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Abstract 
 

Listeria monocytogenes (Lm), a Gram-positive facultatively intracellular bacterium, is a 

human pathogen and a major challenge to the food industry. It occurs ubiquitously due to its 

ability to upregulate unique transcriptional profiles under diverse environmental conditions, such 

as temperature, acid or salt. Its natural route of infection is through the gastrointestinal tract where 

it can adapt to and invade the host. In biological sciences Lm is a widely used model organism 

that has provided insight into many fundamental principles of immunology or cell biology.  

 

Synthesis of type I interferons (IFN-I) is one of the immediate innate responses to 

infection with Lm. Here, the mouse-adapted LO28InlA* strain, that is capable to interact with the 

murine epithelial junction protein E-cadherin, was used to study the impact of IFN-I responses on 

intragastric (i.g.) infection with Lm. IFN-I were shown to protect murine hosts in this situation, as 

mice lacking the IFN-I-receptor-chain 1 (Ifnar1-/-) were more susceptible than Wild-type 

C57BL/6N mice (Wt). This is in striking contrast with previous reports on systemic Lm infection, 

where IFN-I were described to be detrimental.  

 

Histological analysis of the gut revealed infected cell patches in the mucosal tissue 

underlying the epithelium and in the gut-associated lymphoid tissue (GALT), but the pattern or 

extent of infection was highly similar between Wt and Ifnar1-/- mice. This finding was corroborated 

by histological analysis, studies of gene expression and by the determination of bacterial burden 

with colony-forming-unit (CFU) assays of intestinal tissue including Peyer’s patches (PP) and 

mesenteric lymph nodes (MLN). The difference arising from i.g. infection between Wt and Ifnar1-/- 

mice was most pronounced in the liver, an early target organ of Lm on its way to systemic spread. 

Initially, Listeria resided in hepatocytes, following immune cell infiltration of Gr1+ myeloid cells and 

other leukocytes. In addition, smaller infiltrates containing F4/80+ macrophages were observed. 

Interestingly F4/80+ cells became increasingly rare as the size of inflammatory infiltrates 

increased. 48hrs after i.g. infection, massive cell death was found within the infiltrate as well as 

the surrounding hepatic tissue. About thirty percent of Ifnar1-/- mice displayed this dramatic liver 

phenotype and this correlated well with the lethality of infection. The majority of mice survived this 

stage, most likely due to a strong increase of IFNγ production. 

 

Measurement of cytokine profiles during infection showed that the pattern of early IL-6, 

IFNγ and MCP-1 production appears to be prognostic for the severity of infection. Wt mice 

infected i.g. displayed the highest levels of these cytokines early after infection. Speculatively, 

mammalian hosts are better adapted to gut-derived as opposed to systemic bacteria, resulting in 

a more regulated immune response with IFN-I as one of the first mediators. Ifnar1-/- mice seem to 

miss an adequate response within the first 24h, a timeframe for Lm to colonize its host and 

replicate. While our studies cannot definitively identify the relevant target organs or cells for IFN-I 
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action after i.g. infection, they rule out a pronounced role for IFN-I at the site of intestinal entry. 

Interestingly, an impact of type III interferons (IFN-III) on the intestinal epithelium is suggested by 

the fact that IRF9-/- mice, that are unresponsive to both IFN-I and IFN-III, show an even higher 

bacterial burden than Ifnar1-/- mice upon i.g. infection. 

 

Taken together, the results presented in my thesis open a new perspective on the role of 

IFN-I in bacterial infections. They emphasize the importance of the infection route by 

demonstrating opposing roles of the cytokines upon infection via gastrointestinal or systemic 

administration.  
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Zusammenfassung 
 

Listeria monocytogenes (Lm) ist ein Gram-positives, fakultativ intrazelluläres Bakterium, 

ein Humanpathogen und damit eine große Herausforderung für die Nahrungsmittelindustrie. 

Aufgrund seiner Fähigkeit einzigartige transkriptionelle Programme hochzuregulieren und sich 

dadurch an verschiedene Umweltbedingungen wie Temperatur, Säure oder Salz anzupassen 

kann Lm viele ökologische Nischen besetzen. Der natürliche Infektionsweg beim Menschen ist 

über den Magen-Darm-Trakt, wo sich das Bakterium adaptieren und den Wirt befallen kann. In 

der Naturwissenschaft ist Lm ein häufig verwendeter Modellorganismus, dessen molekulare 

Eigenschaften Einblicke in viele fundamentale Prinzipien der Immunologie und Zellbiologie 

ermöglichen. 

 

Die Synthese von Typ I Interferonen (IFN-I) ist eine der ersten Reaktionen des 

angeborenen Immunsystems auf Listerieninfektion. Um die Rolle von IFN-I nach oraler 

Verabreichung (i.g.) zu untersuchen, wurde in der vorliegenden Arbeit der murinisierte LO28InlA* 

Stamm verwendet, welcher mit murinem E-cadherin auf Epithelzellen interagieren kann. Dabei 

zeigte sich, dass IFN-I eine protektive Wirkung auf den Wirt haben, da Mäuse ohne IFN-I 

Rezeptorkette 1 (Ifnar1-/-) anfälliger sind als Wild-typ C57BL/6N Mäuse (Wt). Dies steht im 

Gegensatz zu früheren Aufzeichnungen, die IFN-I nach systemischer (i.p.) Infektion als nachteilig 

für den Wirt beschreiben.  

 

Histologische Untersuchungen des Darms ergaben, dass Lm nur stellenweise Zellen der 

Mucosa, unterhalb der Epithelschicht in Darm-assoziierten lymphoiden Geweben (GALT), 

infiziert. Jedoch waren Infektionsausmaß bzw. -verteilung zwischen Wt und Ifnar1-/- Mäusen sehr 

ähnlich. Diese Beobachtungen wurden durch histologische Untersuchungen, Genexpressions-

analysen und Bestimmung von Bakterienmengen im Darm assoziierten Immungewebe, wie den 

Peyer’s patches (PP) und den mesenterialen Lymphknoten (MLN), bestätigt. Der unterschiedliche 

Phänotyp zwischen i.g. infizierten Wt und Ifnar1-/- Mäusen war am stärksten ausgeprägt in der 

Leber, einer wichtigen Replikationsnische von Lm  am Weg zur systemischen Infektion. Zu 

Beginn der Infektion befindet sich Lm noch in Hepatozyten, gefolgt von Infiltrierung von Gr1+ 

myeloider Zellen und anderen Leukozyten. Kleinere Infiltrate enthielten auch F4/80+ 

Makrophagen, die Anzahl dieser Zellen nahm allerdings mit der Größe der Infiltrate ab. 48h nach 

i.g. Infektion waren die Infiltrate mit massiven Zelltod assoziiert, sowohl innerhalb als auch um 

das Infiltrat herum. 30% der Ifnar1-/- Mäuse zeigten diesen dramatischen Phänotyp, korrelierend 

mit der Letalität der Infektion. Dennoch überlebte der Großteil der Mäuse dieses Stadium, 

höchstwahrscheinlich wegen steigender IFNγ Werte im Blut. 

 

Zytokinmessungen während der Infektion ergaben, dass das Expressionsprofile von 

frühem IL-6, IFNγ  und MCP-1 prognostisch für den Grad der Infektion sind da i.g infizierte Wt 
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Mäuse hohe Werte dieser Zytokine zeigten. Vermutlich ist der Wirt durch eine besser regulierte 

Immunantwort, mit IFNα und IFNβ als Mediatoren, besser auf Bakterien aus dem Darm 

vorbereitet als auf solche die systemisch verabreicht werden, denn Ifnar1-/- Mäusen fehlt eine 

adäquate Immunantwort innerhalb der ersten 24h. In diesem Zeitfenster können Listerien Fuß 

fassen und replizieren. In welchem Organ/ Zellen die IFN-I Antwort die wichtigste Rolle spielt 

steht noch nicht fest. Wir können allerdings eine verstärkte Rolle für IFN-I an der intestinalen 

Eintrittsstelle ausschließen. Vielmehr vermuten wir eine wichtige Rolle der Typ III Interferone 

(IFN-III), da IRF9-/- Mäuse, die weder auf IFN-I noch IFN-III Interferone reagieren können, höhere 

Bakterienanzahlen aufzeigen als Ifnar1-/- Mäuse. 

 

Zusammengefasst öffnen die Ergebnisse meiner Arbeit neue Perspektiven im Hinblick 

auf die Rolle von IFN-I bei bakteriellen Infektionen. Sie unterstreichen eine herausragende Rolle 

der Infektionsroute durch den inversen Effekt eines Zytokins nach gastrointestinaler oder 

systemischer Verabreichung. 
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Introduction 
 

1. Gut immunity

 

The gastrointestinal 

food and absorbance of nutrients. 

ability to protect against ingested and potentially harmful microbes 

against self antigen and a large pool of commensal bact

and environment are separated by a single 

tight junctions. It creates a first physical defence

secretory antibodies against invading pathogens

through the epithelium, antigen processing and presentation to cells of the underlying 

associated lymphoid tissue 

pathogens to antigen-presenting 

Peyer’s patches (PP), represent

that exhibit the ability to directly 

 

 

Figure 1│The intestinal epithelial barrier.

connected through intercellular tight junction proteins (b) thus

facilitate surface enlargement. Important defence mechanisms against bacteria are the secretion of mucin (c) 

and antimicrobial peptides (d) such as immunoglobulin A (IgA) or defensins. Furthermore, M

secretion of mucin and promote ba

Peyer’s patches (PP). In addition, extended dendrites from dendritic cells (g), in the literature described as 

CX3CR1
+ 

CD103
- 

(3), are found in between the epithelial layer which

From: (4) 
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Gut immunity 

The gastrointestinal (GI) tract with its unique architecture is responsible for di

of nutrients. Further, it represents a large mucosal immune organ with the 

ability to protect against ingested and potentially harmful microbes and to maintain tolerance 

against self antigen and a large pool of commensal bacteria. Under physiological conditions, h

and environment are separated by a single follicle-associated epithelial barrier

a first physical defence line by secreting e.g. mucin, defensins and 

ies against invading pathogens (1). To establish immune surveillance, transport 

through the epithelium, antigen processing and presentation to cells of the underlying 

lymphoid tissue (GALT) is a prerequisite. M-cells, specialized in transporting 

presenting cells within the follicle associated epithelium or underlying

represent an alternative gateway, beside intraepithelial 

directly capture bacteria from the luminal content (2) (Fig1)

│The intestinal epithelial barrier. Epithelial integrity is established by polarized epithelial cells (a) 

connected through intercellular tight junction proteins (b) thus, exhibiting apical actin

Important defence mechanisms against bacteria are the secretion of mucin (c) 

and antimicrobial peptides (d) such as immunoglobulin A (IgA) or defensins. Furthermore, M

secretion of mucin and promote bacterial trafficking to antigen-presenting cells (f) within the underlying 

Peyer’s patches (PP). In addition, extended dendrites from dendritic cells (g), in the literature described as 

, are found in between the epithelial layer which can trap bacteria form the lumen. 

tract with its unique architecture is responsible for digestion of 

, it represents a large mucosal immune organ with the 

to maintain tolerance 

Under physiological conditions, host 

arrier, held together by 

mucin, defensins and 

establish immune surveillance, transport 

through the epithelium, antigen processing and presentation to cells of the underlying gut 

specialized in transporting 

cells within the follicle associated epithelium or underlying 

intraepithelial dendritic cells (DC) 

(Fig1).  

 

Epithelial integrity is established by polarized epithelial cells (a) 

exhibiting apical actin-rich microvilli that 

Important defence mechanisms against bacteria are the secretion of mucin (c) 

and antimicrobial peptides (d) such as immunoglobulin A (IgA) or defensins. Furthermore, M-cells (e) lack 

ng cells (f) within the underlying 

Peyer’s patches (PP). In addition, extended dendrites from dendritic cells (g), in the literature described as 

can trap bacteria form the lumen. 
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Barrier dysfunction, as a consequence of e.g. inflammation, infection or injury, is 

monitored by intraepithelial lymphocytes, mainly CD8+T-cells and numerous immune cells of the 

underlying lamina propria, comprising CD4+T-cells, CD8+T-cells, macrophages, DCs, mast cells 

and B-cells. However, new cell populations are constantly indentified which do not fit in the 

scheme of the classical markers for phenotyping, underlining the complexity of immune 

surveillance and importance of immune homeostasis in individuals.  

 

Inappropriate responses of the gut mucosa lead to high susceptibility to enteropathogens 

and disease. In addition, various pathogens have evolved strategies to invade the epithelium and 

evade the host immune response. Among them is the intracellular pathogen Listeria 

monocytogenes (Lm).  

 

 

2. Listeria monocytogenes 

 

Lm is a Gram-positive, facultatively intracellular bacterium and the causative agent of 

listeriosis, manifested by gastroenteritis with diarrhea and abdominal pain. It can be a lethal 

pathogen in immunocompromized patients because of its ability to cross the blood-brain or the 

feto-placental barrier leading to encephalitis, abortion or sepsis (5). It occurs ubiquitously 

nevertheless, its natural route of infection is through the GI-tract by ingestion of contaminated 

food.  

 

After incorporation, Lm has the ability to adapt to the environmental conditions like low 

pH, bile, temperature and osmotic stress by upregulating virulence genes under the stress 

response transcription factor sigma B (σ
B
). Another transcription factor PrfA allows the bacterium 

to invade the epithelium and to initiate its intracellular life cycle by activating virulence genes 

clustered in its genome (Fig.2). One of them is the surface protein Internalin A (InlA). Cossart et al 

have demonstrated in 2003 that InlA of Lm plays a critical role in the invasion of non-phagocytic 

cells (6). The pathogen uses InlA to adhere to the intestinal epithelium via its host receptor E-

cadherin (E-cad). Signalling events via cytosolic E-cad interaction partners, such as the catenins, 

lead to the entry and dissemination of Lm by a dynamic process including actin polymerization 

and membrane remodelling. 
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Figure 2│Schematic representation of Listeria monocytogenes crossing three host barriers. The food-

borne bacterium adapts to the conditions of the GI-tract and promotes its uptake by the expression of several 

virulence genes under the common control of the PrfA transcriptional regulator. Accordingly, it invades the 

host cell via the interaction of its surface proteins internalinA (InlA) or internalinB (InlB) with corresponding 

host receptors. After invasion the bacterium is engulfed in a phagocytic vacuole, where it escapes due to the 

expression of the pore-forming exotoxin ListeriolysinO (LLO) and phospholipaseC (PlcA). Within the 

cytoplasm the bacterium starts to replicate. Movement within the cytoplasm is driven by actin polymerization, 

initiated by another virulence factor, ActA. So called “actin comets” are formed that allow the bacterium to 

move not only within the cell, but also to neighbouring cells and thus to overcome epithelial barriers of the 

placenta or the central nervous system. Once Listeria has spread to the adjacent cells, it is caught in a 

double membrane vacuole which is then lysed by LLO, PlcA and a second phospholipaseC (PlcB) leading to 

the restart of the lifecycle and dissemination. From: (7) 

 

E-cad is a homophilic calcium-depended adherence junction protein located below tight 

junctions at the basolateral site of the intestinal epithelium (8). Therefore the question arose how 

Lm can reach its extracellular domain (EC1). Pentecost et al showed that Lm does not actively 

destroy the epithelial junctions; instead invasion takes place at sites of epithelial cell extrusion at 

the villous tips (9). Nikitas et al suggested that E-cad is luminally accessible at mucus-expelling 

goblet cells as well as epithelial folds and tips of villi (10). Others stressed the role of passive 

invasion of Peyer’s patches (PP) and overlaying M-cells (11-15) which is also observed by other 

pathogens such as S. typhimurium (16) or Y. Enterocolitica (17). The degree to which transcytosis 

via M-cells or invasion of epithelial cells contribute to intestinal invasion remains controversial.  

 

Apart from InlA, a major virulence factor is the product of the hly gene, listeriolysin O 

(LLO). It is a pore forming exotoxin enabling Lm to escape from endosomes and phagosomes. 

Without LLO the bacterium is completely avirulent (18). LLO activity is supported by plcA- and 

plcB-encoded phospholipases, which are suggested to be multifunctional virulence factors. For 
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instance, there is evidence that these listerial proteins act together with InlA to facilitate bacterial 

entry by inserting holes into epithelial cells (19). Furthermore, it has been shown that they can 

mediate entry into hepatocytes (20). 

 

 

3. Dissemination of Listeria monocytogenes to internal organs 

 

Despite the knowledge about molecular invasion mechanisms, several key questions how 

Lm spreads to internal organs remain unanswered. The main reason has been the lack of an 

animal model, as the mouse is not the natural host for Lm. Limitations are given by low affinity 

between the bacterial InlA and the murine E-cadherin (8) (Fig.3), although listerial passage 

through the intestinal mucosa was successfully reported in mice gavaged with high inoculum 

sizes.  

 

 

. 

 

Figure 3│Structure of the wild-type (violet) and murinized (grey) InlA interacting with the extracellular 

domain (EC1) of human E-cadherin (A). The replacement of serine192 against asparagine leads to a direct 

H-bond to phenyalanine17 (B). The replacement of tyrosine369 against serine introduces a water-bridge 

interaction to asparagine27 (C). Consequently, the binding affinity is identical between InlA/hEcad and 

InlA
m
/mEcad. From: (21) 
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Speculatively, there are at least four possible mechanisms for listerial dissemination. 

First, intestinal dendritic cells (DCs) might take up Lm in the same way as they receive luminal 

content from M-cells. Accordingly, they can be transported via afferent lymphatic vessels to 

present antigen to T-cell areas within the paracortical regions of draining lymph nodes (22). The 

CD103
+
CD11b

+
CD8α

- 
DC population was described to be the most promising candidate for 

CCR7-depended migration to mesenteric lymph nodes (MLN) (23). Second, CX3CR1
+
CD103

- 

DCs can capture bacteria with their dendrites from the intestinal lumen and transport the bacteria 

to MLN (3), but if this is true for Lm needs further investigation. Third, systemic spread can be 

also achieved by blood monocytes. It has been demonstrated that CD11b
+
Ly6C

+
CCR2

+ 

monocytes carry Lm and are directed to the brain by the chemokine MCP-1 (24). This observation 

was confirmed by showing that dissemination of Lm within monocytes also occurred in mice 

treated with gentamicin (25). To reach the blood stream Lm has to pass at least two cell layers, 

one composed of enterocytes and one of endothelial cells (14). Where and how uptake into this 

carrier cell type takes place and whether or not infection occurs through yet another 

“intermediate” cell type is not understood. Possible candidates are cells of the early innate 

immune response to Lm including neutrophils, NK cells, DCs, macrophages or γδ T-cells (14, 26, 

27). The initial recruitment of these cells depends on the synthesis of several cytokines and 

chemokines. Among them IFN-I play a key role (see 6.1). 

 

 As to the last possibility, lessons from other microbes suggest an alternative transport 

route for enterobacteria to the liver via the portal vein, as suggested by Melton-Witt et al. (28). 

The entry of mucosal Lm to blood vessels collected by the portal vein may explain the rapid 

dissemination to the liver from the gut within a few hours after infection (21, 29). 

 

 

4. The liver as target organ of Lm 

 

The liver is a vital organ fulfilling metabolic, clearance and storage functions including the 

uptake of nutrients, detoxification and trapping blood-borne bacteria as well as bacterial products. 

To prevent organ damage following an inadequate immune response against antigens, the liver 

exhibits unique immunoregulatory functions, making it an ideal target site for pathogens (30). 

Incoming bacteria are generally considered to be cleared by phagocytes. In the liver, 25% of all 

mononuclear cells are Kupffer cells being the liver resident macrophages that adhere to 

endothelial cells lining the liver sinusoids (31). However, it has been demonstrated that the large 

majority of Lm is associated with hepatocytes within the first three days of infection, whereas a 

relatively small number resides in Kupffer cells (32). The increase in Listeria CFU during the first 

3-4 days of infection is stopped by the adaptive immune system which is mainly T-cell dependent 

and decreases listerial burden to result in sterile immunity (33). Despite the importance of the 

adaptive response in clearing Lm, the innate immune responses efficiently hampers bacterial 
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growth. In the liver, Kupffer cells, natural killer (NK) cells, incoming macrophages and neutrophils 

play an important role as mediators of the innate response (34).  

 

 

5. Recognition of Listeria monocytogenes by the innate immune 

system 

 

The innate immune system rapidly forms the first line of defence against microorganisms. 

An important initial step is the recognition of bacterial components by pattern recognition 

receptors (PRR). These are specialized surface, endosomal or cytoplasmic receptors that can 

bind pathogen-associated molecular patterns (PAMPs), structures that repeat in many different 

microbes, thus allowing recognition of many pathogens with a limited number of antigen 

receptors. These include the toll like receptors (TLR), the retinoic acid (RIG) like receptors, the 

Nod like receptors (NLR) or aim2-like receptors (ALR) that are involved in forming 

inflammasomes (35). Lm offers a panoply of PRR ligands like flaggelin, lipoteichoic acid, 

peptidoglycan, lipoproteins or its DNA. The main receptor recognizing Lm, thereby inducing IFNβ 

production, resides in the cytosol. Cytosolic Listeria receptors are among the family of DNA 

receptors (36) or cyclic di-nucleotide receptors such as STING (37, 38). As a consequence of 

receptor binding, signal cascades lead to the activation of the S/T kinase TBK1 and the 

subsequent phosphorylation and activation of transcription factor IRF3 (Fig. 4). IRF3 is a rate-

limiting component of an enhancosome, forming at the promoter of type I interferon genes, 

particularly the IFNβ gene (39). Compared to other Listeria strains, the LO28 strain used in our 

study is a particular potent inducer of IFN-I because of its superior ability to stimulate the IRF3 

pathway (40). 

 

 

6. Interferons 

 

Interferons were first described in 1957 by Isaacs and Lindenmann as antiviral 

substances released by virus-infected cells (41). More than 50 years later we know that 

interferons are in fact released in response to infection with all types of intracellular pathogens 

(42). They are immunological key regulators which comprise three structurally and functionally 

interleukin-10-related subtypes of the larger class of type II cytokines (43). Today we know three 

families of IFNs which all share transcription factors and signalling pathways but bind to specific 

receptors (Fig.3). 
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Figure 3│Signal transduction by interferons. IFN-I bind to their respective receptor (comprising IFNAR1 

and IFNAR2 chains) which induces a conformational change that leads to the activation of receptor-

associated Janus tyrosine kinases (JAKs). Signal transducers and activators of transcription (STATs) are 

recruited to the phosphorylated receptor complex via their SH2 domains and are phosphorylated by the 

JAKs. Tyrosine phosphorylation leads to heterodimerisation of STAT1 and STAT2 and their translocation to 

the cell nucleus. Together with the interferon regulatory factor 9 (IRF9) the interferon stimulated gene factor 

3 complex (ISGF3) is formed and binds to the interferon stimulated response element (ISRE), thus 

stimulating expression of antiviral and immunoregulatory genes. In contrast, IFN-II bind to a receptor 

comprising IFNGR1 and IFNGR2 chains. Signalling by this receptor complex leads to the formation of 

STAT1 homodimers and to the expression of genes with gamma interferon activation sequences (GAS) 

within their promoters. Upon IFN-III binding, the receptor formed by IFNLR and IL-10R2 chains stimulates 

the same signal transduction as IFN-I. Therefore, mice lacking the IRF9 transcription factor do not respond 

to IFN-I and IFN-III. From: (44)  

 

6.1  Type I interferons (IFN-I) 

 

IFN-I comprise about 20 members including 13 IFNα subtypes and one IFNβ subtype, as 

well as IFNε, IFNκ and IFNω. Classically, these cytokines have potent antiviral and anti-

proliferative activity but only IFNα and IFNβ are important in bacterial defences (45). Almost every 

cell type has the ability to respond to or to produce IFN-I (42). While IFN-I are generally 

associated with viral clearance their predominant effect on the immune response to non-viral 
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pathogens and their beneficial or detrimental character strongly depend on the particular 

pathogen (46). 

 

IFN-I bind to their type-I interferon receptor, comprising the IFNAR1 and IFNAR2 chains 

(Fig.3). Signal transduction via phosphorylation of the receptor associated Janus kinases, JAK1 

and TYK2, leads to the recruitment of the transcription factors STAT1 and STAT2. After tyrosine 

phosphorylation of these signal transducers and activators of transcription, STAT1/2 heterodimers 

are formed which migrate to the cell nucleus and, together with the interferon regulatory factor 9 

(IRF9), form the trimeric complex called interferon stimulated gene factor 3 (ISGF3). ISGF3 

triggers the expression of several antiviral and immunoregulatory genes by binding the interferon 

response element (ISRE) (46) (Fig.4) 

 

6.2 Type II interferons (IFN-II) 

 

IFNγ is the only IFN-II and primarily used by the immune system to fight intracellular 

bacteria. It is secreted by specialized immune cells such as T-cells and NK-cells, however, its 

receptor can be expressed on various cell types, although to different extents (47). IFNγ is a main 

activator of macrophages that forms the link between innate and adaptive immunity and it is also 

important for triggering antigen-processing and -presentation (48). IFNγ-deficient mice are highly 

susceptible to infection with Lm and other intracellular bacteria. The receptor for IFNγ comprises 

of the IFNγ receptor chain 1 (IFNGR1) and IFNGR2 which are associated with JAK1 and JAK2 

Janus kinases. Phosphorylation upon receptor binding triggers STAT1 homodimer formation and 

consequent expression of interferon gamma response elements (GAS) (Fig.3). 

 

 

6.3 Type III interferons (IFN-III) 

 

The three different IFN-III members IL-29 (IFN-λ1), IL-28A (IFN-λ2) and IL-28B (IFNλ3) 

bind to their receptor consisting of IFN-λR1 and IL-10R2 chains to stimulate the same signalling 

pathway as IFN-I. Contrasting the IFN-I receptor however, the IFN-III receptor is expressed 

exclusively on epithelial layers particularly of the GI-tract or the lung and, in humans but not in 

mice, the liver (49) (Fig.3). Generally they are considered to support the response of IFN-I at sites 

of frequent environmental or microbial exposure. Speculatively, this is the reason why they are 

also expressed in livers as this organ is often challenged by intestine- or blood-borne pathogens 

(50).  

 

The focus of this thesis lies on the importance of IFN-I, hallmark cytokines of innate 

responses to pathogens, for immunity to Lm. Therefore, innate responses of mice lacking the 

interferon I receptor (IFNAR1) were compared to those of Wt controls. A number of reports 
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document that IFN-I increase the susceptibility of mice after systemic infection with Lm (51, 52). 

Here, we specifically investigate the role of type I interferons after intragastric infection and 

provide the first evidence that the adverse or beneficial role of a cytokine varies with the route of 

infection and that IFN-I are not harmful when infection with Lm occurs via the natural route. 

Additional data with IRF9-/- mice suggest an impact of the epithelial response to IFN-III on the 

innate response to Lm administered via the gastrointestinal route.  

 

 

 
Figure 4│Induction of IFN-I by Listeria monocytogenes. Recognition of Lm is mainly by a cytosolic 

receptor (X, see text) leading to the activation of the TANK-binding kinase 1 (TBK1) or the closely related 

IKKε that phosphorylate the interferon regulatory factor (IRF3). IRF3 is a transcription factor (TF) for the 

IFNβ gene. In addition, listerial membrane components can stimulate TLRs to activate MAPK and NFκB 

pathways and the expression of proinflammatory genes. NFκB and c-Jun/ATF-2 also exhibit transcriptional 

binding sites within the IFNβ promoter. Together with IRF3 they form the IFNβ enhancosome. IFNβ 

molecules are secreted and bind their specific receptor (IFNAR). Upon contact with the secreted ligand, the 

IFNAR1 and 2 subunits undergo a conformational change leading to auto-phosphorylation of the receptor 

associated tyrosine-kinases (TYK2 and JAK1). This creates a docking site for STAT1/STAT2 which, upon 

phosphorylation, form STAT1/STAT2 heterodimers. Together with IRF9, they form the interferon-stimulated 

gene factor 3 complex (ISGF3). This TF induces the expression of antimicrobial genes and of the 

transcription factor IRF7. In case bacterial stimulation of cytosolic signalling persists, TBK1/IKKε 

phosphorylate IRF7 to drive the expression of IFNα and IFNβ which then results in a feed-forward 

amplification of IFN-synthesis and the IFN-I response. IFNAR-/- or IRF9-/- mice are unable to induce this 

amplification loop. From: (53) 
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Abstract  

Listeria monocytogenes is a food-borne pathogen causing mild to life threatening disease 

in humans (1). Ingestion of contaminated food delivers the pathogen to the gastrointestinal tract, 

where it crosses the epithelial barrier and spreads to internal organs. Type I interferons (IFN-I) are 

produced during infection and decrease host resistance after systemic delivery of L. 

monocytogenes. Here we show that mice benefit from IFN-I production following infection with L. 

monocytogenes via the gastrointestinal route. Intragastric infection lead to increased lethality of 

IFN-I receptor-deficient (Ifnar1-/-) animals and to higher bacterial numbers in liver and spleen. 

Compared to infection from the peritoneum, bacteria infecting via the intestinal tract localized 

more often to periportal and pericentral regions of the liver and less frequently to the margins of 

liver lobes. Vigorous replication of intestine-borne L. monocytogenes in the livers of Ifnar1-/- mice 

48h post infection was accompanied by the formation of large inflammatory infiltrates in this organ 

and massive death of surrounding hepatocytes. This was not observed in Ifnar1-/- mice after 

intraperitoneal infection. The inflammatory response to infection is shaped by alterations in 

splenic cytokine production, particularly IFN-γ, which differs after intragastric versus 

intraperitoneal infection. Taken together, our data provide the first evidence that the adverse or 

beneficial role of a cytokine varies with the route of infection and that IFN-I are not harmful when 

infection with L. monocytogenes occurs via the natural route.  
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Introduction 

Listeria monocytogenes (Lm) is a food-borne pathogen causing potentially life threatening 

disease in immunocompromised humans (1). Lm’s ability to cross epithelial barriers including the 

intestinal epithelium, the placental and the blood brain barrier is a prerequisite for systemic 

dissemination and its sequels such as sepsis, fetal abortion and encephalitis. The natural route of 

infection is via ingestion of contaminated food and although the course of infection is in most 

cases very mild, manifested disease has one of the highest mortality rates among food-borne 

diseases. Lm uses a set of virulence factors to successfully invade hosts. These include 

internalins that allow attaching to, and subsequently invade various different cell types. Internalins 

(Inl) A and B are instrumental for the invasion of epithelial cells and hepatocytes (2).  

Type I interferons (IFN-I) are cytokines essential for the establishment of innate antiviral 

immunity. Their role in bacterial infections varies between protective or detrimental, depending on 

the pathogen and conditions of infection (3). Mice lacking the IFN-I receptor show increased 

resistance to infection with Lm compared to Wt mice (4-6). Therefore, IFN-I are thought to 

decrease the ability of mice to combat infection. The harmful effects of IFN-I have been assigned 

to different aspects of the immune response. The death of effector cells such as T-cells and 

macrophages increases with IFN-I signalling during Lm infection (6, 7). As a consequence of the 

increased uptake of apoptotic cells interleukin 10 (IL10) is produced which hampers protective 

immune responses (8). In line with this, IL10-/- mice are more resistant to Lm infection than Wt 

mice (9). In addition, IFN-I may also interfere with IFNγ dependent macrophage activation by 

decreasing cell surface expression of the IFNGR (10).  

The data describing the adverse effect of IFN-I on the course of Lm infection stem from 

systemic infection models, like intravenous or intraperitoneal infection. Immune reactions to 

intragastric Lm infections, the natural route of infection, have not been studied intensively due to 

the limitations of the murine system, namely low infection efficiency and receptor incompatibility. 

The latter results mainly from the inability of murine E-cadherin on epithelial surfaces to interact 

with the bacterial InlA (11, 12).  
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Here we show for the first time the effect of IFN-I when infection with Lm occurs via the 

natural route. Our experiments were carried out with a mouse adapted Lm strain which allows 

robust and efficient infection of mice via intragastric gavage. We clearly demonstrate that the 

route of infection matters for the impact of IFN-I on innate resistance, as mice benefit from IFN-I 

after intragastric infection. Differences in splenic cytokine production, inflammatory cell 

recruitment and hepatoxicity are suggested to underlie the infection route - dependent impact of 

IFN-I on the outcome of infection with Lm.  
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Materials and methods 

Mice, bacteria  

C57BL/6N (Wt) and Ifnar1-/- (B6.129P2-IfnaR1
tm1

 (13)) mice were housed under SPF 

conditions. Animal experiments were discussed and approved by the University of Veterinary 

Medicine Vienna institutional ethics committee and carried out in accordance with protocols 

approved by the Austrian law (BMWF-68.205/0204-C/GT/2007; BMWF-68.205/0210-II/10b/2009, 

BMWF-68.205/0243-II/3b/2011). As a prerequisite for constructing the mouse-adapted Listeria 

monocytogenes LO28InlA
S192N/Y369S 

strain we prepared an InlA knockout in LO28wt using the 

pMAD vector (14) and the following primers for amplification of the upstream and downstream 

region of the InlA gene from genomic LO28 DNA: InlA_A 5` CAT GGT CGA CGG CAG TCC GCG 

ATT TAA TGG AAG T 3`, InlA_B 5` CAT GGG ATC CCC TAA TCT ATC CGC CTG AAG CGT 

TGT 3` InlA_C 5` CAT GGG ATC CGG GAA TTC AGC CAG CAC AAC AAG T 3´ and InlA_D 5` 

CTG CCA TGG AGG TTT AGG TGC AGT TAT CCG CGT 3`. For genomic integration we used 

the protocol described in (15). We transformed the LO28InlA knockout strain with the pAUL-A InlA
 

S192N/Y369S 
-InlB construct kindly provided by WD Schubert (Molecular Host-Pathogen Interactions, 

Division of Structural Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany 

(16)) and obtained genomic integration as described in (17). Here the abbreviation Lm for 

experiments always refers to LO28InlA*.  

Infection of mice, determination of bacterial organ loads 

Bacteria were prepared for infection as described previously (18). For infection, Lm 

LO28InlA* were washed, diluted to the respective concentration with PBS (Sigma) and injected 

intraperitoneally (i.p.) or intravenously (i.v.) into 8- to 10-week-old, sex and age matched 

C57BL/6N (Wt) and Ifnar1-/- (B6.129P2-IfnaR1
tm1

 (13)) mice. For intragastric infection mice were 

infected as described (19). Briefly, mice were starved over night and orally gavaged with 15mg 

CaCO3 in 200µl PBS (50mg/ml) succeeded by the respective dose of Lm in 200µl of PBS. The 

infectious dose was controlled by plating serial dilutions on Oxford agar plates. The survival of 

mice was monitored for 10 days and data were displayed as Kaplan-Meier plots. For 

determination of bacterial loads (colony forming units, CFU) of livers, spleens, mesenteric lymph 
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nodes (MLN) and Peyer’s patches (PP), mice were sacrificed at the indicated time points, organs 

isolated and homogenized in PBS. Serial dilutions of the homogenates were plated on BHI  plates 

and incubated at 37°C for 24h.  

RNA isolation, cDNA synthesis and RT-qPCR 

Organs of respective animals were isolated and stored at -80°C until further use. For RNA 

preparation organs were homogenized in RA1 buffer of the NucleoSpin II RNA isolation kit 

(Macherey and Nagel) and processed according to protocol. cDNA was prepared as described 

(20). The RT-qPCRs were run on an Eppendorf cycler. After correction for the housekeeping 

gene GAPDH, every sample was calculated to the mean of Wt mRNA levels or as a ratio to 

uninfected samples.  Sequences of primers are listed in table I. 

 

IL6 for TAGTCCTTCCTACCCCAATTTCC 

  rev TTGGTCCTTAGCCACTCCTTC 

IL10 for GGTTGCCAAGCCTTATCGGA 

  rev ACCTGCTCCACTGCCTTGCT 

Mx2 for CCAGTTCCTCTCAGTCCCAAGATT 

  rev TACTGGATGATCAAGGGAACGTGG 

MCP1 for CTTCTGGGCCTGCTGTTCA 

  rev CCAGCCTACTCATTGGGATCA 

GAPDH for CATGGCCTTCCGTGTTCCTA 

  rev GCGGCACGTCAGATCCA   

IFNβ for TCAGAATGAGTGGTGGTTGC 

  rev GACCTTTCAAATGCAGTAGATTCA 

TNFα for CAAAATTCGAGTGACAAGCCTG 

  rev GAGATCCATGCCGTTGGC 

IFNγ for ATGAACGCTACACACTGCATC 

  rev CCATCCTTTTGCCAGTTCCTC 

 

Table 1: Primer sequences of cytokines and chemokines used for RT-qPCR. 
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Serum cytokine analysis 

For cytokine analysis mice were bled via the retro-orbital sinuses and serum was 

prepared and stored at -80°C. The indicated cytokines were measured using the FlowCytomix kits 

(eBioscience) in 25µl of serum (IFNγ, MCP-1, IL-6).  

Cell culture 

Bone marrow derived cells were isolated and grown as described (18). Briefly, bone 

marrow was isolated from femurs of 6–8 week old mice. For differentiation of bone marrow 

derived macrophages, cells were grown in DMEM (Gibco, Invitrogen) in the presence of 10% FCS 

(Gibco, Invitrogen) and L-cell derived CSF-1 as described (18). The cultures contained >99% 

F4/80+ cells. Bone marrow derived dendritic cells (mDC) were obtained by culture of bone 

marrow in DMEM (Gibco, Invitrogen), supplemented with 10% FCS (Gibco, Invitrogen) and X-

6310 derived GM-CSF as described (18). mDC cultures contained virtually no F4/80+ cells and 

the purity of CD11c+/CD11b+ cells was between 60 and 70%. Cells were infected with Lm at a 

MOI of 10 for 1h, extensively washed and resuspended in PBS for injection into mice.  

Histology 

Mouse organs were fixed with 4% paraformaldehyde over night, paraffin embedded and 

3µm sections were prepared using a microtome. Hematoxyline and eosin staining (H&E) were 

performed using standard protocols. For TdT-mediated dUTP nick end labelling (TUNEL), 

sections of liver and spleens were stained as described before (21). For Gr-1 staining liver 

sections were blocked for endogenous peroxidase activity in 50% methanol with 3% H2O2 and 

boiled for 30’ in 10mM sodium citrate antigen unmasking solution. After cooling down for 30’, the 

samples were blocked with 5% normal goat serum to reduce background staining. Primary Gr-1 

antibody (BD Pharmingen) was applied overnight at 4°C and before adding AEC+ high sensitivity 

chromogen substrate (Dako) the sections were incubated with biotinylated rabbit α rat IgG (1:250 

in PBS) for 30’ at RT following incubation with ABC reagent (Vector) for 30’ at RT. To stain for Lm 

in infected tissue, thin sections were incubated with 500 µg/ml pronase (Roche) for 10’ at 37°C, 

washed with PBS containing 0,05% Tween (PBS-T) and blocked with 5% normal goat serum for 

30’ at RT. Next, primary Listeria antibody (1:100) (Abcam) was applied for 1h at RT, washed with 
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PBS-T following incubation with 3 drops of HRP rabbit/mouse polymer (Dako) for 30’ at RT. After 

washing, Lm was visualized by AEC+ high sensitivity chromogen substrate and the cells 

counterstained with haematoxylin. 

Flow cytometry 

For isolation of non-parenchymal cells, mice were sacrificed and the liver was perfused 

immediately with liver perfusion medium (Gibco, Invitrogen) via the portal vein for 3’ at a speed of 

8ml/min followed by liver digest medium (Gibco, Invitrogen) for 5’. The liver was removed, minced 

with scissors in 15ml ice-cold DMEM+10%FCS+penicillin/streptomycin and filtered through a 

70µm cell strainer. To collect the non-parenchymal cell enriched supernatant the suspension was 

centrifuged for 5’ at 50g. Next, non-parenchymal cells were harvested by centrifugation for 5’ at 

300g and washed. After red blood cell lysis the cells were blocked with anti mouse CD16/32 and 

stained for Ly6G (BD-Pharmingen), CD11b, Ly6C, F4/80, CD45 and eFluor fixable viability dye 

(eBioscience). Flow cytometry was performed using BD FACSAria. 

Statistical analysis 

Bacterial loads of organs were compared using the Mann-Whitney test and indicating the 

Median. mRNA expression data were analysed with the Students t Test and indicating the mean. 

For both the GraphPad Prism (Graphpad) was used.  
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Results 

IFN-I signalling increases resistance to Listeria monocytogenes contracted via the 

intragastric route. To assess whether the impact of IFN-I on innate immunity to Lm is 

determined by the infection route, we administered Lm to Wt and Ifnar1-/- mice both by 

intragastric gavage (i.g.) and intraperitoneal injection (i.p.). These experiments were performed 

with a mouse-adapted, mutated LO28 strain of Lm, LO28InlA* (see materials and methods). This 

strain expresses an InlA mutant with increased affinity to murine E-cadherin (16). Compared to 

LO28 Wt, intragastric administration of LO28InlA* produced a roughly 5-fold higher bacterial 

burden in the liver and about 3-fold higher burden in spleen 48h after infection (Fig. S1). This 

difference is similar to or larger than that reported for the mouse-adapted EGD strain (16, 22). By 

contrast, infection rates were virtually indistinguishable 48h after i.p. infection. 

In keeping with previous reports, a drastic difference in the bacterial load was observed in 

livers and spleens of Wt and Ifnar1-/- mice 72h after i.p. infection (Figs. 1A, B). When mice were 

infected i.g., bacterial loads at day three were similar or even slightly elevated in Ifnar1-/- spleens 

and livers (Figs. 1C, D). To monitor survival we infected Ifnar1-/- and control mice i.g. with a high 

dose of Lm. IFN-I signalling protected mice from lethal infection with Lm, as Ifnar1-/- mice were 

the only animals to succumb to infection (Fig. 1E). This is in striking contrast to the results 

reported after i.p. or intravenous (i.v.) infections (6).  

The bacterial burden of Lm-infected animals is routinely assessed at day three after 

inoculation. However, the organ loads shown in figure 1 insufficiently explain the increased 

mortality and poorer condition of i.g.-infected Ifnar1-/- mice.  To determine the time point at which 

IFN-I exert their protective effects, we monitored bacterial replication between 24 and 72h after 

infection (Fig. 2). We detected reduced or equal amounts of bacteria in livers and spleens of 

Ifnar1-/- mice compared to Wt mice 24h after infection. 48h after i.g. infection, Ifnar1-/- mice 

showed higher numbers of bacteria in these organs, with the most striking difference seen in the 

liver (Figs. 2A,  B) whereas at day three after infection the bacterial loads in Ifnar1-/- mice were 

comparable to Wt levels (Figs. 1A, B). In striking contrast to these results, i.p. infected Ifnar1-/- 

mice had lower amounts of Lm in liver and spleen at both 48h (Figs. 2C, D) and 72h (Figs. 1C, D) 
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after infection. 24h after i.p. infection with Lm the organ load was similar in Ifnar1-/- and Wt mice 

(18).  

The detrimental or beneficial effect of IFN-I is not determined by the size of the L. 

monocytogenes inoculum. I.p. or i.v. injections of bacteria deliver the entire inoculum directly to 

internal organs. By contrast, i.g. infection might result in a more gradual release of bacteria from 

the intestinal tract, hence a lower primary infectious dose for internal organs. To examine whether 

the amount of the primary inoculum delivered to target organs influences the effect of IFN-I, we 

infected Ifnar1-/- and control animals with 10
2
 Lm i.v. Figure 3A shows that even at this very low 

dose Ifnar1-/- mice showed an increased ability to prevent Lm replication, similar to mice infected 

with 100-fold more bacteria. Therefore, systemic delivery rather than inoculum size seems to be 

the main determinant for the effect of IFN-I. Alternatively the difference between i.p. and i.g. 

infection might arise from the mode of dissemination. According to previous reports (e.g. (23)), Lm 

traversing the intestinal epithelium are thought to be taken up and spread throughout the host 

organism via phagocytic cells residing in mucosal lymphoid organs such as macrophages or DC. 

We tried to mimic this situation by injecting various amounts of in vitro Lm-infected macrophages 

or dendritic cells i.v. into Wt and Ifnar1-/- mice. 40-50% of these cells harboured bacteria (data not 

shown). Figure 3B demonstrates that intracellular delivery of Lm resulted in enhanced bacterial 

clearance by Ifnar1-/- compared to Wt mice. Therefore, intracellular dissemination cannot per se 

explain how the infection route shapes the impact of IFN-I on antibacterial innate immunity. 

IFN-I do not inhibit invasion of the gut mucosa or of mucosa associated lymphoid 

tissue. We tested the hypothesis that the beneficial effect of IFN-I on i.g.-infected mice might 

result from a decreased rate of intestinal invasion. This is suggested by older reports that 

epithelial cells treated with IFN-I show increased resistance against invasion by enteropathogens 

(24, 25). To examine the uptake of Lm by intestinal tissue or the gut-associated lymphoid tissue 

we first performed immunohistochemistry on the intestinal mucosa 48h after i.g. infection. 

Visualization of Lm with a specific antiserum demonstrated the presence of bacteria in mucosal 

tissue. Very low numbers of Lm were found in epithelial cells, the vast majority had crossed the 

epithelial barrier to reside in the underlying mucosa (Fig. 4A). No differences between Wt and 

Ifnar1-/- mice were noted (Fig. 4A, upper panels). Similarly, infection of Peyer’s patches or 
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mesenteric lymph nodes did not reveal an effect of IFN-I early after invasion (Fig. 4A, lower 

panels, Figs. 4B, C). Together the data suggest that there is little measurable effect of IFN-I on 

intestinal invasion by Lm. Profiling cytokine mRNA production strengthened the notion that IFN-I 

have little impact on early events after intestinal invasion. Apart from IFN-β, which is amplified by 

a positive feedback loop involving IFN-I (3), and the IFN-I inducible Mx gene, there was very little 

impact of Ifnar1 deletion on cytokine expression in PP (Fig. 4D). 48h post infection IFN-γ and 

MCP-1 production were significantly reduced. At this time the infection is systemic and, as shown 

below, the control of the immune response most likely dominated by splenic cytokine production. 

Absence of a type I IFN response exacerbates inflammatory pathology in livers of 

mice infected via the gastrointestinal route. Analysis of the bacterial organ burden during the 

course of infection demonstrated a pronounced peak of multiplication of Lm in the livers of Ifnar1-

/- mice infected i.g. for 48h. Mice begin to die shortly after this period.  Furthermore, our recent 

demonstration that liver damage is closely correlated to the lethality of infection (21) suggests that 

IFN-I may reduce the severity of liver pathology in i.g.-infected mice. Livers were therefore 

subjected to histological, immunohistochemical and flow cytometric examination.  

To assess whether the route of infection alters the predominant localization of Lm, livers 

48h after i.g. or i.p. infection were subjected to immunohistochemistry with anti-Listeria serum. 

Bacteria localized to inflammatory infiltrates. Quantitative evaluation revealed a larger fraction of 

Lm in periportal or pericentral areas after i.g. infection, whereas Lm in i.p.-infected mice showed 

increased localization at the margins of liver lobes (Fig. 5A).  

In accordance with the bacterial loads determined in figure 2, H&E staining demonstrated 

an increased number of small inflammatory infiltrates 24h after infection in Wt compared to Ifnar1-

/- livers (Fig. 5B). By contrast, more and much larger infiltrates were observed in Ifnar1-/- mice 

compared to their Wt controls 48h after infection. Likewise, Ifnar1-/- mice infected i.p. did not 

display a similarly high number or similarly large size of inflammatory liver infiltrates (data not 

shown). Closer inspection of the inflammatory infiltrate showed that they contained a large 

number of Gr1
+
 cells (neutrophils and inflammatory monocytes) and that they were the 

predominant sites of infection (Figs. 5C, D). Strikingly, the infiltrates as well as the surrounding 
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hepatic tissue contained a large number of TUNEL-positive dying or dead cells (Fig. 5E) which is 

consistent with reports that Lm kills infected hepatocytes, macrophages, or dendritic cells (26). 

We proceeded to determine the innate effector cell populations present in the fraction of 

non-parenchymal liver cells (NPC) 48h after i.p. or i.g. infection. Ifnar1-/- livers contained 

significantly less neutrophils after i.p. injection of Lm and the difference was larger after i.g. 

infection (Fig. 6A). Ifnar1-/- livers from i.g.-infected mice also contained slightly less F4/80+ 

macrophages that include a large fraction of the resident Kupffer cells (Fig. 6B). Notably, i.g. 

infection of Ifnar1-/- mice significantly reduced the fraction of inflammatory monocytes compared 

to Wt, whereas both genotypes contained equal numbers of this cell type following infection 

through the peritoneum (Fig. 6C). 

In mice infected through systemic routes, IFN-I strongly enhance the death of apoptotic 

lymphocytes. To assess whether this activity differs after gastrointestinal infection, in situ TUNEL 

staining of infected splenic tissue was performed 48h post infection (right panels of Fig. 7) and 

further compared to listeria-staining of serial sections (left panels of Fig. 7) . Consistent with 

published data (5, 21) the absence of Ifnar1 strongly reduced the number of apoptotic cells in 

extra-follicular areas of the white pulp after i.p. infection (upper right panels of Fig. 7). Spleens 

after i.g. infection contained less apoptotic cells in correlation with roughly 10-fold less bacteria 

(lower right panels of Fig. 7, Fig. 2). In spite of an increase in bacterial numbers relative to Wt 

controls (lower left panel of Fig. 7, Fig. 2), Ifnar1-/- spleens contained fewer TUNEL+ cells. Thus, 

the inhibitory activity of IFN-I on splenocyte death appears to be independent of the infection 

route. 

IFN-I accelerate and increase proinflammatory cytokine activity after intragastric 

Listeria monocytogenes infection. Our analysis of liver inflammation suggests it contributes to, 

or reflects the different impact of IFN-I on mice infected through enteral or parenteral routes. 

However, production of cytokines that regulate inflammation and immunity is to a large extent an 

attribute of leukocytes residing in the blood or in lymphoid organs. Therefore, we determined 

cytokine mRNA expression in the spleen. 

Splenic IFNβ mRNA was expressed up to 72h after i.g. application of Lm. In accordance 

with expectations, the IFN-I induced gene Mx2 was expressed in infected spleens up to 72h in 
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Wt, but was strongly reduced in Ifnar1-/- mice (Fig. 8A). Among the pro-inflammatory cytokines 

and chemokines tested, IL-6 and MCP-1 were decreased early after infection. Notably, this effect 

was not observed at a similar time after i.p. infection.  Of further interest, early splenic IFN-γ 

production was increased in Ifnar1-/- mice compared to Wt after i.p. infection, but not after 

infection through the gastrointestinal tract. Early TNF-α production was reduced in Ifnar1-/- mice 

infected through the intestinal tract and even more strongly after i.p. infection. Compared to Wt 

mice, immunesuppressive IL-10 was elevated in Ifnar1-/- 72h after i.g. infection, but reduced after 

i.p. infection. The data suggest that splenic cytokine production is an important determinant of the 

different impact of IFN-I after enteral and parenteral infection routes. Due to the overwhelming 

importance of IFN-γ for innate resistance to Lm (27, 28), we consider the delayed and lower 

production of this cytokine after i.g. infection versus i.p. infection the most striking result. It reflects 

the detrimental increase of hepatic Lm between 24 and 48h after i.g. infection. To determine 

whether systemic IFN-γ production corresponds to splenic mRNA, serum IFN-γ was measured 

and found to correlate well with the levels of splenic IFN-γ mRNA (Fig. 8B). 



32 
 

Discussion 

Lm is a widely studied pathogen that has been instrumental in advancing the knowledge 

about innate responses to intracellular bacteria. However, the vast majority of data about 

immunity to Lm stems from animals infected via the intraperitoneal or intravenous route. 

Comparably little knowledge has been obtained about infection through the intestinal tract which 

represents the natural entry route in humans. The incompatibility of the InlA/ E-cadherin 

interaction in murine hosts, required for efficient invasion of epithelial cells, posed an obstacle to 

murine models of gastrointestinal infection. To overcome this limitation, we followed the approach 

of Wollert et al (16) to construct a Lm strain expressing a mutant, ‘murinized’ InlA gene which 

interacts with mouse E-cadherin and therefore improves the invasive capacity of Lm. We applied 

this approach to Lm strain LO28, a potent inducer of IFN-I in vitro and in vivo (29). E-cadherin is 

located at the basolateral side of epithelial cells, making it less accessible to bacteria in the gut 

lumen. Pentecost and colleagues have shown that at sites of epithelial cell turnover E-cadherin 

becomes accessible to Lm (30).  InlB also contributes to the initial uptake into host epithelia (31, 

32). Finally, the major virulence factor Listeriolysin O (LLO), a member of the bacterial hemolysin 

family, promotes the uptake of Lm into hepatocytes (26).  

The results of our study clearly show that the route of uptake, hence the initial interactions 

of Lm with the host, determine the innate antibacterial response. Strikingly, the impact of IFN-I 

synthesis changes from being adverse (4-6) to being beneficial when i.p. and i.g. routes of 

infection are compared. The possible mechanisms of these detrimental actions are increased cell 

death upon IFN-I signalling of lymphocytes and macrophages and unresponsiveness to IFN-γ (33, 

34). Following systemic delivery, IFN-I increase production of immune-suppressive IL-10 and 

restrain TNF-α producing cells in the spleen, thereby limiting a protective inflammatory response 

(4, 8). Here we show that critical cytokines are controlled by the type I IFN system. These include 

the protective cytokines TNF-α, IL-6 and IFN-γ and the anti-inflammatory IL-10 in addition to 

chemokines such as MCP-1 that regulate the recruitment of myeloid cells (9, 28, 35-37). Unlike 

early TNF-α synthesis that requires IFN-I after both i.p. and i.g. infection, the production of IL-6 

and MCP-1 during the initial 24h of infection is reduced specifically when bacteria enter their host 

via the intestine. Most importantly, increased IFN-γ production in absence of type I IFN 
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responsiveness was delayed and less pronounced after i.g. compared to i.p. infection.  Thus, 

reduced synthesis of protective cytokines during the early phase of infection provides a likely 

explanation for the different impact of IFN-I on mice infected via enteral or parenteral routes. This 

explanation is in accordance with the timing of bacterial replication, which is strongly accelerated 

in i.g.-infected Ifnar1-/- mice between 24 and 48h. The increased IFN-γ synthesis at 48h explains 

why a significant fraction of Ifnar1-/- mice proceeds to clear bacteria with equal efficiency as their 

Wt counterparts and survives. We hypothesize that those Ifnar1-/- mice that die from i.g. infection 

are unable to cope with the damage inflicted by the large Lm burden between 24 and 48h.  

Unexpectedly, intestinal invasion and replication in the intestinal mucosa or the mucosa-

associated lymphoid tissue demonstrated little control by IFN-I. In contrast, the liver, most likely 

the most rapidly infected internal organ, revealed striking differences comparing intragastric or 

intraperitoneal infection routes, most obviously the vigorous replication of Lm between 24 and 48h 

and the correspondingly stronger inflammatory response. Our recent report clearly demonstrated 

a close correlation between the lethality of Lm infection and the extent of liver damage (21). It 

appears likely, therefore, that the hepatic response to infection is a major determinant for the 

beneficial or adverse effects of IFN-I on Lm infection.  Contrasting the spleen, the liver is not itself 

a site of IFN-I synthesis during Lm infection and it responds poorly to IFN-I (18). This supports our 

conclusion that the innate hepatic response is critically influenced by IFN-I-regulated splenic 

cytokine synthesis.  

Our data further suggest that in addition to cytokines, the extent of liver inflammation may 

be influenced by different bacterial entry points after intestinal or intraperitoneal infection routes. 

Lm arriving from the intestinal tract localizes mostly to periportal or pericentral areas and the 

inflammatory response is directed to these regions. This suggests that important Lm entry routes 

are the portal blood stream or, following systemic dissemination, the central veins, with little 

contribution of peritoneal invasion and direct infection of liver lobes. By contrast, a larger fraction 

of intraperitoneally administered Lm may choose direct intraperitoneal access to the margins of 

liver lobules rather than systemic dissemination through blood or lymphatic vessels. 

Speculatively, the location of replicating Lm may influence the speed with which an inflammatory 

infiltrate is formed and regulated by blood-borne cytokines and chemokines. 
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One very obvious cause for liver damage noted in our experiments was the death of cells 

both within the inflammatory infiltrate and the surrounding hepatic tissue. Cell death may be a 

direct consequence of intracellular Lm in macrophages, neutrophils or hepatocytes (38-40) or an 

indirect consequence of inflammation. Liver infiltrates formed more frequently in i.g.-infected 

Ifnar1-/-mice and developed to significantly larger sizes, thus causing a much larger fraction of 

hepatic tissue to die. Livers of Ifnar1-deficient mice contained a smaller fraction of inflammatory 

monocytes, important antibacterial effector cells (41), specifically following infection via the 

gastrointestinal route. This may reflect the reduced synthesis of chemokines and contribute to the 

enhanced multiplication of Lm in the liver. 

Apoptosis of splenic lymphocytes is thought to be an important cause for the adverse 

consequence of IFN-I production after i.p. infection. While spleens from i.g.-infected mice 

contained less apoptotic cells compared to i.p.-infected controls, absence of the IFNAR reduced 

the number of dying or dead splenocytes despite a higher bacterial burden.  This suggests that 

the enhancement of splenocyte death by IFN-I is established independently of the route of 

infection. Our data suggest that the beneficial effect of IFN-I on the innate response to 

gastrointestinal infection results from ensuring the rapid upregulation of critical protective 

cytokines that limit hepatic bacterial replication and inflammation. Within the IFN-I-regulated 

cytokine milieu IFN-γ suffices for survival, but becomes limiting in the early phase of i.g. infection if 

IFN-I cannot ensure production of other protective proinflammatory cytokines/chemokines. In 

contrast, i.p.-infected mice benefit from an early boost of IFN-γ production in absence of an IFN-I 

response. The cellular and molecular mechanisms underlying the infection route-dependent 

impact of IFN-I on the timing and intensity of IFN-γ production will be investigated in future 

studies.      
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Figure 1: IFN-I increase host resistance after intragastric infection with Listeria monocytogenes. 

C57BL/6N Wt and Ifnar1-/- mice were infected with Lm strain LO28InlA*.  A, B. Numbers of bacteria in livers 

(A) and spleens (B) were determined by CFU assay 72h after intraperitoneal (i.p.) infection with 1x10^6 Lm. 

C, D; Bacterial loads of livers (C) and spleens (D) were examined by CFU assay 72h after intragastric 

gavage (i.g.) with 5x10^9 Lm. Plots indicate the Median of bacterial counts. E; 14 mice per group were 

infected i.g. with 5x10^9 Lm LO28InlA* and survival was monitored over ten days.  
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Figure 2: Bacterial burden after various periods of intragastric infections of Wt and Ifnar1-/- mice with 

Listeria monocytogenes. A-B. C57BL/6N Wt and Ifnar1-/- mice were infected with 5x10^9 CFU of strain 

LO28InlA* by intragastric gavage (i.g.) and bacterial loads of livers (A) and spleens (B) were monitored over 

three days by CFU assay. C, D, bacterial burden of livers (C) and spleens (D) was determined by CFU assay 

over three days after i.p. infection of C57BL/6N Wt and Ifnar1-/- mice with strain LO28InlA*.  

For i.g. experiments at least 7 mice per genotype and for i.p. experiments at least 5 mice per genotype were 

used for each time point. Standard variations indicate the median with interquartile range. 
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Figure 3: Low infectious doses or dissemination via infected cells do not alter the adverse effect of 

IFN-I after systemic infection with Listeria monocytogenes. A. Doses of 10^2 and 10^4 Lm were injected 

intravenously (i.v.) into C57BL/6N Wt and Ifnar1-/- mice and bacterial loads in spleens were determined by 

CFU assay 72h after infection. B. Wt bone marrow-derived macrophages or myeloid dendritic cells were 

infected in vitro with a MOI of 10 for 1h and then, 10^4 of the respective cell type was injected i.v. into 

C57BL/6N Wt and Ifnar1-/- mice. Bacterial loads in the spleen were measured by CFU assay 72h after 

infection.  
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Figure 4. Localization and replication of Listeria monocytogenes in the intestinal tract. A, upper 

panels. Anti-Listeria serum was used to detect Lm in the intestinal mucosa from C57BL/6N Wt or Ifnar1-/- 

mice 48h post infection. Listeria infection, in both Wt and Ifnar1-/- mice occurred mostly in mucosal tissue 

beneath the epithelial layer. A, lower panels. Anti-Listeria serum was used to detect Lm in Wt or Ifnar1-/- 

Peyer’s patches (PP) 48h post infection. B, C; Bacterial numbers in Peyer’s patches (B) at day 2 or 

mesenteric lymph nodes (MLNs, C) over three days, determined by CFU assay. D. Analysis of Peyer’s 

patch-mRNAs by qPCR at the indicated times after infection. All experiments were performed with C57BL/6N 

Wt and Ifnar1-/- mice infected with a dose of 5x10^9 CFU of the LO28InlA* strain by intragastric gavage 

(i.g.). 
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Figure 5: Localization of inflammatory infiltrates in livers of i.p. vs i.g. infected mice. A. Localization of 

bacteria-containing infiltrates to the margins of the liver lobes (black) or to the periportal or pericentral region 

(white). The graph indicates relative numbers determined in five C57BL/6N Wt and Ifnar1-/- mice 48h post 

i.p. or i.g. infection. The anti-Listeria staining in the right panel indicates marginal and periportal infiltrates 

from a representative Wt sample 48h after infection. B. Histochemical analysis of hematoxylin-stained liver 

sections obtained 24h or 48h after i.g. administration of strain LO28InlA* to C57BL/6N Wt (upper panels) or 

Ifnar1-/- mice (lower panels). C-D. Histochemical analysis of Gr-1- stained liver sections obtained 48h after 

i.g. administration of strain LO28InlA* to C57BL/6N Wt (D) or Ifnar1-/- mice (C). E. TUNEL staining of 

infected liver sections obtained 48h after administration of strain LO28InlA* to Ifnar1-/- mice.  
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Figure 6: Comparison of the CD45+ fraction of non-parenchymal liver cells (NPC) of i.g.- and i.p.-

infected C57BL/6N Wt and Ifnar1-/- mice. A-C. Livers from infected mice were analyzed for neutrophils (A), 

macrophages (B) and inflammatory monocytes (C) using the indicated markers 48h post infection. The data 

are representative of three different experiments with four mice in each group. I.p. infections were performed 

with doses of 1x10^6 CFU and i.g. infections with 5x10^9 CFU of LO28InlA*. 
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Figure 7: Listeria and TUNEL staining of spleens from i.p.- or i.g.- infected C57BL/6N Wt and Ifnar1-/- 

mice. Representative samples obtained 48h after i.p. administration of 1x10^6 CFU of strain LO28InlA* 

(upper panels) and i.g. administration of 5x10^9 LO28InlA* (lower panels) to C57BL/6N Wt or Ifnar1-/- mice. 
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Figure 8: Delayed cytokine response in Ifnar1-/- compared to Wt mice after intragastric infection with 

Listeria monocytogenes. A. Cytokine mRNA expression in the spleens of C57BL/6N Wt (solid bars) or 

Ifnar1-/- mice (hatched bars) 24h, 48h and 72h after infection with 5x10^9 CFU of strain LO28InlA* by 

intragastric gavage (i.g.), or 1x10^6 LO28InlA* by intraperitoneal infection (i.p.) was determined by qPCR. 

mRNAs were normalized to the GAPDH housekeeping control and are displayed as the ratio obtained from 

non-infected (n.i.) and infected samples or as the ratio between expression in Wt and Ifnar1-/- animals. B. 

Serum IFNγ levels of 10- 15 C57BL/6N Wt and Ifnar1-/- mice infected i.g. for 24h, 48h or 72h with 5x10^9 
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Figure S1: Comparison of the LO28wt and LO28InlA*. C57BL/6N Wt mice were infected with Lm strain 

LO28wt or LO28InlA*. Numbers of bacteria in spleens (upper left panel) and livers (upper right panel) were 

determined by CFU assay 48h after intraperitoneal (i.p.) infection with 1x10^6 Lm. Bacterial loads of spleens 

(lower left panel) and livers (lower right panel) were examined by CFU assay 48h after intragastric gavage 

(i.g.) with 5x10^9 Lm. Plots indicate the Median of bacterial counts.  
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Additional Data 
 

The role of Type III interferons after intragastric infection with Lm 

 

In the first part of my thesis I focused on the expression of IFN-I after oral infection of Lm 

in C57BL/6N Wt and Ifnar1-/- mice. However, the data shows little measurable effects of IFN-I in 

the intestinal epithelia and gut-associated-lymphoid tissue. Recently, type III interferons (IFN-III) 

(see 6.3.) received considerable attention because of their ability to enhance or complete the 

function of IFN-I especially in epithelial tissue and hepatocytes (50, 54, 55). Here, I show data of 

experiments performed in IRF9-/- mice which, unlike Ifnar1-/- mice, are unable to respond to IFN-

III.  

 

IFN-III accelerate and increase proinflammatory cytokines in serum after 

intragastric Lm infection 

 

To characterize the impact of IFN-III during listeriosis, we used mice incapable to 

synthesise the transcription factor IRF9. We first monitored the CFUs 48h after intragastric 

infection. Although the severity of infection was generally milder in these two consolidated 

experiments, IRF9-/- mice showed significantly higher bacterial burden than Wt mice. Organ loads 

of Ifnar1-/- were in between Wt and IRF9-/- mice, highlighting the additional benefits of IFN-III.  

 

Relative numbers of bacteria in infected organs correlated well with MCP-1, MCP-3, IL-6 

and RANTES protein levels in the serum 48h after infection which indicates a related mechanism 

of delayed immune response as observed in Ifnar1-/- mice. However, other cytokines were not 

directly correlated to the severity of infection in the investigated genotypes. IL-12p70 and IL-22 

were low or not detectable in Wt and IRF9-/- whereas they were found significantly enhanced in 

Ifnar1-/-. IL-12p70 promotes NK activation and Th1-cell differentiation, both resulting in increased 

IFNγ synthesis. Consistently, the production of IFNγ was strongly decreased in IRF9-/- compared 

to Wt mice. IL-22 is mainly produced by activated NK-cells, T-cells and innate lymphoid cells (ILC) 

but the receptor is mainly found on fibroblasts, epithelial cells and hepatocytes (56). 

Speculatively, IFNλ is responsible for the activation of NK cells and T-cells, but this effect is less 

pronounced in Wt mice due to a lower bacterial burden. MIP-1ß (CCL4) is a chemo-attractant for 

NK-cells and inflammatory monocytes. Compared to Wt controls it was reduced to the same 

extent in Ifnar1-/- and IRF9-/- mice, indicating that its synthesis is controlled mainly by IFN-I.  

 

Definitive proof for the influence of IFN-III on infected epithelia, will require analyses of 

infection kinetics as well as experiments in mice lacking the IFN-λ- receptor.  
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Figure 5│IFN-III increase host resistance after intragastric infection with Lm. C57BL/6N Wt and Ifnar1-

/- mice were infected with the strain LO28InlA* by intragastric gavage with 5x10^9 bacteria and bacterial 

loads were examined by CFU assay 48h after infection. 
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Figure 6│Cytokine synthesis in response to Lm in Wt, Ifnar1-/- and IRF9-/- mice after i.g. infection. 

Serum cytokines were determined by a bead-based array 48h after infection of C57BL/6N Wt (dots), Ifnar1-/- 

(squares) and IRF9-/- (triangles) with strain LO28InlA* by intragastric gavage. Experiments were performed 

twice. Graphs indicate median values. 
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Discussion 
 

Type I interferons, originally identified by Isaacs and Lindenmann for their antiviral 

properties, are major components of the early innate immune response (41). Since then, a large 

body of work showed that these proteins are among the first cytokines that respond to various 

pathogens like bacteria, parasites, fungi and also tumors (45). Although the impact of IFN-I in viral 

infection has been shown to be exclusively protective, their role in bacterial infections is less well 

defined (46). In this case it can either be adverse or beneficial but no separation between gram-

positive, gram-negative, intracellular or extracellular bacteria is obvious; indicating more 

complicate scenarios.  

 

My thesis shows investigations addressing the role of IFN-I in infections with the Gram-

positive intracellular pathogen Listeria monocytogenes in Wt- and Ifnar1-/- mice. The latter 

animals lack the receptor for IFN-I and are therefore unable to induce the feed forward 

amplification loop of IFN-I synthesis or to respond to IFN-I. We reproduced the sensitizing impact 

of IFN-I after intraperitoneal administration of Lm in vivo. On the contrary, we could show that 

mice benefit from IFN-I production when infection occurred via the gastrointestinal tract which is 

the natural route of Lm. This opened a great opportunity to study the reason behind the diverse 

action of IFN-I in anti-listerial immunity. In principle, there are two different options for this dual 

effect: Either the pathogen encounters a different cell type or the same cell type responds 

differently in the intestine or the peritoneal cavity. We soon observed decreased mRNA levels of 

IL-6, IFNγ and TNFα in spleens of Ifnar1-/- mice within the first 24h after oral inoculation and 

concluded that this is probably due to the reduced MCP-1 levels and delayed effector cell 

recruitment. Surprisingly, there are also decreased serum levels of MCP-1 in Ifnar1-/- mice 

infected via the peritoneal cavity, indicating that controlling the synthesis of chemokines for the 

recruitment of inflammatory cell populations is a general feature of IFN-I.  

 

Among the leading chemo-attracted cells in listerial infections are neutrophils. We 

observed faster but smaller infiltrates containing Gr1+ cells in livers of Wt mice and delayed but 

huge infiltration in Ifnar1-/- mice until day two post infection. However, a large number of cells 

within the biggest infiltrates were Gr1-, possibly DC, NK-cells or T-cells (14). The Gr1+ marker is 

expressed on inflammatory monocytes which are quickly recruited by proinflammatory cytokines 

and chemokines released by neutrophils and other cells participating in the inflammatory reaction. 

With the use of immunohistochemistry we could not unequivocally identify the cell types involved. 

However, FACS analysis of non-parenchymal liver cells revealed that in both infection routes 

Ifnar1-/- mice had significantly decreased neutrophils, but the genotype difference was stronger in 

i.g.-infected mice. Furthermore, Ifnar1-/- mice contained significantly fewer inflammatory 

monocytes and F4/80+ cells after i.g., but not after i.p. infection. Again this strengthened the 
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hypothesis of delayed immune response in i.g. infection- fatal for the host; an advantage to take 

root for Lm.      

 

Together the data argue in favour of a critical role of IFN-I in controlling the synthesis of 

proinflammatory chemokines and cytokines. Type I IFN may contribute to a cytokine storm after 

systemic administration of Lm and Ifnar1-/- mice are protected. However, this protection is not 

seen after infection via the natural route where cytokines may be more gradually released and do 

not accumulate to severely harmful or lethal concentrations. Low dose i.v. infection experiments 

did not support this assumption as systemic IFN-I were still detrimental. This leaves the possibility 

that the IFN-I response of different cell types at the primary site of infection determines the 

adverse or beneficial effect. Thus, the speed and intensity of inflammation ensuing in the early 

phase of infection may be controlled by cells showing various aspects of cell type specificity in 

their IFN-I response. 

  

To obtain further information about the immune response at the site of infection we 

monitored invasion of the murinized LO28InlA* strain by immunohistochemistry of the gut. 

Interestingly, there were no bacteria attached or inside the epithelium. The vast majority resided 

underneath the epithelium in the GALT or in follicle associated lymphoid tissue. Listeria occurred 

in patches rather than being equally distributed. Maybe they simply entered at sites lacking 

epithelial integrity due to the extrusion of cells (13)  (9). Peyer’s patches were found infected, but 

neither histopathology nor CFU assay of PP revealed significant differences between Wt and 

Ifnar1-/- mice at the site of infection.  Judging from my data, the liver appears to much more 

reflect the impact of genotype and infection route on the severity of infection. The reasons 

underlying the critical importance of the liver as a determinant of the course of infection will be 

subject to future investigations.  

 

Innate responses of the intestinal epithelium are regulated by IFN-I as well as IFN-III. 

Examination of IRF9-/- mice suggested that type III interferons may indeed counteract intestinal 

colonization by Lm. This subtype of the interferon family has first been described in 1993 and 

relatively little is known besides their impact on viral invasion of respiratory and intestinal epithelia 

(55, 57). Our data show higher bacterial burden in the liver of IRF9-/- mice compared to Ifnar1-/- 

mice. Since mouse livers don’t express receptors for IFN-III, increased amounts of Lm in this 

organ are likely to reflect IFN-III activity at an earlier step of infection, most likely colonization of 

the gut. The change in the immune response resulting from the combined unresponsiveness to 

IFN-I and IFN-III results in alterations of serum cytokine levels in IRF9-/- compared to Ifnar1-/- 

mice. Among these are IL-12p70, IL-22 and IFNγ. Interestingly, these cytokines are involved in T-

cell and NK-cell activation and appear to be reduced in IRF9-/- mice but elevated in Ifnar1-/- mice. 

 

Besides the possible impact of interferons at the site of infection, the dissemination routes 

to target organs might have an outstanding role. Besides systemic spread via infected monocytes, 
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bacteria may also choose a direct route to the liver via the portal vein. This assumption is 

strengthened by our data showing that pathogen loads and inflammation of the liver more 

accurately reflect the severity of infection than the spleen. Initially, infiltrates were often found in 

periportal areas. As infection progressed, more and more inflammatory infiltrates localized to 

areas surrounding the central veins. By contrast, this was much less the case in i.p. infections, 

where the bacterium may choose direct access from the peritoneal cavity beside systemic 

dissemination. Speculatively, the origin of replicating Lm from either the intestine or the peritoneal 

cavity may tip the balance between the two infection routes. Lm might upregulate different 

transcriptional profiles or simply take advantage of an immunetolerant organ, like the liver or a 

tightly regulated tissue, like the mucosa.  

 

In the end, the question of IFN-I as beneficial or detrimental cytokines will keep us busy 

for some time. The data shown here push IFN-I again towards the group of “good” cytokines and 

encourage us to investigate the cell types responsible for their production and/ or response. 

Furthermore, comparing i.g. and i.p. or i.v. infection routes with Lm offers a good tool to study the 

interplay of cell types and organs in the development of protective adaptive immunity. In the age 

of conditional knock out mice we have a unique opportunity to investigate cell type specific IFN-I 

responses. The variation of beneficial or detrimental roles of this cytokine with the route of 

infection should also encourage us to consider the importance of administration in the context of 

other pathogens, especially if results are used for pharmacological interventions on humans 

rather than for basic research and cell signalling studies. 
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