 1.5° gratings, the number of bugs that

moved is 13, 11 and 12, respectively. When a grey background was used only 9 out of 15

bugs spun the ball.
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4 Discussion

The aim of this study was to test the visual performance of the compound eyes of Platymeris

biguttatus over the course of the animals’ development.

The morphological data suggest a continuous increase of spatial resolution and light

sensitivity from the first instar to the adult animals. The number of ommatidia increases from

about 100 ommatidia to almost 900. The facet diameter doubles from 34μm to 69μm and the

interommatidial angle in the anterior part of the eye decreases from 10.4° in the first instar to

3.7° in adult animals.

The combined development of these parameters should enable those animals that have just

completed an ecdysis to resolve finer details under poorer light conditions than in the

preceding ecdysis.

For comparison, the eyes of Triatoma infestans, which is a closely related bug, start with an

average of only 34 ommatidia in the first instar and adults possess an average of 312

ommatidia per eye (Settembrini 1984). Likewise, the mean diameter of the facets increases

from 34μm to a maximum of just above 100μm in the course of larval development.

Triatoma infestans, however, is a nocturnal hematophagous bug and may not be as dependant

on visual acuity as other reduviids. T. infestans sneaks up on its involuntary donors by using

quite an array of senses; thermal orientation and olfaction being the main guides of host

location (Reisenman et. al. 2000). It is therefore not surprising that T. infestans has larger

facets and a smaller number of ommatidia per eye than P. biguttatus. The developmental

trends, however, are quite similar, an increase of ommatidia per eye by a factor of roughly

nine, and at least a doubling of facet-diameter.

Similar trends have been found in the development of the shore-bug Saldula saltatoria. Like

S. saldtatoria, P. biguttatus, is an active hunter that pounces on its prey. T. infestans in

contrast is a nocturnal blood-sucking parasite. Therefore T. infestans might be less dependent

on its visual acuity than the more active predators. As Griesinger and Bauer (1990) showed

the number of ommatidia in the eye of S. saltatoria increases from 139 (first instar) to 1081

(imago), and the diameter of the corneal lenses in the frontal part of the eye increases from

12μm to 22μm. The similarity in the development of the number of ommatidia in P.

biguttatus and S. saltatoria is striking, as well as the difference in the diameter of their facets.

The reason for the difference in facet diameter might be that P. biguttatus´ eyes are adapted to

a more nocturnal or crepuscular life style than those of S. saltatoria. Another possible

explanation stems from the fact that adult S. saltatoria only reach a body length slightly more

than 4mm, whereas P. biguttatus reaches sizes up to ten times that measure, and therefore has
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more space available for larger facets. Interestingly, the first larval stage of P. biguttatus is

roughly the same size as adult S. saltatoria and possesses facets 1.5 times the size of S.

saltatoria but less than a tenth of its ommatidia. This fact suggests that sensitivity may be

more important than visual acuity for the early larval stages of Platymeris.

Morphological data suggest that the anterior part of the eye is most important for Platymeris

biguttatus, since the anterior interommatidial angle reaches its smallest value during the 5th

instar and is narrower than the posterior interommatidial angle. The posterior angle in the

smaller larval stages is almost as narrow or even slightly more narrow (L1) than the anterior

angle. This condition changes with the second ecdysis, after which the anterior angle is

considerably smaller than the posterior angle (Table 1, Figure 11). A possible explanation for

this might be that the smaller larvae, such as the L1, have only about 100 ommatidia and

therefore cannot rely entirely on vision as the primary method of prey location. Instead the

main function of the bug’s eyes at that stage might be predator location. Predators would, of

course, be considerably larger than the animals’ desired prey-size and therefore more easy to

locate visually even with cruder resolution. Although predators may approach their prey from

any given direction, the prey can only be attacked frontally with the bugs’ beak. Thus if the

main objective is predator location, it is not efficient to concentrate their limited ommatidial

capacity to one area of the eye. In the behavioural experiments, it was observed that before a

stationary bug moved in any direction it pointed its antennae in that direction. This suggests

that olfaction is an important source of orientation in P. biguttatus.

It is possible that in the development of Platymeris biguttatus a shift from a mainly olfactory

guided mode of hunting to a more visual guided mode occurs. This hypothesis stems from the

observation that the antenna of the early larval stages appear to be larger than those of the

adults relative to body size.

Furthermore on the one hand, Freund and Olmsted (2000) showed that vision is more

important in predator avoidance than olfaction in two predatory bugs, Sinea diadema

(Reduviidae) and Nabicula subcoleoptrata (Nabidae). The same study postulated that

olfaction in predatory hetereopterans might be more important than vision in foraging for

prey. The animals used in that study were considerably smaller than adult P. biguttatus (S.

diadema 5th instar ≈ 13.5mm, N. subcoleoptrata ≈ 8.1mm) but comparable in size to the

younger larvae of P. biguttatus and might therefore be exposed to similar predatory pressure

as the first few instars of P. biguttatus.
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On the other hand, Haematorrhphus niggroviolaceus, a reduviid bug that preys on millipeds,

when starved and confronted with artificial bait, has been shown to react appreciably more

often to unscented moving bait than to stationary scented bait (Haridass and Ananthakrishnan

1980a). The impact of antennectomy, eye blinding and tibial comb coating on the predatory

behaviour of the reduviid Rhynocoris kumarii was studied by Claver and Ambrose (2001).

That study showed that impairment of any of the senses results in a delayed arousal response.

The act of approaching prey, however, was only significantly affected in antennectomised

animals, not in blinded ones. Capturing response was significantly affected in those bugs

whose eyes had been blinded, as well as, in those whose antenna had been cut off and those

whose tibial combs had been rendered useless (Claver and Ambrose 2001). These studies

illustrate the complex collaboration of predatory bugs’ senses during prey location, approach

and capture.

Platymeris biguttatus possesses a cave organ along with a number of differentiated

trichobottria, which was first discovered in the bloodsucking Triatoma infestans (Barth 1952,

Lazzari and Wicklein 1994). However, the larvae of Reduviidae do usually not possess more

than a single trichobottrium (Weirauch 2003). Cave-organs are thought to register heat-

radiation (Barth 1952 cited in Weirauch 2003, Lazzari and Wicklein 1994) or chemical cues

(Catala 1994). Weirauch (2003) demonstrated that this organ is present on the antennae of P.

biguttatus, but it is as yet unknown how P. biguttatus benefits from the organ, since heat-

stimuli are probably not as useful in locating arthropod prey as in finding mammals or birds

for obvious reasons. Moreover, trichobottria may function to register air movement (Weirauch

2003) and may readily benefit prey-tracking and predator avoidance.

With such an array of sensory systems including vision, air movement registration, olfaction,

and the cave-organ, which possibly detects heat-stimuli or chemical cues, Platymeris bugs are

superbly equipped in locating food and not getting devoured in the process, as well as finding

other bugs of their species to mate with.

However, to clarify which of these senses is used for what task and how well it performs more

research will have to be conducted.

The observations made during the behavioural experiment suggest that it is possible to use

spontaneous preferences to determine the visual acuity in hemipterans. Although the animals

may often remain inactive instead of running through the V-shaped arena, there is a

preference for running toward dark objects. A method to coax the bugs to show more active
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behaviour, such as flight reaction, without influencing the direction in which they flee might

greatly improve the experiment.

The behavioural experiment clearly suggests that resolution improves during larval

development, since the adults show a positive reaction toward objects which could not be

detected by the 3rd instars. The behavioural experiment, however, was hindered by the

animals’ reluctance to move spontaneously - a disposition that most likely stems from their

“wait and grab” (Haridass et al. 1987) strategy of feeding. Additionally, the animals’ photo-

negative reaction does not seem to be as profound as that of their reduviid relatives, such as

Triatoma infestans, whose strong photonegative reaction has been used to study its spectral

sensitivity by Reisenman and Lazzari (2005).

In the behavioural choice experiment a grey back wall, placed in the aisle which lacked the

stimulus, severely diminished the likelihood of the bug choosing the aisle with the stimulus.

An explanation for that is that the bugs, when no grey back wall was fixed in the arena,

reacted to the aisle containing the stimulus which was darker. However, the results of the

optokinetic experiment and the behavioural choice experiment when conducted without a grey

back wall matched very closely, which led me to assume that the animals can perceive single

objects as narrow as 1.5°, but are almost equally attracted to the grey back wall and to the

black stimulus.

Both the behavioural and the optokinetic test show that the animals react to stripes at a visual

angle considerably more narrow than the interommatidial angle in the frontal part of their

eyes. In both experiments the animals still react to bars of 1.5° width.

Given the equation vs=1/(2ΔΦ), which postulates that there must be two receptors for every

circle of a grating in order for the grating to be resolved properly (Land and Nilsson 2002),

the interommatidial angle in the eye of Platymeris biguttatus would be assumed to be 1.5° or

smaller.

A possible explanation for the discrepancy between values for the interommatidial angle

gathered from the morphological examination and the optokinetic response experiment lies in

the arrangement of the ommatidia within the eyes. In a hexagonal arrangement of ommatidia

the question arises which interommatidial angle should be used. In case of the hexagons

“standing on their tips” some argue that ommatidial axes are separated vertically by less than

the interommatidial angle and that in some circumstances the proper basis for measuring

acuity should not be ΔΦ but (3)½ ΔΦ/2 (Land 1997).

The mean value of the interommatidial angle in the frontal part of adult specimens of

Platymeris biguttatus is 3.7. However, using the formula mentioned above, this value is
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reduced to roughly 3.0. The value suggests that P. biguttatus` visual abilities are worse than

they evidently are.

Another explanation for the actual acuity being better than the morphological data suggested

would be the presence of an acute zone somewhere in the eye of the animals, although

nothing of that kind became apparent during the morphological studies.

The spatial acuity of the adult bugs determined by using the optokinetic response and the

behavioural choice experiment gives a value of 1.5° or lower for the interommatidial angle

ΔΦ. This is a fairly average value for insects (for comparison, see Land 1997).

Table 1 and Figure 11 show that the interommatidial angle in the anterior part of the eye

diminishes rapidly from the first instar to the fifth, the smallest decrease of the

interommatidial angle happens during the last moulting. Parallel to this development the facet

diameter increases from one ecdysis to the other, but the greatest increase occurs in the last

ecdysis – from the fifth larval stage to the adult animals. This suggests that early in the

larvae’s development acuity is a key issue, and that the quality of vision of the fifth instar is

almost as acute as that of the adults, albeit much dimmer. During the last ecdysis the facet

diameter increases from 59μm to 69μm, which is an increase of one sixth. This is interpreted

to mean that, when compared to the largest larvae, adult P. biguttatus do not gain much more

acuity, which would enable them for example to detect prey from further away or to pounce at

prey with more precision, but instead increase sensitivity by a large margin, which should

enable them to hunt further into dawn or even at night.

It was shown that the parameters contributing to the visual capabilities of Platymeris

biguttatus increase drastically during larval development. This increase was shown to be

apparent in the eye parameters: facet diameter, interommatidial angle and number of

ommatidia.

This increase in acuity was successfully demonstrated to affect the animals’ ability to resolve

objects visually, by showing that adult animals are able to react to much more narrow objects

than larvae of the third instar.
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8 German Summary

Ziel dieser Diplomarbeit ist es die Entwicklung des optischen Auflösungsvermögens der

räuberischen Raubwanze Platymeris biguttatus (Reduviidae) zu erforschen. Zu diesem Zweck

werden morphologische Untersuchungen der wichtigsten Augenparameter sowie

Verhaltensversuche in Form eines Wahlversuches und eines optokinetischen Versuches

durchgeführt. Augenparameter wie Facettendurchmesser, Interommatidialwinkel und die

Anzahl der Facetten pro Auge werden für alle fünf Larvalstadien sowie die adulten Tiere

untersucht. Wanzen im dritten Larvalstadium sowie adulte Tiere werden im Wahlversuch

verwendet. In dem optokinetischen Versuch werden ausschließlich adulte Tiere verwendet.

Der Wahlversuch basiert auf der Annahme, dass Wanzen der Spezies Platymeris biguttatus,

photonegatives Verhalten zeigen und von dunklen Stimuli angezogen werden wenn sie einer

hellen Umwelt ausgesetzt werden. Die Wanzen werden in einer V-förmigen Arena ausgesetzt

und können entweder in einen Gang laufen, an dessen Rückwand ein dunkler Stimulus

angebracht ist, oder in einen anderen Gang ohne einen solchen Stimulus. Der optokinetische

Versuch basiert auf dem Experiment von Bernd Hassestein (1949). Die morphologischen

Daten zeigen, dass der Facettendurchmesser und die Anzahl der Ommatidien während der

Larvalentwicklung mehr oder weniger kontinuierlich anwachsen. Der Interommatidialwinkel

hingegen scheint sich nicht derart kontinuierlich zu entwickeln. Die Anzahl der Facetten

nimmt von 105 im ersten Larvalstadium auf durchschnittlich 880 bei den Adulten zu.

Während der Larvalentwicklung vergrößert sich der Facettendurchmesser von 34 µm auf 69

µm, und der Interommatidialwinkel im anterioren Anteil des Auges schrumpft von 10,4° auf

3,7°. Im Wahlversuch wählen die adulten Wanzen signifikant häufiger jenen Gang, in dem

der dunkle Stimulus fixiert ist, bis hinunter zu Stimulusgrößen die einen Sehwinkel von 1,5°

einschließen. Ist eine graue Rückwand in jenem Gang angebracht, der keinen Stimulus

enthält, verringert das die Wahrscheinlichkeit, dass eine Wanze den Gang mit dem Stimulus

wählt, deutlich. Tiere, die sich im dritten Larvalstadium befinden, wählen nur bei einem

Stimulus der 15° breit ist signifikant häufiger den Gang mit Stimulus. Im optokinetischen

Versuch zeigen adulte Versuchstiere signifikante Reaktionen auf Streifenmuster, die aus

schwarzen und weißen Streifen von je 1,5° Breite zusammengesetzt sind. Besonderheiten der

Entwicklung der Augenparameter und die Aussagekraft der Verhaltensversuche werden

besprochen.
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10 Supplements

Table 3 Morphological measurements of individual Platymeris biguttatus of all developmental stages. Mean-
values (MV) and standard-deviations (ST D) of the parameters tibia length (Tib L); Pronotum width (Pro W);
Facet number (Fac No); Facet diameter (Facet D), Anterior and posterior inter-ommatidial – angle (IOA and
IOP) in mm in all stages of the bugs development. Developmental stage (Dev. St.) L1-L5 Larval stage 1-5, A –
Adult.

Specimen Dev. St Facet D Tibia L Pro W Fac No IOA IOC
3 L1 1.95 1.06 60.00
4 L1 0.037 1.87 1.08 103.00
5 L1 0.035 1.90 1.05
6 L1 2.00 1.10 12.50 9.42
17 L1 0.030 1.68 0.89
Exh1 L1 1.84 119.00
Exh2 L1 1.81 109.00
Exh3 L1 1.96 120.00
Exh4 L1 1.87 108.00
Exh5 L1 0.035 1.90 122.00
28 L1 0.033 1.92 0.98 11.60 9.70
29 L1 0.036 2.10 1.08 8.90 12.50
30 L1 0.035 1.91 0.98
50 L1 0.035 1.93 1.04 10.00 7.60
52 L1 0.035 2.06 1.10 7.80 7.20

MV 0.034 1.91 1.04 105.86 10.38 9.28
ST D 0.002 0.10 0.07 21.44 1.80 1.88

1 L2 0.043 2.62 1.59
2 L2 0.044 2.42 1.47 6.70 9.30
7 L2 0.042 2.73 1.61
8 L2 0.043 2.78 1.69
36 L2 0.042 2.80 7.80 6.40
38 L2 0.040 2.52 7.60 6.80
ExhT L2 2.70 205.00
Exh6 L2 2.47 195.00
Exh7 L2 2.63 219.00
Exh8 L2 2.98 222.00
Exh9 L2 2.45 206.00
Exh10 L2 2.21 191.00
Exh13 L2 2.49 211.00
31 L2 0.043 2.50 1.56 6.60 7.70
47 L2 0.043 2.66 1.65 8.20 8.70
48 L2 2.56

MV 0.042 2.59 1.59 207.00 7.18 7.55
ST D 0.001 0.19 0.08 11.47 0.61 1.29

9 L3 0.045 3.68 2.38 297.00
26 L3 0.049 3.66 2.45 5.80 6.30
27 L3 0.047 3.72 2.47 5.00 6.70
41 L3 0.044 3.69 7.80 7.20
42 L3 0.046 3.66 6.50 6.80
live1 L3 3.55 2.39 318.00
live3 L3 3.74 2.38 346.00
L4 Exh3 L3 3.63 325.00
L9 L3 3.63 334.00
L10 L3 3.32 310.00
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Specimen Dev.St Facet D Tibia L Pro W Fac No IOA IOP
L11 L3 3.54 338.00
L14 L3 3.91 348.00
L15 L3 0.045 3.33 311.00
T32 L3 3.80 6.50 8.30

MV 0.046 3.63 2.41 325.22 6.32 7.06
ST D 0.002 0.16 0.04 17.58 1.03 0.76

10 L4 5.00 3.62 4.45 6.91
11 L4 5.27 3.62 464.00 5.61 6.52
12 L4 0.057 5.31 3.49 6.82 6.87
20 L4 0.053 4.76 3.55 405.00 4.16 7.63
21 L4 0.055 5.09 3.59 481.00 5.21 4.99
39 L4 0.054 4.89 6.60 5.90
L4 Exh4 L4 4.89 516.00
L8 L4 4.97 558.00
L18 L4 4.79 477.00
L11 L4 4.88 535.00
51 L4 0.057 5.14 3.58
53 L4 0.054 4.95 3.49

MV 0.055 4.99 3.56 490.86 5.48 6.47
ST D 0.002 0.18 0.06 50.78 1.09 0.92

14 L5 0.058 7.26 5.43 3.82 6.18
15 L6 0.059 7.08 5.29 684.00 3.42 4.88
16 L7 0.057 7.38 5.37 646.00 4.45 6.76
19 L8 0.053 7.24 5.31
Exh12 L9 6.49 729.00
Exh14 L10 0.062 6.36 780.00
Exh15 L11 0.063 6.57 770.00
Exh16 L12 6.40
45 L13 0.063 6.77 4.98 4.40 5.30
46 L14 0.060 6.84 5.10 5.00 5.00

MV 0.059 6.84 5.28 721.80 4.22 5.62
ST D 0.003 0.38 0.06 56.87 0.52 0.96

13 A 0.066 8.52 5.87 912.00 4.24
22 A 0.072 8.84 5.88 855.00 4.57 4.67
23 A 0.068 8.22 5.42 851.00 3.37 4.05
24 A 0.000 8.30 5.74 865.00
25 A 0.072 8.35 5.78 915.00 3.55 6.26
43 A 0.063 8.20 5.50 2.90 4.10
44 A 0.064 8.38 3.30 4.60

MV 0.069 8.40 5.70 879.60 3.66 4.74
ST D 0.003 0.22 0.20 31.38 0.63 0.90
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Table 4 Performance of individual adult Platymeris biguttatus in the optokinetic experiment. Numbers above the
far left column give the angular degree at which a single stripe of the grating was visible from the centre of the
drum. Double lined boxes contain the results of one kind of grating each. N gives the number of animals
showing at least one valid response to the given grating during the course of the experiment. T1-TX are the
markings of the animals, columns under these labels give the data for respective bug; WR indicates the with
rotation-number of valid responses that matched the direction in which the drum was turning; AR indicates the
against rotation-number of responses that went against the direction in which the drum was turning; WR% and
AR% Percentage of valid movements with or against rotation respectively; MV mean value for % WR and %
AR for all animals that showed at least one valid response.

15° T1 T2 T3 T4 T5 T6 T11 T12 T14 T15 T16 T17 T18 T19 TX MV N=15
WR 2 8 5 5 1 2 1 1 1 2 1 2 2 1 2
AR 0 0 1 0 0 0 0 0 0 0 1 0 2 0 1
% WR 100 100 80 100 100 100 100 100 100 100 50 100 50 100 66.6 89.77
% AR 0 0 20 0 0 0 0 0 0 0 50 0 50 0 33.3 10.22

5.5° T2 T3 T4 T5 T6 T11 T14 T15 T16 T17 T18 T19 TX MV N=13
WR 4 3 1 3 4 1 1 2 2 3 2 2 1
AR 0 0 0 0 0 0 0 0 1 0 1 1 0
%WR 100 100 100 100 100 100 100 100 66.66 100 66.7 66.6 100 92.3
%AR 0 0 0 0 0 0 0 0 33.3 0 33.3 33.3 0 7.68

3° T2 T3 T4 T6 T14 T15 T16 T17 T18 T19 TX MV N=11
WR 2 1 2 1 1 0 1 0 3 0 1
AR 0 0 0 0 0 1 0 1 0 1 1
% WR 100 100 100 100 100 0 100 0 100 0 50 68.18
%AR 0 0 0 0 0 100 0 100 0 100 50 31.82

1.5° T2 T3 T4 T5 T11 T14 T15 T16 T17 T18 T19 TX MV N=12
WR 1 1 1 1 3 1 1 2 1 3 1 2
AR 0 0 0 0 0 0 1 0 0 2 1 0
%WR 100 100 100 100 100 100 50 100 100 60 50 100 88.33
%AR 0 0 0 0 0 0 50 0 0 40 50 0 11.67

Grey T1 T2 T3 T4 T5 T12 T15 T18 TX MV N=9
WR 0 1 1 0 0 1 0 0 0
AR 0 0 1 1 0 3 1 1
%WR 0 100 100 0 0 100 0 0 0 33.33
%AR 100 0 0 100 100 0 100 100 100 66.67


