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Chapter 1

Introduction

Providing future proof broadband Internet connections is currently a major in-

frastructural issue worldwide. More and more information is shared across the

Internet and demand for higher data rates increases with new services. The Dig-

ital Agenda for Europe1 of the European Commission stresses the importance of

information and communications technologies and states that �Half of European

productivity growth over the past 15 years was already driven by information

and communications technologies [. . . ] and this trend is likely to accelerate.� It

issues the goal of achieving �internet speeds of 30 Mbps or above for all Euro-

pean citizens, with half European households subscribing to connections of 100

Mbps or higher� by the year 2020. The German government decided to place

strong emphasis on the expansion of broadband communications in one of its

latest economic stimulus packages2. The rather challenging aim, formulated in

2009, is to provide 75% of all households nationwide with 50 Mbps connections

by the end of 2014. Reaching this goal is only possible by rolling-out �ber optic

access networks on a broad scale.

The infrastructure of telecommunication networks nowadays can be seen as

consisting of two layers. High speed, backbone networks interconnect cities or

regions. Local access networks connect end customers via copper cables to an

access point (central o�ce) of the backbone network. In order to serve customers

with higher bandwidth, telecom companies replace the copper networks with

�ber optic connections. There are di�erent strategies, distinguished by the

endpoint of these new �ber optic connections.

• Fiber-To-The-Curb (FTTC) (or Fiber-To-The-Node, FTTN): The �rst

part of the connection from the access point, or central o�ce to the cus-

1Digital Agenda (May 2010), europa.eu/rapid/pressReleasesAction.do?reference=IP/10/581
2Breitbandstrategie der Bundesregierung (February 2009),

www.zukunft-breitband.de/BBA/Navigation/Service/publikationen,did=290026.html

1

http://europa.eu/rapid/pressReleasesAction.do?reference=IP/10/581
http://www.zukunft-breitband.de/BBA/Navigation/Service/publikationen,did=290026.html
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tomers consists of optical �bers. The second part consists of copper lines.

At the transition point from �ber to copper, a multiplexing device has to

be installed. This multiplexer receives signals from multiple customers via

copper connections and aggregates them onto the �ber optic line.

• Fiber-To-The-Building (FTTB): The optical �ber runs all the way from

the central o�ce to a building. Multiplexing devices (usually installed in

the basement) aggregate signals from the subscribers within the building

via short-distance copper lines onto the �ber optic line.

• Fiber-To-The-Home (FTTH): The connections between the central o�ce

and the subscribers run completely over optical �ber. The connection can

be direct or shared. A direct �ber runs directly from the central o�ce to

one individual subscriber (point to point). Alternatively, a shared �ber is

used from the central o�ce until close to the subscribers, where it is split

into several �bers to connect the subscribers.

Figure 1.1 depicts these three variants. Direct FTTH allows for the highest

bandwidth, followed by shared FTTH, FTTB and lastly FTTC. FTTx is used

as a general label for any of these variants. In practice, also mixed scenarios are

being considered. Here a subset of customers is connected via FTTH or FTTB

and others are connected via FTTC. Which strategy is employed in a particular

case depends on various prerequisites. For instance, it depends on how densely

the planning areas are populated (e.g., urban vs. rural areas).

Many local telecommunication carriers are realizing FTTH or FTTB projects.

The largest Austrian telecommunication provider, Telekom Austria Group, de-

cided to invest one billion Euro in the modernization of the �xed net infrastruc-

ture3. Deutsche Telekom AG announced plans for the connection of thousands

of households in ten German cities with FTTH.4.

The planning of local access networks is a highly complex task. Manual

planning does not allow for �nding provably close-to-optimal solutions. In the

last years various uncapacitated optimization problems have been proposed in

the context of FTTx planning (see, e.g., [ABG+11, LR11, GL11, GGL11]).

These optimization problems are mainly concerned with the design of the un-

derlying network topology, ignoring many hardware parameters. On a more

detailed level, the following aspects have to be considered in addition: There

are cost/capacity relations for various components, such as multiplexers, split-

ters, �bers and cables. There are overhead cost for trenching. Also, existing

infrastructure has to be taken into account.

3Press release (July 3, 2009),
www.telekomaustria.com/presse/news/2009/0703-telecommunication-infrastructure�en1.php

4Press release (February 28, 2011), www.telekom.com/dtag/cms/content/dt/de/996928

http://www.telekomaustria.com/presse/news/2009/0703-telecommunication-infrastructure--en1.php
http://www.telekom.com/dtag/cms/content/dt/de/996928
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(a) FTTC. Fiber optic connections from the central server to two
multiplexers and copper connections to the subscribers.

(b) FTTB. Fiber optic connections from the central server to the
buildings that host the subscribers. Copper connections in the
building.

(c) FTTH. The connection from the central server right to the
subscribers is made of optical �ber.

Figure 1.1: An example, comparing FTTC, FTTB and FTTH. The rectangle
to the left is the central server. Thick lines represent �ber optic connections.
Crossed squares are multiplexer devices. Dashed lines represent copper connec-
tions. To the right, there are three buildings with four subscribers each.
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This thesis was inspired by a project carried out by the University of Vi-

enna and the largest telecommunications provider in Austria, Telekom Austria.

This three year project dealt with the planning of local access networks. It

involved practitioners from the planning department of the telecom provider

and researchers from the provider and the university. A wide range of topics

were addressed and a number of publications were spurred from this project:

[TL08, LPSG11a, LPSG11b, GL11] and [Was11].

This thesis focuses on the topic of �nding the cost optimal routes of direct

�ber optic connections from the center to a set of endpoints. Applied to direct

FTTH planning, the endpoints are the subscribers. For shared FTTH, the

endpoint is the location at which the �bers are split apart. When dealing with

FTTB connections, the endpoint is the building that hosts the subscribers. In

the context of FTTC planning, the endpoints are the multiplexer devices. We

do not deal with the positioning of the multiplexers themselves. The material

of this thesis can be applied for mixed scenarios if the type and location of the

endpoints has been decided. That is, once it is clear where multiplexers have

to be set up, which buildings are FTTB connected, which groups of subscribers

receive a shared FTTH connection and which subscribers receive a direct FTTH

connection. These decisions are su�cient to de�ne the endpoints and in this way

mixed scenarios can be dealt with. The mainly intended audience for this work

is the operations research (OR) community. In the �eld of OR this problem is

modeled as the Local Access Network (LAN) design problem.

The �rst phase of the project focused on designing the �ber optic network

between the access point and the multiplexer devices in FTTC planning. The

LAN problem is approached with exact solution methods to solve the given

problems optimally. The applied exact methods involve preprocessing, mod-

eling with mixed integer programming (MIP), disaggregation of MIP formula-

tions and Bender's decomposition. Thanks to the cooperation with the telecom

company, we had access to real world data. In order to design and evaluate

the methods, sample inputs with approximately 1 000 nodes and up to 67 cus-

tomers where generated. Using these benchmark instances as well as smaller

LAN instances from the literature allows us to evaluate the proposed meth-

ods empirically to demonstrate the practical applicability and to support and

complement the theoretic results.

The second phase of the project focused on FTTH/FTTB planning and

introduced the additional aspect of selecting a subset of customers in order to

cover some target percentage. This is an interesting question in practice, since

connecting every subscriber with FTTH/FTTB can lead to unreasonably high

installation cost. To model this additional question a new extension to the LAN

problem is proposed: the Prize-Collecting Local Access Network design problem
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PC-LAN. In addition larger, more detailed inputs were de�ned together with

the company. These served as more realistic and more challenging benchmark

instances of PC-LAN scenarios with up to 80 000 nodes and 1 500 customers.

The PC-LAN problem is approached with MIP based heuristic methods. This

involves cutting plane formulations, multi-start construction heuristics and local

improvement. These heuristic methods have proven to be useful when tested

against the large benchmark instances.

The thesis is structured in the following way. In the subsequent section

the detailed requirements of FTTx problems are discussed. The Local Access

Network design problem is presented as an abstract model to describe these

practical problems in Section 1.2. The Prize-Collecting Local Access Network

design problem is introduced in Section 1.3 to cover the aspect of choosing a

certain subset of all endpoints. Chapter 2 reviews the relevant literature on

related operations research problems and describes their relation to telecom-

munication network planning. Chapter 3 describes the exact methods to solve

LAN design problems optimally. This chapter mainly represents the �ndings

gained in the �rst phase of the partially industry-sponsored project. It extends

upon material published in [LPSG11a]. Chapter 4 mainly constitutes material

produced during the second phase of the project where the focus shifted towards

the PC-LAN problem on large inputs and towards heuristic methods. Parts of

this have been published in [LPSG11b]. Chapter 5 concludes this thesis with a

short summary.

1.1 Modeling FTTx

In order to explain the abstract models used in operations research, four key

aspects of detailed FTTx planning are presented in this section. Section 1.1.1

describes the relevant factors for establishing �ber optic connections. This in-

volves di�erent cable technologies and also the in�uence of previously existing

infrastructure. Section 1.1.2 and 1.1.3 discuss the properties of Multiplexers

and Splitters. These are devices to be installed at the endpoints of FTTC

and FTTH/FTTB planning, respectively. Section 1.1.4 presents the concept of

coverage in the context of FTTH/FTTB planning.

1.1.1 Fiber Optic Cables

Each endpoint requires a connection to the central o�ce with a certain number

of optical �bers. To establish these connection, di�erent types of cables are

available. Each type of cable is characterized by two features. One is its capacity

and represents the number of optical �bers. The other is its cost.
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step fibers cost cost/fiber
1 20 0.00 0.000
2 92 7.20 0.078
3 164 12.30 0.075
4 308 21.50 0.070
5 648 137.00 0.211
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Figure 1.2: This �gure shows the stepwise cost function for a showcase con-
nection. There is an existing connection providing 20 currently unused �bers.
These can be used at 0 cost (step 1). In addition there is an existing duct along
this connection. For new installations there is one technology of �ber optic ca-
bles available providing 72 �bers for 3.00e per meter. It is possible to install
1, 2 or 4 cables at cost of 4.20, 6.30, or 9.50e per meter. Including the cost
for the cables themselves yields 4.20 + 3.00 = 7.20, 6.30 + 2 · 3.00 = 12.30, and
9.50 + 4 · 3.00 = 21.50e, respectively (steps 2, 3 and 4). Finally it is possible
to dig a new trench for 100.00e. The installation of 9 cables incurs 10.00e in
addition to the cost for the 9 cables themselves. Making up for the possibility to
install 9 ·72 = 648 �bers for 100.00+10.00+3.00 ·9 = 137.00e. For the context
of this example it is assumed that the existing �ber and the cables in the exist-
ing ducts can be used simultaneously but in case new trenches are being dug,
this existing infrastructure is removed and replaced by the new installations.

It has been noted above, that existing infrastructure has to be taken into

account when a �ber optic connection shall be established from the access point

to some endpoint. Two kinds of existing infrastructure can be distinguished.

Firstly, in some cases there will be existing, currently unused installations of �ber

optical cables. These can be used for very little cost. Secondly, in other cases

there will be existing ducts that are not completely �lled with cables. These

allow for the installation of additional optical �ber cables. Again, cost for these

additional �bers will be low. Both cases involve a strict limit on the capacity,

i.e., there are only a certain number of unused �bers or respectively, there is

only limited room in the duct for additional cables. If existing infrastructure is

insu�cient, new ducts have to be laid. This will typically involve, excavating

new trenches and putting new ducts and cables inside. There is no strict limit

on the capacity installable this way, but in addition to the cost for the ducts

and cables there is a signi�cant overhead cost for the trenches. This involves

legal questions like property ownership, and cost for blocking roads while the

construction works are going on.

Figure 1.2 highlights some of these aspects with a small example. Taking into
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account an existing �ber optic connection, existing ducts o�ering the possibility

of relatively cheap new installations and the possibility of laying new ducts turns

out to produce a non-decreasing stepwise function for the cost per number of

�bers on the connection. It can be seen from the �gure that if any number of

�bers from 21 to 92 is needed the cost is 7.20e per meter regardless. However

if 93 �bers are needed the cost jumps to 12.30. Looking only at the steps 2, 3

and 4 in the �gure, it can be seen that this section of the cost function exhibits

economies of scale, i.e., the more �bers are installed the cheaper it gets per �ber

(0.078 > 0.075 > 0.070) . This is common when entities are bought in bulks.

However, over the whole range of the function it is not clear that economies of

scale are given. This can clearly be seen with step 5. Due to the high overhead

cost for building new �ber optic installations the cost per �ber jumps from step 4

to step 5 from 0.07 to 0.211.

In addition to what this example shows the practical situation will be further

complicated by the availability of di�erent cable technologies. They provide

di�erent numbers of �bers per cable. Others more expensive technologies can

provide the same number of �bers in a cable of smaller diameter. Using these

would allow to put more cables, hence more �bers in an existing duct.

All of these aspects can be described by means of a stepwise cost function

for any two sites that can be connected. Instead of speaking about cables, ducts

and trenches, we will only consider modules. Each combination of cables leads

to a module with a given capacity and cost. The capacity of a module is simply

the sum of the �bers included in the cables. The cost of a module is the sum

of the cable costs plus the installation on the roads taking into account the

length. A set of modules describes the stepwise cost function for the connection

of two sites. Note that the set of available modules will generally di�er for the

connection of di�erent sites.

1.1.2 Multiplexer Devices

In existing copper networks there is a distinct copper cable running from the

access point to each building. Starting from the access point, these cables

are laid in bulks and these bulks are split apart as they come closer to their

endpoint. In FTTC planning a location along this connection is chosen to set

up a multiplexer device. All the endpoints that are behind this point will be

connected to the multiplexer via the existing copper lines. The multiplexer has

to be connected with optical �ber to the access point. A multiplexer device

has a limit on the number of outgoing copper lines it can support. On the

other hand it needs to be connected with a certain number of optical �bers

to the access point. If more copper lines are to be connected to this location,
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a second multiplexer device has to be installed. This, in turn, increases the

number of optical �bers that have to be provided. In addition to the cost for

the devices itself there is also a setup cost that is related to the conditions at

the location. This involves questions such as whether the devices need to be put

inside some casing to protect them or whether they are being set up inside a

building. The multiplexers need a power supply and also legal questions about

possible locations where devices may be installed have to be taken into account.

Note that the question of deciding the locations for the multiplexer devices is

not being studied in this work. Section 2.3 gives some directions and citations

on publications dealing with this question. As far as FTTC in this work is

considered it is assumed that the locations have previously been decided. The

focus is on deciding the routing from the access point to the locations of the

multiplexer devices and the cost optimal installation of optical �ber on these

routes.

1.1.3 Splitter Devices

In FTTH and FTTB scenarios a splitter device has to be installed at the end-

point of the �ber optic connection. There is a given splitting ratio that describes

the relation between the number of incoming optical �bers and the number of

end customer devices or subscribers that can be connected. If there are more

subscribers at a speci�c endpoint, a second splitter has to be installed and the

number of optical �bers for the connection increases. An FTTH/FTTB end-

point can be summarized by three features. Firstly, the number of subscribers

(e.g., apartments and/or o�ces) in the building. This is denoted as the prize.

Secondly, the number of optical �bers required to connect this endpoint is called

its demand. Thirdly, there is a setup cost of installing the appropriate number

of suitable devices at the location. This cost takes into account the conditions

at the site of the endpoint.

1.1.4 Coverage

Especially in the context of FTTH/FTTB the question of selecting a subset of

endpoints to connect is raised. Providing FTTH/FTTB for some endpoints will

be relatively cheaper than providing this level of service to other endpoints. This

depends on the proximity of the endpoints and their location with respect to the

access point. Also it depends on the existing infrastructure. For example there

are relatively little cost associated to providing FTTH to all the apartments in

an apartment building that can be directly connected to the access point via

some existing, currently unused �ber optic connection. The opposite extreme

example is a single household at an exposed position. In order to provide a
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FTTH connection it would be necessary to lay new ducts and cables along a

wide stretch. If there are no other customers in the proximity of this house-

hold the cost for this connection are not shared by many endpoints but must

be directly attributed to this single household. Of course, due to the way new

connections provide �ber optic cables in bulk, not all cases will be as obvious

as these two examples. To deal with this situation, telecom companies decide

not to connect 100 percent of all endpoints with a service by all means and for

any cost. Instead they want to connect at least a certain percentage X. The

company strives for some market share and is interested in the cost for some

targeted coverage. The objective changes from �nding �ber optic installations

and routings to determining a subset of endpoints plus �nding the installations

and routings. To describe this requirement we consider the prize, i.e., the num-

ber of subscribers at an endpoint. The coverage condition is then expressed

as: select a subset of endpoints such that X percent of the total sum of prizes

is covered. Alternative de�nitions of prize may be used. The prize could be

any number the company associates to an endpoint representing some kind of

market value. For example an estimate of the expected revenue that can be

achieved by serving that endpoint.

1.2 Local Access Network Design Problem

The problem of �nding the routing from the access point to the endpoints and

deciding the cost optimal �ber optic cable installations along the routes can

be modeled as the Local Access Network design problem (LAN). The following

paragraphs give a formal de�nition of the LAN design problem and explain the

relation to FTTx planning.

De�nition 1.2.1. We are given an undirected, connected graph G = (V,E) with

a central node r ∈ V . A subset of the network nodes K ⊆ V \ {r} represents
customers. To each customer k ∈ K a positive demand dk is associated. On

each edge at most one module m out of a set Me = {1, 2, . . . } can be installed.

Each module has associated a positive capacity ue,m and positive cost ce,m. The

module indices are sorted by increasing capacity, i.e., ue,m < ue,m+1. The Local

Access Network design problem (LAN) asks for an installation of at most one

module per edge. The installation of modules shall allow for a single-source

multiple-sink routing from r to the customers, that satis�es all the demands

simultaneously. The cost for the installation of modules shall be minimal.

The intermediate nodes V \K\{r} may or may not be included in a solution,

thus they are called Steiner nodes. Figure 1.3 shows an example of a LAN

problem together with an optimal solution.



10 CHAPTER 1. INTRODUCTION

r

A:10

B

C

D:20
E

F:25

G:20
H:10

I

J:10

K
L:10

M:10

(a) Instance of the PC-LAN design problem.
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(b) Optimal solution of the PC-LAN in-
stance.

Figure 1.3: Graph G = (V,E) with |V | = 14. For each edge e the length le
of e is the Euclidean distance. Solid lines represent modules with ue,m = 100
and ce,m = 120le. Dashed lines represent the module with ue,m = 40 and
ce,m = 10le. Rectangle nodes are customers with their demands dk written at
the corresponding labels. The node r is the central o�ce. The edge labels in
Figure (b) describe a directed �ow from r to the customers.

Mathematically the LAN design problem can be expressed with the following

undirected single-commodity �ow, mixed integer program (uSCF). The binary

design variables x de�ne the installed modules per edge, i.e., x{i,j},m = 1 i� the

module m is installed on the edge {i, j}. The routing is expressed by continuous

�ow variables f(i,j) ≥ 0 that de�ne the amount of �ow on the edge {i, j} running
from i to j. The undirected single-commodity �ow formulation for the LAN

design problem is given by (1.1)-(1.6).

The �ow conservation constraints (1.2) ensure that every customer receives

the desired amount of �ow. The source of all �ow is the access point r and on

all other nodes there is a balance between outgoing and incoming �ow. The

capacity constraints (1.3) ensure that enough capacity is installed on every edge

to support all the �ow on that edge. The disjunction constraints (1.4) state

that at most one module may be installed. This model serves as a basis for the

models described later in Section 3.3.
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(uSCF) : min
∑
e∈E

∑
m∈Me

ce,mxe,m (1.1)

s.t.

∑
(i,j)∈δ+(i)

f(i,j) −
∑

(j,i)∈δ−(i)

f(j,i) =


−di, i ∈ K∑
k∈K

dk, i = r

0, otherwise

∀i ∈ V (1.2)

f(i,j) + f(j,i) ≤
∑
m∈M

u{i,j},mx{i,j},m ∀{i, j} ∈ E (1.3)∑
m∈Me

xe,m ≤ 1 ∀e ∈ E (1.4)

xe,m ∈ {0, 1} ∀e ∈ E, ∀m ∈Me (1.5)

f(i,j), f(j,i) ≥ 0 ∀{i, j} ∈ E. (1.6)

The LAN design problem relates to the problem of FTTx planning as fol-

lows. The nodes, edges and the corresponding modules represent all possible

�ber optic connections that can be established. The node r represents the cen-

tral o�ce (or central server or access to the backbone network). The customers

represent the endpoints of the FTTx planning problem. The demand of a cus-

tomer is measured as the number of �bers required to serve the corresponding

endpoint. In case of FTTH/FTTB the customers are the locations of buildings

and the demand is given as described in Section 1.1.3. In case of FTTC the

customers are already decided locations for multiplexer devices as described in

Section 1.1.2. Number of �bers is also the measurement unit of capacities of

the modules. Each module represents one step in the step cost function and

the binary design variables and the disjunction constraints serve as a means to

select one speci�c step. The cost of a module represent the cost of a certain

step taking into account the distance between two sites. The �ow variables

specify the number of �bers for any connection. Note that the �ow from r to a

customer is allowed to split apart, i.e., the connection is not necessarily a single

path. This kind of �ow is called bifurcated �ow.

1.3 Prize Collecting LAN

The LAN problem described in the previous section covers the aspects of �nd-

ing the routing and deciding the installations along the routes. To model the

coverage requirement for FTTB/FTTH planning, i.e., the additional aspect of

selecting a subset of all customers, the Prize Collecting Local Access Network

design problem is introduced. Two additional features are associated with each
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customer. In addition to the demand dk we consider a cost ck ≥ 0 and a prize

pk ≥ 0∀k ∈ K. A subset of customers shall be selected such that at least some

target prize p0 is achieved. The sum of the cost of the installations along the

edges plus the cost for the subset of customers shall be minimized. Figure 1.4

shows an example of a PC-LAN problem and a corresponding optimal solution.

De�nition 1.3.1. We are given an undirected, connected graph G = (V,E) with

a central node r ∈ V . A subset of nodes K ⊆ V \ {r} represents customers. To

each customer k ∈ K a positive demand dk, a positive prize pk and a positive

setup cost ck are associated. A target prize p0 is given. On each edge at most

one module m out of a set Me = {1, 2, . . . } can be installed. Each module has

associated a positive capacity ue,m and positive cost ce,m. The module indices

are sorted by increasing capacity, i.e., ue,m < ue,m+1. The Prize-Collecting Lo-

cal Access Network design problem (PC-LAN) asks for a selection of customers

to be served and an installation of at most one module per edge. The selection

of customers shall cover at least the target prize p0. The installation of mod-

ules shall allow for a single-source multiple-sink routing from r to the selected

customers, that satis�es all the demands simultaneously. The cost for the in-

stallation of modules plus the cost for the selected customers shall be minimal.

The (uSCF) model from the previous section is extended with additional

binary decision variables y describing the subset of customers. Here yk = 1

i� the customer k is to be connected. The undirected single-commodity �ow

formulation for the Prize Collecting LAN design problem (puSCF) is de�ned as

follows.
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(b) Optimal solution of the PC-LAN in-
stance with p0 = 0.7

∑
k∈K pk = 80.5.

Figure 1.4: Graph G = (V,E) with |V | = 14. For each edge e the length le
of e is the Euclidean distance. Solid lines represent modules with ue,m = 100
and ce,m = 120le. Dashed lines represent the module with ue,m = 40 and
ce,m = 10le. Rectangle nodes are customers with their demands dk written at
the corresponding labels. Customer prizes and cost are de�ned as pk = dk, ck =
dk/2, respectively. The node r is the central o�ce. In Figure (b), the selected
customers have a dark background and the not-selected customers have a white
background. The edge labels describe a directed �ow from r to the selected
customers.
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(puSCF) : min
∑
e∈E

∑
m∈Me

ce,mxe,m +
∑
k∈K

ckyk

s.t.

∑
(i,j)∈δ+(i)

f(i,j) −
∑

(j,i)∈δ−(i)

f(j,i) =


−diyi, i ∈ K∑
k∈K

dkyk, i = r

0, otherwise

∀i ∈ V (1.7)

∑
k∈K

pkyk ≥ p0 (1.8)

f(i,j) + f(j,i) ≤
∑

m∈M{i,j}

u{i,j},mx{i,j},m ∀{i, j} ∈ E (1.9)

∑
m∈Me

xe,m ≤ 1 ∀e ∈ E (1.10)

xe,m ∈ {0, 1} ∀e ∈ E, ∀m ∈Me (1.11)

yk ∈ {0, 1} ∀k ∈ K (1.12)

f(i,j), f(j,i) ≥ 0 ∀{i, j} ∈ E (1.13)

Compared to the (uSCF) model, the objective function of the (puSCF) model

has an additional term representing the on-site setup cost. The set of constraints

is extended by one coverage constraint (1.8) based on the prizes of customers.

The �ow conservation constraints (1.7) are modi�ed in order to re�ect the se-

lected subset of customers described via the y variables.

The cost ck represent the on-site cost determined by the splitter devices

in the FTTB/FTTH problem. The prize represent the number of subscribers

per endpoint, or more generally, the prize stands for any market value that the

telecom company associates with this endpoint. To connect for example at least

70% of all prizes, the target prize p0 is de�ned as p0 = 0.7
∑
k∈K pk.



Chapter 2

Literature Review

There is a vast number of publications on the topic of network design problems

in the operations research community. This section presents a review of the

literature on capacitated network design, with an emphasis on publications more

directly related to the topics in this thesis.

The common goal in all the problem variations is to �nd routes in a given

graph in order to satisfy a given pattern of commodities to be transported. The

commodities can generally be de�ned as pairs of source and sink node together

with a demand. In order to allow the transportation of the demand through the

graph some capacities have to be installed on the edges of the graph, incurring

setup cost. In addition, there may be per-unit transportation costs.

The following list de�nes some terms that are commonly used to distinguish

the problem variations.

single commodity vs. multiple commodities A common de�nition of com-

modity is a pair of source and sink nodes together with a number that

speci�es the amount to be transported from source to sink. An alter-

native description results from aggregating all source-sink pairs with a

common source and de�ning a commodity as one source node together

with a set of sink nodes and a speci�ed demand per sink. Using this

aggregated de�nition we de�ne a single-commodity problem as having ex-

actly one source. Consequently, a multi-commodity problem has many

such aggregated commodities.

Note that the roles of source and sink can be exchanged, thus a problem

with one sink and multiple sources is a single-commodity problem.

�ow-dependent cost The simplest cost structure for network design problems

is one linear term per �ow variable.

15
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�xed edge cost A more challenging cost structure is to pay one �xed amount

per edge that is used in the solution. This is commonly denoted as Fixed-

Charge Network Design. In the context of the LAN problem this would

be expressed with one module per edge |Me| = 1 ∀e ∈ E.

step-wise edge cost Instead of considering just one �xed charge per edge, it is

common to consider more complex step-wise cost structures. Two typical

variants are integer multiples and arbitrary steps:

integer multiples Assume there is one available cable technology, pro-

viding a capacity of u, incurring cost c. In order to achieve higher

capacities, multiple cables can be installed. This can be modeled in a

MIP with integer variables ye ∈ N, a cost function
∑
e∈E cleye, where

le is the edge length, and capacities of uye per edge.

Given that there are multiple available cable technologies (u1, c1),

(u2, c2), . . . , which can be freely combined, one would use integer

variables ye,1, ye,2, . . . . The cost function is
∑
e∈E

∑
n∈1,2,... cnleye,n

and the capacity per edge
∑
n∈1,2,... unye,n. In order to express the

cost function in terms of modules as used in De�nition 1.2.1, one can

compute an optimal combination of cable types for every capacity

level.

arbitrary steps The description of the step-cost function used in this

thesis, based on the notion of modules or levels is more general. It

can be used to model not only the integer multiples function but also

other non-decreasing step-cost functions including functions without

economies of scale. Existing capacities are also naturally covered

with this formulation. Inequalities (1.3),(1.4),(1.5) give a formal de-

scription in a MIP.

piecewise linear A yet more general form of step-cost functions with

sloped steps is achieved via discontinuous, piecewise linear functions.

This includes a �ow dependent coe�cient on each capacity level.

Note that in some publications the installable capacities on the edges

are called facilities for transportation. This usage of the word facility is

avoided in the present work to prevent misunderstandings with respect

to the facility location problem which is used in the context of FTTC

planning.

tree �ow, non-bifurcated �ow, bifurcated �ow Another attribute of typ-

ical network design problems is whether a certain structure of the solution

is required. One typical example is to search for tree-solutions.
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A relaxation of the tree requirement is to state that there must be one

unique path connecting each source-sink pair that transports the speci�ed

demand. Since the �ow is not allowed to split apart, this network design

variants are called non-bifurcated. Note that due to step-cost functions

the unique path restriction may not imply a tree solution.

A further relaxation of this structure requirement is to allow bifurcated

�ow. Here the connection between source and sink in the solution is

established via an arbitrary subgraph. The �ow can split apart at nodes

and rejoin at other nodes. The problems considered in this thesis are

bifurcated �ow problems.

triangle inequalities, Euclidean distances Some problem de�nitions require

certain properties such as triangle inequalities or Euclidean distances on

the edge lengths or on the �xed-charge costs. There is no such requirement

in this thesis.

survivability There are some network design variants that consider surviv-

ability. This requires that in case of some failure scenario (link-failure,

node-failure), the demands shall still be serviceable, or serviceable to a

certain degree. Survivability is not an issue for the LAN variants consid-

ered in this work.

prize-collecting Lastly, prize-collecting aspects are an additional problem di-

mension that is relevant for certain applications. Instead of servicing all

demands it is possible to connect only a subset of customers. Chapter 1.3

deals with a variant of the LAN problem where a certain percentage of all

customers has to be connected.

These seemingly minor di�erences are often key to whether certain solu-

tion methods are applicable or whether these methods work well. For example,

with �ow based MIP models it is generally more natural to express bifurcated

�ow rather than non-bifurcated �ow. Approximation algorithms often rely on

triangle-inequalities, or Euclidean distances and on economies of scale for the

performance guarantees. Tree structures will usually lend themselves more nat-

urally to heuristic construction methods than bifurcated �ows. The presence, or

absence of a simple linear term in the objective function describing �ow depen-

dent cost may seem negligible upon �rst thought. However, in case of Benders'

decomposition, the presence of �ow-cost implies optimality cuts in the typically

used, natural decomposition. The models studied in this work do not have �ow-

cost and thus no optimality cuts are needed. This absence of optimality cuts

may be key to the observed performance of certain separation policies. This is

elaborated on in Section 3.11. Considering all this, it comes clear that there is
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a merit in studying that speci�c capacitated network design problem that most

closely models a given real world application.

Using the above nomenclature, the problems considered in this thesis are

bifurcated single-commodity network design problems with arbitrary step-wise

cost functions for the edge-capacities. Economies of scale are not given and

there are no �ow dependent costs. Survivability is not required.

2.1 Single-Commodity Network Design

The capacitated minimum Steiner tree problem (CMStT) is a restricted variant

of the LAN problem. The solution to this single-commodity network design

problem is required to form a tree. This implies a non-bifurcated �ow. The ca-

pacitated minimum spanning tree problem (CMST) furthermore assumes that

all nodes V \{r} are terminals. In [Gav85], Gavish uses integer programming for-

mulations and Lagrangian relaxations to target the CMST problem. In [AG88],

Altinkemer and Gavish present a 4-approximation algorithm for CMST. There

is one available capacity and triangle inequalities are assumed to be satis�ed.

Their algorithm works by partitioning traveling salesman tours.

Magnanti and Mirchandani study a network design problem with a single

source and a single destination and up to three available base capacities of which

integer multiples can be installed in [MM93]. This can be seen as a generalized

shortest path problem. They discuss which variants are polynomially solvable

and which variants are NP-hard. They develop an extended MIP formulation

and present computational results on inputs with up to 50 nodes and 200 arcs.

Chopra, Gilboa and Sastry study a similar problem, with the extension that

�ow dependent costs are considered in [CGS98]. They analyze the complexity

of certain problem variants.

Mateus, Luna and Sirihal consider a variant of LAN with multiple sources

for the single-commodity to be distributed in [MLS00]. This allows to model

multiple LAN networks simultaneously. They introduce an additional cost factor

for splicing. These splicing cost are incurred each time the cable technology is

changed at any node. They develop a Lagrangian heuristic that reduces the

problem to an uncapacitated minimum cost network �ow problem and test their

approach on two instances with up to 217 nodes and 520 arcs.

In [BGP+00], Berger, Gendron, Potvin, Raghavan and Soriano present a

taboo search heuristic for the non-bifurcated LAN problem. The algorithm ex-

plores a neighborhood de�ned by k-shortest paths (k = 2) and uses an adaptive

memory to collect promising paths. The algorithm is tested on instances with

up to 200 nodes and a step-cost function with economies of scale.

The single-sink by-at-bulk network design problem (SSBB) or single-sink
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link-installation problem generalizes the CMStT problem by allowing for mul-

tiple steps exhibiting economies of scale and allowing a bifurcated, non-tree

solution. Salman, Cheriyan, Ravi and Subramian present an approximation al-

gorithm in [SCRS00]. They study the problem with Euclidean distances and a

special case with arbitrary metric in which no source-sink path may be longer

than two edges.

Randazzo, Luna and Mahey study the LAN problem with �ow-cost and two

modules under the assumption that the solution must be a tree in [RLM01].

This is equivalent to the CMST problem with a two-step-cost function. They

apply Benders' decomposition to the multi-commodity �ow formulation and test

the approach on instances with up to 41 nodes, 417 arcs and 8 customer nodes.

Guha, Meyerson and Munagala [GMM01] present a randomized approxima-

tion algorithm for the SSBB problem. In [GKR03] this work is extended upon

by Gupta, Kumar and Roughgarden.

Garg, Khandekar, Konjevod et al. study the integrality gap of the single-

commodity �ow formulation of the SSBB problem and present an approximation

algorithm in [GKK+01]. This work is further extended upon in Talwar [Tal02].

Jothi and Raghavachari [JR05] present alternative approximation algorithms

for the CMST and the CMStT problems as de�ned in [AG88].

Gamvros, Golden and Raghavan [GGR06] deal with a variant of the CMST

problem where economies of scale are assumed. They employ single- and multi-

commodity �ow formulations, a savings based heuristic, neighborhood searches

and a genetic algorithm. Their approaches exploit the tree feature and they

provide computational results on instances of up to 150 nodes.

Salman, Ravi and Hooker [SRH08] consider the LAN problem with capacities

de�ned by the sum of integer multiples of base capacities. The cost function

exhibits economies of scale. They apply �ow-based MIP formulations and work

with relaxations obtained by approximating the noncontinuous stepwise function

by its lower convex envelope. Raghavan and Stanojevi¢ [RS06] reformulate this

approximation technique as a stylized branch-and-bound algorithm.

In [JR09], Jothi and Raghavachari present approximation algorithms for the

non-bifurcated SSBB with an approximation ratio of 145.6. For the SSBB with

bifurcation their approximation ratio is not greater than 65.49.

2.2 Multi-Commodity Network Design

Iri [Iri71] presents a description of metric inequalities which are of great im-

portance for multi-commodity network design. A network design allows for a

feasible multi-commodity �ow, if and only if all metric inequalities are satis�ed.
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The network loading problem (NL) is a generalization of themulti-commodity

�xed charge network design problem (MCFCND). Instead of one available capac-

ity, NL allows for an arbitrary step-cost function. The LAN problem is a special

case of NL with only a single commodity. Gavish and Altinkemer [GA90] use

the NL problem to model the design of backbone networks where queuing cost

have to be considered. They apply Lagrangian relaxation and cut generation.

Magnanti, Mirchandani and Vachani [MMV93] present a polyhedral study of

the convex hull of the NL problem on a single arc and on the three node network

under the assumption that edge capacities are de�ned by integer multiples.

In [MMV95] the authors extend this work to the problem with capacities de�ned

by integer multiples of two base capacities and perform a computational study

on instances with up to 15 nodes.

Barahona [Bar96] formulate cut-set and partition inequalities for the NL

problem with integer multiple capacities. He deals with 2-node connectivity

and 2-edge connectivity for the bifurcated problem. In addition he presents a

heuristic for the non-bifurcated problem and present computational results on

instances with up to 64 nodes in a complete graph with 2016 commodity pairs.

Bienstock and Günlük [BG96] present a branch-and-cut approach based on

cut-set, �ow-cut-set and three-partition inequalities for the NL problem. Com-

putational results on instances with up to 16 nodes and 49 edges are reported.

Amiri and Pirkul [AP97] study a problem that is related to the non-bifurcated

NL problem. They explicitly model queueing cost in a MIP with a non-linear

objective function and apply a Lagrangian heuristic and report computational

results on four networks with up to 992 commodity pairs.

Bienstock, Chopra, Günlük and Tsai present a separation heuristic for par-

tition inequalities. These are a subset of metric inequalities. They also present

a complete description of the polyhedron of a 3-node network design problem

in [BCGT98]. The computational performance is evaluated on instances with

up to 27 nodes and 102 arcs.

Holmberg and Yuan present a Lagrangian heuristic for the �xed charge net-

work design problem (FCND) and the problem with arbitrary stepwise cost

functions in [HY98]. They demonstrate empirical results for this approach on

instances with up to 150 nodes, 1000 edges and 462 commodity-pairs. This

work is further extended and integrated into a branch-and-bound algorithm

in [HY00].

Dahl and Stoer [DS98] study the NL problem with the additional complica-

tion that the demands must be serviceable even in the case of a single node or

edge failure. They use cut-set and metric inequalities to model the problem as

MIP and test their approach on instances with up to 118 nodes and 134 edges.

Günlük [Gü99] focuses on the NL problem with integer multiples of two base
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capacities. He presents mixed partition inequalities and compares them to other

families of inequalities. In addition, results for a branch-and-cut implementation

using a special knapsack branching rule on instances with up to 30 nodes and

55 edges are reported.

In [GKM99], Gabrel, Knippel and Minoux demonstrate a branch-and-cut

scheme for NL. They use a max-cut heuristic to separate bipartition inequal-

ities and a subgradient based heuristic for metric inequalities. They present

empirical evidence on the advantage of adding multiple constraints per itera-

tion on instances of up to 20 nodes and 37 edges.

Mirchandani [Mir00] studies polyhedral properties of projections of the NL

problem with two available cable types.

Minoux [Min01] surveys �ow-and-cut based formulations for various multi-

commodity network design problems.

Crainic, Frangioni and Gendron use subgradient optimization and bundle

methods for two Lagrangian relaxations of the FCND problem in [CFG01].

They compare these approaches on instances with up to 100 nodes, or up to 400

edges or up to 200 commodities.

Atamtürk [Ata01] presents facet de�ning inequalities of the single node �xed-

charge �ow polytope. He gives computational tests for this substructure of net-

work design problems. The same author studies the polyhedra of more general

network design problems with integer-multiple-capacities in [Ata02]

Hoesel, Koster, Leensel and Savelsbergh [HKLS03] present a polyhedral

study of �ow and path models for the non-bifurcated NL problem with uni-

directed and bidirected capacity installations in integer multiples.

Gabrel, Knippel and Minoux compare greedy rerouting heuristics with Ben-

ders' decomposition based heuristics in [GKM03]. They report on computa-

tional results on NL instances with arbitrary step cost functions on instances

with up to 50 nodes.

Rajan and Atamtürk [RA04] develop a column-and-cut generation procedure

for a survivable multi-commodity network design problem. The computational

performance of the approach is evaluated on random instances with up to 70

nodes.

Muriel and Munshi show in [MM04] that three di�erent Lagrangian relax-

ations of the NL problem with �ow cost and piecewise linear, nondecreasing,

concave cost functions are equivalent to the linear relaxation.

Ghamlouche, Crainic and Gendreau [GCG04] describe a path-relinking pro-

cedure on a cycle-based neighborhood for the FCND problem and study the

performance of di�erent versions of the procedure on instances with up to 100

nodes, 700 arcs and 400 commodity-pairs.

Crainic, Gendron and Hernu develop an adaptive Lagrangian based heuris-
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tic for the FCND problem in [CGH04]. They show computational results on

instances with up to 30 nodes, 700 arcs and 400 commodity pairs.

Costa [Cos05] presents a survey of Benders' decomposition approaches to var-

ious network design problems. He covers single- and multi-commodity problems,

with and without capacities, with di�erent variants of step-wise cost functions

and with or without �ow dependent costs.

Alvarez, González-Velarde and De-Alba formulate a GRASP embedded Scat-

ter Search approach for the bifurcated �xed charge multi-commodity network

design problem in [AGVDA05]. In addition to the �xed charge for edge uti-

lization, they consider �ow dependent cost per commodity and per arc. They

compare their approaches on instances of up to 50 nodes, 700 edges and 100

commodity-pairs.

Avella, Mattia and Sassano [AMS07] present tight metric inequalities, which

form a complete description of the convex hull of the NL polyhedron with integer

multiple capacities. They develop a heuristic separation technique and test it

on instances with up to 64 nodes and 2016 commodity-pairs.

Haouari, Mrad and Sherali deal with a variant of the NL problem with �ow

cost in [HMS07]. Here the commodities must be routed non-simultaneously, i.e.,

the installed capacities are shared for all commodities. They apply Benders'

decomposition which leads to multiple independent min-cut subproblems and

a min-cost-�ow subproblem for this speci�c NL-variant. Computational results

are presented for their branch-and-cut implementation on instances of up to 500

nodes, 2000 edges and 10 commodity-pairs.

Croxton, Gendron and Magnanti study the impact of disaggregation by com-

modity and by module in [CGM07]. They consider concave and non-concave

piecewise linear cost functions and compare the obtainable LP-gaps for single

and multi-commodity instances.

Atamtürk and Günlük study polyhedral properties of network design struc-

tures in [AG07].

Raack, Koster, Orlowski and Wessäly [RKOW07] study properties of the NL

polyhedron and show that cut-set inequalities are facet de�ning under certain

circumstances.

Alvelos and Carvalho [AC07] work on the multi-commodity �ow problem.

There are given arc capacities and the objective is to minimize a linear �ow

dependent cost function. They approach the problem with an extended version

of a path based MIP model and apply column generation.

Costa, Cordeau and Gendron [CCG09] investigate the relationship between

three classes of inequalities used in multi-commodity network design: Benders'

cuts, metric inequalities and cut-set inequalities. They describe how cut-set in-

equalities and Benders' cuts associated to non-extreme rays can be strengthened
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by transforming them into metric inequalities and demonstrate this approach

on MCFCND instances with up to 100 nodes and 400 commodity-pairs.

Frangioni and Gendron apply branch-and-price to the disaggregated �ow

model for the NL problem in [FG09]. They present results obtained on random

instances with up to 30 nodes and 400 commodity-pairs.

Rei, Gendreau, Cordeau et al. [RGCS09] look into speeding up Benders'

decomposition by combining it with local branching and demonstrate the per-

formance of the approach on MCFCND instances with up to 20 nodes, 80 edges

and 15 commodity-pairs.

Bektas, Chouman and Crainic [BCC10] work on a problem related to capac-

itated network design where the violation of capacity constraints is allowed and

incurs a nonlinear penalty. They apply Lagrangian decomposition and compare

results obtained on instances with up to 10 nodes, 60 arcs and 50 commodity

pairs with results from state-of-the-art nonlinear solvers.

2.3 Further FTTx Publications

It has been said in Chapter 1 that this thesis focuses on aspects of network design

in the domain of FTTH/FTTB. The question of where to position multiplexers

in FTTC design is not studied in this work. An abstract mathematical prob-

lem to describe the problem of locating multiplexers is the Connected Facility

Location problem (ConFL).

Ljubi¢ investigates the ConFL problem by means of variable neighborhood

search and branch-and-cut in [Lju07].

Tomazic and Ljubi¢ present a greedy randomized adaptive search procedure

(GRASP) for ConFL in [TL08]. They compare the achieved results to bounds

computed via a branch-and-cut algorithm.

Bardossy and Raghavan present a generalized problem description that cov-

ers the ConFL, Steiner tree-star and the rent-or-buy problems in [BR10]. They

evaluate their dual-based local search procedure one dense and sparse instances.

Chamberland deals with the combined planning of FTTC and FTTH net-

works in [Cha10]. The focus is on the detailed description of di�erent multiplexer

devices. The network structure is a tree with �xed-charge edge cost. In addition

a prize collecting aspect for servicing a subset of customers is considered.

Wassermann [Was11], considers the issue of locating multiplexers in tree

networks. Various side constraints arising in a practice-oriented setting are

taken into account.

Kim, Lee and Han consider a mixture of LAN and ConFL on tree graphs

with one or two layers of facilities in [KLH11]. The authors formulate the
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problem as integer program and compare a heuristic solution method to the

bounds computed via branch-and-bound on instances with up to 30 nodes.

Gualandi, Malucelli and Sozzi study a problem related to ConFL in [GMS10].

The network to connect the facilities has a star-structure and, the facilities have

associated capacities.

Gollowitzer and Ljubi¢ [GL11] investigate a combination of facility location

and Steiner tree problems. They present MIP formulations an perform an em-

pirical comparison on instances with up to 1 300 nodes and 115 000 edges.

Gollowitzer, Gendron and Ljubi¢ [GGL12] present families of valid inequali-

ties for a more general combination of facility location and �xed-charge network

design. Here, capacities along the edges and on the facilities are considered.

Contreras and Fernandez [CF12] present a survey of publications dealing

with the combination of �xed-charge network design and facility location prob-

lems.



Chapter 3

Solving the Local Access

Network Design Problem

Exactly

This chapter presents exact and heuristic solution methods for the Local Access

Network Design Problem. In Section 3.1 various exact preprocessing techniques

for LAN are explained. Section 3.2 presents a transformation from the undi-

rected LAN problem into an equivalent directed formulation. In Section 3.3

basic mathematical models are described. Section 3.4 shows how these mod-

els can be strengthened with disaggregation techniques. Section 3.5 present

the application of Benders' Decomposition technique to the disaggregated mod-

els. Various ways to normalize the Benders' Decomposition are explored in

Section 3.6. Other enhancements and more valid inequalities are de�ned in

Section 3.7. The di�erent models are summarized in a hierarchy with respect

to their polyhedral inclusion in Section 3.8. Section 3.9 describes the round-

ing heuristic used to derive primal feasible solutions from linear relaxations.

Section 3.10 reports on the results of a computational study to evaluate the

performance of the disaggregation and the normalizations. This chapter details

the results published in [LPSG11a].

3.1 Preprocessing

This section describes a set of preprocessing techniques. These are transforma-

tions to go from an original LAN design problem to a preprocessed LAN design

problem. The preprocessed problem is smaller in the sense that fewer decision

variables are needed to describe the problem. Preprocessing is especially impor-

25
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tant when dealing with real world data. Real world inputs typically carry a high

level of detail that is not necessary for a speci�c optimization task. Even rela-

tively simple methods can reduce the size of the input dramatically. This leads

to a signi�cant reduction of computer memory utilization when optimization

procedures are implemented as computer programs.

The majority of the presented preprocessings utilize the fact that certain

decisions will not be completely independent of each others. Consider, for ex-

ample, a node of degree two. There is of course a relation between the modules

installed on the two incident edges. Thus there is no need to model two edges,

but instead a single joined edge is su�cient. However, care has to be taken as

to how the solution from the preprocessed problem can be mapped back to the

original. Other preprocessings are of the form that a certain decision will never

be made in an optimal solution. Thus the respective decision variable is unnec-

essary and can be removed without any need for mappings. Correspondingly

if a certain decision will be made in any solution there is again no need for a

decision variable. It is su�cient to remember the cost of the decision and to

take care about this unconditional decision in the mapping. Finally sometimes

one can determine certain cases where a LAN problem is infeasible. In these

cases there is no need to de�ne a preprocessed problem and clearly no mapping

is needed.

The transformations can be applied iteratively. Assume, in iteration i we

are given a LAN design problem Li. By applying a preprocessing technique

we derive another, smaller problem Li+1. Any feasible solution Si+1 for Li+1

with an objective value of oi+1 can be transformed back into a feasible solution

Si for the original problem Li with the same objective value oi+1 = oi. It

follows that also the optimal objective value of Li and Li+1 will be the same,

thus these methods are exact preprocessings. The following listing describes

a set of preprocessing steps and the corresponding mappings from Li to Li+1

as well as the corresponding back-mappings from Si+1 to Si, where needed.

For the context of these preprocessings, the LAN problem Li is de�ned as a

graph Gi = (V i, Ei), a central node ri, demands Ki ⊆ V i \ {ri}, di ∈ R|K
i|

≥0 ,

modules uie,m, c
i
e,m,M

i
e and a newly introduced �xed cost term F i. The modi�ed

objective function, including the �xed-cost term is:

min
∑
e∈Ei

∑
m∈Mi

e

uie,mx
i
e,m + F i.

Denote by the function µe : R≥0 7→Me the most appropriate module on edge e

for some required capacity, i.e., the cheapest module with su�cient capacity, or

simply the largest module if there is no module with su�cient capacity. More
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formally for some requested capacity U > 0:

µe(U) :=

arg min{m∈Me|ue,m≥U} ce,m if∃m ∈Me|ue,m ≥ U

|Me| otherwise.
(3.1)

Let µie(U) denote this function with respect to the i-th step in the sequence of

preprocessings. The preprocessing steps primarily deal with nodes with degree

zero, one and two.

(i) Degree zero, center node:

If the center node ri has degree 0, the instance is infeasible.

(ii) Degree zero, Steiner node:

If there is a non-customer, non-center node v with degree 0, this node will

certainly not be in any solution, hence it can be deleted from the instance:

V i+1 := V i \ {v}.

(iii) Degree zero, customer node:

If there is a customer node k with degree 0, the instance is infeasible.

(iv) Degree one, center node:

If the center node ri has degree 1 and the incident edge e =
{
ri, v

}
provides

a module with su�cient capacity for
∑
k∈Ki dik, this edge will be in any

solution. Therefore it can be deleted: Ei+1 := Ei \ {e}, V i+1 := V i \
{
ri
}
,

the center is moved to the adjacent node: ri+1 := v and we can easily

compute the module m̃ := µie
(∑

k∈Ki dik
)
and only keep the cost F i+1 :=

F i + cie,m̃. For the back-mapping it must be noted that e, m̃ is included in

the solution Si.

If on the other hand e does not provide su�cient capacity, the problem is

infeasible.

(v) Degree one, Steiner node:

If there is a non-customer, non-center node v with degree 1, this node will

certainly not be in any solution. Therefore v and the incident edge {v, w}
can be deleted from the instance: Ei+1 := Ei \{{v, w}} , V i+1 := V i \{v}.

(vi) Degree one, customer node:

If there is a customer node k with demand dik with degree 1 and the incident

edge e = {k, v} provides a module with su�cient capacity for dik, this edge

will be in any solution. Therefore it can be deleted from the instance:

Ei+1 := Ei \{e},Ki+1 := Ki \{k}, V i+1 := V i \{k} and we only keep the

cost F i+1 := F i + ci
e,µi

e(dik)
. The demand is moved to the adjacent node v:
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If v is a customer, its demand is increased to di+1
v := div +dik. Otherwise v

becomes a customer Ki+1 := Ki+1∪{v} with demand di+1
v := dik. For the

back-mapping it must be noted that e, µie
(
dik
)
is included in the solution

Si.

If the edge e does not provide su�cient capacity, the instance is infeasible.

(vii) Degree two, Steiner node:

If there is a non-customer, non-center node w with degree 2, then ei-

ther both incident edges {v, w}, {w, z} will be in the solution or none.

Hence these two sequential edges can be replaced by one edge: Ei+1 :=

Ei\{{v, w}, {w, z}}∪{{v, z}}, V i+1 := V i\{w}. The modules for the new

edge M i+1
{v,z} result from installing one module from each of the two orig-

inal edges {v, w}, {w, z} in series. More precisely, every pair of modules

〈ma,mb〉 ∈ M i
{v,w} ×M

i
{w,z} implies a new module m̃ with ui+1

{v,z},m̃ :=

min
(
ui{v,w},ma

, ui{w,z},mb

)
and ci+1

{v,z},m̃ := ci{v.w},ma
+ ci{w,z},mb

. This

leads to
∣∣M{v,z}∣∣ =

∣∣M{v,w}∣∣ · ∣∣M{w,z}∣∣ steps for the new edge {v, z}. For
the back-mapping it must be recorded that if the new edge {v, z} is in

the solution Si+1 with the module m̃ ∈ M i+1
{v,z} it implies that both edges

{v, w}, {w, z} are in Si with the respective modules that were combined

to make up m̃.

Dispensable modules are removed from M i+1
{v,z} in Step (ix). Note that

there may already be an edge from v to z so we temporarily allow for

parallel edges. See Step (viii) for a resolution.

(viii) Parallel edges:

Step (vii) may result in two parallel edges e = {v, w}, h = {v, w} ∈ Ei. A
solution may utilize either only one of these two edges or both of them.

Therefore, they can be replaced by a single edge g = {v, w} : Ei+1 =

Ei \ {e, h} ∪ {g}. The modules for this new edge M i+1
g result from all

modules in M i
e, united with all modules in M i

h, united with all possible

combinations of one module from M i
e and one from M i

h. More precisely,

every pair of modules 〈ma,mb〉 ∈M i
e ×M i

h implies a new module m̃ with

ui+1
g,m̃ := uie,ma

+ uih,mb
and ci+1

g,m̃ := cie,ma
+ cih,mb

. In summary, this leads

to
∣∣M i+1

g

∣∣ =
∣∣M i

e

∣∣+
∣∣M i

h

∣∣+
∣∣M i

e

∣∣ · ∣∣M i
h

∣∣ steps for the new edge g. For the

back-mapping it must be noted that if g, m̃ is in Si+1 it implies that the

edges and modules from e, h,M i
e,M

i
h that make up m̃ are in Si.

(ix) Dispensable modules:

Steps (vii) and (viii) may lead to dispensable modules. A module m̃ ∈M i
e

is dispensable if there exists another module m′ ∈ M i
e with u

i
e,m′ ≥ uie,m̃
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and cie,m′ ≤ cie,m̃. A dispensable module m̃ will certainly not be in any

solution, hence can be deleted: M i+1
e := M i

e \ {m̃}.

(x) Excess modules:

No optimal solution needs to have any installation greater than
∑
k∈Ki dik.

(See the proof for acyclic solutions in the following Section 3.2) Conse-

quently, sets of excess modules M̃e =
{
m ∈M i

e | uie,m ≥
∑
k∈Ki dik

}
⊆M i

e

can be replaced by a single module m̃: M i+1
e = M i

e \ M̃e ∪ {m̃} with

ci+1
e,m̃ = minm∈M̃e

cie,m and ui+1
e,m̃ =

∑
k∈Ki dik. For the back-mapping it

must be noted that if m̃ is used on e in Si+1 it implies that the cheapest

excess module arg minm∈M̃e
cie,m is used on e in Si.

Note that center or customer nodes with degree two do not allow for direct

implications about the modules installed on the incident edges. Therefore there

are no corresponding preprocessing steps. The preprocessing is implemented

as follows: Iterate over all nodes and perform any applicable preprocessing for

nodes with degree zero, one or two, i.e., Steps (i)-(vii). Preprocessing Step (vii)

always triggers an attempt to apply Steps (viii) and (ix). This iteration is

performed repeatedly until no more preprocessing steps for nodes with degree

zero, one or two can be applied. Finally, Step (x) is performed once, in order to

remove excess modules from the input.

3.2 Transformation into a Directed Problem

It is well known that the MIP formulations of uncapacitated network design

problems on directed graphs often provide better lower bounds than their undi-

rected counterparts (see e.g., [CR94]). However, the MIP approaches to LAN

presented in the previous literature (see [RS06, SRH08]) involve undirected

graphs. This section describes the transformation from the undirected LAN

problem into a directed version of LAN. We prove that the directed version is

equivalent to the original undirected de�nition with respect to feasibility, opti-

mal solutions and objective values. The following sections present MIP models

based on this transformation and Section 3.8 proves that these models do indeed

generate better lower bounds than the corresponding undirected models.

Consider the LAN problem as de�ned in Section 1.2 and de�ne a bidirected

set of arcs A. Every edge in E implies a forward and a backward arc in A, i.e.,

A := {(i, j), (j, i) | {i, j} ∈ E}.

Theorem 3.2.1. If a LAN problem is feasible, then there always exists an op-

timal solution x ∈ {0, 1}|E| and f ∈ R|A|≥0 such that the strictly positive elements

of f induce a directed subgraph of G = (V,A) which is cycle free.
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Proof. Let (x,f) be an optimal solution of the LAN problem such that f implies

a directed cycle C ⊆ A. Denote by ã ∈ A the arc in C with the smallest �ow on

C, i.e., ã = arg mina∈C fa. Construct a new �ow f ′ such that f ′a = fa∀a 6∈ C,
and f ′a = fa − fã∀a ∈ C. It follows that f ′ã = 0, hence the strictly positive

elements of f ′ do not contain the cycle C. The �ow f ′ certainly satis�es the

�ow conservation constraints (1.2). Since f ′a ≤ fa∀a ∈ A the new �ow also

satis�es the capacity constraints (1.3). Moreover, also the design variables x

can be reduced since there is less �ow along C. Denote the module in use

on arc ã in the design x by m̃. After the �ow-reduction, xã,m = 0∀m ∈ Mã

is compatible with f ′. This implies that the cost cã,m̃ must necessarily be 0,

since a positive cost would contradict the optimality of (x,f). If f ′ implies yet

another cycle, the same argument can be applied repeatedly. In each application

the number of arcs with positive �ow is reduced by one. This proves that in a

�nite number of steps each optimal solution can be transformed into an acyclic

optimal solution.

Clearly, in a solution with no cycles there will especially be no cycles of length

two, i.e., no edge will have forward and backward �ow. Rede�ne the modules on

the edges in terms of symmetric modules on arcs, i.e., cij,m = cji,m = c{i,j},m,

uij,m = uji,m = u{i,j},m for all m ∈ Mij = Mji = M{i,j}. To solve a LAN

problem, we now search for the directed solution, i.e., for the installation of at

most one module on every arc such that there is enough capacity to route the

�ow from r to every k ∈ K. Obviously a directed, cycle free solution corresponds

to an equivalent undirected, cycle free solution with the same objective value.

The following sections present MIP models on this directed problem.

Note that the transformation from an undirected into a directed graph is

not valid for general multi-commodity network design problems. There will in

general be optimal solutions that have �ow in both directions on some edges.

With respect to the LAN problem, which is a single-commodity problem, no edge

will be used in both directions. Moreover, no edge incident to the center node r

will have �ow towards the node r, i.e., xir,m = 0 and fir = 0. Consequently these

arcs can simply be left out from the de�nition of the set A. This alternative

de�nition of A leading to an equivalent MIP is A := {(i, j), (j, i) | {i, j} ∈
E; i, j 6= r} ∪ {(r, j) | {r, j} ∈ E}. Only for the sake of a simpler notation, the

set A including these super�uous variables will be used throughout this work.

3.3 Basic MIP Models

This sections presents two basic models. The �rst, (SCF) is a �ow model and

the second, (CUT) is based on cut-set inequalities.
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3.3.1 Single-Commodity Flow

The directed single-commodity �ow formulation, (SCF), uses directed variables

to describe the design and the routing. The binary design xa,m are equal to 1

i� the module m shall be installed on the arc a. The �ow variables f ∈ R|A|≥0
are equivalently de�ned as in the undirected model (uSCF) in Section 1.2 and

describe the amount of �ow running in each direction along an edge. The arcs

emanating from node i are denoted by δ+(i) := {(i, j) ∈ A} and the arcs enter

i are denoted by δ−(i) := {(j, i) ∈ A}.

(SCF) : min
∑
a∈A

∑
m∈Ma

ca,mxa,m (3.2)

s.t.

∑
(i,j)∈δ+(i)

f(i,j) −
∑

(j,i)∈δ−(i)

f(j,i) =


−di, i ∈ K∑
k∈K

dk, i = r

0, otherwise

∀i ∈ V (3.3)

fa ≤
∑
m∈M

ua,mxa,m ∀a ∈ A (3.4)∑
m∈Ma

xa,m ≤ 1 ∀a ∈ A (3.5)

xa,m ∈ {0, 1} ∀a ∈ A, ∀m ∈Ma (3.6)

fa ≥ 0 ∀a ∈ A. (3.7)

Following the proof of Theorem 3.2.1 there is always a solution that does

not use any pair of oppositely directed arcs (i, j) and (j, i). However, solving

the (SCF) model, may produce an optimal solution that does use oppositely di-

rected arcs even if there is another optimal solution that does not use oppositely

directed arcs. In order to only produce solutions that satisfy this property the

following subtour elimination constraints of length two x(i,j),m + x(j,i),m ≤ 1,

for all {i, j} ∈ E, and all m ∈ M{i,j}, can be added to the model. Alterna-

tively, instead of adding these constraints, the disjunction constraints (3.5) can

be replaced by: ∑
m∈Mij

(xij,m + xji,m) ≤ 1 ∀(i, j) ∈ A. (3.8)

The (SCF) model contains O(|A| · |M |) variables and constraints. In case of

economies of scale, the LP relaxation of the (SCF) model has an optimal solution

in which at most one of xa,m variables (the one with the lowest ca,m/ua,m ratio)

on every arc is non-zero (see also [SRH08]).
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3.3.2 Cut-Set Model

An alternative to the �ow based formulation of the previous section is to use

cut-set formulations. This section recalls the cut-set formulation for LAN on

directed graphs. For each subset S ⊆ V , denote the set of outgoing and ingoing

arcs by δ+(S) := {(i, j) ∈ A | i ∈ S, j ∈ V \ S} and δ−(S) := {(i, j) ∈ A | i ∈
V \ S, j ∈ S}, respectively. The directed cut-set formulation (CUT) is given as

follows:

(CUT) : min
∑
a∈A

∑
m∈Ma

ca,mxa,m (3.9)

s.t. ∑
a∈δ−(S)

∑
m∈Ma

ua,mxa,m ≥
∑
k∈S

dk ∀S ⊂ V, S ∩K 6= ∅, r /∈ S (3.10)

∑
m∈Ma

xa,m ≤ 1 ∀a ∈ A (3.11)

xa,m ∈ {0, 1} ∀a ∈ A, ∀m ∈Ma (3.12)

The cut-set inequalities (3.10) state that every set of nodes, not containing

r must have incoming capacity at least as large as the total demand requested

inside the set. In the general case of multiple-source multiple-sink network

design problems the separation problem of cut-set inequalities can be reduced to

the max-cut problem and is NP-hard [Bar96]. However, the cut-set inequalities

(3.10) for LAN can be separated in polynomial time as follows. For a given

fractional solution x′, we de�ne the directed support graph G′ = (V ′, A′) where

V ′ := V ∪ {t} with an additional sink t, and A′ := A1 ∪ A2 being A1 :=

{(i, j) ∈ A |
∑
m∈Mij

uij,mx
′
ij,m > 0} and A2 := {(k, t) | k ∈ K}. The capacity

associated to each arc a = (i, j) ∈ A1 is set to
∑
m∈M uij,mx

′
ij,m, and the

capacity of each arc a = (k, t) ∈ A2 is set to dk. If the minimum cut between r

and t in G′ is less than
∑
k∈K dk, it de�nes a violated inequality (3.10).

Since xa,m variables are binary, the cut-set inequalities can be strengthened

by rounding (see Appendix A.3):

∑
a∈δ−(S)

∑
m∈Ma

min

(
ua,m,

∑
k∈S

dk

)
xa,m ≥

∑
k∈S

dk.

3.4 Disaggregated MIP Models

This section shows how the (SCF) model can be strengthened by disaggrega-

tion. By increasing the number of variables and with the help of additional
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constraints, stronger models can be formulated. For two linear relaxation of

LAN-MIP formulations, F1 and F2, we say that F1 is stronger than F2 if every

x, that is feasible for F1, is also feasible for F2 and in addition, there exist

LAN instances for which certain x are F2-feasible but not F1-feasible. In other

words, F1 forms a proper subset of F2. Section 3.4.1 shows a disaggregation by

commodity and Section 3.4.2 further disaggregates the model by modules. The

detailed comparison of the models is a part of the later Section 3.8.

3.4.1 Multi-Commodity Flow

This section shows a disaggregation by commodities. Commodities in this case

are source-sink pairs (r, k), ∀k ∈ K. A similar formulation is commonly used

for multiple-source multiple-sink network design problems (see, e.g., [MMV95]).

In this model each commodity can be directly associated to a customer k ∈ K.

The continuous �ow variables fkij describe the amount of �ow of commodity

k ∈ K routed through the arc (i, j). The (MCF) model reads as follows:

(MCF) : min
∑
a∈A

∑
m∈Ma

ca,mxa,m (3.13)

s.t.

∑
(i,j)∈δ+(i)

fk(i,j) −
∑

(j,i)∈δ−(i)

fk(j,i) =


−dk, i = k

dk, i = r

0, otherwise

∀i ∈ V, ∀k ∈ K (3.14)

∑
k∈K

fka ≤
∑
m∈Ma

ua,mxa,m ∀a ∈ A (3.15)

fka
dk
≤
∑
m∈Ma

xa,m ∀a ∈ A, ∀k ∈ K (3.16)

∑
m∈Ma

xa,m ≤ 1 ∀a ∈ A (3.17)

xa,m ∈ {0, 1} ∀a ∈ A, ∀m ∈Ma (3.18)

fka ≥ 0 ∀a ∈ A, ∀k ∈ K (3.19)

The �ow conservation constraints (3.14) describe the �ow for each customer

independently. The capacity constraints (3.15) state that the total �ow per arc

must not exceed the installed capacity. The coupling constraints (3.16) ensure

that if there is �ow in any module m on the arc (i, j), then the corresponding

design variables need to be set to at least the given ratio per each commod-

ity in the linear relaxation. These constraints are redundant for the integral

formulation, but they improve the lower bound of the LP relaxation.
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The (MCF) model contains O(|A| · |M | + |A| · |K|) variables and O(|V | ·
|K|+ |A| · |M |+ |A| · |K|) constraints. The (MCF) model without the coupling

constraints (3.16) is completely equivalent to the SCF model, with respect to

the LP relaxation (see Section 3.8).

3.4.2 Disaggregated Multi-Commodity Flow

For the multi-commodity capacitated network design problem, Croxton et al.

[CGM07] and Frangioni and Gendron [FG09] propose a disaggregation by in-

teger values in a MIP based on the multi-commodity �ow formulation. By

adapting this disaggregation technique to LAN, we disaggregate �ow variables

with respect to modules. Beside the binary design variables, xij,m ∈ {0, 1},
we use the disaggregated �ow variables fkij,m that de�ne the amount of �ow of

commodity k ∈ K, routed through the arc (i, j) using the module m ∈ Mij .

The (DMCF) model reads as follows:

(DMCF) : min
∑
a∈A

∑
m∈Ma

ca,mxa,m (3.20)

s.t.

∑
(i,j)∈δ+(i)

∑
m∈M(i,j)

fk(i,j),m−
∑

(j,i)∈δ−(i)

∑
m∈M(j,i)

fk(j,i),m =


−dk, i = k

dk, i = r

0, otherwise

∀i ∈ V, ∀k ∈ K

(3.21)

∑
k∈K

fka,m ≤ ua,mxa,m ∀a ∈ A, ∀m ∈Ma (3.22)

fka,m
dk
≤ xa,m ∀a ∈ A, ∀m ∈Ma, ∀k ∈ K (3.23)∑

m∈Ma

xa,m ≤ 1 ∀a ∈ A (3.24)

xa,m ∈ {0, 1} ∀a ∈ A, ∀m ∈Ma (3.25)

fka,m ≥ 0 ∀a ∈ A, ∀m ∈Ma, ∀k ∈ K. (3.26)

The �ow conservation constraints have the same meaning as for the (MCF)

model in Section 3.3.1. The capacity constraints (3.22) ensure that the total

�ow over module m on arc a must not exceed the capacity of the given mod-

ule m. Constraints (3.23) couple the design variables to the fraction of �ow

on the corresponding arc and module. Again, these coupling constraints are

redundant for the MIP formulation, but they improve the objective value of the

LP relaxation.
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The (DMCF) model contains O(|A| · |M | · |K|) constraints and O(|A| · |M | ·
|K|+|V |·|K|) variables. Due to this large number of variables and constraints it
is unlikely that even the most sophisticated MIP solvers may solve instances of

moderate size using the (DMCF) formulation directly in a typical branch-and-

bound fashion. Computational experiments with the (DMCF) model con�rm

this claim (see Section 3.10). In order to facilitate the strength of this model it

is proposed to project out the �ow variables and to introduce Benders' inequal-

ities instead, keeping the quality of lower bounds, and even improving them by

rounding techniques. This is described in detail in Section 3.5.

3.4.3 Disaggregated Single-Commodity Flow

This section shows the (DSCF) model, which results from disaggregating the

�ow and design variables of the (SCF) model by modules. The disaggregated

design variables xa,m are equal to 1 i� module m is used on arc a just like in the

(DMCF) model above. The disaggregated �ow variables fa,m denote the total

�ow routed over arc a using module m.

(DSCF) : min
∑
a∈A

∑
m∈Ma

ca,mxa,m

s.t.

∑
(i,j)∈δ+(i)

∑
m∈M(i,j)

f(i,j),m −
∑

(j,i)∈δ−(i)

∑
m∈M(j,i)

f(j,i),m =


−di, i ∈ K∑
k∈K

dk, i = r

0, otherwise

∀i ∈ V

(3.27)

fa,m ≤ ua,mxa,m ∀a ∈ A, ∀m ∈Ma (3.28)

fa,m∑
k∈K dk

≤ xa,m ∀a ∈ A, ∀m ∈Ma (3.29)∑
m∈Ma

xa,m ≤ 1 ∀a ∈ A (3.30)

xa,m ∈ {0, 1} ∀a ∈ A, ∀m ∈Ma (3.31)

fa,m ≥ 0 ∀a ∈ A, ∀m ∈Ma. (3.32)

It must be noted that this disaggregation does not lead to a stronger MIP

model. It is proved in Theorem 3.8.1 that (DSCF) is is equivalent to (SCF)

under the simple assumption that there are no unnecessary excess capacities,

i.e., ua,m ≤
∑
k∈K dk.
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3.5 Benders' Decomposition

The previous section presents disaggregated �ow models for the LAN problem.

In the later Section 3.8 it is demonstrated, that the (DMCF) model is stronger

than the (MCF) model, which in turn is stronger than the (SCF) model. This

strength comes at the cost of additional variables and constraints making the

models larger and more challenging to handle. A classical approach to deal with

large linear programs is Benders' decomposition. See Section A.2 for a detailed

explanation. The basic idea is to remove a subset of the constraints and the

variables, solely used within this subset from the linear program. This forms a

reduced master problem. The part that has been left out is treated via a series

of subproblems. These subproblems are used to separate Benders' inequalities

that have to be included in the master.

This section shows the Benders' decomposition approach applied to the linear

relaxations of the three models, (SCF), (MCF) and (DMCF). Since the (DSCF)

model is equivalent to the (SCF) model it is not considered here explicitly.

The three models share the same design part. By relaxing integrality and all

constraints concerning �ow we end up with the same initial master problem for

all three models:

(MASTER) : min
∑
a∈A

∑
m∈Ma

ca,mxa,m (3.33)

s.t. ∑
m∈Ma

xa,m ≤ 1 ∀a ∈ A (3.34)

xa,m ∈ [0, 1] ∀a ∈ A, ∀m ∈Ma. (3.35)

A solution of this master problem is feasible for (SCF), (MCF), or (DMCF)

i� there exists a compatible �ow. That means �ow variables that satisfy �ow

conservation and capacity constraints of (SCF), (MCF), or (DMCF), respec-

tively. For (MCF) and (DMCF) a compatible �ow must also satisfy the coupling

constraints. The formal de�nitions of the three subproblems used to separate

Benders' inequalities are given in the following sections.

Since the �ow variables are not present in the objective functions, the sub-

problems are mere feasibility problems that ask whether there exists a �ow for

the given value of x. Consequently, the Benders' decomposition involves only

feasibility cuts and no optimality cuts. Furthermore, the �ow conservation con-

straints are equally valid if the equality is replaced by a less-than inequality.

Both transformations are applied for the dualizations of the subproblems pre-

sented in the following sections.
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3.5.1 Benders' Decomposition for SCF

A solution x′ of the master problem (3.33)-(3.35) de�nes a feasible solution for

the LP-relaxation of (SCF) i� there exist �ow variables f ∈ R|A|≥0 satisfying the

following primal subproblem.

∑
(i,j)∈δ+(i)

f(i,j) −
∑

(j,i)∈δ−(i)

f(j,i) ≤


−di, i ∈ K∑
k∈K

dk, i = r

0, otherwise

∀i ∈ V (3.36)

fa ≤
∑
m∈Ma

ua,mx
′
a,m ∀a ∈ A (3.37)

fa ≥ 0 ∀a ∈ A (3.38)

These constraints correspond to (3.3), (3.4) and (3.7) for a �xed design vec-

tor x′. Denote the dual variables associated with the �ow conservation con-

straints (3.36) withα and the duals associated with the capacity constraints (3.37)

with γ. This yields the following dual subproblem SCF(x′):

SCF(x′) : min
∑
k∈K

(αr − αk)dk +
∑
a∈A

γa
∑
m∈Ma

ua,mx
′
a,m (3.39)

s.t.
αi − αj + γ(i,j) ≥ 0 ∀(i, j) ∈ A (3.40)

(α,γ) ≥ 0 (3.41)

Note that this dual subproblem SCF(x′) is always feasible since it contains

the trivial solution (α,γ) = 0 which yields an objective value of zero. If there

is no other solution with a negative objective value, then the dual subproblem

is bounded. It follows that also the primal subproblem is feasible and bounded.

This in turn implies that x′ is an optimal solution of the linear relaxation of the

(SCF) model.

If on the other hand there exists another solution of the dual subproblem

which yields a strictly negative objective value, denote it by (α′,γ′) > 0. It

follows that the dual subproblem SCF(x′) is unbounded, hence the primal sub-

problem is infeasible. Farkas' lemma (see Section A.1) states that a point x

from the (MASTER) problem is feasible for (SCF) i� the following inequality

is satis�ed for every dual point (α,γ) that satis�es (3.40)-(3.41):∑
k∈K

(αr − αk)dk +
∑
a∈A

γa
∑
m∈Ma

ua,mxa,m ≥ 0. (3.42)
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So, in order to remove an infeasible point x′ from the (MASTER) problem, we

can add the following Benders' inequality:∑
a∈A

γ′a
∑
m∈Ma

ua,mxa,m ≥
∑
k∈K

(α′k − α′r)dk. (3.43)

Now, instead of solving the LP relaxation of (SCF) directly, it is possible

to produce a solution with a cutting plane scheme: Iteratively solve the master

problem, compute an unbounded direction of the dual subproblem and add the

corresponding Benders' cut to the master problem until the dual subproblem is

bounded. At this point the solution of the master problem x′, is a solution for

the LP relaxation of the (SCF) model.

Inequalities like (3.43) can be strengthened by rounding down the coe�-

cients of the binary variables xa,m to the value of the right hand side (see ap-

pendix A.3). So instead of using the Benders' inequalities (3.43) in the cutting

plane algorithm one can use rounded Benders' inequalities:

∑
a∈A

∑
m∈Ma

min

(
(γ′aua,m) ,

∑
k∈K

(α′k − α′r)dk

)
xa,m ≥

∑
k∈K

(α′k − α′r)dk (3.44)

This has the potential to eventually produce an objective value of the �nal

master problem that is greater than the objective value of the linear relaxation

of the (SCF) model.

3.5.2 Benders' Decomposition for MCF

Similarly to the previous section, the primal subproblem for the Benders' de-

composition of the LP relaxation of the (MCF) model is a feasibility problem

that asks whether there exists a �ow f that satis�es the following system:

∑
(i,j)∈δ+(i)

fk(i,j) −
∑

(j,i)∈δ−(i)

fk(j,i) ≤


−dk, i = k

dk, i = r

0, otherwise

∀i ∈ V, ∀k ∈ K (3.45)

∑
k∈K

fka ≤
∑
m∈Ma

ua,mx
′
a,m ∀a ∈ A (3.46)

fka
dk
≤
∑
m∈Ma

x′a,m ∀a ∈ A, ∀k ∈ K (3.47)

fka ≥ 0 ∀a ∈ A, ∀k ∈ K (3.48)
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Assigning dual variables α,γ, and β to inequalities (3.45), (3.46) and (3.47),

respectively yields the following dual subproblem:

MCF(x′) :

min
∑
k∈K

(
αkr − αkk

)
dk +

∑
a∈A

∑
k∈K

βkadk
∑
m∈Ma

x′a,m +
∑
a∈A

γa
∑
m∈Ma

ua,mx
′
a,m (3.49)

s.t.

αki − αkj + γ(i,j) + βk(i,j) ≥ 0 ∀(i, j) ∈ A, ∀k ∈ K (3.50)

(α,β,γ) ≥ 0 (3.51)

If for some (α′,β′,γ′) that satis�es (3.50)-(3.51) the objective value (3.49) is

negative, we know from Farkas' lemma, that the point x′ is not feasible for the

linear relaxation of (MCF). This point can be cut o� by adding the following

Benders' cut to the master LP.

∑
a∈A

∑
k∈K

β′ka dk
∑
m∈Ma

xa,m +
∑
a∈A

γ′a
∑
m∈Ma

ua,mxa,m ≥
∑
k∈K

(
α′kk − α′kr

)
dk (3.52)

In the corresponding rounded Benders' inequality, the coe�cients of xam are

replaced by

min

((
γ′aua,m +

∑
k∈K

β′ka dk

)
,
∑
k∈K

(α′kk − α′kr )dk

)
. (3.53)

3.5.3 Benders' Decomposition for DMCF

The primal feasibility subproblem for the linear relaxation of the (DMCF) model

is:

∑
(i,j)∈δ+(i)

∑
m∈M(i,j)

fk(i,j),m−
∑

(j,i)∈δ−(i)

∑
m∈M(j,i)

fk(j,i),m ≤


−dk, i = k

dk, i = r

0, otherwise

∀i ∈ V, ∀k ∈ K

(3.54)

∑
k∈K

fka,m ≤ ua,mx′a,m ∀a ∈ A, ∀m ∈Ma (3.55)

fka,m ≤ dkx′a,m ∀a ∈ A, ∀m ∈Ma, ∀k ∈ K (3.56)

fka,m ≥ 0 ∀a ∈ A, ∀m ∈Ma, ∀k ∈ K (3.57)
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The dual subproblem is:

DMCF(x′) :

min
∑
k∈K

(
αkr − αkk

)
dk +

∑
a∈A

∑
m∈Ma

∑
k∈K

βka,mdkx
′
a,m +

∑
a∈A

∑
m∈Ma

γa,mua,mx
′
a,m

(3.58)

s.t.

αki − αkj + βk(i,j),m + γ(i,j),m ≥ 0 ∀(i, j) ∈ A, ∀m ∈Ma, ∀k ∈ K (3.59)

(α, β, γ) ≥ 0 (3.60)

And for an unbounded direction (α′,β′,γ′) > 0 that satis�es (3.59)-(3.60)

we can derive the Benders' inequality to cut away the infeasible x′:

∑
a∈A

∑
m∈Ma

(
γ′a,mua,m +

∑
k∈K

β′ka,mdk

)
xa,m ≥

∑
k∈K

(α′kk − α′kr )dk (3.61)

Also the coe�cients on the left hand side can be rounded down to:

∑
a∈A

∑
m∈Ma

min

((
γ′a,mua,m +

∑
k∈K

β′ka,mdk

)
,
∑
k∈K

(
α′kk − α′kr

)
dk

)
xa,m

≥
∑
k∈K

(
α′kk − α′kr

)
dk

(3.62)

This decomposition now o�ers the possibility to use the strength of the

(DMCF) model without the need to work on the big f ∈ R|A||M ||K|≥0 space in

the master problem. Instead the Benders' cuts (3.61) can be generated in a

piecemeal process. Besides Benders decomposition, also column generation can

be used to deal with large models. For a related multi-commodity network

design problem and a model similar to (DMCF) this has been done in [FG09,

FG10].

3.6 Normalizations of Benders' Subproblems

In the previous section, the primal and dual subproblems for (SCF), (MCF)

and (DMCF) have been given. For all three models, the aim is to determine

whether a solution x′ of (MASTER) is feasible, which is equivalent to the primal

subproblem being infeasible, which in turn is equivalent to the dual subproblem

being unbounded. If a linear program is unbounded, there will in general be in-
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�nitely many rays pointing in an unbounded direction. This opens the question

of which ray to choose, since the selected ray uniquely determines the gener-

ated Benders' inequality. Costa et al. [CCG09] have proposed an approach for

strengthening Benders' cuts associated to non-extreme rays for a general multi-

commodity network design problem. Their ideas could similarly be extended

to the Benders' decompositions considered here, if non-extreme rays were gen-

erated. However, when solving an unbounded linear program with the simplex

method, one retrieves always an extreme ray. Even when restricting to extreme

rays, there are still multiple solutions, in general. This leaves the question, how

to select a speci�c element out of the set of all extreme rays.

In this section several ways of generating Benders' cuts associated to ex-

treme rays are proposed. The feasible regions of the dual subproblems from

Section 3.5 are all cones containing the point 0. In addition, all three share

the property, that the feasible region is the same for any master-solution x′.

We show di�erent normalization approaches obtained by making the dual cone

bounded by introducing one additional inequality. This is equivalent to making

the primal subproblem feasible by introducing one additional slack variable. An

extreme point that solves the normalized subproblem corresponds to an extreme

ray of the original subproblem and induces a Benders' cut.

The explanation of the normalizations in this section is restricted to the

(DMCF) model as described in Section 3.5.3. The extension to the other mod-

els is relatively straight forward. Denote the dual subproblem of the (DMCF)

Benders' decomposition, de�ned in (3.58)-(3.60) by (SUB). The four models

(SUBc), (SUBn), (SUBf) and (SUBcap) that will be introduced in this section,

denote four di�erent normalizations which result in bounded dual subproblems.

The corresponding primal subproblems are feasible, so they can also be solved

directly and are denoted by (PSUBc), (PSUBn), (PSUBf) and (PSUBcap) re-

spectively. While it makes no di�erence from a theoretical perspecitve, whether

the dual or the primal subproblem is solved, we are also testing for practi-

cal performance di�erences and therefore consider solving the primal and the

dual subproblems explicitly. In total this makes nine variants which are now

described in detail.

3.6.1 (SUB) Model

In order to get a violated Benders' inequality, we search for an extreme ray of

the unbounded subproblem (SUB). This is also refered to as the textbook imple-

mentation of Benders' decomposition. As already observed in [Ben62, FSZ10],

this approach has a signi�cant drawback: it returns an arbitrarily chosen ex-

treme ray without having any in�uence on the quality of the violated cut found.
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An advantage of this method is that it returns a violated constraint much faster

than the corresponding more sophisticated methods described below.

3.6.2 (SUBc) and (PSUBc) Models

Instead of solving the subproblem on the pointed cone, one can make the search

space bounded with an additional hyperplane. The following constraint restricts

the search space to a subset of the standard simplex.∑
(i,j)∈A

∑
m∈Mij

∑
k∈D

βkij,m +
∑

(i,j)∈A

∑
m∈Mij

γij,m +
∑
i∈V

∑
k∈D

αki = 1. (3.63)

Obviously, the (MASTER) solution x′ is infeasible for (DMCF) if and only if

the objective value of SUB(x′) extended by (3.63) has an objective value that

is strictly less than zero. Furthermore, each vertex of such obtained polyhedron

(except the origin) corresponds to an extreme ray of the unbounded subproblem.

One easily observes that the model (SUBc) is equivalent to the similar prob-

lem of maximizing the value of Θ ≤ 0 subject to constraints (3.21), (3.22) and

(3.23) in which Θ is added to the left-hand side of each of them. This primal

model is denoted by (PSUBc):

(PSUBc) : max Θ (3.64)

s.t.∑
(i,j)∈δ+(i)

∑
m∈M(i,j)

fk(i,j),m−
∑

(j,i)∈δ−(i)

∑
m∈M(j,i)

fk(j,i),m + Θ ≤


−dk, i = k

dk, i = r

0, otherwise

∀i ∈ V,∀k ∈ K

(3.65)∑
k∈K

fka,m + Θ ≤ ua,mx′a,m ∀a ∈ A, ∀m ∈Ma (3.66)

fka,m + Θ ≤ dkx′a,m ∀a ∈ A, ∀m ∈Ma, ∀k ∈ K (3.67)

fka,m ≥ 0 ∀a ∈ A, ∀m ∈Ma, ∀k ∈ K (3.68)

Θ ≤ 0 (3.69)

If the optimal value for Θ is equal to zero, x′ is feasible. Otherwise the dual

variables (α,β,γ) associated to constraints (3.65), (3.67) and (3.66) for an

optimal solution of (PSUBc) de�ne a violated Benders' inequality.
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3.6.3 (SUBn) and (PSUBn) Models

The (SUBc) model used a very simple hyperplane to make the dual cone bounded.

The (SUBn) model instead adds a hyperplane that leads to Benders' cuts that

maximise the violation with respect to the current solution x′. Recall that x′ is

infeasible i� the objective function (3.58) is strictly negative. Since x′,d,u,β

and γ are all nonnegative, it is necessary that the term
∑
k∈K

(
αkr − αkk

)
dk

is strictly negative. Thus the right hand side of a violated (DMCF) Benders'

cut (3.61) is strictly positive. Obviously, the left hand side of a violated Benders'

cut is smaller than the right hand side and per de�nition nonnegative. It follows

that the ratio between the left hand side and the right hand side of (3.61) is

greater or equal to 0 and less than 1 for an infeasible vector x′. Therefore, we

de�ne the violation of a (DMCF) Benders' inequality as one minus this ratio:

violation
(
α′,β′,γ′,x′

)
:= 1−

∑
a∈A

∑
m∈Ma

∑
k∈K dkβ

′k
a,n + ua,nγ

′
a,n∑

k∈K dk(α′kk − α′kr )
x′a,n (3.70)

This yields a value in the interval (0, 1], where values close to 0 denote hardly

violated inequalities and 1 denotes highly violated inequalities.

The (SUBn) model aims to �nd highly violated inequalities according to this

de�nition. To achieve this, the (SUB) model is extended by the constraint∑
k∈D

dk(αkk − αkr ) = 1,

which �xes the right-hand side of (3.61) to one. Minimizing the objective func-

tion (3.58) leads to a minimization of the nominator in equation (3.70) and thus

maximizes the violation. The subproblem (SUBn) is bounded and its solution

(if negative) always corresponds to a most violated Benders' cut according to

(3.70). Again, the master solution x′ is infeasible if and only if the solution of

(SUBn) is strictly less than zero. The primal of SUBn, denoted by PSUBn, is

related to the maximum concurrent �ow model (see, e.g., [BR02]), and it has

been used by Avella et al. [AMS07] for separation of metric inequalities.
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(PSUBn) : max Θ (3.71)

s.t.∑
(i,j)∈δ+(i)

∑
m∈M(i,j)

fk(i,j),m −
∑

(j,i)∈δ−(i)

∑
m∈M(j,i)

fk(j,i),m ≤


−dk −Θ, i = k

dk + Θ, i = r

0, otherwise

∀i ∈ V,∀k ∈ K

(3.72)∑
k∈K

fka,m ≤ ua,mx′a,m ∀a ∈ A, ∀m ∈Ma (3.73)

fka,m ≤ dkx′a,m ∀a ∈ A, ∀m ∈Ma, ∀k ∈ K (3.74)

fka,m ≥ 0 ∀a ∈ A, ∀m ∈Ma, ∀k ∈ K (3.75)

Θ ≤ 0 (3.76)

3.6.4 (SUBf) and (PSUBf) Models

The (PSUBn) model uses the slack variable Θ to reduce the transported com-

modities. Alternatively, one can use the slack variable for all �ow conservation

constraints:

(PSUBf) : max Θ (3.77)

s.t.∑
(i,j)∈δ+(i)

∑
m∈M(i,j)

fk(i,j),m −
∑

(j,i)∈δ−(i)

∑
m∈M(j,i)

fk(j,i),m + Θ ≤


−dk, i = k

dk, i = r

0, otherwise

∀i ∈ V,∀k ∈ K

(3.78)∑
k∈K

fka,m ≤ ua,mx′a,m ∀a ∈ A, ∀m ∈Ma (3.79)

fka,m ≤ dkx′a,m ∀a ∈ A, ∀m ∈Ma, ∀k ∈ K (3.80)

fka,m ≥ 0 ∀a ∈ A, ∀m ∈Ma, ∀k ∈ K (3.81)

Θ ≤ 0 (3.82)

This problem has a nice �ow structure that can easily be recognized by an

LP solver (like Cplex), therefore it is considered as another alternative nor-

malization approach for �nding a violated Benders' inequality. In the corre-

sponding dual variant of the model, denoted by (SUBf), we extend (SUB) with∑
k∈D

∑
i∈V α

k
i = 1.
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3.6.5 (SUBcap) and (PSUBcap) Models

The fourth normalization variant is complementary to the idea of (PSUBf).

Instead of using the slack Θ to allow for a violation of the �ow conservation, we

use it to allow for violation of capacity and coupling constraints.

(PSUBcap) : max Θ (3.83)

s.t. ∑
(i,j)∈δ+(i)

∑
m∈M(i,j)

fk(i,j),m −
∑

(j,i)∈δ−(i)

∑
m∈M(j,i)

fk(j,i),m ≤


−dk, i = k

dk, i = r

0, otherwise

∀i ∈ V,∀k ∈ K

(3.84)∑
k∈K

fka,m + Θ ≤ ua,mx′a,m ∀a ∈ A, ∀m ∈Ma (3.85)

fka,m + Θ ≤ dkx′a,m ∀a ∈ A, ∀m ∈Ma, ∀k ∈ K (3.86)

fka,m ≥ 0 ∀a ∈ A, ∀m ∈Ma, ∀k ∈ K (3.87)

Θ ≤ 0 (3.88)

This is a generalization of the capacity reduction problem, used by Avella et

al. [AMS07] to generate the so-called strong metric inequalities for the multi-

commodity �ow model for the network loading problem.

3.6.6 Summary

Table 3.1 summarizes the nine subproblems.

Dual Primal Explanation

(SUB) - see Section 3.5.3
(SUBc) (PSUBc) (SUB) extended by (α,β,γ)T1 = 1
(SUBn) (PSUBn) (SUB) extended by

∑
k∈D dk(αkk − αkr ) = 1

(SUBf) (PSUBf) (SUB) extended by αT1 = 1
(SUBcap) (PSUBcap) (SUB) extended by (β,γ)T1 = 1

Table 3.1: Di�erent normalization approaches for separating Benders' cuts.

3.7 Valid Inequalities - Modeling Variations

This section presents several classes of valid inequalities and separation strate-

gies that can help speed up the branch-and-bound process.
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3.7.1 Connectivity Cuts

Recall the cut-set model from Section 3.3.2. The founding idea is that every

set of nodes S ⊂ V, r /∈ S must have enough incoming capacity. It can also be

stated that, in order to have a connected solution, at least one module must lead

into any set that contains a customer. This is formally stated with connectivity

cuts: ∑
a∈δ−(S)

∑
m∈Ma

xa,m ≥ 1 ∀S ⊆ V \ {r}, S ∩K 6= ∅, (3.89)

Every set of nodes S with some demand, not containing r must have at least

one incoming module. The separation problem of connectivity cuts is similar to

that of the cut-set inequalities: For a given fractional solution x′ and a chosen

k ∈ K, we de�ne the capacity associated to each arc a ∈ A as
∑
m∈Ma

x′a,m.

If the minimum cut between r and k in G is less than 1 it de�nes a violated

inequality. This test has to be applied for every k ∈ K.

3.7.2 Forward and Backward Cut-Sets

To �nd a minimum cut in a graph between a source node s and a sink node t,

we utilize the min-cut max-�ow theorem that states the equivalence of �nding

a maximum �ow and a minimum cut in a graph. An implementation of the

push-relabel algorithm from Cherkassky and Goldberg [CG97] is used to com-

pute a maximum �ow. This leads to a partition of nodes {U, Ū}, s ∈ U, t ∈ Ū
that de�nes a minimum cut. Following an idea from [CGR92], one can re-

verse the �ow and produce a backward cut from t to s from the partition

{Ub, Ūb}, t ∈ Ub, s ∈ Ūb. In general the partitions are not equal, i.e., Ub 6= Ū ,

hence by solving one �ow problem, two minimum cuts can be computed. This is

applied for the separation of cut-set inequalities 3.10 and connectivity cuts 3.89

to speed up the cutting plane procedure.

3.7.3 Nested Cut-Sets

Usually, a min-cut problem has multiple solutions. The forward and backward

cut method described above, is one way to generate two cuts per one calculation

of a maximum �ow. The idea of separating nested cut-sets is to use multiple

subsequent max-�ow calculations to �nd a series of inequalities without solving

a new LP relaxation. See [KM98]. It works as follows: Solve the min-cut

problem and generate the �rst inequality. Increase the capacities in the min-cut

problem to a large value. For connectivity cuts a capacity of 1 is su�ciently

large. For cut-set inequalities
∑
k∈K dk is needed. Now resolve the min-cut

problem. Check whether the second inequality derived from the new minimum



3.7. VALID INEQUALITIES - MODELING VARIATIONS 47

cut is violated by the current fractional solution. If this is the case, it is obvious

that the �rst and the second inequality are orthogonal to each other, i.e., at

most one of the two cuts has a positive coe�cient for any of the variables. By

repeating this procedure, a large number of cut-sets can be produced without

resolving the LP relaxation.

3.7.4 Minimum Cardinality Connectivity Cuts

Usually one prefers sparse inequalities, i.e., inequalities with a small number

of non-zero coe�cients. The creep �ow (see [KM98]) or minimum cardinality

(see [LWP+06]) cut separation strategy, is used to produce sparse connectivity

cuts 3.89. It works by adding an ε to all capacities prior to solving the maximum

�ow problem. Consider for example the relaxation of the (CUT) model: (3.9),

s.t. (3.11),(3.12). The initial LP solution, before any cut-set inequalities have

been added is x = 0. Accordingly, the capacities of the max-�ow/min-cut

problem are all 0, hence every cut is minimal. However, when an ε value is

added to all capacities, only a cut with the minimum cardinality of arcs is a

minimum cut.

3.7.5 Disjoint Benders' Cuts

Similar to the concept of nested cut-sets, a similar separation procedure for

Benders' cuts is developed. It produces several disjoint Benders' cuts from the

same solution of the master problem. For the Benders' decomposition of the

(DMCF) model it works as follows: Assume that (α′,β′,γ′) corresponds to an

unbounded direction in the current Benders' subproblem DMCF(x) as de�ned

by (3.58)-(3.60). Now, �x to zero the components of β and γ with a positive

value in this solution, i.e., add inequalities βka,m = 0∀βk′a,m > 0 and γa,m =

0∀γ′a,m > 0 to the Benders' subproblem. Next, solve this modi�ed subproblem

with the �xed variables. If the modi�ed subproblem is unbounded one can

retrieve a second Benders' cut that is orthogonal to the �rst. By repeating this

procedure, one may generate a set of disjoint Benders' cuts.

This separation procedure is similar to the one used to separate disjoint

(nested) cut-sets, mentioned above. But a key di�erence is that the separation

of nested cut-set inequalities or nested connectivity cuts is computationally rel-

atively cheap. It basically requires solving one max-�ow problem per cut. The

separation of disjoint Benders' cuts however requires the solution of a large LP.

In addition, one must be aware that it is unclear whether the nested cut-sets

as well as the disjoint Benders' cuts are necessary to obtain the LP relaxation

of the model at hand. There is a trade o� between �nding multiple nested cuts

for one fractional solution x or resolving the master problem to compute a new
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fractional solution. In preliminary tests it turned out that solving a single Ben-

ders' subproblem is computationally more expensive than resolving the master

LP. Therefore, this procedure was turned o� for producing the results reported

in Section 3.10.

3.7.6 Magnanti-Wong Implementation

The ideas of Magnanti and Wong [MW81] have been widely used for accelerating

the separation of Benders' cuts (see, e.g., [MMW86],[RGCS09]). The authors

proposed to accelerate the convergence of the basic Benders' algorithm by adding

Pareto-optimal Benders' cuts. The application of their proposal to the DMCF

Benders' decomposition is described below.

For a given primal master solution x and a dual subproblem solution (α,β,γ),

denote the objective function (3.58) of the subproblem by z(α,β,γ,x). A cut

z(α′′,β′′,γ′′,x) ≥ 0 dominates another cut z(α′,β′,γ′,x) ≥ 0 if and only if

z(α′,β′,γ′,x) ≥ z(α′′,β′′,γ′′,x) for all x ∈ {0, 1}|A||M | satisfying (3.5), and

the strict inequality holds for at least one x. A Benders' cut is said to be Pareto-

optimal if no other cut dominates it. In case that there are multiple optimal

solutions to the Benders' subproblem, Magnanti and Wong have proposed an

approach to search for a Pareto-optimal cut by solving an additional subproblem

in the separation phase:

1. Given a fractional solution x′, solve the Benders' subproblem DMCF(x′),

given in (3.58)-(3.60), to get a violated cut de�ned by (α′,β′,γ′). If

z(α′,β′,γ′,x′) = 0, no violated cut exists. Stop.

2. Set z′ := z(α′,β′,γ′,x′).

3. Solve the new subproblem de�ned as:

min{z(α,β,γ,x0) | (α,β,γ) ∈ DMCF(x′) and z(α,β,γ,x′) = z′}.

4. Denote the solution to this subproblem by (α′′,β′′,γ′′) . Then, the cut

z(α′′,β′′,γ′′,x) ≥ 0 is inserted into the master problem.

Of course DMCF(x′) can be replaced by any of the normalization variants de-

scribed in Section 3.6. The vector x0 speci�es a core point, i.e., a point that

belongs to the relative interior of the convex hull of all binary vectors x satisfy-

ing (3.5). As already observed by Papadakos [Pap08], for the above procedure

to work e�ciently, one needs to start it with a di�erent core point every time

the procedure is applied. For that purpose, we start with a randomly chosen

point from the interior, and later we generate a random convex combination of

two incumbent solutions.
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The obvious drawback of this procedure is that one has to solve two time-

consuming subproblems with each separation. Furthermore, the Magnanti-

Wong subproblem is computationally more expensive than solving the master

problem. In the default implementation, the separation of Pareto-optimal cuts

is turned o�. In Section 3.10.6, there is a report on the e�ects obtained by

applying this procedure.

3.7.7 Degree-Balance Constraints

Non-customer nodes V \(K∪{r}) cannot have incoming (or outgoing) arcs only.

Therefore, we can add the following degree-balance constraints that only work

for single source case:∑
(l,i)∈A,l 6=j

∑
m∈Mli

xli,m ≥
∑

m∈Mij

xij,m ∀(i, j) ∈ A, i 6∈ K, i 6= r (3.90)

∑
(j,l)∈A,l 6=i

∑
m∈Mjl

xjl,m ≥
∑

m∈Mij

xij,m ∀(i, j) ∈ A, j 6∈ K, j 6= r. (3.91)

Inequality (3.90) states that if an arc (i, j) emanating from a non-customer

node i is being used in the solution, there must be at least one arc entering i.

Thanks to Theorem 3.2.1 the opposite arc (j, i) can be excluded from the sum-

mation on the left hand side. Inequality (3.91) states the opposite case for an

arc (i, j) entering a non-customer node j.

3.7.8 Cover Inequalities

Given a cut-set inequality (3.10) de�ned by S ⊂ V, r ∈ S, de�ne the index

set I(S) := {(i, j,m) | (i, j) ∈ δ+(S),m ∈ Mij} and the demand outside of S

as B :=
∑
k∈K\S dk. Set J ⊂ I(S) is called a cover with respect to I(S) if∑

(i,j,m)∈J uij,m < B and a maximal cover if, in addition, for all J ′, such that

I(S) ⊇ J ′ ⊃ J :
∑

(i,j,m)∈J′ uij,m ≥ B. If J is a maximal cover with respect to

I(S), then the following cover inequalities are valid:∑
(i,j,m)∈I(S)\J

xij,m ≥ 1. (3.92)

In general, the separation problem of cover inequalities is NP-hard. We

show that the problem of �nding the most violated cover inequality (3.92) is

equivalent to solving the precedence constrained knapsack problem. Assume that

indices m ∈Mij are sorted according to increasing arc capacities. To model any

cover J with respect to I(S), de�ne the binary variables zij,m that are equal to

one if and only if (i, j,m) ∈ J . For every arc (i, j) ∈ δ+(S), we de�ne uij,0 = 0.
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For a given fractional solution x′ and an index set I(S) induced by a cut-

set inequality, the most violated cover inequality can be found by solving the

following model:

(KNAP) : max
∑

(i,j,m)∈I(S)

x′ij,mzij,m

s.t. ∑
(i,j,m)∈I(S)

(uij,m − uij,m−1)zij,m < B (3.93)

zij,m ≥ zij,m+1 ∀(i, j,m) ∈ I(S), m < |Mij |

zij,m ∈ {0, 1} ∀(i, j,m) ∈ I(S)

Let z′ be an optimal solution of model (KNAP). The corresponding cover in-

equality reads then as follows:∑
(i,j,m)∈I(S)

(1− z′ij,m)xij,m ≥ 1.

If all capacities and demands are integers, the inequality (3.93) can be replaced

by
∑

(i,j,m)∈I(S)(uij,m−uij,m−1)zij,m ≤ B−1. The cover inequalities are similar

to the band inequalities for the incremental cost model in [DS98].

3.7.9 Incremental Cost versus Explicit Cost

Throughout this work the explicit cost (also called the multiple choice) model

is used to describe the stepcost function of the network design. It is based on

the idea of using a set of binary variables per edge, out of which at most one

may be nonzero. Formally this is expressed by the de�nition of modules and

inequalities (3.4),(3.5) and (3.6).

The incremental cost model was introduced by Dahl and Stoer [DS98] for

the general multi-source multi-sink network design problem. It has been used

to model LAN in [RS06, SRH08]. It is based on the idea of using a list of binary

variables per edge that have nonincreasing values. The problem is de�ned by

means of the incremental capacity and cost values and a feasible solution has

to facilitate the increments in increasing order.

In [RS06] it is proved that for LAN both models are equivalent in terms of

quality of lower bounds and their LP relaxations both approximate the mono-

tonically increasing step cost function by its lower convex envelope. This is an

application of the more general result from [CGM03], where the equivalence is

shown for general minimization problems with separable non-convex piecewise

linear costs (see also [KFJN04]).
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3.8 Model Hierarchy

This section compares the strength of the di�erent LP models for the LAN

problem presented in this chapter. The feature of interest is the size of the

polyhedron in the space of the design variable x. Consider two polyhedra P1

and P2 in the space of x variables. If P1 is a subset P1 ⊆ P2 for all instances of

LAN and there exist some instances for which the inclusion is strict, P1 ⊂ P2,

then we call P1 the stronger formulation. In other words, there exist fractional

solutions that are valid for the weaker model but not for the stronger model.

The comparison includes:

(SCF) The single-commodity �ow formulation described in Section 3.3.1. De-

note the polyhedron of feasible points by

PSCF :=
{

(x,f) ∈ [0, 1]|A||M | × R|A|≥0
∣∣∣(x,f) satisfy (3.3)− (3.7)

}
.

(CUT) The cut-set formulation from Section 3.3.2. Denote its polyhedron by

PCUT :=
{
x ∈ [0, 1]|A||M |

∣∣x satisfy (3.10)− (3.12)
}
.

(CUT+) This denotes the (CUT) model extended by connectivity cuts (3.89).

The corresponding polyhedron is de�ned as:

PCUT :=
{
x ∈ [0, 1]|A||M |

∣∣x satisfy (3.10)− (3.12), (3.89)
}
.

(MCF) The multi-commodity �ow formulation from Section 3.4.1. The poly-

hedron is de�ned as

PMCF :=
{

(x,f) ∈ [0, 1]|A||M | × R|A||K|≥0

∣∣∣(x,f) satisfy (3.14)− (3.19)
}
.

(MCF−) This denotes the multi-commodity �ow formulation without coupling

constraints (3.16). Its polyhedron is de�ned as

PMCF− :=
{

(x,f) ∈ [0, 1]|A||M | × R|A||K|≥0

∣∣∣
(x,f) satisfy (3.14), (3.15), (3.17), (3.18), (3.19)

}
.

(DMCF) The disaggregated multi-commodity �ow formulation from Section 3.4.2.

The polyhedron for (DMCF) is de�ned as

PDMCF :=
{

(x,f) ∈ [0, 1]|A||M | × R|A||K||M |≥0

∣∣∣(x,f) satisfy (3.21)− (3.26)
}
.

(DMCF−) This denotes the (DMCF) model without coupling constraints (3.23).

PDMCF− :=
{

(x,f) ∈ [0, 1]|A||M | × R|A||K||M |≥0

∣∣∣
(x,f) satisfy (3.21), (3.22), (3.24), (3.25), (3.26)

}
.

(DSCF) The disaggregated single-commodity �ow formulation from Section 3.4.3.

Its polyhedron is de�ned by

PDSCF :=
{

(x,f) ∈ [0, 1]|A||M | × R|A||M |≥0

∣∣∣(x,f) satisfy (3.27)− (3.32)
}
.
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(Benders) This denotes the (MASTER) problem (3.34)-(3.35) extended by

the (DMCF) Benders' cuts (3.61). The corresponding polyhedron is

PBenders :=
{
x ∈ [0, 1]|A||M |

∣∣x satisfy (3.34)− (3.35), (3.61)
}
.

(Benders+) denotes (Benders) with rounded (DMCF) Benders' cuts (3.62),

degree balance (3.90),(3.91) and cover inequalities (3.92).

PBenders+ :=
{
x ∈ [0, 1]|A||M |

∣∣∣
x satisfy (3.34)− (3.35), (3.61), (3.90), (3.91), (3.92)

}
.

For the matter of this polyhedral comparison we will only write x and f

to denote the vectors of decision variables without their dimensions in a given

model, as long as it is clear from the context. Furthermore we will refer to

a variable f of appropriate dimension as a �ow if it satis�es the models �ow

conservation constraints. For any given (x,f) ∈ P, we call f a feasible �ow

(with respect to x and P). In order to compare the polyhedra, we use the

natural projection of the �ow models onto the space of x variables. For the �ow

model with polyhedron P, de�ne: projx(P) := {x ∈ [0, 1]|A||M | | ∃f, (x, f) ∈ P}.
The optimal objective value of the linear relaxation of a model is denoted by z.

The hierarchical scheme given in Figure 3.1 summarizes the relationships

between the LP relaxations of the MIP models considered in this chapter. A

�lled arrow speci�es that the target formulation is strictly stronger than the tail

formulation. An empty arrow speci�es that the target formulation is at least as

strong as the tail formulation.

CUT+

Benders+

MCF

DMCF Benders

DMCF- MCF- SCF DSCF CUT

Figure 3.1: Hierarchy of LP relaxations.

The rest of this section is devoted to the proofs for the inclusions depicted in

Figure 3.1. In addition to the polyhedral inclusion we can also show that there

are instances of LAN for which the stronger models actually yield a greater

objective value.
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Theorem 3.8.1.

projx
(
PDSCF

)
= projx

(
PSCF

)

Proof. A feasible (DSCF) �ow f can be aggregated to a feasible (SCF) �ow

f̂a :=
∑
m∈Ma

fa,m∀a ∈ A, therefore projx
(
PDSCF

)
⊆ projx

(
PSCF

)
.

In the other direction, given a feasible (SCF) �ow f we can de�ne a fea-

sible (DSCF) �ow f̂ like this: For some �xed a ∈ A, iterate over all modules

m ∈ Ma and raise f̂a,m until
∑
m∈Ma

f̂a,m = fa. This decomposition can be

applied independently for every arc and �nally yields a �ow f̂ that satis�es �ow

conservation (3.27) and capacity constraints (3.28) for the (DSCF) model.

Furthermore, it is safe to assume that there are no excess capacities, i.e.,

ua,m ≤
∑
k∈K dk∀a ∈ A,m ∈ Ma. (See preprocessing Step (x) in Section 3.1.)

As a consequence, the (DSCF) capacity constraints (3.28) imply the (DSCF)

coupling constraints (3.29). Thus f̂ is a feasible (DSCF) �ow and projx
(
PSCF

)
⊆

projx
(
PDSCF

)
under the no-excess assumption.

Theorem 3.8.2.

projx
(
PDMCF−

)
= projx

(
PMCF−

)
Proof. Aggregating a feasible (DMCF−) �ow f by modules yields a feasible

(MCF−) �ow: f̂ka :=
∑
m∈Ma

fka,m∀a ∈ A. It follows that projx
(
PDMCF−

)
⊆

projx
(
PMCF−

)
.

Reversely, any feasible (MCF−) �ow f can be decomposed into a feasible

(DMCF−) �ow f̂ as follows. Choose a k ∈ K. For this single, chosen commodity

the same disaggregation per modules as in the proof of Theorem 3.8.1 above, for

the (DSCF) model can be applied. It yields a one-commodity �ow f̂k ∈ R|A||M |≥0 .

Subtracting this �ow f̂k from f yields a feasible (DMCF−) solution
(
x,f− f̂k

)
for the reduced LAN problem with K ′ := K \ {k} with reduced capacities

u′ := u− f̂k. Repeated application of this argument for all customers K �nally

yields a (DMCF−) feasible �ow, thus projx
(
PMCF−

)
⊆ projx

(
PDMCF−

)
.

Theorem 3.8.3.

projx
(
PMCF−

)
= projx

(
PSCF

)
Proof. Aggregating a feasible (MCF−) �ow f by commodities yields a feasible

(SCF) �ow: f̂a :=
∑
k∈K f

k
a∀a ∈ A, thus projx

(
PMCF−

)
⊆ projx

(
PSCF

)
.

Reversely, any feasible (SCF) �ow f can be decomposed into a feasible

(MCF−) �ow f̂ as follows. Initialize f̂ := 0. There exists a path P ⊆ A

in f from r to some k ∈ K that allows the transport of a positive amount of

�ow. Denote the transportable �ow by ∆ = min{dk,mina∈P {fa}}. Increase the
(MCF) �ow by ∆ to f̂ka := fka + ∆∀a ∈ P . Reduce the (SCF) �ow by ∆ to
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fa := fa−∆∀a ∈ P . This reduced �ow is feasible for the LAN problem with re-

duced demands dk := dk−∆. This reduction can be repeated for a �nite number

of iterations, since after each reduction either the �ow on an arc or a demand

becomes zero. Repeated application until f = 0 yields a feasible (MCF−) �ow

f̂ ∈ R|A||K|≥0 that is a decomposition of the (SCF) �ow fa =
∑
k∈K f̂

k
a∀a ∈ A.

Thus projx
(
PSCF

)
⊆ projx

(
PMCF−

)
.

Theorem 3.8.4.

projx
(
PSCF

)
= PCUT

Proof. It follows directly from the min-cut max-�ow theorem (see A.4), that for

any x ∈ PCUT there exists a feasible single-commodity �ow, therefore PCUT ⊆
projx

(
PSCF

)
.

On the other hand, given a (x,f) ∈ PSCF. If we assume that x /∈ PCUT,

the theorem implies that there does not exist any feasible �ow f . Thus the

assumption must be wrong and therefore projx
(
PSCF

)
⊆ PCUT.

Theorem 3.8.5. There exist instances for which

PCUT+ ⊂ PCUT.

There exist instances for which also

zCUT+ > zCUT.

Proof. The (CUT+) model is de�ned as PCUT+ ⊆ PCUT and it has been

shown above that PCUT = projx
(
PSCF

)
. We can give an example that shows

that PCUT+ 6= projx
(
PSCF

)
. In addition, the value of the linear relaxation

of the (CUT+) model is greater than the LP value of the (SCF) model for

this example. The (SCF) solution depicted in Figure 3.2(b) violates the con-

nectivity cut: x(r,v),1 + x(p,v),1 + x(w,v),1 + x(w,v),2 ≥ 1. The (CUT+) solu-

tion in Figure 3.2(c) satis�es all connectivity cuts and has an objective value

zCUT+ = 9.5 > 9 = zSCF.

Theorem 3.8.6. There exist instances for which

projx
(
PMCF

)
⊂ PCUT+ .

There exist instances for which also

zMCF > zCUT+ .



3.8. MODEL HIERARCHY 55

Proof. The cut-set inequalities (3.10) ensure the existence of a �ow that satis�es

the capacity constraints (3.15) of the (MCF) model. The connectivity cuts (3.89)

ensure the existence of a set of �ows of one unit from r to every k that satis�es

the coupling constraints (3.16) of the (MCF) model. However, the existence of

a �ow that satis�es both classes of constraints is not guaranteed by (CUT+)

but only by the (MCF) model.

Figures 3.2(c) and (b) show the (CUT+) and (MCF) LP solutions with

zMCF = 10.083̇ > 9.5 = zCUT+ .

Theorem 3.8.7. There exist instances for which

projx
(
PDMCF

)
⊂ projx

(
PMCF

)
.

There exist instances for which also

zDMCF > zMCF.

Proof. Aggregating a feasible (DMCF) �ow f by modules yields a feasible

(MCF) �ow: f̂ka :=
∑
m∈Ma

fka,m∀a ∈ A, therefore projx
(
PDMCF

)
⊆ projx

(
PMCF

)
.

Figures 3.2(d) and (e) show the (MCF) and (DMCF) LP solutions with

zDMCF = 10.3̇ > 10.083̇ = zMCF. Therefore, the polyhedral inclusion is strict

projx
(
PDMCF

)
6= projx

(
PMCF

)
.

Theorem 3.8.8.

projx
(
PDMCF

)
= PBenders

Proof. The equality follows directly from the de�nition of Benders' decomposi-

tion. See Sections 3.5.3 and A.2.

Theorem 3.8.9. There exist instances for which

PBenders+ ⊂ PBenders.

There exist instances for which also

zBenders+ > zBenders.

Proof. The (Benders+) model is de�ned as PBenders+ ⊆ PBenders. Furthermore,

the (DMCF) solution of the example in Figure 3.2(e) violates cover inequali-

ties (3.92), e.g., for the node set S = {r} and the index set J = {(r,p, 1)}:∑
(i,j,m)∈I(S)\J

xij,m = xr,v,1 ≥ 1.
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The (Benders+) solution in Figure (f) satis�es all cover inequalities and has a

greater objective value than the (DMCF) solution: zBenders+ = 12 > 10.3̇ =

zDMCF.

3.9 Primal Heuristic

This section describes a simple rounding heuristic. It takes a fractional solution

x as input and creates an integer solution x′. If x is (SCF) feasible, then x′

is guaranteed to be integer feasible for the (LAN) problem. Subsequently, the

heuristic creates a cheaper solution x′′ by means of a min-cost-�ow algorithm.

Denote the total installed capacity on an arc byXij(x) =
∑
m∈Mij

uij,mxij,m.

The most appropriate module to support a certain capacity U > 0 is again

denoted by µe(U) as de�ned in equation (3.1). Initialize x′ := 0. Now for

every arc (i, j) with positive capacity U := Xij(x) > 0, install the most ap-

propriate module, i.e., x′ij,µij(U) := 1. The resulting x′ is binary and obviously

satis�es the disjunction constraints (3.5). It does not decrease the capacity

with respect to the fractional solution, i.e., Xa(x′) ≥ Xa(x)∀a ∈ A. Conse-

quently, x′ satis�es the capacity constraints (3.4). This proves the implication:

x ∈ projx
(
PSCF

)
⇒ x′ ∈ projx

(
PSCF

)
.

Typically, x′ is overly generous and can be improved. To this end we use an

augmented graph with an additional sink t, similar to the one from Section 3.3.2:

Let G′ = (V ′, A′) where V ′ = V ∪ {t} and A′ = A ∪ {(k, t) | k ∈ K}. The arc
capacities are set to Xij(x

′) for all (i, j) ∈ A and dk for all (k, t), k ∈ K. Arc

costs are de�ned as
∑
m∈Ma

ca,mx
′
a,m/ua,m for a ∈ A and 0 for a ∈ A′. Initialize

x′′ := 0. We now compute the min-cost-�ow f ∈ R|A| in G′. This induces the
new incumbent candidate x′′ : x′′a,µ(fa) := 1 for arcs a ∈ A with positive �ow

fa > 0.

The min-cost-�ow implementation based on capacity scaling and succes-

sive shortest path computation found in the commercial library LEDA, 5.2

(see [AMO93, LED]) is used. This algorithm only works for integer capacity

and cost values. Therefore we round these values to the nearest integer prior to

the min-cost-�ow computation. A result of this rounding is that x′′ will, on rare

occasions, be infeasible. This is easily detected by a subsequent computation of

a max-�ow and an infeasible x′′ is discarded.
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r

v:2

p

w:2

(4,10)

(2,2)
(1.5,2)

(2,2)

(1,1) (3,2)

(a) Instance of the LAN design problem.
The edge labels are given as (u, c). Be-
tween nodes v and w there are two avail-
able modules m = 1 : (1, 1) and m =
2 : (3, 2). They are shown as two parallel
edges.

r

v:2

p

w:2

1
2 ; 2+0

1; 0+2

1; 0+2

(b) LP solution of the (SCF) model.
The objective value is zSCF = 1 · 2 +
1/2 · 10 + 1 · 2 = 9.

r

v:2

p

w:2

1
2 ; 2+0

1; 0+2

1; 0+2

1
2 ; 0+0

(c) LP solution of the (CUT+) model.
The objective value is zCUT+ = 1 · 2+
1/2 · 10 + 1 · 2 + 1/2 · 1 = 9.5.

r

v:2

p

w:2

1
2 ; 1+1

1; 1+1

2
3 ; 1+0

1
2 ; 0+1

1
4 ; 0+

1
4

1
4 ; 0+

3
4

(d) LP solution of the (MCF) model. The
objective value is zMCF = 1 · 2 + 1/2 · 10 +
2/3 · 2 + 1/2 · 2 + 1/4 · 1 + 1/4 · 2 = 10.083̇.

r

v:2

p

w:2

1
2 ; 1+1

1; 1+1
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3 ; 1+0

1
2 ; 0+1

1
2 ; 0+1

(e) LP solution of the (DMCF) model. The
objective value is zDMCF = 1 · 2+1/2 · 10+
2/3 · 2 + 1/2 · 2 + 1/2 · 2 = 10.3̇.

r

v:2

p

w:2

1; 1+1

1; 0+1

(f) LP solution of the (Benders+) model.
The objective value is zBenders+ = 1 · 10 +
1 · 2 = 12. This happens to be the integer
optimal solution for LAN.

Figure 3.2: A LAN example that demonstrates zSCF < zCUT+ < zMCF <
zDMCF < zBenders+ . Rectangular nodes are terminals with demand. For the
LP solutions (b)-(f), the arc labels are of the form xa,m; fva,m + fwa,m. A solid
arc denotes a saturated module, i.e., the capacity constraint is satis�ed with
equality. A dashed arc denotes that more capacity is installed than needed for
the �ow.
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3.10 Empirical Results for Solving LAN Instances

This section describes the algorithmic framework that was used to test the

presented methods empirically and presents and discusses the obtained results.

Section 3.10.1 explains the branch-and-cut algorithm. Sections 3.10.2 and 3.10.3

give some details on the two sets of benchmark instances used for the tests. The

subsequent Sections 3.10.4 and 3.10.5 discuss the actual empiric results obtained.

Finally, Section 3.10.6 gives a brief comment on the Magnanti-Wong method of

enhancing Benders' decomposition, proposed in the literature.

3.10.1 Branch-and-Cut Algorithm

This section describes the main branch-and-cut algorithm that ties the MIP

models, valid inequalities, separation algorithms and the heuristic described in

the previous sections together and forms the algorithmic framework.

The algorithm starts with the LP relaxation of one of the MIP models from

the polynomial hierarchy. The description here, uses the (SCF) model as basis.

The overall algorithm works as follows:

1. Apply the preprocessing technique described in Section 3.1.

2. Transform the undirected LAN instance into the directed equivalent as

described in Section 3.2.

3. Initialize the branch-and-bound algorithm:

(a) Initialize the master problem with the variables and constraints of

the (SCF) model.

(b) Add in-degree and out-degree inequalities∑
(i,k)∈δ−(k)

∑
m∈Mik

xik,m ≥ 1 ∀k ∈ K

∑
(r,j)∈δ+(r)

∑
m∈Mrj

xrj,m ≥ 1.

These inequalities are special cases of the connectivity inequalities

(3.89) for singleton sets S := {k}∀k ∈ K and S := V \ {r}, respec-
tively.

(c) Add degree-balance constraints (3.90) and (3.91).

(d) Solve the LP relaxation of the master.

4. In every n-th node of the branch-and-bound tree:
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(a) As long as there are violated connectivity inequalities (3.89), add

them to the master LP. Apply the techniques for forward/backward,

minimum cardinality and nested cuts (see Sections 3.7.2-3.7.4). Re-

solve the master.

(b) If no connectivity cuts can be separated, create the (DMCF) Benders'

subproblem based on the current fractional solution x′. Solve the

subproblem. If this results in a violated Benders' cut, add it to the

master LP and resolve it.

Note that the (SCF) model is su�cient to model the LAN problem. The

cuts added in Step 4 are not necessary for correctness but are used to strengthen

the LP bounds. Accordingly, it is su�cient to generate cuts in every n-th

node (n > 1) of the branch-and-bound tree. Alternatively, the computationally

expensive Benders' cuts can be separated only at the root node. Furthermore,

there is a time limit for each single separation of Benders' cuts of 45 seconds.

In the context of multiple-source multiple-sink network design problems, these

strategies are not valid. Either the master must be initialized with a much larger

(multi-commodity �ow) model or n must be equal to 1.

Instead of using (SCF) as the basis of the master problem, also (MCF) or

(DMCF) can be used. Practically, these models proved to be too big to be

solved repeatedly. Using the (CUT) model as basis does not carry this disad-

vantage. The master consists basically only of the disjunction constraints and

the LP relaxation is easily computed. The separation Step 4b has to generate

cut-set inequalities in addition. Still, this is not a very costly operation. Nev-

ertheless, using (SCF) was superior over (CUT) in the tests. A �rst reason is

that the commercial MIP solver Cplex, that was employed, found more helpful

inequalities to strengthen the (SCF) relaxation. A second reason is that Cplex'

internal heuristics found better feasible solutions with the �ow model. That was

noticeable, especially, late in the branch-and-bound process. Lastly, recall that

the cover inequalities are derived from cut-set inequalities and are therefore not

applicable in the (SCF) model. The Benders' separation procedure in Step 4b

can facilitate any of the nine strategies laid out in Section 3.6.

To improve the overall performance and to avoid numerical di�culties we

consider the following two standard branch-and-cut ingredients:

• Tailing O�: If the relative improvement of the lower bound is less than

Eps% in the last It iterations of the separation procedure, we stop the

separation and resort to branching. The general setting of (It,Eps) is

(20, 10−3). However, if only the computationally more expensive Benders'

cuts were separated in recent iterations, a stricter setting of (It',Eps')

= (10, 10−3) is applied.
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Start Improved(It,Eps) Exists Conn-Cut?
yes

Add Conn-Cut Return

Improved(It',Eps')

yes

no

no

Return

Exists Benders Cut?
yes yes

no

Benders Cut Violated?
yes

Add B. Cut Return

Return

no

Return Return

no

Figure 3.3: Separation of cuts in the branch-and-cut framework.

• Degree of Violation: Assume that after solving the Benders' subproblem

for a given fractional value x′, we obtain a violated cut de�ned by a

vector (α′, β′, γ′). Recall the de�nition of the function violation (3.70)

from Section 3.6.3. Before inserting the corresponding cut into the master

LP, we normalize it by dividing it with its right-hand side (which is always

positive) and calculate its violation by the current fractional solution x′

as follows:

violation
(
α′,β′,γ′,x′

)
:= 1−

∑
a∈A

∑
m∈Ma

∑
k∈K dkβ

′k
a,n + ua,nγ

′
a,n∑

k∈K dk(α′kk − α′kr )
x′a,n

(3.94)

If violation(α′,β′,γ′,x′) < 10−4, the cut will not be considered as suf-

�ciently violated and will not be inserted into the system. This is done in

order to avoid numerical instabilities.

The �owchart in Figure 3.3 depicts the implementation of the cut separation

procedure. The described methods were implemented using C++ and Cplex

11.1 [ILO]. An Intel Core 2 personal computer with 1.8 GHz and 3.25 GB of

RAM was used for testing purposes. If not mentioned otherwise, the default

Cplex settings are used.

3.10.2 Salman Instances

Salman's instances form the �rst set of benchmark instances. They include four

problems originally de�ned in [GA90] (problems arpa, oct, usa, and ring) and

60 randomly generated problems originally published in Salman [Sal00]. They

were also used in [SRH08]. For the latter ones, there are 12 groups with 20, 30

and 40 nodes. There are 9 cable types obeying economies of scale. The cheapest

cable type has a capacity of 6. See [BGP+00, SRH08] for a detailed descrip-

tion. The convex combinations of these cable types generate up to
⌈∑

k∈K dk/6
⌉

modules. The notation e(n)(s)(d) provides summary information on the in-
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stances: n denotes the number of nodes, s explains the location of the center

node (c stands for central, r stands for random position), d explains the level

of demand (l stands for low demand, which is randomly generated between

0 and 30; h stands for high demand, randomly generated between 0 and 60).

In [RS06, SRH08] two kinds of experiments were performed: using all 9 cable

types and using only 4 of them. The methods in this thesis do not depend

on the number of cable types, but on the number of modules. Therefore only

the more challenging variant involving all 9 cable types is considered in this

work. Table 3.2 provides input information on Salman instances: each of twelve

e(n)(s)(d) groups contains 5 instances. Using the same style of presentation

as in [SRH08], the average values per group are reported. The table shows

the gaps as published in [SRH08]. In addition, it gives the number of nodes

|V |, the number of edges |E|, the number of customers |K|, and the number of

modules |M | in the instance. Here |M | denotes an average value over all edges:

|M | =
∑

e∈E |Me|
|E| . The remaining four columns |V ′|, |E′|, |K ′| and |M ′| present

the reduction achieved with the preprocessing techniques from Section 3.1.

s d gap[SRH08] |V | |E| |K| |M | |V ′| |E′| |K ′| |M ′|
e20 c l 0.0 20.0 40.2 9.0 12.6 18.2 37.8 8.6 12.6
e20 r l 1.9 20.0 39.8 10.0 13.0 17.4 35.4 10.0 13.0
e20 c h 0.7 20.0 40.2 9.2 27.6 18.2 38.0 8.6 27.6
e20 r h 1.0 20.0 39.8 9.2 23.2 17.6 36.2 9.2 23.2

e30 c l 7.1 30.0 58.4 16.0 24.2 26.6 54.4 14.6 24.2
e30 r l 7.6 30.0 59.2 14.4 22.2 26.8 55.2 13.8 22.2
e30 c h 6.2 30.0 58.4 15.8 47.4 26.2 53.6 14.2 47.4
e30 r h 4.5 30.0 59.2 12.2 33.4 26.6 54.8 12.2 33.4

e40 c l 14.7 40.0 80.0 19.2 27.4 36.6 75.2 19.0 27.4
e40 r l 10.4 40.0 80.6 20.6 31.4 35.6 74.6 19.4 31.4
e40 c h 7.9 40.0 80.0 19.2 49.4 35.8 73.8 19.0 49.4
e40 r h 6.3 40.0 80.6 18.2 46.2 33.8 71.8 16.8 46.2

oct 0.0 25 29 14 39 16 20 14 39
ring 6.5 32 60 17 47 26 54 17 47
usa 4.8 26 39 16 44 26 39 16 44
arpa 0.0 21 26 12 35 16 21 12 35

Table 3.2: Salman's instances. The upper part of the table shows average
values over 5 instances in each class e(n)(s)(d). The lower part shows the
four instances from Gavish and Altinkemer [GA90]. gap[SRH08] is the average
gaps reported by Salman et al. [SRH08]. |V |,|E|,|K| and |M | are before and
|V ′|,|E′|,|K ′| and |M ′| are after the preprocessing.
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3.10.3 Real-World Instances

The second set of inputs are real world instances based on the street map of the

Austrian city Bregenz with 1014 nodes and 1191 edges as underlying network.

They were used as FTTC planning scenarios. Four di�erent sets of customers

(multiplexers) with cardinalities |K| ∈ {29, 36, 45, 67} were considered. With

respect to the demand there are two groups. In the group with lower demands L,

each customer is assigned a demand of 4 units. The group with higher demands

H associates a demand randomly chosen from {4, 8, 12, 16, 20} to each customer.

There are four di�erent sets of modules as displayed in Table 3.3. Note that

these sets do not obey economies of scale. It is assumed that there are empty

conduits with limited modular capacity available at low costs, but if higher

capacities need to be installed, new trenches need to be prepared, which involves

high investment costs.

Type |M | (capacity ue,1, cost ce,1), . . .

A 2 (120, 7.0), (1020, 146.0)
B 2 (30, 2.2), (1020, 146.0)
C 3 (30, 2.2), (60, 4.0), (1020, 146.0)
D 4 (30, 2.2), (60, 4.0), (120, 7.0), (1020, 146.0)

Table 3.3: The four di�erent sets of modules used for the real-world instances.

Taking the four sets of customers, the two groups of demands and the four

sets of modules into account, yields 32 benchmark instances.

3.10.4 Solving Salman Instances

This section reports on the results with the three compact MIP models (SCF),

(MCF) and (DMCF), presented in Sections 3.3.1,3.4.1 and 3.4.2. This includes

a comparison the branch-and-cut approaches based on seven di�erent Benders'

cut separation models, explained in Section 3.6. The main goals of this study

were: a) to compare the qualities of lower bounds obtained by solving com-

pact models versus branch-and-cut approaches, and b) to determine whether

there is a di�erence in the performance of the branch-and-cut approach when

the textbook implementation (SUB) is compared against normalized separation

approaches. For that purpose, it is necessary to ensure that the obtained results

are not biased by the quality of incumbent solutions found by the MIP solver.

In previous computations best known upper bounds for all instances using the

heuristic described in Section 3.9 are determined. For the reported results all

models are initialized with the best known upper bound and heuristic calls are

turned o�. For this particular test, also Cplex cuts and the presolver are turned
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o�. Benders' cuts are separated at the root node and in each 10th node of the

branch-and-bound tree. Table 3.4 provides values averaged over 5 instances per

group, for e(n)(s)(d) instances, and the values for the four additional instances

from [GA90].

Gap at the root node: Table 3.4 reports on the quality of LP relaxations

of three compact models and the corresponding value of the LP relaxation at

the root node of the branch-and-bound tree for the SUBc approach. The gaps

between obtained lower bounds LB and the best known upper bound (provided

in column UB) are given as UB−LB
UB · 100%.

These results are consistent with the theoretical discussion provided in Sec-

tion 3.8. The (SUBc) approach was the one among all branch-and-cut ap-

proaches to provide the tightest lower bounds at the root node. The average

(median) gap over all 64 instances of the (SUBc) approach is 6.0% (5.9%). The

worst LP relaxation gap among Benders' approaches is obtained by solving the

(SUB) model: the average (median) gap is 7.5% (7.5%).

Comparing compact formulations, we observe that the average (median) gap

of the (SCF) model of 19.6% (18.0%) can be improved to 9.1% (9.1%) by solving

the (MCF) model, which can further be improved to 5.9% (6.0%) by solving the

(DMCF) formulation. However, the LP relaxation of the (DMCF) model was

not solved for 4 out of 20 instances of the group e40 within the time limit.

Looking at gaps of the (SUBc) approach and the (DMCF) model, we can

observe two di�erent e�ects. In some cases (SUBc) produces better gaps. This

results from tightening Benders' cuts by rounding down the coe�cients (see

groups e20_c_l, e40_c_h in Table 3.4). In other cases the gap of (SUBc) is

slightly worse than the one of (DMCF). This is explained by tailing-o� and

violation checks. Particularly, if at some point the current Benders' cut does

not satisfy the violation test (3.94) this speci�c cut is not added to the model

and instead we resort to branching. Consequently, the lower bound at the root

node will be slightly worse than the value of the LP relaxation of (DMCF).

Gap after the time limit: For the (SCF) model and for Benders' separation

approaches Table 3.4 also reports the lower-bound gap after the time limit

of 1000s was reached. Every single variant of our branch-and-cut approach

outperforms the compact (SCF) model. The best results are obtained by solving

the (SUBf) approach: the average (median) gap after 1000 seconds is 2.5%

(2.5%), while (SCF) terminates at 8.0% (7.3%).

(SUBf) solves 14 out of 20 instances of group e20 to optimality, while (SCF)

�nds optima only in 7 out of 20 cases. Despite the bad quality of gaps of the LP

relaxation, the model (SCF) succeeds to improve the �nal gap by drawing the
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advantage of branching. The average number of branch-and-bound nodes when

solving (SCF) is close to 680 000, while the number of nodes processed by our

Benders' implementations varies between 212 (SUBn) and 6043 (SUBf). The

two normalizations (SUBcap) and (PSUBcap) were signi�cantly outperformed

by the seven other models and therefore, the results for these two normalizations

are not reported here in detail.

The rightmost column in Table 3.4 shows the average gaps reported by

Salman et al. [SRH08] obtained by solving SORb2 approach. The average gaps

obtained by Raghavan and Stanojevi¢ [RS06] were always worse than those

obtained in [SRH08], therefore only on the latter ones are reported. In [SRH08],

the authors set the time-limit to 5400 seconds and used Cplex 9.1 with default

settings. For this thesis, a time-limit of 1000 seconds was used. The MIP

Solver is Cplex 11.2 with Cplex cuts and presolver turned o�. According to the

performance evaluation tests provided in [SPE], the computer is approximately

1.2 times faster than the one from [SRH08]. Comparing the values in the column

(SUBf) and the last column in Table 3.4, one may conclude that in most cases

the approach described here outperforms the approach of Salman et al. [SRH08].

Table 3.5 reports on the correlations between the average time needed to

solve the subproblem, the number of branch-and-bound nodes and the tightness

of the bounds at the root node of the branch-and-bound tree. The average

values over all 64 Salman instances for the following parameters are provided:

Time0 and Gap0 denote the running time and the gap at the root node of the

branch-and-bound tree, respectively; Benders0 denotes the number of Benders'

cuts separated at the root node; Time0/Benders0 provides the ratio between

the total time spent and the number of Benders' cuts. The values Benders, Gap

and Time/Benders are the corresponding values provided for the total running

time of 1000 seconds. The last row shows how many branch-and-bound nodes

have been processed within the time limit. For the results after 1000 seconds,

the two best performing approaches are shown in bold face.

The normalized Benders' subproblems have a complicated �ow structure

with two kinds of capacity constraints. Therefore, the problem of solving a

normalized subproblem by closing the unbounded cone with an additional con-

straint may become a di�cult task. Row Time0/Benders0 of Table 3.5 provides

an estimate of an average time (in seconds) needed to solve each Benders' sub-

problem. The fastest subproblems are (SUBf) and (PSUBn) (followed by the

separation of extreme rays with the (SUB) approach). Correspondingly, these

two variants are �rst to be �nished at the root node of the branch-and-bound

tree. Therefore, they are also separating the most Benders' cuts and traversing

the most nodes of the branch-and-bound tree. However, the (SUBf) bounds

obtained at the root node are tighter than the corresponding bounds of the
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(PSUBn) model, which makes the (SUBf) approach the winner, when solving

this data set.

This study shows that:

• Using rounded Benders' cuts derived from the (DMCF) formulation out-

performs the compact (SCF) model.

• Two important aspects decide on the quality of the Benders' approach:

a) the running time needed to solve the Benders' subproblem, and b) the

quality of the derived Benders' cuts. The model that succeeds to balance

the trade-o� between these two aspects is the most desirable one.

Average DMCF MCF SCF SUB SUBc SUBn SUBf PSUBc PSUBn PSUBf

Time0 503.2 3.2 0.1 68.3 422.5 603.5 22.0 247.0 35.3 170.0
Benders0 - - - 40.9 38.3 67.8 57.2 36.0 115.5 52.9
Time0/Benders0 - - - 1.7 11.0 8.9 0.4 6.9 0.3 3.2
Gap0 5.9 9.1 19.6 7.5 6.0 6.9 6.4 6.1 6.9 6.2

Benders - - - 740.8 164.7 159.2 1281.5 303.4 1498.6 556.0
Time/Benders - - - 1.3 6.1 6.3 0.8 3.3 0.7 1.8
Gap 4.5 4.5 8.0 3.6 3.9 5.4 2.5 3.5 3.0 3.1

Nodes 1031 100 264 680 981 2152 492 212 6043 1326 3655 2501

Table 3.5: Average values over all 64 Salman's instances.

3.10.5 Solving Real-World Instances

This section shows the comparison of results obtained for the set of real-world

instances derived from Bregenz, a city in Austria.

Preprocessing: The preprocessing greatly reduces the size of the graph from

1014 nodes and 1191 edges to approximately 350 nodes and 500 edges. The

number of customers goes down to 28, 33, 41 and 61, respectively. Furthermore,

although we start with uniform modules, we end up with non-uniform ones. The

�rst seven columns of Table 3.6 show the detailed reduction. |M | =
∑

e∈E |Me|
|E|

denotes the average number of modules per edge. |M | = mine∈E |Me| and
|M | = maxe∈E |Me| denote the smallest and largest number of modules per

edge respectively.

Gap at the root node: The �rst test examines the strength of the three

compact models, (SCF), (MCF) and (DMCF). Therefore, Cplex cuts and the
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presolver o� are turned o� and the LP relaxations at the root node are com-

puted. The three columns labeled with Gap at the root node in Table 3.6 show

the integrality gaps. For all 32 instances, the LP relaxation of the (SCF) model

was solved within 1 or 2 seconds, but the average (median) gap over all Bregenz

instances is 46.6% (42.0%). As expected, lower bounds obtained by solving the

(MCF) model are signi�cantly better: 19.1% (7.1%), but the LP relaxations of

only 13 out of 32 instances were solved to optimality in less than 1000 seconds

(within 383.8 seconds, on average). Finally, the average (median) gap obtained

by solving the (DMCF) model is 13.9% (7.8%), but only in 3 out of 32 cases

the LP relaxations were solved to optimality within the given time limit (in 55

seconds, on average). This also explains why some of the presented gaps of the

(MCF) model are better than the corresponding (DMCF) ones (LP relaxations

are solved by dual simplex method).

According to these experiments it can be concluded that the only compact

model that can be directly solved without a row and/or column generation tech-

nique is the (SCF) model. In order to use the strength of the (DMCF) model,

we apply a row-generation technique to it. A column-generation technique for

a similar problem has been presented in [FG09, FG10].

Gap after the time limit: For the (SCF) model and for the seven branch-

and-cut variants described above, the code is run for 1000 seconds, with default

Cplex settings and the primal heuristic described in Section 3.9. Only when

solving the (SUB) model, the Cplex presolver needs to be turned o�. Since the

separation of Benders' cuts may become a time-consuming task for instances

of that size, they are only separated at the root node of the branch-and-bound

tree.

Box-plots in Figure 3.4 provide an overview of the obtained gaps at the

root node of the branch-and-bound tree. We observe that the huge gaps of the

(SCF) model (46.6% average and 42.0% median value) can be reduced down

to an average (median) value of 4.2% (3.4%), by turning on Cplex cuts and

the presolver. By applying Benders' cuts, all proposed methods return better

results: the average gap varies between 3.1% (PSUBf) and 3.6% (PSUBc), and

the corresponding median values vary between 2.6% (PSUBf) and 2.8% (SUBc).

The normalization variants (SUBcap) and (PSUBcap) were signi�cantly outper-

formed by the other strategies. Typically the Benders subproblems could not

be solved in the subproblem-timelimit of 45 seconds. Consequently, no detailed

results for these models are reported.

Figure 3.5 shows the gaps after the time limit was reached. Looking at the

overall gaps after the given time limit, we observe that it is di�cult to point

out the di�erences between particular normalization approaches when default
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Cplex settings are used (see Figure 3.5(a)). Therefore, we cannot say that there

is a clear winner among di�erent Benders' approaches. Although the Benders'

cuts obtained by solving the (SUBc) model are among the tightest ones (see,

e.g., Figure 3.4), the separation was not �nished at the root node of the branch-

and-bound tree in 24 out of 32 cases. Figure 3.6 illustrates a typical situation

in which (SUBc) gets stuck in the separation phase, while the (SUB) approach,

for example, can draw an advantage out of branching.

Looking at Figures 3.4(a) and 3.5(a) one could get the impression that the

simple SCF model (solved with the default Cplex settings) is competitive with

the much more complex Benders' approach. However, Table 3.6 presents de-

tailed results obtained with default Cplex settings and shows that this is a

wrong impression. Indeed, even on the set of real-world instances, the Benders'

decomposition approach is able to outperform the (SCF) model. For 8 out of

32 instances, the branch-and-cut approach (PSUBf) is able to �nd the optimal

solution within the given time limit, while the (SCF) model did not solve a

single instance to optimality. Furthermore, for 18 out of the remaining 24 in-

stances, better gaps were produced using the branch-and-cut approach rather

than solving the (SCF) model.

3.10.6 Testing Magnanti-Wong Enhancements

This section reports on negative results when trying to enhance the Benders'

decomposition and by using the Magnanti-Wong (MW) approach, detailed in

Section 3.7.6. As already observed above, if Cplex general purpose cuts are

turned on, it is di�cult to point out the di�erences between di�erent variants of

Benders' separation models. Therefore, to test the e�ects of applying the MW

approach, we turned the Cplex cuts o�. The MW approach generates most

improving cuts when applied to the (SUBn) approach. For this normalization

the gaps obtained within the time limit of 1000 seconds are depicted in Fig-

ure 3.7. We observe that the MW approach slows down the performance: the

overall number of included Benders' cuts is reduced while there is no signi�cant

improvement in the quality of lower bounds obtained per iteration.

3.11 Conclusions

A new disaggregated �ow formulation (DMCF) is presented which is a byprod-

uct of the model introduced in [CGM07]. It induces tighter gaps than the (MCF)

model which is typically used for network loading problems. Using Benders' de-

composition, 8 of the 32 new single-source instances can be solved to optimality

within a reasonable time limit. For 18 out of the remaining 24 instances, we see
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Figure 3.4: Box-plots over 32 Bregenz-instances: the gaps (in %) of lower
bounds at the root node of the branch-and-bound tree.
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Figure 3.6: Lower bound growth vs. time (CPU seconds) with models (SUB)
and (SUBc) for instance 29_B_H. (a) The �rst huge increase of lower bound
is due to two subsequently found Benders' cuts, the second increase is due to
branching. (b) The separation at the root node is not �nished when solving
(SUBc).
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(Cplex cuts turned o�): (SUBn) and (SUBn) extended by Magnanti-Wong cuts.
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better gaps than the best performing compact formulation.

Comparing normalization strategies for the Benders' decomposition, we see

that depending on the structure of the inputs, di�erent normalizations are

preferable. However, in contrast to a common belief, the separation of extreme

rays, which is also called the textbook implementation, provides relatively good

results across all instances.

There are several arguments explaining this observation:

1. We solve the problem starting from a compact formulation (the (SCF)

model) and we use Benders' cuts only in order to improve the quality of

lower bounds, i.e., they are not necessary for the LAN problem to have a

complete MIP formulation. This is in contrast to known approaches for

solving the multiple-source multiple-sink network loading, where Benders'

inequalities are separated in a similar way.

2. Unlike the LAN objective function, many related problems consider �ow-

dependent objective values. In such cases, one has to separate both, fea-

sibility and optimality Benders' cuts. The quality of optimality cuts is

essential for such problems and therefore enhancing approaches (like those

given in, e.g., [FSZ10, MW81, MW84], [RGCS09]) play a crucial role to

make Benders' decomposition work.

3. The results con�rm the claim of Magnanti and Wong [MW81], that the

crucial role in the generation of e�cient Benders' separation approaches

is played by the size of the convex hull of the relaxed master problem (see

Section 3.8). We show that the textbook implementation of Benders' sep-

aration is not the worst possible choice, if a �good� LP-model is used to

generate the corresponding cuts. Typically there is a trade-o� problem in

Benders' decomposition approaches between the strength of the subprob-

lem and the running time needed to solve it. To overcome this problem,

the separation of extreme rays turns out to be a good compromise: an

extreme ray is usually found much faster than an optimal extreme point

of a bounded subproblem.

The algorithmic framework has been developed to solve large single-source

instances arising in the design of telecommunication networks. Some ingredi-

ents in the approach exploit the single-source assumption. For example, degree-

balance constraints or primal heuristic guarantee that the �nal solution is a

directed acyclic graph. Also, based on the single-source assumption, Benders'

cuts are being added to strengthen the LP-relaxation, but they are not necessary

for the feasibility of a solution of the (SCF) master model. However, the pre-

sented approaches for separating Benders' cuts derived from the disaggregated
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formulation could also be applied to more general multi-commodity versions of

the capacitated network design problem.

It would be interesting to compare the developed branch-and-cut algorithm

with a stabilized column-and-row generation technique as the one proposed

in [FG10]. Furthermore, one could even consider a branch-and-cut-and-price

approach that combines Benders' and Dantzig-Wolfe decompositions, thereby

exploiting the best of both methods.
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Chapter 4

Solving the Prize Collecting

Local Access Network Design

Problem Heuristically

This chapter deals with the Prize-Collecting Local Access Network design prob-

lem (PC-LAN). This is a new combinatorial optimization problem that forms

a generalization of the Local Access Network design problem (LAN). It can

be used to model the deployment of broadband telecommunications systems in

which optical �ber cables are installed between a central o�ce and a number

of customers. It takes into account the fact that the network does not neces-

sarily need to connect all customers. The aim is to select the customers to be

connected to the central server and to choose the link capacities to establish

these connections. This question arises in the context of detailed telecommuni-

cation network planning. In �ber to the home (FTTH), or �ber to the building

(FTTB) scenarios, the telecom company takes the strategic decision of �xing

a percentage of customers that should be served, and aims for minimizing the

total cost of the network providing this minimum service. Due to the complexity

of the problem and the size of the instances in real applications, it is di�cult to

establish algorithmic approaches that ensure global cost-minimal solutions.

A mixed integer programming based heuristic approach for PC-LAN is pre-

sented. It combines a cutting plane algorithm with a multi-start heuristic. The

multi-start heuristic starts with fractional values of the LP-solutions and creates

feasible solutions that are later improved using a local improvement strategy.

A set of three new real-world benchmark instances with up to 86 000 nodes,

116 000 edges and 1 500 potential customers is used to evaluate this approach.

The computational results at the end of this chapter show that this MIP-based

75
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heuristic is preferable to using the heuristic multi-start approach alone, without

the MIP ingredient. Furthermore the MIP-based approach gives a certi�cate on

the quality of the solutions by providing lower bounds to the optimal solution

value. Figure 4.1 shows two deployment scenarios for a real world instance with

coverage rates of 60% and 90%, respectively.

A preliminary version of the material in this chapter was presented at the

International Network Optimization Conference 2011 and appears in the pro-

ceedings [LPSG11b].

For completeness, the de�nition of the Prize-Collecting Local Access Net-

work design problem (PC-LAN) from Section 1.3 is repeated here:

De�nition 4.0.1. We are given an undirected, connected graph G = (V,E) with

a central node r ∈ V . A subset of nodes K ⊆ V \ {r} represents customers. To

each customer k ∈ K a positive demand dk, a positive prize pk and a positive

setup cost ck are associated. A target prize p0 is given. On each edge at most

one module m out of a set Me = {1, 2, . . . } can be installed. Each module has

associated a positive capacity ue,m and positive cost ce,m. The module indices

are sorted by increasing capacity, i.e., ue,m < ue,m+1. The Prize-Collecting Lo-

cal Access Network design problem (PC-LAN) asks for a selection of customers

to be served and an installation of at most one module per edge. The selection

of customers shall cover at least the target prize p0. The installation of mod-

ules shall allow for a single-source multiple-sink routing from r to the selected

customers, that satis�es all the demands simultaneously. The cost for the in-

stallation of modules plus the cost for the selected customers shall be minimal.

The connection from the central o�ce to a customer can be seen as a �ow

that is allowed to split apart. Thus we are speaking of a bifurcated �ow. As a

result, an optimal solution of the problem is not necessarily a tree in the graph.

The target prize p0 can be given by means of a coverage rate α, (0 < α ≤ 1):

p0 = α
∑
k∈K pk. PC-LAN contains LAN as a special case where α = 1.

4.1 Preprocessing

This section describes a set of preprocessing steps for the PC-LAN problem.

These are adaptations of the methods for the LAN problem as described in

Section 3.1. The aim of the preprocessing is to transform an instance of PC-

LAN denoted by Li into a smaller instance Li+1 under the condition that any

feasible solution Si+1 for Li+1 can be mapped back to a feasible solution of

Li with the same objective value. Additionally, if the preprocessed problem is

infeasible, then also the original problem is infeasible.
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In this section we denote the PC-LAN instance after i preprocessing steps

by a graph Gi = (V i, Ei), a central node ri, customers Ki ⊆ V i \ {ri}, with
demand di ∈ R|K

i|
≥0 , prize pi ∈ R|K

i|
≥0 , cost di ∈ R|K

i|
≥0 , modules uie,m, c

i
e,m,M

i
e

and a target prize pi0. In addition the objective function contains an additional

�xed cost term F i:

min
∑
e∈Ei

∑
m∈Mi

e

uie,mx
i
e,m + F i.

The list of preprocessing steps is given as follows:

(i) Degree zero, center node:

If the center node ri has degree 0 and the target prize is greater than zero

pi0 > 0, the instance is infeasible.

If the target prize is equal to zero pi0, the instance has a trivial solution of

selecting no customers and making no installation which yields an objective

value of zero.

(ii) Degree zero, Steiner node:

If there is a non-customer, non-center node v with degree 0, this node will

certainly not be in any solution, hence it can be deleted from the instance:

V i+1 := V i \ {v}.

(iii) Degree zero, customer node:

If there is a customer node k with degree 0, it can not be in the solution.

Hence, it can be deleted from the instance: Ki+1 := Ki \ {k}, V i+1 :=

V i \ {k}.

(iv) Degree one, center node:

If the center node ri has degree 1 and the incident edge e =
{
ri, v

}
provides

a module with su�cient capacity for
∑
k∈Ki dik, this edge will be in any

solution. Therefore it can be deleted: Ei+1 := Ei \ {e}, V i+1 := V i \
{
ri
}
,

the center is moved to the adjacent node: ri+1 := v and we can easily

compute the module m̃ := µie
(∑

k∈Ki dik
)
and only keep the cost F i+1 :=

F i + cie,m̃. For the back-mapping it must be noted that e, m̃ is included in

the solution Si.

If on the other hand e does not provide su�cient capacity, the problem is

infeasible.

(v) Degree one, Steiner node:

If there is a non-customer, non-center node v with degree 1, this node will

certainly not be in any solution. Therefore v and the incident edge {v, w}
can be deleted from the instance: Ei+1 := Ei \{{v, w}} , V i+1 := V i \{v}.
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(vi) Degree one, customer node:

If there is a customer node k with demand dik with degree 1 and the incident

edge e = {k, v} provides a module with su�cient capacity for dik and the

adjacent node v is not a customer v /∈ Ki, this edge will be in the solution

i� the customer k is in the solution. Therefore the edge can be deleted from

the instance, its cost can be attributed to the customer and the customer is

moved to the adjacent node v: Ei+1 := Ei\{e},Ki+1 := Ki\{k}, V i+1 :=

V i \ {k} and Ki+1 := Ki+1 ∪ {v} with attributes di+1
v := dik, p

i+1
v := pik

and ci+1
v := cik + ci

e,µi
e(dik)

. For the back-mapping it must be noted that

the customer k is in the solution Si if the customer v is in the solution

Si+1. And also the edge and module e, µie
(
dik
)
are in the solution Si in

this case.

If the edge e does not provide su�cient capacity, the customer can not be

in the solution and can be deleted.

(vii) Degree two, Steiner node:

If there is a non-customer, non-center node w with degree 2, then ei-

ther both incident edges {v, w}, {w, z} will be in the solution or none.

Hence these two sequential edges can be replaced by one edge: Ei+1 :=

Ei\{{v, w}, {w, z}}∪{{v, z}}, V i+1 := V i\{w}. The modules for the new

edge M i+1
{v,z} result from installing one module from each of the two orig-

inal edges {v, w}, {w, z} in series. More precisely, every pair of modules

〈ma,mb〉 ∈ M i
{v,w} ×M

i
{w,z} implies a new module m̃ with ui+1

{v,z},m̃ :=

min
(
ui{v,w},ma

, ui{w,z},mb

)
and ci+1

{v,z},m̃ := ci{v.w},ma
+ ci{w,z},mb

. This

leads to
∣∣M{v,z}∣∣ =

∣∣M{v,w}∣∣ · ∣∣M{w,z}∣∣ steps for the new edge {v, z}. For
the back-mapping it must be recorded that if the new edge {v, z} is in

the solution Si+1 with the module m̃ ∈ M i+1
{v,z} it implies that both edges

{v, w}, {w, z} are in Si with the respective modules that were combined

to make up m̃.

Dispensable modules are removed from M i+1
{v,z} in Step (ix). Note that

there may already be an edge from v to z so we temporarily allow for

parallel edges. See Step (viii) for a resolution.

(viii) Parallel edges:

Step (vii) may result in two parallel edges e = {v, w}, h = {v, w} ∈ Ei.
Either one alone or both together can be used in a solution. Therefore

they can be replaced by a single edge g = {v, w} : Ei+1 = Ei \ {e, h} ∪
{g}. The modules for this new edge M i+1

g result from all modules in M i
e,

united with all modules inM i
h, united with all possible combinations of one

module from M i
e and one from M i

h. More precisely, every pair of modules
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〈ma,mb〉 ∈M i
e ×M i

h implies a new module m̃ with ui+1
g,m̃ := uie,ma

+ uih,mb

and ci+1
g,m̃ := cie,ma

+ cih,mb
. In summary, this leads to

∣∣M i+1
g

∣∣ =
∣∣M i

e

∣∣ +∣∣M i
h

∣∣+ ∣∣M i
e

∣∣ · ∣∣M i
h

∣∣ steps for the new edge g. For the back-mapping it must

be noted that if g, m̃ is in Si+1 it implies that the edges and modules from

e, h,M i
e,M

i
h that make up m̃ are in Si.

(ix) Dispensable modules:

Steps (vii) and (viii) may lead to dispensable modules. A module m̃ ∈M i
e

is dispensable if there exists another module m′ ∈ M i
e with u

i
e,m′ ≥ uie,m̃

and cie,m′ ≤ cie,m̃. A dispensable module m̃ will certainly not be in any

solution, hence can be deleted: M i+1
e := M i

e \ {m̃}.

(x) Excess modules:

No optimal solution needs to have any installation greater than
∑
k∈Ki dk.

(See the proof for acyclic solutions in Section 3.2) Consequently, sets of ex-

cess modules M̃e =
{
m ∈M i

e | uie,m ≥
∑
k∈Ki dik

}
⊆ M i

e can be replaced

by a single module m̃: M i+1
e = M i

e \ M̃e ∪{m̃} with ci+1
e,m̃ = minm∈M̃e

cie,m

and ui+1
e,m̃ =

∑
k∈Ki dik. For the back-mapping it must be noted that

if m̃ is used on e in Si+1 it implies that the cheapest excess module

arg minm∈M̃e
cie,m is used on e in Si.

(xi) If the set of customers provides less than the target prize
∑
k∈Ki pik < pio,

the instance is infeasible.

Note that no preprocessing is speci�ed for a degree one customer k when

the adjacent node j is also a customer. It would be possible to do one such

step. The problem de�nition would have to be adapted to accommodate for

up to two customers on the same node. Suppose customer j has degree two

in the original instance and hence it has degree one after the customer k has

been moved onto the same node as j. It is now not immediately clear which

module to choose on this unique edge incident to node j, because due to the

prize collecting aspect it can not be easily decided which customer is included

in the solution. It could be one of k and j, or both, or none. Therefore the

degree one node j with two associated customers could not be preprocessed any

further. So, �rstly, this transformation from a degree one customer node with a

customer neighbor to a single node would require a modi�ed problem de�nition

to allow for multiple customers per node. Secondly, it would only allow for one

additional step, but not for a sequence of further preprocessing steps that may

accumulated to produce any signi�cant reduction of the size of the instance.

Consequently, this preprocessing step is not considered in this work.

These preprocessings are implemented as follows: Iterate over all nodes and

perform any applicable preprocessing for nodes with degree zero, one or two,
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i.e. steps (i)-(vii). Preprocessing step (vii) always triggers an attempt to apply

steps (viii) and (ix). This iteration is performed repeatedly until no more pre-

processing step for nodes with degree zero, one or two can be applied. Finally,

step (x) is performed once, in order to remove excess modules from the input.

4.2 MIP Models

This section presents MIP models for the PC-LAN problem. These are adapta-

tions of the models for LAN from Section 3.3. A single-commodity �ow formula-

tion (pSCF) and a cut-set formulation (pCUT) for PC-LAN are given explicitly.

The modi�cations of the disaggregated models (MCF) and (DMCF), as well as

the Benders' decompositions thereof are relatively straightforward and are not

presented explicitly. The computational tests have shown that these larger

models where not practically feasible for the set of large benchmark instances

considered in this chapter.

The arguments about acyclic optimal solutions of the LAN problem from

Section 3.2 hold equally well for the PC-LAN problem. Therefore, the same

transformation into a directed problem is considered and the MIP models make

use of the directed graph G = (V,A).

4.2.1 Single-Commodity Flow

Design and �ow variables for the PC-LAN models have the same meaning as

for the LAN models. Binary variables xa,m denote whether the module m is

installed on the arc a. Continuous �ow variables fa ≥ 0 describe the amount of

�ow on arc a ∈ A. Compared to the LAN models, additional binary variables

yk are used, where yk = 1 i� customer k is served and the prize pk is collected.

The single-commodity �ow formulation of the PC-LAN problem (pSCF) is:
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(pSCF) : min
∑
a∈A

∑
m∈Ma

ca,mxa,m +
∑
k∈K

ckyk (4.1)

s.t.

∑
(i,j)∈δ+(i)

f(i,j) −
∑

(j,i)∈δ−(i)

f(j,i) =


−diyi, i ∈ K∑
k∈K

dkyk, i = r

0, otherwise

∀i ∈ V (4.2)

∑
k∈D

pkyk ≥ p0 (4.3)

fa ≤
∑
m∈Ma

ua,mxa,m ∀a ∈ A (4.4)

∑
m∈Ma

xa,m ≤ 1 ∀a ∈ A (4.5)

xa,m ∈ {0, 1} ∀a ∈ A, ∀m ∈Ma (4.6)

yk ∈ {0, 1} ∀k ∈ K (4.7)

0 ≤ fa ∀a ∈ A (4.8)

The objective function (4.1) adds up the cost for the network design and the

cost for the customer selection. The �ow conservation (4.2) takes into account

which customers are selected. The coverage constraint (4.3) ensures that the se-

lection meets the requirement of the target prize p0. Capacity constraints (4.4)

and disjunction constraints (4.5) are well known from the LAN models in Sec-

tion 3.3.

4.2.2 Cut-Set Model

Similar to the cut-set (CUT) formulation for the LAN problem, the cut-set for-

mulation (pCUT) for the (PC-LAN) problem ensures that the capacity entering

any subset of nodes is large enough to support the total demand inside the

subset.
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(pCUT) : min
∑
a∈A

∑
m∈Ma

ca,mxa,m +
∑
k∈K

ckyk (4.9)

s.t. ∑
a∈δ−(S)

∑
m∈Ma

ua,mxa,m ≥
∑
k∈S

ykdk ∀S ⊂ V |S ∩K 6= ∅ and r /∈ S (4.10)

∑
k∈K

pkyk ≥ p0 (4.11)∑
m∈Ma

xa,m ≤ 1 ∀a ∈ A (4.12)

xa,m ∈ {0, 1} ∀a ∈ A, ∀m ∈Ma (4.13)

yk ∈ {0, 1} ∀k ∈ K. (4.14)

The cut-set inequalities (4.10) state that every subset of nodes S, containing at

least one customer and not containing r, must have enough incoming capacity

to route the total demand requested inside the set. All other constraints do also

appear in the (pSCF) model above.

The separation of cut-set inequalities (4.10) for PC-LAN can be done in

polynomial time as follows. For a given fractional solution (x∗,y∗), we de�ne

the directed support graph G′ = (V ′, A′) where V ′ := V ∪{t} with an additional

sink t, and A′ := A1 ∪ A2 being A1 := {a ∈ A |
∑
m∈Ma

ua,mx
∗
a,m > 0} and

A2 := {(k, t) | k ∈ K}. The capacity associated to each arc a ∈ A1 is set to∑
m∈Ma

ua,mx
∗
a,m, and the capacity of each arc a = (k, t) ∈ A2 is set to dky

∗
k.

If the minimum cut between r and t in G′ is less than
∑
k∈K dky

∗
k, it de�nes a

violated inequality (4.10).

Since (x,y) variables are binary and the coe�cients are non-negative, the

cut-set inequalities can be strengthened by rounding down some left-hand side

coe�cients (see appendix A.3) :

∑
a∈δ−(S)

∑
m∈Ma

min

(
ua,m,

∑
k∈S

dk

)
xa,m ≥

∑
k∈S

dkyk ∀S ⊆ V |S∩K 6= ∅ and r 6∈ S.

(4.15)

The pCUT model can be further strengthened with the following connectivity

cuts. Every set of nodes containing at least one customer must have at least

one incoming arc if the customer is included in the solution:∑
a∈δ−(S)

∑
m∈Ma

xa,m ≥ yk ∀S ⊆ V \ {r},∀k ∈ S ∩K. (4.16)

The separation works similar to that of cut-set inequalities. Given a fractional

solution (x∗,y∗), we de�ne a network from G where the capacity associated to
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each arc a ∈ A is
∑
m∈Ma

x∗a,m. Then, if the minimum cut between r and any

customer k in G is less than y∗k this cut de�nes a violated inequality (4.16).

In general, a minimum cut problem has several optimal solutions. Especially

when the dimension of the network is very large as is the case with the PC-LAN

instances. Therefore, it is possible to �nd several violated inequalities from a

given fractional solution. The methods described in Sections 3.7.3 and 3.7.4 can

easily be transformed to produce nested and minimum cardinality cuts for the

PC-LAN problem.

4.3 MIP-based Heuristic Approach

This section describes the MIP-based heuristic approach to �nd high quality

feasible solutions to large-sized instances of PC-LAN. It consists of three main

ingredients:

1. Cutting Plane phase: The cutting plane approach works with relaxations

of a PC-LAN MIP model. In the separation phase, a new set of violated

inequalities is inserted into the LP. The LP is resolved and the optimal LP-

solution (x∗,y∗) is taken as input for the following Network Construction

phase.

2. Network Construction phase: First, a set of customers is selected according

to the fractional values y∗. Next, a network is constructed iteratively by

using shortest path calculations on the graph with adapted edge weights.

The fractional values x∗ are taken into account for this construction.

3. Local Improvement phase: The solution found in the construction phase

is subjected to a local improvement procedure. Flow routed along an

expensive edge together with a�ected customers are removed, leaving a

partial solution. Then the partial solution is repaired by adding new

customers and extending the network design. Two di�erent de�nitions of

expensive are alternated.

Steps 2 and 3 are repeated in a multi-start fashion. The overall process is

repeated within a branch-and-cut framework until the time limit is reached or

an optimal solution is found.

Next, each of these ingredients are described in detail. First the notation

that is used in this section is introduced. Then the three phases are presented

in detail. Section 4.3.5 describes some modi�cations to these base algorithms

applied in the multi-starting. Section 4.3.6 describes an alternative approach

that follows a similar scheme without requiring a MIP solver. This alternative

(non-MIP) approach may be of interest when one wants to solve a PC-LAN
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instance without using a MIP solver. Section 4.4 demonstrates that this non-

MIP approach is competitive with the MIP-based approach in a few cases, but

in most of the tests the MIP-based approach performs signi�cantly better.

4.3.1 Notation

For the sake of a simpler description of the heuristic algorithm we use the

following notation. A network design can be represented by a vector z ∈ N|E|

consisting of module indices ze ∈ {0} ∪Me. For example, ze = 3 means that

the third available module for e is installed; ze = 0 means that there is no

installation on e. Capacities per edge are denoted by g ∈ R≥0. A �ow through

the network is represented by a vector f ∈ R|A|≥0 . The function µe : R≥0 7→ Me

maps some required capacity to the index of the most appropriate module on

edge e, i.e., the cheapest module with su�cient capacity, or the largest module

if there is no module with su�cient capacity. More formally, for some required

capacity b ≥ 0 we de�ne a function µe for every edge e ∈ E:

µe(b) =


0 if b = 0

arg min
{m∈Me|ue,m≥b}

ce,m if b > 0 and ∃m ∈Me|ue,m ≥ b

|Me| otherwise

An edge e is said to be saturated by a required capacity ge if the largest module

is already used on this edge and no free capacity is left, i.e., ze = |Me| and
ge = ue,ze . Given a current capacity vector g, a suitable design vector z and

some additionally required capacity b ≥ 0, we de�ne the following edge weight

approximations:

we (ge, ze, b) =

ce,µe(ge+b) − ce,ze , if ge < ue,|Me|

∞, otherwise
∀e ∈ E. (4.17)

Hence we represents the cost for expanding the installation on e from the cur-

rently selected module ze to the module µe(ge + b). If the required capacity ge

saturates the edge e, such an expansion is impossible and the edge weight is

in�nite.

4.3.2 Separation

The cutting plane approach starts with the linear programming relaxation of

the CUT model without (4.10). This relaxation is strengthened with the cut-

set inequalities (4.10) associated to all the singletons S. Other inequalities are

generated in an iterative way as it is described below.
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At each iteration a fractional solution (x∗,y∗) is given. Cut-set inequali-

ties (4.10) and connectivity cuts (4.16) are separated.

4.3.3 Network Construction

Starting from a fractional solution (x∗,y∗) we build a feasible solution by ap-

plying the following three procedures.

Rounding

Let y∗ be the solution of a relaxed PC-LAN model. We sort the customer indices

in order of decreasing fractional values y∗k. We then de�ne an integer feasible

selection y by greedily setting indices of customers with large fractional values

to one until the coverage constraint (4.11) is satis�ed. The fractional vector x∗

is used to compute a vector of minimum required capacities g∗:

g∗e =
∑
m∈Me

ue,m
(
x∗ij,m + x∗ji,m

)
∀e = {i, j}.

Note that g∗ is not necessarily the undirected capacity vector of a feasible

network design. This is true, for example, when using the (pCUT) model while

not all cut-set inequalities (4.10) associated to every set S, have been separated

so far.

Construction

Using the previously generated vector y and g∗, this procedure constructs a

feasible network design of the PC-LAN. Algorithm 4.3.1 describes the main

steps. The initialization phase de�nes a demand per node b ∈ R|V |≥0 as:

bk =

dkyk, if k ∈ K

0, otherwise.

An initial network design z is de�ned via the most appropriate module per edge

with respect to g∗, i.e., ze := µe(g
∗
e) for all e ∈ E. The algorithm subsequently

modi�es b, creates an undirected �ow g and updates the design z. In each

iteration a node v with positive demand bv > 0 is chosen. Denote the demand to

be transported as b := bv and cancel the node demand of v: bv := 0. The values

of g, z and b uniquely determine the edge weight approximation w via (4.17).

This vector w de�nes the edge weights for the shortest paths calculation on G.

A shortest path from v to r is computed: SPw(v) = 〈v, v1, v2, . . . , r〉. Along

this path, the current demand b is transported. Denote the remaining capacity
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on e by ū and the maximum that can be transported by b̄. The �ow g is

increased: ge := ge+ b and the necessary installations ze := µe(ge) are made for

all e ∈ SPw(v). Once Line 23 is reached, the node demand has been transported

from v to r and the next iteration starts.

A special case occurs when an edge e on SPw(v) does not o�er su�cient

remaining capacity ū, i.e., b > ū in Line 18. Then, only this maximum available

capacity ū is transported on e. Now the node demands are changed appro-

priately at each endpoint of e. The node closer to v, denoted i, receives an

additional demand of b− ū. The node closer to r, denoted j, receives an addi-

tional demand of ū. The edge e becomes saturated and the heuristic continues

by picking the next randomly chosen node with positive node demand in Line 5.

The heuristic terminates when b = 0 and z is feasible for the chosen subset of

customers represented by y.

Of course, no shortest path may exist. This can be due to an infeasible input

or due to the greedy decisions taken in the course of the algorithm. In this case

the heuristic terminates in Line 11 without �nding a feasible solution.

Flow Calculation

After the construction has produced a feasible solution z, redundant capacities

may have been installed along the edges. To reduce the installation cost, a

minimum-cost �ow problem is de�ned on the subgraph of G induced by ze > 0.

The �ow cost are de�ned as
ce,ze
ue,ze

, and the capacity is set to ue,ze for all edges.

The min-cost �ow problem is solved and yields a directed �ow vector f . A new

design vector z′ can be derived from f by setting z′e := µe(fij + fji) for all

e ∈ E. Clearly, z′e ≤ ze for all e ∈ E. The directed �ow vector f also allows to

express the design in terms of directed xa,m variables:

xij,m :=

1, if fij > 0 and m = µ{ij}(fij)

0, otherwise.
.

4.3.4 Local Improvement

Given an integer feasible solution represented by the vector (z,y,f), we at-

tempt the following Local Improvement strategy. The main steps are given in

Algorithm 4.3.2. Initialize the new solution (z′,y′,f ′) as z′ := 0, y′ := y,

f ′ := f . Decompose the �ow on each arc a into commodity �ows, i.e., compute

a �ow per customer per arc. Pick an edge ẽ maximizing ce,ze . Those customers

k that have a positive �ow on this edge ẽ are removed from the selection, i.e.,

set y′k := 0. In addition, the �ow for these customers is removed from f ′. Com-
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Algorithm 4.3.1 Network Construction.

Input: customer selection y ∈ {0, 1}|K|, minimum required capacity g∗ ∈ R|E|≥0

1: init node demand b ∈ R|V |≥0 : bv :=

yvdv ∀v ∈ K

0 ∀v /∈ K
2: init design ze := µe(g

∗
e) for all e ∈ E

3: init undirected �ow ge := 0 for all e ∈ E
4: while ∃v ∈ V : bv > 0 do

5: pick a random node v ∈ V : bv > 0

6: b := bv // the demand to be transported

7: bv := 0

8: de�ne edge weight w : we(ge, ze, b) ∀ e ∈ E according to (4.17)

9: compute a shortest path SPw(v) from v to r in 〈G,w〉
10: if there is no shortest path then

11: return failed

12: end if

13: for e = (i, j) ∈ SPw(v) = 〈v, v1, v2, . . . , r〉 do

14: ū := ue,µe(ge+b) − ge // remaining capacity

15: b̄ := min(b, ū) // maximum that can be transported

16: ge := ge + b̄

17: ze := µe(ge)

18: if b > ū then // insu�cient remaining capacity

19: bi := bi + b− ū
20: bj := bj + ū

21: goto Line 5

22: end if

23: end for

24: end while
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pute the required capacity per edge g′ on behalf of the reduced �ow f ′. De�ne

the edge weight approximation w as described by equation (4.17). Let lk be

the length of the shortest path SPw(k) from k to r for all currently unselected

customers, i.e., y′k = 0. Select customers with small lk values and add them to a

new set y′′ until the combined selection y′+y′′ satis�es the coverage constraint∑
k∈K pk(y′k+y′′k ) ≥ p0. Now start the Network Construction (Algorithm 4.3.1)

with the minimum required capacity g′ and the set of newly selected customers

y′′. The result is a new network design z′. Set y′ := y′ + y′′. If the new solu-

tion (z′,y′) has a smaller objective value than the currently best found solution

(z,y), the new solution (z′,y′) becomes the new best solution. Otherwise the

edge that had been selected in Line 6 is added to a taboo list T .

In order to achieve more diverse results we alternate the two criteria in Line 6

and Line 21 as follows. The criterion for picking an edge with highest absolute

cost ce,ze in Line 6 is modi�ed to pick the edge with highest relative cost, i.e.,

ẽ := arg max
e={i,j}∈E,(fij+fji)>0,e/∈T

(ce,ze/fe) .

The criterion for choosing new customers with smallest shortest path lengths lk

in Line 21 is modi�ed to choose customers minimizing the ratio of prizes over

costs, i.e.,

k̃ := arg max
k∈K,y′k+y

′′
k=0

(
pk

ck + lk

)
.

The two options for these two criteria give four variations of Algorithm 4.3.2,

that are cyclically repeated until 20 edges have been considered for deletion

without improving the objective value.

4.3.5 Multi-Start Modi�cations

As stated in Section 4.3, the Network Construction phase followed by the Local

Improvement Phase is repeated in a multi-start fashion. To get a wide variation

in the solutions during multi-starting the following modi�cations to the base

algorithms provided in Sections 4.3.3 and 4.3.4 are implemented.

For some PC-LAN instances it is advantageous to send the �ow to groups

of customers along the same path. If economies of scale are given, as is fre-

quently the case with this type of network design problems, larger modules

have a smaller relative cost ue,m/ce,m than smaller modules. In situations like

this the Network Construction heuristic described in Section 4.3.3 should be

modi�ed to �rst cluster some neighboring demands and second search for a

routing to the access point for the combined demands. On the other hand,

sometimes the opposite is true: Economies of scale are not given. For exam-
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Algorithm 4.3.2 Local Improvement.

Input: design z ∈ N|E|, customer selection y ∈ {0, 1}|K|, �ow f ∈ R|A|≥0
1: s := 0 // improvement counter

2: T = ∅ // taboo list

3: while s < 20 do

4: z′ := 0,y′ := y,f ′ := f

5: compute fka ∈ R|A|×|K|≥0 s.t.
∑
k∈K f

k
a = fa ∀a ∈ A // �ow decomposition

6: ẽ := arg maxe={i,j}∈E,(fij+fji)>0,e/∈T (ce,ze) // pick edge ẽ

7: for all k ∈ K with fk(ij) > 0 or fk(ji) > 0 on ẽ = {i, j} do // reduction

8: y′k := 0

9: f ′a := f ′a − fka ∀a ∈ A
10: end for

11: g′ ∈ R|E|≥0 := 0 // required capacity

12: for all e = {i, j} ∈ E do

13: g′e := f ′ij + f ′ji

14: end for

15: y′′ := 0 // additional customers

16: for all k ∈ K with y′k + y′′k = 0 do // compute shortest path lengths

17: de�ne edge weight w : we(g
′
e, z
′
e, dk)∀ e ∈ E according to (4.17)

18: compute the shortest path SPw(k) and denote the length by lk

19: end for

20: while
∑
k∈K pk(y′k + y′′k ) < p0 do

21: k̃ := arg mink∈K,y′k+y′′k=0 lk

22: y′′
k̃

:= 1

23: end while

24: (z′,f ′) := Network Construction (g′,y′′)

25: y′ := y′ + y′′

26: if
∑
e∈E ce,z′e +

∑
k∈K ck(y′k) <

∑
e∈E ce,ze +

∑
k∈K ck(yk) then

27: z := z′,y := y′,f := f ′ // keep new best solution

28: i = 0

29: else // no improvement

30: i := i+ 1

31: T := T ∪ {ẽ} // the edge from Line 6 becomes taboo

32: end if

33: end while

34: return (z,y,f)
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ple, when smaller modules represent existing infrastructure and larger modules

represent new connections that involve a high setup cost. For these problems it

can be crucial to facilitate the existing infrastructure as much as possible and

avoid the larger modules. Under these circumstances the heuristic should do

the opposite of routing clustered demands together. Instead, it would be better

to split the given demands apart and route the partial demands individually in

order to facilitate the existing infrastructure in an optimal way.

In order to accommodate for these two contradicting ideas, we employ several

variants of the basic algorithm from Section 4.3.3. To enable a clustering of

demands, the loop in Lines 13-23 of Algorithm 4.3.1 is changed so that the

installation is not necessarily done along the whole path right from v to the

central o�ce r, but instead stops at some earlier node j. Two criteria are used

to select j: (i) j is the �rst node with a positive demand bj > 0 encountered

along the path, or (ii) j is at most q edges away from v. Observe that the

demands are clustered if criterion (i) is applied and the parameter q is set to a

small number. To implement this variant, these next instructions are inserted

between Lines 22 and 23:

if criterion (i) or (ii) then

bj := bj + b

goto Line 5

end if.

The idea of this clustering is to merge customers that are close to each other with

respect to the stepwise edge cost function. To provide an anti-clustering variant

of the algorithm, two additional modi�cations of the algorithm are introduced.

The �rst is a rede�nition of the node demands. Instead of one number bv per

node v, we use a list of sub-demands Bv = {bv,1, bv,2, . . . } for every node that

can be treated independently. The initialization in Line 1 changes to

Bk := {ykdk} for all k ∈ K
Bv := ∅ for all v ∈ V \K.

In Line 5, one of the sub-demands bv,t of a node v with at least one positive

sub-demand is chosen and Lines 6-7 become

b := bv,t

Bv := Bv \ {bv,t}.

The update of the node demands in case of insu�cient remaining capacity in

Lines 19-20 becomes:

Bi := Bi ∪ {b− ū},
Bj := Bj ∪ {ū}.
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Whereas the update of node demands in case of criterion (i) or (ii), introduced

above, becomes:

if criterion (i) or (ii) then

Bj := Bj ∪ {b};
goto Line 5

end if.

The second modi�cation to help with anti-clustering is to initially split the

demands in two Bk = {ykdk/2, ykdk/2} or three Bk = {ykdk/3, ykdk/3, ykdk/3}
partial demands in Line 1.

A speci�c variant of the Network Construction algorithm can be chosen with

four parameters:

• Activate criterion (i), or do not activate it.

• Select a value for q ∈ {1, . . . , |V |} for criterion (ii).

• Join node demands by using one value bv per node, or do not join but use

a list of values Bv.

• Select a splitting ratio ∈ {1, 2, 3} for the initial de�nition of node demands.

Each time the Network Construction algorithm is executed, a speci�c variant

is chosen by the means of a learning adaptation mechanism known as Reactive

Search Optimization. Initially pre-speci�ed settings for the four parameters are

used. Then the settings for the parameters are varied from a diversi�cation

of the settings towards an intensi�cation. That is, from randomly perturbed

settings towards settings that have produced the best objective values so far.

4.3.6 Non-MIP variant of the heuristic

To measure the impact of the MIP information in the heuristic approach, an

alternative heuristic is used which does not make use of a MIP solver. This

variant is also of interest for practical purposes since a company may desire not

to purchase and install a black-box MIP solver in order to heuristically solve

instances. The non-MIP variant works as follows.

1. Compute a selection of customers y that satis�es the coverage constraint

(4.11). This is done similarly to the customer selection in the Local Im-

provement Algorithm 4.3.2, Lines 15-23. Since there are no currently

selected customers, this set is empty, y′ = 0. Also, initially there is no

current installation, i.e., z′ = 0 and no minimum required capacity, i.e.,

g′ = 0. Now y := y′′ denotes a customer selection, feasible with respect

to inequality (4.11).



4.4. COMPUTATIONAL STUDY 93

2. Apply the Network Construction phase from Section 4.3.3 on y and no

initial required capacity, i.e., g∗ = 0.

These two steps compensate for the missing fractional solution in the algorithmic

framework.

4.4 Computational Study

This section discusses the performance of the approaches described in Section 4.3

on a new set of instances arising from the real-world motivation of our research.

The computations are performed on a computer with Intel Xeon 2.6 GHz and

3 GB RAM. Cplex 12.2 was used to solve the linear programs, and as a MIP

framework.

4.4.1 Large Real-World Instances

It has been said in the introduction, that this work was inspired by a joint project

with Telekom Austria. In the second phase of this project the prize-collecting as-

pect emerged. In addition the second phase surfaced three new inputs targeted

for FTTH/FTTB planning. These instances are more challenging than the two

sets used in the previous chapter (see 3.10.2-3.10.3) in two aspects. Firstly, the

graphs are much larger. This naturally increases the search space and imposes a

problem with respect to computer memory when implementing solution meth-

ods. Especially, sophisticated mixed integer programming methods will likely

have di�culties loading instances of this size and solving linear relaxations, let

alone applying branch-and-bound methods. Secondly, the stepwise cost func-

tions on the edges are very inhomogeneous. Some have only a small number of

steps, some a large number. Some functions exhibit economies of scale, some

do not. This results from the fact that these instances are more realistic in the

sense that they contain actually existing infrastructure and consider more cable

technologies. The instances are based on real-world data we received from the

telecom company.

The other features of the PC-LAN instances are generated following the

procedure described here. We are given three types of nodes: physical locations

of customers, location of the central o�ce and locations of intermediate nodes.

For each customer location, we are given the number of subscribers associated

to this location. Usually, several splitter devices with various splitting ratios

(e.g., 1:4, 1:16, 1:32) are available. Their costs obey economies of scale. For

example, to connect 16 subscribers, a device must be installed that costs 2 000e

and one optical �ber should come in that building. To connect a building with

17 subscribers, a device that costs 3 000e and 2 �bers are needed and this larger
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device is su�cient to support up to 32 subscribers. It is not feasible to connect

only a fraction of subscribers at the customer node. Instead, decisions have to

be made whether all subscribers per customer node or none of them are going

to be served. This allows to pre-compute the demands and set-up costs for each

customer location based on the number of subscribers.

These instances consider three types of links: existing �bers, existing ducts

and public streets. Existing and currently unused optical �ber cables can be used

with a very small cost. In existing ducts, a limited number of additional cables

can be installed at relatively little cost. Along street segments, new trenches can

be built and new ducts and cables can be laid. In addition to the cost for the

ducts and cables, there is a signi�cant overhead cost for new trenches. Di�erent

cable technologies are available. They di�er in terms of the number of �bers

per cable and cost per meter. Existing �ber and existing ducts can be used

simultaneously. If new trenches are dug, any existing infrastructure is removed

and replaced by the new installations. Taking these aspects into account, the

available modules for each edge can be pre-computed. Table 4.1 lists the number

of nodes, edges, customers and minimum, average and maximum number of

modules per edge for the three instances: A, B and C.

|V | |E| |K| |M | |M | |M |
A 86 745 116 750 1157 3 9.0 131
B 48 247 65 304 720 3 9.0 84
C 77 329 107 696 1498 3 9.9 161

Table 4.1: The three original real-world instances. Columns |M |, |M | and |M |
give the minimum, average and maximum number of modules over all edges.

|V | |E| |K| |M | |M | |M |
A 44 821 73 382 1157 3 9.1 131
B 25 600 41 926 717 3 9.1 84
C 44 542 73 483 1497 3 10.1 161

Table 4.2: The three instances after preprocessing.

This shows the high diversity in the input data. Table 4.2 shows the size

of the inputs after preprocessing. The number of nodes is reduced by almost

a factor of 2. Seven di�erent values of α ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} are
considered. Consequently, the set of benchmark instances contains 21 PC-LAN

problem instances.
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4.4.2 Separation Settings

Two families of inequalities (4.10),(4.16) are separated. Consequently, di�er-

ent separation strategies are possible and may produce di�erent performance in

the overall approach. In preliminary experiments, di�erent con�gurations were

tested and evaluated. The best results were achieved by alternating two con�g-

urations: In con�guration (I), connectivity cuts are favored, and to this end at

most two nested cut-set inequalities (4.15) and at most 2 000 nested connectivity

cuts (4.16) are separated. In the second con�guration (II), at most 20 nested

cut-set inequalities (4.15) are separated and no connectivity cuts are generated.

We apply con�guration (I) iteratively until no more violated inequalities are

found, or until the improvement of the objective value in the last ten iterations

is too small. Then we apply con�guration (II) iteratively until no more violated

inequalities are found, or until the improvement is too small.

Let o be the current objective value, let oI be the objective value derived

ten iterations ago with con�guration (I), and let oII be the objective value

derived ten iterations ago with con�guration (II). The relative improvement for

con�guration (I) is said to be too small once (o − oI)/o drops below ε = 10−4.

Note that (o − oI)/o may again become greater than ε while con�guration (II)

is active. Thus the algorithm may switch back to con�guration (I) and vice-

versa. Once no connectivity cuts, nor cut-set inequalities exist, or both values

(o− oI)/o and (o− oII)/o are below ε, the algorithm resorts to branching.

4.4.3 Results

This section shows results achieved with the MIP-based approach described in

Section 4.3 and the non-MIP variant from Section 4.3.6. A time limit of 10 hours

is set for both approaches. The MIP-based approach applies only the Cutting

Plane phase in the �rst 2 hours. In the remaining 8 hours, every Cutting

Plane phase is followed by multi-starting Network Construction, followed by

Local Improvement as long as a better solution is produced. Inside the Local

Improvement, the removal of di�erent edges is repeatedly tried, until 20 recent

attempts did not improve the solution. The non-MIP approach multi-starts until

the time limit of 10 hours is reached. Inside the Local Improvement the iteration

continues until the solution has not improved in the 200 recent attempts.

Table 4.3 compares the performance of the MIP heuristic and the non-MIP

variant. For the three instances (A, B and C) and for each coverage rate the

following results are reported:

• # is the instance character.

• α is the coverage rate.
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# α LB UB gap Gapnon GapMIP |V ∗| |V ∗1 |

A 0.4 894 318 1103 084 18.93 9.10 0.00 1 712 14
B 0.4 522 753 568 518 8.05 13.43 0.00 1 130 15
C 0.4 1005 973 1106 272 9.07 16.02 0.00 2 968 26

A 0.5 1245 096 1558 613 20.12 6.27 0.00 2 462 11
B 0.5 715 968 778 720 8.06 11.75 0.00 1 288 9
C 0.5 1383 417 1565 520 11.63 18.94 0.00 3 446 46

A 0.6 1617 097 2064 569 21.67 4.99 0.00 3 098 47
B 0.6 938 149 1003 232 6.49 12.84 0.00 1 654 15
C 0.6 1844 854 2249 367 17.98 6.53 0.00 4 089 55

A 0.7 2032 880 2699 669 24.70 2.30 0.00 4 196 51
B 0.7 1228 323 1322 599 7.13 7.76 0.00 1 932 19
C 0.7 2349 758 3018 622 22.16 2.73 0.00 5 691 90

A 0.8 2599 170 3433 859 24.31 0.00 0.57 5 454 108
B 0.8 1601 173 1771 221 9.60 3.72 0.00 2 521 26
C 0.8 3011 135 3927 335 23.33 0.00 1.14 7 047 100

A 0.9 3400 201 4386 960 22.49 0.00 1.60 6 776 19
B 0.9 2126 598 2349 981 9.51 2.63 0.00 3 206 31
C 0.9 4016 022 5180 962 22.49 0.00 1.17 8 552 97

A 1.0 7188 015 8584 895 16.27 0.00 3.01 9 970 18
B 1.0 3463 753 3916 245 11.55 0.00 1.08 5 286 26
C 1.0 6278 802 7384 655 14.98 0.00 2.40 11 607 112

Table 4.3: Results of the MIP-based heuristic versus the non-MIP variant.
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• LB gives the lower bound obtained while running the MIP-based heuristic.

• UB gives the best upper bound obtained by the MIP-based heuristic or

the non-MIP variant.

• gap shows the optimality gap (UB − LB)/UB in percent.

• GapMIP denotes the relative distance (UBMIP−UB)/UB in percent, where

UBMIP is the upper bound obtained by the MIP-based heuristic.

• Gapnon denotes the relative distance (UBnon−UB)/UB in percent, where

UBnon is the upper bound obtained by the non-MIP variant.

• |V ∗| gives the number of nodes in the best solution with value UB.

• |V ∗1 | gives the number of nodes in the best solution with in-degree greater

than 1, where edges are understood to be oriented in the direction of a

�ow from r to the customers.

A value of 0.00 in GapMIP and Gapnon implies that the corresponding heuristic

approach found the best upper bound. A value of 0 in column |V ∗1 | would imply

that the solution is a tree, thus this column gives a measure of deviation from

tree.

For none of the 21 instances the processing of the root node of the branch-

and-bound tree was completed. In all cases the time limit of 10 hours was

reached before the root note could be �nished. Table 4.3 shows that the MIP-

based heuristic found the best solution in 14 out of the 21 instances. The

average value of GapMIP is 0.52 while the average value of Gapnon is 5.67. So

on average the MIP-based heuristic is closer to the best found solution than

the non-MIP variant. And also the largest advancement of MIP over non-

MIP is more pronounced than the other way around. The largest advancement

of the MIP aproach over the non-MIP approach, seen for C with α = 0.5 is

|Gapnon − GapMIP| = 18.94. While the largest improvement of the non-MIP

approach over the MIP-approach, seen for B with α = 1.0 is 3.01. The MIP-

based heuristic is clearly better on instances with smaller values of α, which can

be seen from the relatively larger distances of Gapnon. On pure LAN instances

(α = 1.0), the multi-start scheme produces better results when the MIP ingre-

dient is not used.

Figure 4.2 illustrates the performance of the two approaches on the instance

B with α = 0.7, where the MIP-based heuristic ends with a better solution

than the non-MIP variant. MIP Heuristic - Upper Bound and Lower Bound

show a value in every iteration of the MIP approach. Non-MIP - Upper Bound

shows a value every time an improved solution is found. A value of 100 for the

relative objective value in the �gure corresponds to GapMIP = 0.0 in Table 4.3.

The time is represented in hours. Note that the MIP approach starts with
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Figure 4.2: Instance B with α = 0.7, where the MIP-based heuristic performs
better than the non-MIP variant.
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an initial heuristic solution computed similarly to the non-MIP variant. This

initial heuristic multi-starts as long as the solution gets better in every iteration.

The next 20% of the runtime, i.e., the next two hours are spent, iterating in

the Cutting Plane phase to build up a set of cutting planes before Network

Construction and Local Improvement algorithms are executed. We observe that

the non-MIP variant slowly improves the quality of the solution and in the last

almost two hours there is no more improvement. In contrast to this, the MIP

approach �nds a signi�cantly better feasible solution on the �rst execution of

Network Construction and Local Improvement after 2 hours. Furthermore, the

MIP approach slowly improves the quality of upper and lower bounds providing

the �nal gap of 7.13% between the lower and the upper bound.

Figure 4.3 illustrates the performance on the instance B with coverage rate

1.0, where the non-MIP variant ends with a better solution than the MIP-

based heuristic. A value of 100 for the relative objective value in the �gure

corresponds to Gapnon = 0.0 in Table 4.3. We observe that the non-MIP variant,

again, slowly improves the quality of the solution. On the other hand, the MIP

approach does not seem to draw a noticeable advantage of the information from

the fractional solutions. The MIP approach behaves similar to the non-MIP

variant with the exception of investing much of the runtime in cutting planes

and LP solutions. Thus it does not quite achieve the same solution quality as

the non-MIP variant.

Table 4.4 presents further results on the MIP-based heuristic on the 21 in-

stances. The meaning of the columns is the following:

• Gap′MIP denotes the gap of the initial solution before solving the �rst

linear relaxation. As in the previous table, this gap has been computed

with respect to the best upper bound UB, and it is a percentage.

• t′MIP is the time (in seconds) to produce the initial solution.

• tMIP is the total time (in seconds) of the MIP-based heuristic minus the

time consumed to compute the lower bound (i.e., separation phase and

MIP solver).

• nMIP gives the number of improved solutions found during the MIP-based

heuristic.

• nLP gives the number of iterations of the cutting-plane algorithm, i.e., the

number of LP solutions.

• n(4.15) shows the number of generated rounded cut-set inequalities (4.15).

• n(4.16) shows the number of generated connectivity cuts (4.16).

• n′(4.15) shows the average number of generated rounded cut-set inequalities
(4.15) per fractional solution in the second half of the iterations of the

cutting-plane algorithm.
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Figure 4.3: Instance B with α = 1.0, where the non-MIP variant performs
better than the MIP-based heuristic.
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# α GapMIP Gap′MIP t′MIP tMIP nMIP nLP n(4.15) n(4.16) n
′
(4.15)

n′
(4.16)

t(4.15) t(4.16)

A 0.4 0.00 11.73 68 9 411 4 17 34 10 074 2.0 492.3 99 5 999
B 0.4 0.00 19.24 15 18 477 6 125 790 4 419 6.1 9.1 918 1 603
C 0.4 0.00 24.31 459 23 623 3 37 74 8 738 2.0 43.3 447 4 886

A 0.5 0.00 10.74 23 8 938 4 17 34 11 891 2.0 595.5 74 5 102
B 0.5 0.00 18.03 86 18 818 4 89 394 5 601 3.6 13.0 421 2 022
C 0.5 0.00 26.13 455 23 863 8 24 48 9 287 2.0 105.0 423 5 953

A 0.6 0.00 9.07 142 12 188 6 15 30 11 957 2.0 658.4 79 6 933
B 0.6 0.00 22.62 30 16 329 10 61 302 6 290 8.0 8.1 485 2 318
C 0.6 0.00 13.04 426 21 522 8 20 40 12 010 2.0 271.7 291 7 059

A 0.7 0.00 7.67 303 14 365 6 13 26 12 601 2.0 826.3 84 7 316
B 0.7 0.00 15.95 91 12 675 5 33 84 7 692 3.1 87.6 110 2 994
C 0.7 0.00 8.91 1523 22 666 7 14 28 11 288 2.0 476.3 270 8 598

A 0.8 0.57 4.50 39 12 915 5 13 26 14 116 2.0 943.3 81 7 640
B 0.8 0.00 9.82 171 14 659 5 25 50 9 835 2.0 214.4 59 3 461
C 0.8 1.14 6.56 1324 20 981 8 14 28 13 683 2.0 666.5 253 10 102

A 0.9 1.60 1.77 659 8 370 2 12 24 15 576 2.0 1159.6 52 5 724
B 0.9 0.00 10.27 186 19 103 7 23 46 10 623 2.0 256.2 51 3 576
C 0.9 1.17 5.57 844 15 655 6 15 30 16 787 2.0 825.9 153 7 992

A 1.0 3.01 3.01 381 8 421 1 8 16 13 608 2.0 1514.0 15 6 204
B 1.0 1.08 5.69 461 13 909 7 16 32 12 733 2.0 553.7 17 4 120
C 1.0 2.40 3.90 3157 17 509 5 12 24 18 288 2.0 1173.4 60 8 981

Table 4.4: Details of the MIP-based heuristic.

• n′(4.16) shows the average number of generated connectivity cuts (4.16) per

fractional solution in the second half of the iterations of the cutting-plane

algorithm.

• t(4.15) shows the time consumed in separating rounded cut-set inequali-

ties (4.15).

• t(4.16) shows the time consumed in separating connectivity cuts (4.16).

From this table it can bee seen that around half of the total time of 10 hours

(36 000 seconds) in the MIP-based heuristic is consumed by the cutting-plane

procedure. This involves solving linear programming relaxations and separa-

tion of inequalities. However, as previously observed, this time consumption

increases the solution quality when the coverage rate α is small. The objective

value of the initial heuristic solution computed before the �rst iteration of the

cutting-plane procedure is similar to the objective value of the best solution

when α is large. In particular, we even observe that on instance A with 1.0 of

coverage rate, the initial solution available in the �rst 5 minutes of the compu-

tation was not improved during the whole 10 hours of the MIP-based heuristic.

The situation is di�erent when the coverage rate is small. Note that the number

of generated inequalities of each family (4.15) and (4.16) is strongly a�ected by

the separation settings described in Section 4.3.2. Di�erent settings to try to
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�nd more rounded cut-set inequalities were also tested, but the overall perfor-

mance of this approach was not better. As shown in the table, on average two

rounded cut-set inequalities were generated from each fractional solution. This

means that con�guration (I) was executed once on each cutting-plane iteration.

Columns n′(4.15) and n′(4.16) indicate the number of inequalities generated at

the end of the cutting-plane process. For example, in the last 30 cutting-plane

iterations only an average of 8.1 connectivity cuts are generated when solving

instance B with 0.6 coverage rate.

4.5 Conclusion

AMIP-based heuristic is proposed to solve a new network design problem arising

in a telecommunication context where not all customers need to be served.

Instead, the company is interested in �nding a good feasible solution to connect

a given percentage of the customers. The problem is called prize-collecting

Local Access Network design problem (PC-LAN) and to our knowledge this

is the �rst method to approach it. The MIP-based heuristic separates two

families of inequalities to produce fractional solutions that are used to create

feasible solutions. A local search approach is used to improve each solution,

and the entire approach is embedded in a multi-start framework. To measure

the advantage of using fractional solution in the heuristic approach, a non-MIP

multi-start variant is implemented. The two approaches are evaluated on a set

of 21 instances generated from real-world data.

The experiments show that the MIP-based approach signi�cantly outper-

forms the non-MIP variant for coverage rates below 80% (α = 0.8). These

coverage rates are typical for real-world applications motivating this research.
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Conclusions

This thesis focuses on abstract models for the �ber to the home (FTTH) prob-

lem. FTTH is about laying �ber optic connections on the last mile of telecom-

munication networks in order to achieve higher bandwidth. The thesis consist

mainly of two parts covered in Chapters 3 and 4.

Chapter 3 suggests the local access network design problem (LAN) as an

abstraction to model the FTTH problem. Here, we search for a minimum-

cost subgraph of the input in order to support the demands of all customers.

The LAN problem covers arbitrary step-cost functions for possible connections.

These functions are convenient to model the fact that there are multiple available

cable technologies and also takes into account that there may already be some

existing infrastructure that can be facilitated in the new �ber optic network.

Furthermore, it is possible to model step-cost functions that do not exhibit

economies of scale.

To solve large real world instances of the LAN problem, various solution

methods are proposed. Firstly, preprocessing methods that help to reduce the

size of the input are described. Together with a description to map a solution of

the preprocessed input back onto a solution of the original input, this is an e�ec-

tive tool that can reduce the size of some of the tested networks by a factor of 2.

Secondly, di�erent MIP models are described and the strength of these models

with respect to their polyhedral inclusion is discussed. In order to tackle the

strong but large disaggregated models, Benders' decomposition is applied. The

subproblems of the Benders' decompositions are subjected to di�erent normal-

izations and the practical e�ects of these normalizations are studied. Thirdly, a

rounding heuristic is described that produces feasible solutions from LP relax-

ations.

These methods have been implemented and tested empirically on LAN in-

stances from the literature and on a new set of large instances with more than

103
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1 000 nodes, 1 000 edges and 67 customers.

Chapter 4 forms the second part of this thesis. The prize-collecting local

access network design problem (PC-LAN) is proposed to cover a new aspect in

FTTH planning. Here, the problem is extended with an additional aspect where

not all customers have to be connected. Instead a prize is associated with each

customer and we search for a solution that balances the cost for the network

design and the prizes collected by connecting customers.

In order to solve the PC-LAN problem, the methods presented for the LAN

problem have been adapted. In addition, a new MIP-based heuristic for PC-

LAN is proposed. This includes a branch-and-bound scheme tailored for very

large instances, an adaptable construction heuristic and a local improvement

step. These phases are repeated in a multi-start algorithm with a learning

mechanism to adapt the parameters of the heuristic.

The implementation of the proposed methods is compared to a simpler ver-

sion of the heuristic without the MIP component. The tests are performed on a

new set of very large PC-LAN instances with more than 80 000 nodes, 100 000

edges and almost 1 500 customers. The results show the e�ectiveness of the

MIP-heuristic for the tested instances.
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Appendix

This appendix repeats some basic theory from linear programming and combi-

natorial optimization. Appendix A.1 gives some basic results from linear pro-

gramming theory. Appendix A.2 explains Benders' Decomposition and describes

a cutting plane generation scheme to compute the Benders' Decomposition in

practice. Appendix A.3 shows a method to strengthen inequalities of integer

programs by rounding. Lastly, appendix A.4 repeats the min-cut max-�ow the-

orem that is useful in combinatorial optimization.

A.1 Basic Linear Programming

This section recapitulates some fundamental de�nitions and some basic results

without proofs, mostly taken from [NW88].

Consider a matrix A ∈ Rm×n, a vector b ∈ Rm and the polyhedron Q = {x ∈
Rn | Ax ≥ b}. An element p ∈ Q is called an extreme point of Q if there do not

exist x1 6= x2 ∈ Q such that p = 1
2x1 + 1

2x2. Denote the set of all extreme points

of Q by PQ = {pk | k ∈ K}. This set is �nite. De�ne Q0 = {x ∈ Rn | Ax ≥ 0}.
If Q 6= ∅, an element r ∈ Q0 \ {0} is called a ray of Q. If there do not exist

x1, x2 ∈ Q0 with x1 6= λx2 for any λ ∈ R such that r = 1
2x1 + 1

2x2, the ray

r is called an extreme ray of Q. Denote the set of all extreme rays of Q by

RQ = {rj |j ∈ J}. This set is �nite.

Minkowski's theorem states that a polyhedron Q = {x ∈ Rn | Ax ≥ b} 6= ∅
can be written in terms of the extreme points {pk | k ∈ K} and extreme rays

{rj | j ∈ J} of Q.
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Q =

{
x ∈ Rn

∣∣∣∣∣ x =
∑
k∈K

λkpk +
∑
j∈J

µjrj ,∑
k∈K

λk = 1,

λk ≥ 0 ∀k ∈ K,

µj ≥ 0 ∀j ∈ J

}

For a given linear program (P) : z = min
{
cTx

∣∣ Ax ≥ b, x ∈ Rn≥0
}
we can

write its dual program (D) as w = max
{
uT b

∣∣ ATu ≤ c, u ∈ Rm≥0
}
. The former

program (P) is called the primal. Regarding feasibility and boundedness of

such a pair of primal and dual programs, only the four combinations given in

Table A.1 are possible.

primal (P) dual (D)
(i) feasible, bounded feasible, bounded
(ii) feasible, unbounded infeasible
(iii) infeasible feasible unbounded
(iv) infeasible infeasible

Table A.1: Possible combinations of feasibility and boundedness of a pair of
primal and dual programs.

If x is a feasible solution of the primal problem and u is a feasible solution

of the dual problem, it can be proved that cTx ≥ z ≥ w ≥ uT b. This property

is called weak duality. In case (i) of Table A.1, there exist optimal solutions

x∗ for the primal problem and u∗ for the dual problem. Strong duality implies

that in case (i) both solutions are attained and the duality gap is zero, i.e.,

cTx∗ = z = w = u∗T c.

Farkas' lemma states that a system of linear inequalities Ax ≥ b is feasible

if and only if uT b ≤ 0 for any u ∈ Rm≥0, ATu ≤ 0. By Minkowski's theorem, this

can equivalently be written in terms of extreme rays: Ax ≥ b is feasible if and

only if, rTj b ≤ 0 for any extreme ray rj ∈ R{r∈Rm
≥0 | AT r≤0}.

A.2 Benders' Decomposition

J. F. Benders [Ben62] has presented a partitioning procedure for programming

problems with mixed-variables of this type
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min
{
cTx+ f(y)

∣∣ Ax+ F (y) ≥ b, x ∈ Rn, y ∈ S
}
. (A.1)

In this original de�nition from Benders', one set of variables x ∈ Rn are real

valued, whereas the other variables y ∈ S ⊆ Rp are from some arbitrary subset

of Rp. Here A ∈ Rm×n, f : S 7→ R, F : S 7→ Rm, b ∈ Rm and c ∈ Rn.
This procedure replaces the problem (A.1) by a linear master problem on Rn

and a series of subproblems de�ned on S. In an iterative fashion subproblems are

solved and additional constraints are added to the master problem. In a �nite

number of iterations this leads to an optimal solution of the original problem.

This procedure is nowadays known as the Benders' decomposition.

One example in Benders' work is for mixed integer programs where S ⊆ Zp.
The application of Benders' decomposition in this thesis is to linear programs

only. Speci�cally, it is applied to LP relaxations of mixed integer programs.

Therefore, the remainder of this section will present Benders' decomposition for

linear programs. Here, the decision variables are partitioned into two sets, both

taking values in a real vector space.

Consider the following linear programming problem, denoted by (P):

z = min cTx+ hT y

s.t. Ax+Gy ≥ b (A.2)

x ∈ Rn≥0
y ∈ Rp≥0.

For a �xed x, we have the primal subproblem P(x):

zP(x) = minhT y

s.t. Gy ≥ b−Ax (A.3)

y ∈ Rp≥0

The dual of P(x) is the dual subproblem D(x):

zD(x) = maxuT (b−Ax)

s.t. GTu ≤ h (A.4)

u ∈ Rm≥0

Denote the feasible region of D(x) by Q =
{
u ∈ Rm≥0

∣∣ GTu ≤ h}, the ex-
treme points of Q by PQ = {pk | k ∈ K} and the extreme rays of Q by RQ =

{rj | j ∈ J}.
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Observe that (A.2) is feasible if and only if there exists a x ∈ Rn≥0 such that

the problem P(x) is feasible. By explicitly enforcing the feasibility of (P), the

following problem is equivalent to (A.2):

min cTx+ zP(x)

s.t. ∅ 6=
{
y ∈ Rp≥0

∣∣∣ Gy ≥ b−Ax}
x ∈ Rn≥0

Applying Farkas' lemma leads to

min cTx+ zP(x)

s.t. 0 ≥ rTj (b−Ax) ∀rj ∈ RQ
x ∈ Rn≥0

This is a minimization over all x such that P(x) is feasible. If in addition P(x)

is bounded for any x ∈ Rn≥0, also the dual D(x) is feasible and bounded and we

can rely on strong duality, i.e., zP(x) = zD(x) = max
{
pTk (b−Ax)

∣∣ pk ∈ PQ}.
Hence the problem can be rewritten as

min cTx+ µ

s.t. µ ≥ pTk (b−Ax) ∀pk ∈ PQ
0 ≥ rTj (b−Ax) ∀rj ∈ RQ (A.5)

x ∈ Rn≥0
µ ∈ R

If P(x) is unbounded for some x, the dual is infeasible: Q = ∅ and PQ = ∅.
It follows that µ is unrestricted and therefore also (A.5) is unbounded. This

proves the equivalence of (A.2) and (A.5).

The constraints of the form µ ≥ pTk (b − Ax)∀pk ∈ PQ are called optimality

constraints and the inequalities 0 ≥ rTj (b − Ax)∀r∈RQ are called feasibility

constraints. This linear program in x contains a large number of constraints

and in general the sets PQ and RQ are not known. However, only a subset of

these constraints is needed to describe an optimal solution.
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A.2.1 Separation of Benders' Cuts

The previous section showed the equivalence of the two linear programs (A.2)

and (A.5). This section shows how to �nd necessary elements of PQ and RQ

iteratively. Denote by P tQ ⊆ PQ and RtQ ⊆ RQ the sets of extreme points and

extreme rays known in iteration t. The following relaxed master program is a

relaxation of (A.5):

min cTx+ µ

s.t. µ ≥ pTk (b−Ax) ∀pk ∈ P tQ
0 ≥ rTj (b−Ax) ∀rj ∈ RtQ (A.6)

x ∈ Rn≥0
µ ∈ R

The algorithm to solve (A.2) by iteratively increasing P tQ and RtQ in (A.6) works

as follows.

1. In iteration t = 0, both sets are empty: P 0
Q = ∅, R0

Q = ∅.

2. Solve (A.6) to set (xt, µt).

3. If (A.6) is infeasible → Stop(infeasible).

4. Solve the dual subproblem D(xt).

(a) If D(xt) is infeasible → Stop(unbounded).

(b) If D(xt) is feasible and unbounded, we get an extreme ray r of Q.

Add a feasibility cut: Rt+1
Q = RtQ ∪ {r}.

(c) Otherwise, D(xt) is feasible and bounded and we get an extreme

point p of Q.

i. If µt = pT (b−Axt) → Stop(optimum).

ii. Otherwise, µt < pT (b − Axt). Add an optimality cut: P t+1
Q =

P tQ ∪ {p}

5. Set t = t+ 1, go to step 2.

A.3 Tightening by Rounding

This section recapitulates a method to tighten inequalities in integer programs.
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Consider the following inequality in a minimization problem:∑
i∈I

aixi ≥ b (A.7)

where x ∈ {0, 1}|I| is a vector of binary variables, with nonnegative coe�cients

a ∈ R|I|≥0 and a nonnegative right hand side b ≥ 0. Assume that the coe�cient of

the variable with index i is greater than the right hand side, i.e., ai > b for some

�xed i ∈ I. The constraint can be satis�ed by setting xi = 1. This remains true

if ai is replaced by b. More generally, the constraint (A.7) is equivalent to:∑
i∈I

min(ai, b)xi ≥ b (A.8)

with respect to the integer program. However this rounded form (A.8) is

stronger with respect to the linear relaxation
(
x ∈ [0, 1]|I|

)
. A trivial example

where the objective value of the LP is actually larger when using the rounded

inequality is the following: Consider a binary program using only one vari-

able: min {x | ax ≥ b, x ∈ {0, 1}}. Assume that the coe�cient is greater than

the right hand side, i.e., a > b. The linear relaxation of the problem will yield

the value x = b/a < 1, whereas the linear relaxation of the rounded problem:

min {x | bx ≥ b, x ∈ {0, 1}} will lead to a stronger solution x = b/b = 1, which

in fact is the integer optimal solution.

This method can be extended to cases where some coe�cients on the left

hand side are negative. Consider the following inequality:∑
i∈I

aixi −
∑
j∈J

djyj ≥ b (A.9)

∑
i∈I

aixi ≥ b+
∑
j∈J

djyj (A.10)

with binary variables x ∈ {0, 1}|I|,y ∈ {0, 1}|J|, nonnegative coe�cients a ∈
R|I|≥0,d ∈ R|J|≥0 and a nonnegative right hand side b ≥ 0. The y variables have

negative coe�cients in (A.9). Moving them to the right hand side, we observe

that the maximum value of the right hand side of (A.10) is b +
∑
j∈J dj for

y = 1. Now we can apply the same argument as above and provide the rounded

inequality ∑
i∈I

min

ai, b+
∑
j∈J

dj

xi ≥ b+
∑
j∈J

djyj (A.11)

which is equivalent for the integer program, but strengthens the LP.
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A.4 Min-Cut Max-Flow

This section repeats a classical theorem from combinatorial optimization that

states the equivalence between the maximum �ow problem and the minimum

cut problem (see [NW88]).

Consider a directed graph G = (V,A) with capacities on the arcs u ∈ R|A|≥0
and two special nodes: a source s ∈ V and a sink t ∈ V . The maximum �ow

problem asks for a �ow f ∈ R|A|≥0 , subject to
∑

(ij)∈δ+(i) fij −
∑

(ji)∈δ−(i) fji = 0

∀i ∈ V \ {s, t} that does not exceed the capacities f ≤ u and maximizes the

amount of �ow
∑

(it)∈δ−(t) fit through the graph.

The minimum cut problem asks for a partition of V : {U, Ū}, U ∩ Ū = ∅,
U ∪ Ū = V, s ∈ U, t ∈ Ū such that the set of crossing arcs δ+(U) = {(i, j) ∈ A|
i ∈ U, j ∈ Ū} minimizes the capacity

∑
a∈δ+(U) ua.

Obviously every �ow has to cross any cut in the graph. Therefore no �ow

through the graph can be greater than the capacity of any cut:∑
a∈δ−(t)

fa ≤
∑

a∈δ+(U)

ua

for any feasible �ow f and any set U : {s} ⊆ U ⊆ V \ {t}. Furthermore, the

max-�ow min-cut theorem states that:

Theorem A.4.1. The value of a maximum �ow equals the capacity of a mini-

mum cut.

The proof can be found for example in [NW88].
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Appendix B

List of Symbols

α Coverage rate alpha. De�nes the target prize p0 = α
∑
k∈K pk.,

page 76

A The set of arcs of a graph G = (V,A), page 29

a An arc of a graph a ∈ A, page 29

ck The cost associated with a customer ck ≥ 0, page 12

ce,m The cost of a module ce,m ≥ 0, e ∈ E,m ∈Me, page 9

δ+(i) The set of arcs emanating from node i, page 31

δ+(i) The set of arcs emanating from the node i, page 11

δ+(S) The set of arcs emanating from the set S, page 32

δ−(i) The set of arcs entering node i, page 31

δ−(i) The set of arcs entering the node i, page 11

δ−(S) The set of arcs entering the set S, page 32

dk The demand of a customer dk ≥ 0, page 9

E The set of edges of a graph G = (V,E), page 9

e An edge of a graph e ∈ E, page 9

fa A real valued �ow variable associated to the arc a, page 11

G An undirected graph G = (V,E) or a directed graph G = (V,A),

page 9

i A node in a graph i ∈ V , page 11
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{i, j} An (undirected) edge in a graph {i, j} ∈ E, page 11

(i, j) A (directed) arc in a graph (i, j) ∈ A, page 29

j A node in a graph j ∈ V , page 11

K The set of customers K ⊂ V , page 9

k A customer k ∈ K, page 9

m The index of a module m ∈Me, page 9

µe A function mapping from a requested capacity to the index of the

most appropriate module for the edge e, page 27, page 85

Me The set of indices of the modules available for the edge e,Me =

{1, 2, . . . }, page 9

p0 The target prize p0 ≥ 0, page 12

pk The prize associated with a customer pk ≥ 0, page 12

r The backbone access node r ∈ V , page 9

ue,m The capacity of a module ce,m ≥ 0, e ∈ E,m ∈Me, page 9

V The set of nodes of a graph G = (V,E), page 9

v A vertex of a graph v ∈ V , page 9

xa,m A binary decision variable associated to the arc a and the module

m, page 31

xe,m A binary decision variable associated to the edge e and the module

m, page 11

yk A binary decision variable associated to the customer k, page 12



Appendix C

Abstract

Within recent years the request for broadband telecommunication networks has

been constantly increasing. A strategy employed by telecommunication compa-

nies to increase the bandwidth on the last mile of the network is to lay optical

�ber directly to the end customer. This strategy is denoted as �ber to the

home (FTTH).

In this thesis the local access network design problem (LAN) and its prize-

collecting variant (PC-LAN) are used to formalize the planning of FTTH net-

works. The LAN problem asks for a cost minimal solution and allows to model

di�erent cable technologies, existing infrastructure and the overhead cost in-

curred by building new connections. In addition, the PC-LAN problem covers

the aspect, that not all customers must necessarily be connected with FTTH,

but instead we search for a subset of customers in order to maximize pro�ts.

To solve LAN and PC-LAN instances, the following operations research

methods are employed: Preprocessing, mixed integer programming, model

strengthening by variable disaggregation, Benders' decomposition and adaptive

multi-start heuristics.

In a project between University of Vienna and Telekom Austria, large real

world data sets for FTTH planning were investigated and the methods pre-

sented in this thesis have been designed. These solution methods have been

implemented as computer programs and empirically veri�ed to be reasonable

approaches to FTTH network design problems.
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Anhang D

Zusammenfassung

In den letzten Jahren gab es zunehmenden Bedarf für breitbandige Telekom-

munikations Netzwerke. Eine von Telekommunikationsunternehmen angewandte

Strategie um die Bandbreite entlang der last-mile des Netzwerks zu erhöhen ist,

Glasfaserkabel direkt bis zum Endkunden zu verlegen. Diese Strategie wird �ber

to the home (FTTH) genannt.

In der vorliegenden Arbeit wird das local access network design problem

(LAN) und die Variante mit prize-collecting (PC-LAN) verwendet, um das

Problem der FTTH Planung zu modellieren. Das LAN Problem zielt darauf

ab eine kostenminimale Lösung zu �nden und gestattet es sowohl verschiedene

Kabeltechnologien und existierende Infrastruktur, als auch die Zusatzkosten zu

modellieren, die anfallen wenn neue Verbindungen hergestellt werden. Darüber

hinaus, erlaubt das PC-LAN Problem den Aspekt zu modellieren, dass nicht

unbedingt alle Kunden mit FTTH versorgt werden müssen. Stattdessen wird

eine Teilmenge der Kunden versorgt mit dem Ziel den Pro�t zu maximieren.

Um LAN und PC-LAN Problem Instanzen zu lösen, werden folgende Meth-

oden des Operations Research angewandt: Preprocessing, ganzzahlige Program-

mierung, Stärkung der mathematischen Modelle durch Disaggregation der Vari-

ablen, Benders' Dekomposition und adaptive Multi-Start-Heuristiken.

In einem Projekt von Universität Wien und Telekom Austria wurden groÿe

FTTH Datensätze untersucht und die hier vorgestellten Methoden entworfen.

Diese Lösungsansätze wurden als Computerprogramme implementiert und ihre

Tauglichkeit zur Behandlung von FTTH Planungsfragen konnte gezeigt werden.
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