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Abstract

The present thesis is a purely theoretical study, the main goal of which is the theoretical de-

velopment of Electronic Structure Theory from the quantum field theoretical and many-body

theory point of view.1 I have tried to introduce all concepts and definitions in the quantum

field theoretical framework. The independent electron approximation is always treated as a

special case of the general many-body theory, but does not play any conceptual role. Another

goal of this thesis has been the elucidation of various analogies between Electronic Structure

Theory and other branches of physics.

The concrete topic of this thesis is the application of Green function methods to the quan-

tum theory of materials properties in the solid state, in particular to Electronic Structure

Theory. The thesis is divided into two parts, (i) a review and discussion of some aspects of

the general Many-Body Theory and non-relativistic Quantum Field Theory background and

(ii) electronic Green functions methods.

The first three Sections of Chapter 1 are included to make this document as self-contained

as possible. In the first section of Chapter 1, I review the fundamental Hamiltonian of solid

state physics and briefly discuss its limitations. In the second section, I investigate the role

of Green functions (or propagators) in standard Quantum Mechanics. This will be useful for

the application of Green functions in many-body physics because Green functions in stan-

dard Quantum Mechanics display a number of analogies to their many-body (or quantum

field theoretical) counterparts. In the third section, I give a very condensed review of Density

Functional Theory.

In the fourth section, I deal with Linear Response Theory in both classical electrodynam-

ics and thermodynamics and discuss its quantum mechanical formulation within the Kubo

formalism. I placed some emphasis on the interpretation of electrodynamics in continuous

media in terms of internal fields and its relation to the so-called Modern Theory of Polariza-

tion. A master formula is derived which allows for the determination of all electrodynamic

materials properties from the microscopic conductivity. I also comment on the connection

between quantum mechanical response functions and thermodynamic susceptibilities, on the

classification of response functions in general, and on the derivation of so-called relaxed re-

1Electronic Structure Theory can be defined as non-relativistic, fermionic Quantum Field Theory at tem-

perature T = 0. P.C. Martin and J. Schwinger [67] are credited with the introduction of field-theoretical

methods for quantum many-body systems.
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sponse functions from Mean Field Theory.

As all these topics can be treated without ever taking recourse to field theoretical meth-

ods, the first Chapter is called “First Quantization”. In the second Chapter, I then review

the formulation of multi-particle Quantum Mechanics in the Fock space and discuss its re-

lation to Quantum Field Theory. Some effort is devoted to a field-theoretical formulation

of quantized lattice oscillations which displays numerous analogies to the electronic Green

function theory. In particular, I have emphasized the formulation of phononic Field Theory

in real space.

The second part of this thesis, “Green Function Theory”, is dedicated to the theory of

Green functions in Electronic Structure Theory. At the beginning, I introduce the notion of

many-body Green functions in its most general form, discuss some of their elementary prop-

erties and review the equation of motion theory for Green functions as well as the Lehmann

representation. Some minor lemmata about the Lehmann representation are proven. For

the convenience of the reader, a final subsection treats some aspects of solid state physics.

This paves the way for a discussion of the definition and measurement of band structures

and Fermi surfaces from a many-body point of view. The fourth Chapter starts with an

introduction of Green function perturbation theory. Although this introduction is rather

sketchy in other respects, a detailed proof of the Gell-Mann and Low theorem is given in

which several arguments which have been treated only cursorily in the standard reference

[21] have been worked out in detail. After a short review of the Bethe-Salpeter equation, I

derive a self-consistent set of three equations which encapsulates the whole Green function

theory and show its equivalence to the well-known Hedin equations. This set of three equa-

tions, henceforth called the self-consistent set of equations, is a central result of this thesis.2

The second part of Chapter 4 is dedicated to a discussion of several standard approximations

within the context of the self-consistent set of equations.3

2R. Starke, G. Kresse: Phys Rev B 85 7 075119 (2012)
3I want to remark that the renormalization of Feynman graphs is a topic which has been completely skipped

in this work while it is actually highly relevant. The reason for this is that this thesis is centered around

the Electronic Structure Theory as it is implemented in modern computer codes, e.g. VASP. These codes

ultimately calculate everything in finite dimensional Hilbert spaces where all Feynman graphs collapse

to matrix products. Usually, it is then investigated empirically whether the resulting values stay roughly

constant as a function of a suitably defined cut-off momentum. In other words, the Feynman graphs are

supposed to converge anyway. Intuitively, this has the smack of truth to it in that condensed matter

physics is low-energy physics and therefore the high-energy degrees of freedom may somehow become

irrelevant leaving us with a (finite-dimensional) Hilbert space of low-lying degrees of freedom. We stress,

however, that in principle the necessity of renormalization is in no way restricted to high energy physics.
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A decisive conceptual advantage of the self-consistent set of equations developed in Chapter

4 is that it is independent of the concrete form of the two-particle interaction and of the

orbital basis in the one-particle Hilbert space. This motivates the fifth Chapter in which

effective electron-electron interactions are introduced. They are not included in the standard

model of solid state physics discussed in Chapter 1. The first part of Chapter 5 discusses

some general aspects of the theory of effective Lagrangeans. The application of this the-

ory to classical electrodynamics shows that effective theories are in general non-local field

theories. I then discuss the equivalence of the effective Lagrangean approach in classical

Field Theory to a quantum mechanical approach through the Gell-Mann and Low theorem.

After a short discussion of non-local field theories, the central result of which is the deriva-

tion of the connection between the non-local interaction Lagrangean and the interaction

Hamiltonian, the effective Lagrangean approach is applied to the full electromagnetic inter-

action of electrons, yielding a purely electronic but time-dependent Hamiltonian containing

current-current terms. I then derive a static approximation to this Hamiltonian and the

corresponding Hartree-Fock equations. Finally, the results from the electromagnetic case are

used as a motivation to derive and discuss effective electron-electron interactions mediated

by phonons. A relation between the effective, phonon-mediated electron-electron interaction

and the nuclear polarizability is derived and discussed. This allows for a rederivation of

effective interactions in general from a mean-field theoretical point of view. Within this con-

text it becomes possible to introduce a new way to decouple electronic and nuclear degrees

of freedom and to generalize the standard phononic Hamiltonian, which is recovered in a

suitable zero-frequency limit. This leads to the ultimate goal of this thesis: the unification

of electronic and phononic propagator theories into one self-consistent system of equations.

The appendix mainly assembles conventions and formulas of the ubiquitous theory of Fourier

transforms and related topics.

Chapter 4 follows the paper: R. Starke, G. Kresse, Phys Rev B 85 7 075119 (2012).

(Cf. e.g. [86]) A systematic investigation of Feynman graph theory in Electronic Structure Theory with

regard to the possible necessity of renormalization would of course constitute a dissertation in its own

right.
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Kurzbeschreibung

Die vorliegende Arbeit stellt eine rein theoretische Untersuchung dar, deren Hauptziel darin

besteht, die Theorie der elektronischen Struktur vom Standpunkt der Quantenfeld- und Viel-

teilchentheorie aus zu entwickeln. Dabei habe ich versucht, alle Konzepte und Definitionen

im quantenfeldtheoretischen Rahmen einzuführen.4 Die Einteilchennäherung hingegen wird

nur als Spezialfall behandelt, spielt jedoch keine konzeptionelle Rolle. Ein weiteres Ziel dieser

Arbeit besteht darin, Analogien zwischen der“Electronic Structure Theory”und anderen Ge-

bieten der Physik zu erhellen.

Das konkrete Thema dieser Dissertation ist die Anwendung von Greenschen Funktionen

auf die Quantentheorie der Materialeigenschaften des Festkörpers, insbesondere der elektro-

nischen Struktur. Die Arbeit ist in zwei Teile gegliedert: (i) eine Zusammenfassung und

Diskussion des allgemeinen vielteilchen- und quantenfeldtheoretischen Rahmens und (ii) die

Theorie der elektronischen Green-Funktionen.

Die ersten drei Abschnitte von Kapitel 1 wurden aufgenommen, um diese Arbeit möglichst in

sich abgeschlossen zu halten. Im ersten Abschnitt definiere ich den fundamentalen Hamilton-

Operator eines Festkörpers und diskutiere die Grenzen seiner Anwendbarkeit. Im zweiten

Abschnitt wird die Rolle der Greenschen Funktionen in der Standard-Quantenmechanik un-

tersucht, was sich als nützlich im Vielteilchenfall herausstellen wird, da die quantenmechanis-

chen Greenschen Funktionen einige Analogien zu ihren quantenfeldtheoretischen Pendants

aufweisen. Der dritte Abschnitt stellt eine kurze Einführung in die Dichtefunktionaltheorie

dar.

Der vierte Abschnitt widmet sich der “Linear Response Theory” sowohl vom Standpunkt

der klassischen Elektrodynamik, als auch aus der Sicht der Thermodynamik und Quan-

tenmechanik. Ein Schwerpunkt liegt hierbei auf der Interpretation der Elektrodynamik

kontinuierlicher Medien im Sinne einer Unterteilung in externe und induzierte Felder und

ihrem Zusammenhang mit der sogenannten “Modern Theory of Polarization”. Es wird eine

Schlüsselformel abgeleitet zur Berechnung aller elektrodynamischen Response-Eigenschaften

aus der mikroskopischen Leitfähigkeit. Weiterhin untersuche ich den Zusammenhang zwis-

chen quantenmechanischen Response-Funktionen und thermodynamischen Suszeptibilitäten,

4Elektronische Strukturtheorie kann als nichtrelativistische, fermionische Quantenfeldtheorie bei Temper-

atur T = 0 definiert werden. Die Einführung feldtheoretischer Methoden in die Vielteilchenquanten-

mechanik wird P.C. Martin und J. Schwinger [67] zugeschrieben.
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die allgemeine Klassifikation von Response-Funktionen und die Ableitung von relaxierten

Response-Funktionen aus der “Mean Field Theory”.

Da alle diese Themen im Grunde ohne Zuhilfenahme quantenfeldtheoretischer Methoden

behandelt werden können, wurden sie im ersten Kapitel unter der Überschrift “First Quan-

tization” zusammengefasst. Im zweiten Kapitel bespreche ich dann die Formulierung der

Vielteilchen-Quantenmechanik im Fock-Raum und deren Zusammenhang mit der Quanten-

feldtheorie. Dem folgt eine feld-theoretische Formulierung von Gitterschwingungen, die viele

Analogien zur elektronischen Green-Funktionen-Theorie aufweist. Insbesondere habe ich im

Gegensatz zur üblichen Darstellung von Gitterschwingungen – insbesondere des Phononen-

Propagators – im Fourier-Raum alles konsequent im Ortsraum behandelt.

Der zweite Teil dieser Dissertation, “Green Function Theory”, gilt der Theorie der Green-

schen Funktionen im Rahmen der elektronischen Strukturtheorie. Zunächst führe ich noch

einmal den Begriff der Greenschen Funktion ein und diskutiere einige elementare Eigen-

schaften sowie die Bewegungsgleichung und die Lehmann-Darstellung der Greenschen Funk-

tion, wobei einige kleinere Lemmata formuliert werden. Im Sinne des Lesers fasst ein weit-

erer Unterabschnitt einige Schlüsselformeln der Festkörperphysik zusammen, die dann im

Weiteren verwendet werden, um die Begriffe der Bandstruktur und der Fermi-Fläche vom

quantenfeldtheoretischen Standpunkt aus zu diskutieren. Das vierte Kapitel gibt zunächst

eine Wiederholung der störungstheoretischen Behandlung von Greenschen Funktionen. Ob-

wohl sich dieses Kapitel im Allgemeinen eher als skizzenhafter Überblick versteht, wurden

einige Argumente, die in dem Standardwerk [21] nur oberflächlich erwähnt wurden, im vollen

Detail ausgeführt. Nach einer kurzen Besprechung der Bethe-Salpeter-Gleichung folgt dann

die Ableitung eines selbstkonsistenten Gleichungssystems, welches die komplette elektronis-

che Green-Funktionen-Theorie enthält. Dieses System dreier Gleichungen, im Folgenden das

selbskonsistente Gleichungssystem genannt, ist ein zentrales Ergebnis dieser Arbeit.5 Der

zweite Abschnitt des vierten Kapitels diskutiert dementsprechend die gängigen Näherungen

im Rahmen dieses Gleichungssystems.6

5R. Starke, G. Kresse: Phys Rev B 85 7 075119 (2012)
6An dieser Stelle möchte ich anmerken, dass die Renormierung von Feynman-Graphen ein Thema ist, das in

der vorliegenden Dissertation völlig ausgelassen wurde, obwohl es eigentlich hochgradig relevant ist. Der

Grund dafür besteht darin, dass diese Arbeit sich um die elektronische Strukturtheorie dreht, so wie sie in

modernen Computer-Programmen, beispielsweise VASP, implementiert wurde. Dergleichen Programme

berechnen letzten Endes alle Größen in endlichdimensionalen Hilberträumen, was zur Folge hat, dass

sich Feynman-Graphen zu bloßen Matrixprodukten reduzieren. Es wird dann üblicherweise empirisch

untersucht, ob die resultierenden Ergebnisse in Abhängigkeit eines entsprechend definierten Cut-Off-

Impulses konstant bleiben. Mit anderen Worten, es wird davon ausgegangen, dass die Feynman-Graphen

Thesis, Vienna, July 4, 2012
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Ein Hauptvorteil des selbstkonsistenten Gleichungssystems, so wie es im vierten Kapitel

entwickelt wurde, besteht in seiner Forminvarianz unter Basiswechseln im Hilbertraum und

seiner Unabhängigkeit von der konkreten Form der Zweiteilchen-Wechselwirkung. Dieses

mag als Motivation des fünften Kapitels dienen, in welchem effektive, elektronische Wech-

selwirkungen eingeführt werden, die nicht Teil des Standardmodells der Festkörperphysik

sind, so wie es im ersten Kapitel diskutiert wurde. Im ersten Abschnitt des fünften Kapi-

tels werden zunächst einige allgemeine Züge effektiver Lagrange-Funktionen diskutiert. Die

Anwendung dieser Erkenntnisse auf die klassische Elektrodynamik erweist effektive Theo-

rien als nicht-lokale Feldtheorien. Ich diskutiere weiterhin die Verbindung zwischen effek-

tiven Lagrangeans und dem Gell-Mann-Low-Theorem. Nach einer Ableitung nicht-lokaler

Euler-Lagrange-Gleichungen wird die effektive Feldtheorie dann auf die volle elektromag-

netische Wechselwirkung der Elektronen angewendet, was zu einem rein elektronischen, je-

doch zeitabhängigen Hamiltonian führt, der Strom-Strom-Wechselwirkungen berücksichtigt.

Für diesen leite ich dann eine statische Näherung und die daraus resultierenden Hartree-

Fock-Gleichungen ab. Schließlich werden die Erkenntnisse aus der effektiven elektromagnetis-

chen Wechselwirkung verwendet, um eine effektive, phononen-induzierte Elektron-Elektron-

Wechselwirkung sowie deren Verhältnis zur nuklearen Polarisierbarkeit abzuleiten. Diese

ermöglicht dann eine Neuinterpretation effektiver Wechselwirkungen im Sinne einer dann zu

erläuternden “Mean Fluctuation Theory”. In diesem Zusammenhang ergibt sich auch ein

neues Entkopplungsschema für elektronische und nukleare Freiheitsgrade. Der Standard-

Hamiltonian der Phononen ergibt sich daraus dann als ein statischer Limes. Damit gelingt

es schließlich, phononische und elektronische Freiheitsgrade in einem geschlossen, selbstkon-

sistenten Propagator-Gleichungssystem zusammenzufassen.

Der Anhang fasst hauptsächlich Formeln und Konventionen der allgegenwärtigen Fourier-

Transformation zusammen.

Kapitel 4 folgt der Publikation: R. Starke, G. Kresse, Phys Rev B 85 7 075119 (2012).

ohnehin konvergieren. Das klingt intuitiv plausibel, da Festkörperphysik auch Niedrigenergiephysik be-

deutet und man folglich vermuten mag, dass die Hochenergiefreiheitsgrade irgendwie verschwinden und

dabei einen (endlichdimensionalen) Hilbertraum der Niedrigenergiefreitheitsgrade zurücklassen. Es ist

jedoch zu betonen, dass im Prinzip die Notwendigkeit der Renormierung in keiner Weise auf den Bereich

der Hochenergiephysik beschränkt ist. (siehe beispielsweise [86]) Eine systematische Untersuchung der

Feynman-Graphen-Theorie in der elektronischen Strukturtheorie im Hinblick auf die Notwendigkeit der

Renormierung wäre natürlich eine Dissertation für sich.
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Part I.

Many-Body Theory

15





1. First Quantization

1.1. Quantum Mechanics of the Solid State

1.1.1. Standard Model

Hilbert Space for Solid State Physics We begin this work by reviewing the first-

quantized, non-relativistic Hamiltonian of a system of N nuclei with charge Ze and Z ×N
electrons (Z,N ∈ N) where N is large (≥ 1023). The Hilbert space of this system is a

subspace of HN
nucl ⊗HZN

el which is spanned by functions of the form

Ψ(y1, . . . ,yN ,x1, . . . ,xZN) = ψ(y1, . . . ,yN)φ(x1, . . . ,xZN) (1.1)

where the arguments are to be understood as joint spin and space variables. The electronic

one-particle Hilbert space Hel ≡ H is given by

H ' C2 ⊗ L2(R3,C, dx) ' L2(R3,C, dx)⊕ L2(R3,C, dx) ' L2(R3,C2, dx). (1.2)

The definition of the nuclear one-particle Hilbert space depends on the spin s of the nucleus.

For the eigenvalue ms of the spin operator in a given direction, we have the inequality

−s ≤ ms ≤ s (1.3)

which gives 2s + 1 possible values. The spinorial space is therefore C2s+1 and the nuclear

one-particle Hilbert space is given by

Hnucl ' C2s+1 ⊗ L2(R3,C, dy) '
s⊕
−s

L2(R3,C, dy) ' L2(R3,C2s+1, dy). (1.4)

The ZN -electron Hilbert space HZN is given in terms of H as ∧ZNH and the N -nuclei

Hilbert space is given by ∧NHnucl for s ∈ 1
2
N and ∨NHnucl for s ∈ N. In other words, the

Hilbert space restricted to the subspace of functions which are totally antisymmetric with

respect to the xi and totally symmetric or antisymmetric with respect to the yj depending

on the spin of the nuclei (symmetric for integer spin, antisymmetric for half-integer spin).
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Hamiltonian for Solid State Physics The Hamiltonian of the system reads1

Ĥ = (T̂nucl + V̂nucl−nucl) + (T̂el + V̂el−el) + V̂el−ion (1.5)

≡ − ~2

2M

N∑
i=1

∆yi +
Z2e2

4πε0

∑
i<j

1

|yi − yj|
(1.6)

− ~2

2m

ZN∑
i=1

∆xi +
e2

4πε0

∑
i<j

1

|xi − xj|
− Ze2

4πε0

N∑
i=1

ZN∑
j=1

1

|yi − xj|
. (1.7)

The model consisting of this Hamiltonian and the Hilbert space HN
nucl ⊗HZN will be called

standard model of solid-state physics. In fact, the above Hamiltonian describes more generally

any non-relativistic system of electrons and nuclei interacting through the Coulomb potential,

e.g. the corresponding liquid would have the same Hamiltonian. Surprisingly enough, the

ground-state is in most cases crystalline. The dynamics of the system is described by a

Schrödinger equation

i~∂tΨ(y1, . . . ,yN ,x1, . . . ,xZN ; t) = ĤΨ(y1, . . . ,yN ,x1, . . . ,xZN ; t). (1.8)

Here, the time t enters as parameter. That means, for t being given Ψ ∈ H but Ψ is not

square-integrable with respect to dt. In practice, one is not interested in the full dynamics.

In most cases, one wants to find the values of certain observables in the ground-state

E0Ψ0(y1, . . . ,yN ,x1, . . . ,xZN) = ĤΨ0(y1, . . . ,yN ,x1, . . . ,xZN) (1.9)

or the canonical ensemble, i.e. the density-matrix

ρ̂ =
1

Z
exp

(
− Ĥ

kBT

)
(1.10)

with Z = Tr exp
(
− Ĥ
kBT

)
.

Usually, the full Hamiltonian of the electrons and nuclei is too complicated. One therefore

tries to eliminate the nuclear degrees of freedom in favor of a purely electronic Hamiltonian

which, although being inequivalent, entails for many realistic situations the most important

information. For this purpose, one usually proceeds in the following way:

1e denotes the charge of an electron including the sign. The advantage of this definition is that all formulas

generalize with the simple replacement e 7→ q.
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1. One introduces the so-called Born-Oppenheimer approximation (see e.g. [55]), an ex-

pansion of the fundamental Hamiltonian in the parameter

κ =
(m
M

)1/4

(1.11)

where m
M

is the mass ratio of nuclei and electrons. One writes the time-dependent

wave-function as

Ψ(y1, . . . ,yN ,x1, . . . ,xZN ; t) =
∑
i

ψi(y1, . . . ,yN ; t)φi(y1, . . . ,yN ,x1, . . . ,xZN).

(1.12)

This form of the wave-function is still completely general. Now one assumes that the

φi(y1, . . . ,yN ,x1, . . . ,xZN) ≡ φi(Y,X) are determined by the Schrödinger equation

(T̂el + V̂el−el + V̂el−ion(Y))φi(Y,X) = Ei(Y)φi(Y,X). (1.13)

This assumes that the φi(Y,X) ≡ φiY(X) are the electronic eigenstates corresponding

to the fixed nuclear position eigenstate configuration Y = (y1, . . . ,yN). One can now

plug this ansatz in the Schrödinger equation. The ψi(Y) then have to obey ([55], p.9,

equation (1.7))

i~∂tψi(Y, t) = (T̂nucl + V̂nucl−nucl + Ei(Y))ψi(Y, t) +

−
∑
j

〈φi|T̂el|φj〉ψj(Y, t)− 2
∑
j

N∑
k=1

~2

2M
∇kψj(Y, t)〈φi|∇k|φj〉

where ∇k = ∇yk .
2 One now assumes that the system if suitably prepared at an initial

time stays the whole time in a state of the form ψφ. This is not general any more.

The loss of generality comes in because the electronic wave-functions φY(X) are not

wave-functions with respect to nuclear coordinates Y. These enter only as parameters.

If such a diagonal expansion works the system is said to be adiabatic because under

the time-evolution the electrons run through a sequence of energy eigenstates of the

instantaneous nuclear configuration. The crucial point is now that a perturbative

inclusion of the non-adiabatic effects leads to a formal Taylor series in κ. However,

even within this adiabatic approximation, the nuclei are still delocalized. Although

the electronic states φi(Y,X) correspond to fixed nuclear configurations Y, the total

state is still a superposition of such electronic states with expansion coefficients ψi(Y).

2As this equation couples different nuclear eigenfunctions, the resulting theory is not of Schrödinger form

any more and will therefore not be considered in the sequel. An alternative decoupling will be proposed

in the last Chapter.
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One therefore proceeds further by introducing the classical nuclei approximation which

neglects T̂nucl. Furthermore, one momentarily neglects V̂el−ion. The eigenstates of

the resulting Hamiltonian for the nuclei are position eigenstates. In principle, any

configuration of eigenstates would solve the corresponding Schrödinger equation for

the nuclei. From experiments we know that the atoms in a crystal form regular arrays.

Therefore, we choose nuclei to form a Bravais lattice

xn0 = n1a1 + n2a2 + n3a3 (1.14)

with n ∈ Z3 and |a1 · (a2 × a3)| = Vc 6= 0. That means, the nth nucleus is in state

ψ(x) = δ(x− xn0) and the total nuclear state is a Slater determinant or permanent.

2. From experiments we know that low lying electronic spectral lines in a crystal are

only slightly shifted with respect to the spectral lines of the corresponding free atoms.

It therefore seems plausible to group the electrons into core electrons and valence

electrons. The core electrons are described by solutions of the atomic Schrödinger

equations centered around a nucleus of the lattice. Thus, the nuclei become ions. The

influence of the core electrons on the valence electrons is taken into account by the

introduction of the so-called pseudo-potentials. The simplest and most intuitive way

to do this is to compute the core electronic density n(x) from the atomic solutions and

include an operator of the form

v(x) =
e2

4πε0

∫
dx′

n(x′)

|x− x′|
(1.15)

in the Schrödinger equation for the valence electrons. This corresponds to a purely clas-

sical interaction between core electrons and valence electrons. In actual fact, however,

there is not even a basis to say that an electron is core or valence because the all-electron

solution would be antisymmetrized. Therefore, a proper core-valence interaction would

include exchange effects. As all-electron calculations are usually unfeasible, one tries

to compensate for this with more involved pseudo-potentials. (see e.g. [66]) Finally,

one replaces the initial V̂el−ion by the effective, external potential of the static regular

lattice and the valence-electrons. This new potential then obeys in the limit N →∞

∀(n1, n2, n3) ∈ Z3 : vext(x + n1a1 + n2a2 + n3a3) = vext(x). (1.16)

With these approximations, we get a purely electronic Hamiltonian of the form

Ĥ = (T̂el + V̂ext) + V̂el−el =
N∑
i=1

(
− ~2

2m
∆xi + vext(xi)

)
+

e2

4πε0

N∑
i<j

1

|xi − xj|
(1.17)
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where we renamed the electron number into N . Note, that this Hamiltonian is not transla-

tionally invariant anymore. The model consisting of the Hamiltonian (1.17) and the Hilbert

space HN = ∧NH will be called standard model of Electronic Structure Theory. Even for

the full standard model of solid-state theory, the standard model of Electronic Structure

Theory is a good starting point. The nuclear degrees of freedom are then reintroduced by

the concept of phonons (for details and definitions see sections 2.3 and 3.3 or [15]) with a

free Hamiltonian

Ĥph =
∑
kλ

~ωkλ

(
b†kλbkλ +

1

2

)
(1.18)

and a photon-electron interaction Hamiltonian typically written in the form ([15], Chapter

3)

V̂el−ph =
1

V

∑
k

∑
q∈Γ∗

∑
G∈Γ̃

gqG a†k+q+Gak(b†q + b−q). (1.19)

The full (all-electron) electron-phonon system T̂el + V̂ext + V̂el−el +Ĥph + V̂el−ph differs from the

standard model of solid-state physics only in that the ionic potential operator is expanded

linearly around a Bravais lattice of equilibrium positions. The introduction of phonons

regroups the nuclear degrees of freedom. The Hamiltonian with (1.19) is called the Fröhlich-

Hamiltonian.

1.1.2. Limitations of the Standard Model

The standard models have a number of restrictions:

1. Nuclei are completely described by their position and spin. In other words, the internal

structure of the nuclei is neglected in the description of the solid state. In actual fact,

every nucleus is a complicated many-body system in its own right. On an intuitive

level, disregarding the nuclear structure can be justified by the mental picture of a

nucleus which is highly localized on the electronic length scale (the length scale at which

the electronic wave-function typically varies). This localization makes it plausible to

treat the nuclei as point-particles. Within this approximation, the only vestige of the

complicated internal structure of the nucleus is the nuclear spin which, of course, is

the total spin of the nuclear many-body system and cannot be associated with the

individual elementary constituents of the nucleus. The effect of nuclear spins on the

electronic structure makes itself felt through spin-spin interactions of electrons and

nuclei. On an experimental level, disregarding the nuclear structure is justified because

the spectrum of nuclei in the bulk practically coincides with the spectrum of the free

nuclei. Nonetheless, the fact that the nucleus is not a point particle and displays a
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rich internal structure can make itself felt, e.g. by quadrupole terms in the interaction

potential V̂el−ion.

2. The standard model is completely non-relativistic. Surprising as it may be at first sight,

relativistic effects make themselves felt in a broad variety of solid-state experiments

and therefore cannot generally be neglected. In principle, there are two different kinds

of relativistic corrections:

a) First, relativistic corrections stem from the fact that the Schrödinger equation

(or rather the Pauli equation) is the non-relativistic approximation to the Dirac

equation. In other words, these corrections come from a modification of the wave-

equation as such. In solid state physics, this is usually taken into account by

expanding the relativistic dispersion relation

E =
√
c2p2 +m2c4 ' mc2 +

p2

2m
− 1

8

(p2)2

m3c2
+ . . . (1.20)

The term 1
8

(p2)2

m3c2
– the so-called mass-velocity term – is then promoted to an

operator through the replacement p 7→ −i~∇ and treated as a perturbation to

the Schrödinger equation. In hydrogen-like systems this leads to a first-order shift

given by

∆Enml =
Zα2

n2

(
n

l + 1/2
− 3

4

)
En (1.21)

where α = e2/4πε0~c ' 1/137 denotes the fine structure constant (cf. [20] p.23f).

The connection to the relativistic Dirac theory consists in the fact that the mass-

velocity term corresponds to a term in a Foldy-Wouthuysen transformed Dirac

Hamiltonian (cf. [47] p.69f).

b) Secondly, relativistic corrections stem from the fact that within the relativistic

regime new force terms arise. In other words, the inclusion of these corrections

does not consist in a modification of the wave-equation as such but only in the

additional inclusion of new potential terms. The most notable of these effects is

the so-called spin-orbit coupling which stems from the relativistic transformation

properties of the electric field (cf. [48] p.364f; [47] p.16). This leads to the inclusion

of a potential term

V̂SO =
1

m2
Ŝ · L̂1

r

∂v(r)

∂r
(1.22)

where v(r) is the Coulomb potential of the nucleus, r being the relative coordinate.
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1.2. Green Functions in Standard Quantum Mechanics

1.2.1. Definition and Properties

Definition For a particle with associated Hilbert space H = L2(R3,C, dx) and Hamiltonian

Ĥ = − ~2

2m
∆+v(x) a single-particle Green function in the space-time domain is a distribution

obeying (
i~∂t − Ĥ(x, ∂x)

)
G(xt,x′t′) = δ(x− x′)δ(t− t′). (1.23)

Remarks

1. For time-independent external potentials v(x), the Green function can be chosen such

that it depends only on the difference τ = t− t′.

2. A Green function is in general not uniquely defined by equation (1.23). Therefore,

(1.23) has to be supplemented by initial or boundary conditions. We postulate GR → 0

for τ → −∞ and GA → 0 for τ →∞ and the initial-value condition

i~GR/A(x,x′; τ = 0±) = ±δ(x− x′). (1.24)

3. The importance of the Green Function lies in the following:

Theorem 1.2.1 Consider the inhomogeneous Schrödinger equation

i~∂tψ(xt) = Ĥψ(xt) + f(xt) (1.25)

subject to the initial (final) condition

ψ(xt0) = ψ0(x). (1.26)

The unique solution of this problem is given by the Duhamel Formula:

ψ(xt) = i~
∫

dx′ G(xt,x′t0)ψ0(x′) +

∫ ±∞
t0

dt′
∫

dx′ G(xt,x′t′)f(x′t′) (1.27)

where G = ±GR/A for t > t0 or t ≤ t0 respectively.

The Duhamel formula shows that the Green function has two different roles: one is to

relate the solution to the inhomogeneity (the original meaning of “Green function”),

the second is to relate the solution to the initial value condition (“propagator”).
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24 Ronald Starke: Green Functions and Electronic Structure Theory

Green Functions as Propagators Consider now the homogeneous Schrödinger equation

and suppose we know ψ(x′t′) at some initial time t′. Then, we can obtain ψ at a later time

t by

ψ(xt) = i~
∫

dx′ GR(x,x′; t− t′)ψ(x′t′). (1.28)

On the other hand, expanding ψ with respect to a complete system of energy eigenstates

yields

ψ(xt) =
∑
n

ψn(x)〈ψn|ψ(t′)〉e−
i
~ εn(t−t′). (1.29)

This implies that the time-dependent integral operator∑
n

ψn(x)ψ∗n(x′)e−
i
~ εn(t−t′) (1.30)

propagates ψ from t to t′. We rewrite the last expression as

〈x|
∑
n

|ψn〉〈ψn|e−
i
~ εn(t−t′)|x′〉 (1.31)

and interpret ∑
n

e−
i
~ εn(t−t′)|ψn〉〈ψn| (1.32)

as the spectral resolution of Û(t − t′) = exp(−iĤ(t − t′)). Hence, the propagator can be

recast as

〈x|Û(t′, t)|x′〉 = 〈x| exp

(
− i

~
H(t− t′)

)
|x′〉 ≡ 〈xt|x′t′〉. (1.33)

Consequently, the propagator can also be interpreted as the amplitude for propagation from

(xt) to (x′t′). This can also be deduced from the theorem of Stone according to which the

time evolution of the wave-function is given by the one-parameter unitary group generated

by Ĥ, i.e.

ψ(t) = exp

(
− i

~
Ĥ(t− t′)

)
ψ(t′). (1.34)

Writing this in the position state representation, we get

〈x|ψ(t)〉 = ψ(xt) =

∫
dx′ 〈x| exp

(
− i

~
Ĥ(t− t′)

)
|x′〉〈x′|ψ(t′)〉. (1.35)

As it stands, the propagator propagates the state both into the future and the past. In

accordance with the conventions met above, we define a retarded and an advanced propagator

by means of:

i~GR(x,x′; t− t′) = θ(t− t′)〈x| exp

(
− i

~
Ĥ(t− t′)

)
|x′〉 (1.36)

−i~GA(x,x′; t− t′) = θ(t′ − t)〈x| exp

(
− i

~
Ĥ(t− t′)

)
|x′〉. (1.37)
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1.2.2. Examples

Free Green Functions The free Hamiltonian reads

Ĥ0 = − ~2

2m
∆x. (1.38)

The corresponding Green functions fulfill in the respective domains:(
~2

2m
∆ + i~∂t

)
G(xt,x′t′) = δ(x− x′)δ(t− t′). (1.39)(

−~2|k|2

2m
+ i~∂t

)
G(k, t) = δ(t− t′). (1.40)(

~2

2m
∆ + ε

)
G(x,x′, ε) = δ(x− x′). (1.41)(

−~2|k|2

2m
+ ε

)
G(k, ε) = 1. (1.42)

The last equation can be solved easily:

G(k, ε) =
1

ε− ε(k)
=

1

~ω − ~2|k|2
2m

. (1.43)

The remaining domains can be regained by Fourier backtransforms. However, these trans-

forms are not well defined because there are different distributions which can be considered

to be the regularization of 1/(ε− ~2k2/2m). Therefore, we redefine

G(k, ε) =
1

ε− ε(k)
:= lim

η→0

1

~ω − ~2|k|2
2m
± iη

(1.44)

with the limit in the distributional sense. The choice +iη corresponds to the retarded Green

function whereas −iη corresponds to the advanced Green function. In particular, in the

retarded case we have

i~G(xt,x′t′) = θ(t− t′)
(

m

2πi~(t− t′)

) 3
2

exp

(
im(x− x′)2

2~(t− t′)

)
(1.45)

i~G(kt,k′t′) = θ(t− t′)δkk′e−
i
~ ε(k)(t−t′) (1.46)

i~G(x,x′; ε) = i~
∫

dk

(2π)3)

exp(ik(x− x′))

ε− ~2|k|2
2m

+ iη
= − m

2π~2

exp(−ik|x− x′|)
|x− x′|

(1.47)

where k =
√

2mε/~.
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Spectral Resolution We now suppose the Hamiltonian to be of the form:

Ĥ = Ĥ0 + V̂ (1.48)

with the multiplicative potential (V̂ ψ)(x) = v(x)ψ(x). A formal expression for G can be

easily found, if we express δ(x− x′) in terms of a complete set of eigenfunctions of Ĥ:

δ(x− x′) =
∑
n

ψn(x)ψ∗n(x′). (1.49)

Similarly, G can be expanded as:

G(x,x′; ε) =
∑
n,m

Gnmψn(x)ψ∗m(x′). (1.50)

Plugging this into the Schrödinger equation, we get:

Gnm =
δnm
ε− εn

(1.51)

or

G(x,x′; ε) =
∑
n

ψn(x)ψ∗n(x′)

ε− εn
. (1.52)

In general, for the time-dependent Green function(
i~
∂

∂t
− Ĥ

)
G(xt,x′t′) = δ(x− x′)δ(t− t′). (1.53)

we now have the formal solution:

i~G(xt,x′t′) =

∫
dε

2π

∑
n

ψn(x)ψ∗n(x′)

ε− εn
exp

(
− i

~
ε(t− t′)

)
. (1.54)

Again as it stands, this integral is undefined due to the integration over the poles εn. Hence,

we redefine the integral according to

i~G(x,x′; t− t′) = lim
η→0

∫
dε

2π

∑
n

ψn(x)ψ∗n(x′)

ε− εn ± iη
exp

(
− i

~
ε(t− t′)

)
, (1.55)

i.e.

GR(x,x′, ε) =
∑
n

ψn(x)ψ∗n(x′)

ε− εn + iη
(1.56)

GA(x,x′, ε) =
∑
n

ψn(x)ψ∗n(x′)

ε− εn − iη
(1.57)
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leading to

i~GR(x,x′; t− t′) = θ(t− t′)
∑
n

ψn(x)ψ∗n(x′) exp
(
−i
εn
~

(t− t′)
)

(1.58)

−i~GA(x,x′; t− t′) = θ(t′ − t)
∑
n

ψn(x)ψ∗n(x′) exp
(
−i
εn
~

(t− t′)
)
. (1.59)

Perturbation Theory for Green Functions The equation

(i~∂t − Ĥ0)ψ(xt) = f(xt), (1.60)

can be solved by the Green function as

ψ(xt) = ψ0(xt) +

∫
dx′dt′ G0(xt,x′t′)f(x′t′) (1.61)

where ψ0 is a solution of the homogeneous equation. Now, consider the homogeneous

Schrödinger equation

(i~∂t − Ĥ)ψ(xt) = 0 (1.62)

with the Hamiltonian Ĥ = Ĥ0 + V̂ . We rewrite this equation as

(i~∂t − Ĥ0)ψ(xt) = v(x)ψ(xt). (1.63)

This can again be treated like an inhomogeneous equation with perturbation f(xt) =

v(x)ψ(xt). Hence,

ψ(xt) = ψ0(xt) +

∫
dx′ G0(xt,x′t′)v(x′)ψ(x′t′) (1.64)

where ψ0 is a solution of the unperturbed, homogeneous equation. By iteration it follows

ψ(xt) = ψ0(xt) +

∫
dx′dt′ G0(xt,x′t′)v(x′)ψ0(xt′) +∫

dx′dt′dx′′dt′′ G0(xt,x′t′)v(x′)G0(x′t′,x′′t′′)v(x′′)ψ0(x′′t′′) + . . . (1.65)

This means, in terms of Green functions that

G(xt,x′t′) = G0(xt,x′t′) +

∫
dx′′dt′′ G0(xt,x′′t′′)v(x′′)G0(x′′t′′,x′t′) +∫

dx′′dt′′dx′′′dt′′′ G0(xt,x′′t′′)v(x′′)G0(x′′t′′,x′′′t′′′)v(x′′′)G0(x′′′t′′′,x′t′) . . .

or symbolically

G = G0 +G0V̂ G0 +G0V̂ G0V̂ G0 + . . . . (1.66)
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By factoring out G0, we find

G = G0 +G0V̂ G. (1.67)

This is the so-called Dyson equation. For one-particle Green functions, it is a rigorous identity

which can be seen as follows: if we interpret δ(x− x′) as the integral kernel of the identity

1H, then we get in the frequency domain

(ε− Ĥ)G(ε) = 1H. (1.68)

In other words, G(ε) is (minus) the resolvent of Ĥ at ε ∈ C\σ(Ĥ), σ denoting the spectrum.

If we now have two self-adjoint operators Ĥ1, Ĥ2 with resolvents G1(ε) and G2(ε), then the

so-called second resolvent identity says that

G1(ε)−G2(ε) = G1(ε)(Ĥ1 − Ĥ2)G2(ε). (1.69)

In particular, for Ĥ2 = Ĥ and Ĥ1 = Ĥ0, we retrieve the Dyson equation because we have

Ĥ2−Ĥ1 = V̂ , G1(ε) = G0(ε), G2(ε) = G(ε). In other words, for one-particle Green functions,

the Dyson equation is equivalent to the second resolvent identity. This would not be obvious

if we had worked in the space-time domain.

1.3. Density Functional Theory

1.3.1. Hohenberg-Kohn Theorem

Introduction We consider a family of many-electron Hamiltonians of the form

Ĥ = T̂ + V̂el−el + V̂ext (1.70)

where T̂ corresponds to the kinetic energy of the electrons, V̂el−el to the electron-electron

Coulomb interaction and V̂ext is an external potential (typically the potential of the classical

nuclei) of the form

V̂ext =

∫
dx vext(x)ψ̂†(x)ψ̂(x). (1.71)

In the N -particle sector, this reduces to

V̂ext =
N∑
i=1

vext(xi) (1.72)

where V̂ext acts in H via (V̂extψ)(x) = vext(x)ψ(x). In particular, for Ψ ∈ HN we have the

identity

〈Ψ|V̂ext|Ψ〉 =

∫
dx n(x)vext(x). (1.73)
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We think of the external potential as indexing the family of Hamiltonians. Furthermore,

we assume a fixed particle number N . The ground-state energy E = EN
0 is the absolute

minimum of the functional

E[Ψ] = 〈Ψ|Ĥ|Ψ〉 (1.74)

where Ψ varies in HN and is subject to the constraint ‖Ψ‖ = 1.

Definition An electronic density n(x) is called v − representable if it can be written as

n(x) = 〈Ψ|ψ̂†(x)ψ̂(x)|Ψ〉 = N

∫
dx2 . . . dxN Ψ∗(x,x2, . . . ,xN)Ψ(x,x2, . . . ,xN) (1.75)

where Ψ is the ground-state of some Hamiltonian Ĥ of the form (1.70) with a suitably chosen

external potential v.

Theorem 1.3.1 (Hohenberg-Kohn) If Ψ1 and Ψ2 are ground-states of the many-electron

Hamiltonians Ĥ1 and Ĥ2 of the form (1.70) respectively which yield the same density n(x),

then the respective external potentials entering in the Hamiltonians Hi differ only by a con-

stant (which of course can be set zero). Put differently, the ground-state density uniquely

determines the external potential which gives rise to it.

Lemma 1.3.2 The ground-state wave-functions of two Hamiltonians Ĥ1 and Ĥ2 of the form

(1.70) with external potentials which differ by more than a constant cannot coincide.

Proof Assume the contrary:

(T̂ + V̂el−el + V̂ext1)Ψ0 = E1
0Ψ0

(T̂ + V̂el−el + V̂ext2)Ψ0 = E2
0Ψ0.

Consequently, Ψ0 would be an eigenfunction of V̂ext1 − V̂ext2 with eigenvalue E1
0 − E2

0 which

is impossible, because an eigenfunction of a Hamiltonian of the standard form vanishes only

at a set of measure zero. [99]

Proof of the Hohenberg-Kohn Theorem Assume Ĥ1 and Ĥ2 are Hamiltonians with

essentially different external potentials vext1(x) and vext2(x) and ground-state wave-functions

Ψ1 and Ψ2 (which by the lemma have to be different) such that

n(x) = 〈Ψ1|n̂(x)|Ψ1〉 ≡ 〈Ψ2|n̂(x)|Ψ2〉. (1.76)
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Consequently,

〈Ψ1|Ĥ1|Ψ1〉 < 〈Ψ2|Ĥ1|Ψ2〉 (1.77)

= 〈Ψ2|Ĥ2|Ψ2〉+ 〈Ψ2|Ĥ1 − Ĥ2|Ψ2〉 (1.78)

= 〈Ψ2|Ĥ2|Ψ2〉+ 〈Ψ2|V̂ext1 − V̂ext2|Ψ2〉 (1.79)

= 〈Ψ2|Ĥ2|Ψ2〉+

∫
dx n(x)(vext1(x)− vext2(x)). (1.80)

That means

E1 < E2 +

∫
dx n(x)(vext1(x)− vext2(x)) (1.81)

By symmetry,

E2 < E1 +

∫
dx n(x)(vext2(x)− vext1(x)). (1.82)

Therefore

E1 + E2 < E1 + E2. (1.83)

This contradiction shows the impossibility of the assumption.

Remarks

1. The converse is not true. Different ground-states of one and the same Hamiltonian (in

the case of a degenerate ground-state energy) can give rise to different densities.

2. The proof of the Hohenberg-Kohn theorem shows that, more generally, the ground-state

density determines the Hamiltonian uniquely within an equivalence class of Hamilto-

nians differing by external potentials.

3. Since the Hamiltonian is fully determined (up to a constant) by the ground-state den-

sity, it follows that in principle all properties (all time-independent many-particle wave-

functions and the corresponding values of observables) of the system are determined

by the ground-state density.

Energy Functional We define the energy functional E ≡ E[n] by

E : {ñ(x)} → R (1.84)

ñ(x) 7→ Evext [ñ] = F [ñ] +

∫
dx ñ(x)vext(x) (1.85)

where ñ is non-negative and normalized to the total particle number (
∫

dx n(x) = N), {ñ}
denotes the set of v-representable densities and F is is given by

F [ñ] = 〈Ψ0[ñ]|T̂ + V̂el−el|Ψ0[ñ]〉 (1.86)
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where Ψ0[ñ] is the ground-state of a Hamiltonian of the form (1.70) with an external potential

which has ñ as its corresponding ground-state density.

Theorem 1.3.3 The exact ground-state energy corresponding to V̂ext is given by the global

minimum value of this functional, and the respective minimizing density equals to the ground-

state density.

Proof First, we prove that the value F [ñ] does not depend on which of the possibly degener-

ate ground-state wave-functions is chosen: let Ψ1 and Ψ2 be two ground-state wave-functions

corresponding to ñ and the Hamiltonian T̂ + V̂el−el + V̂ext ñ. Then

〈Ψ1|Ĥ|Ψ1〉 = 〈Ψ2|Ĥ|Ψ2〉
⇒ 〈Ψ1|T̂ + V̂el−el + V̂ext ñ|Ψ1〉 = 〈Ψ2|T̂ + V̂el−el + V̂ext ñ|Ψ2〉

⇒ 〈Ψ1|T̂ + V̂el−el|Ψ1〉+
∫

dx ñ(x)vext ñ(x) = 〈Ψ2|T̂ + V̂el−el|Ψ2〉+

∫
dx ñ(x)vext ñ(x)

⇒ 〈Ψ1|T̂ + V̂el−el|Ψ1〉 = 〈Ψ2|T̂ + V̂el−el|Ψ2〉

which shows the equality. In particular, this shows that E[ñ] is the evaluation of the Hamil-

tonian T̂ + V̂el−el + V̂ext in the ground-state corresponding to ñ. Finally, V̂ext is the uniquely

determined potential which has n as a ground-state density. Therefore, by the Rayleigh-Ritz

principle ∀ ñ 6= n : E0 = Evext [n] satisfies

E0 ≤ Evext [ñ]. (1.87)

1.3.2. Kohn-Sham Equations

Introduction Obviously, it is impossible to write down F [n] explicitly. Kohn and Sham

therefore proposed to introduce a non-interacting many-electron reference system with the

property that the non-interacting ground-state has the same density as the ground-state

of the interacting system under consideration. In principle, it is not clear whether such a

non-interacting system exists, but if it exists, then the external potential which gives rise to

it is uniquely determined. This is because by the remark to the Hohenberg-Kohn theorem,

the ground-state density determines the Hamiltonian uniquely within an equivalence class of

Hamiltonians differing by external potentials, i.e. the proof of the Hohenberg-Kohn theorem

works also for a family of Hamiltonians of the form Ĥ0 = T̂ + V̂ext.

Constrained Search Algorithm We consider now a reformulation of the Rayleigh-Ritz

variational principle. In the first step, we fix an electron density n(x), consider all wave-

functions Ψ that yield this very density and search for the constrained minimum of the
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functional

Evext [n] = F [n] +

∫
dx vext(x)n(x) (1.88)

where

F [n] = min〈Ψ|n̂(x)|Ψ〉=n(x)〈Ψ|T̂ + V̂el−el|Ψ〉. (1.89)

We then minimize Evext [n] with respect to n(x). This allows for an alternative definition of

the functional F [n]. The different definitions read explicitly:

1. F [n] is given by 〈Ψ[n]|T̂ + V̂el−el|Ψ[n]〉 where Ψ[n] is an arbitrary ground-state of

the uniquely (within its equivalence class) determined Hamiltonian with ground-state

density n.

2. F [n] is given by the global minimum of 〈Ψ|T̂+V̂el−el|Ψ〉 where the variation goes over all

many-body wave-functions with density n (no matter whether they are a ground-state

of some Hamiltonian or not).

The equivalence of the two definitions can be seen as follows: Consider a given set of many-

electron wave-functions yielding the same density n. For all Ψ in this set the expectation

value of an arbitrary external V̂ext yields the same value
∫

dx vext(x)n(x). In particular, this

applies to the uniquely determined external potential corresponding to the density n. The

minimization of the expectation value 〈Ψ|Ĥ|Ψ〉 of the thus defined Hamiltonian within the

fixed class of wave-functions with the same density is therefore completely determined by

the minimization of the functional 〈Ψ[n]|T̂ + V̂el−el|Ψ[n]〉 because on V̂ext all wave-functions

give the same value. On the other hand, this minimum is (by the Rayleigh-Ritz principle)

obtained for the ground-state of the Hamiltonian with the given ground-state density. The

Constrained Search definition of F [n] suggests to consider the functional variation of Evext [n]:

Evext [n+ ηδn]− Evext [n] = η

∫
dx

(
δF [n]

δn(x)
+ vext(x)

)
δn(x) +O(η2) (1.90)

Hence, the ground-state energy satisfies:

δF [n]

δn(x)
= −vext(x) (1.91)

under the constraint: ∫
dx n(x) = N. (1.92)

Derivation of Kohn-Sham Equations One introduces a new energy functional:

E0
KS[ñ] = Ts[ñ] +

∫
dx vKS(x)ñ(x) (1.93)
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with

Ts[ñ] = min〈Ψ|n̂(x)|Ψ〉=ñ(x)〈Ψ|T̂ |Ψ〉 (1.94)

and an external potential vKS(x) yet to be defined. The stationarity condition for the func-

tional E0
KS[ñ] reads:

δTs[ñ]

δñ(x)
= −vKS(x). (1.95)

On the other hand, the minimization of E0
KS[n] is equivalent to minimizing 〈Ψ|Ĥ0|Ψ〉 with

the non-interacting Hamiltonian Ĥ0 = T̂+V̂KS. We therefore have the following equivalences:

1. minimizing E0
KS is equivalent to

2. finding the ground-state density of a non-interacting electron system subject to the

external potential vKS which in turn is equivalent to

3. solving the Kohn-Sham equations(
− ~2

2m
∆ + vKS(x)

)
ψi(x) = εiψi(x) (1.96)

for the lowest-lying energies ε1 ≤ . . . ≤ εN , the ground-state density being given by

n(x) =
N∑
i=1

|ψi(x)|2. (1.97)

Now, we return the exact functional F [n] for which we can make without loss of generality

the ansatz

F [n] = Ts[n] + EH[n] + Exc[n] (1.98)

where

EH =
e2

8πε0

∫
dxdx′

n(x)n(x′)

|x− x′|
(1.99)

whereas Exc is defined by this ansatz, that is

Exc = F − Ts − EH. (1.100)

The stationarity condition for the exact functional F then implies

δTs[n]

δn(x)
= −vext(x)− vH(x)− vxc(x) (1.101)

where

vH(x) =
e2

4πε0

∫
dx′

n(x′)

|x− x′|
(1.102)
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and

vxc(x) ≡ δExc[n]

δn(x)
. (1.103)

We now define

vKS = vext + vH + vxc. (1.104)

This definition (1.104) makes the stationarity conditions (1.95) and (1.101) coincide. The

non-interacting reference energy functional and the exact functional therefore have the same

stationarity conditions. Furthermore, as the minimizing densities correspond to the ground-

state densities of the respective systems, the density (1.97) of the Kohn-Sham system co-

incides with the exact ground-state density. In other words, the Kohn-Sham system is the

uniquely determined non-interacting system which has the same ground-state density as a

given interacting system.

Remarks

1. The ground-state energy of the many-electron system is not given as the evaluation of

the Kohn-Sham Hamiltonian in the respective ground-state, but by the evaluation of

the energy-functional at the Kohn-Sham ground-state density. The relation between

the ground-state energy of the many-electron system and the ground-state energy of

the Kohn-Sham system (sum of eigenvalues) is given by

E =
N∑
i=1

εi −
e2

8πε0

∫
dxdx′

n(x)n(x′)

|x− x′|
−
∫

dx n(x)vxc(x) + Exc[n]. (1.105)

In particular, the Kohn-Sham orbitals have to be chosen such that they minimize this

energy functional. These do not necessarily correspond to the Kohn-Sham orbitals

with the lowest Kohn-Sham eigenvalues.

2. The fundamental band gap is defined as

∆ = EN+1
0 + EN−1

0 − 2EN
0 . (1.106)

For a non-interacting system, this yields the difference between the lowest unoccupied

and the highest occupied orbital energy. In the case of the Kohn-Sham system, we have

the problem that vKS(x) per constructionem depends on the particle number (through

the density whose integral equals N). Therefore, the difference between the lowest

unoccupied and the highest occupied Kohn-Sham orbital energy does not equal the

band-gap. However, in the spirit of a thermodynamic limit, the Kohn-Sham potential

may be roughly independent of the particle number (for large N). If this approximation

holds, the Kohn-Sham system may be used to compute the band-gap.
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3. Thermodynamic susceptibilities at temperature T = 0 – being second derivatives of

the ground-state energy with respect to external fields – can be calculated from the

Kohn-Sham ground-state.

4. The exchange correlation potential is unknown as a functional of the density. In prac-

tice, there are several ansätze. [35, 55, 66, 74]

5. One may drop the assumption about the existence of a non-interacting reference system

because the definition of vKS is independent of this assumption. However, it is then

not clear whether the ground-state density is given by the ground-state of the reference

system because any eigenstate fulfills the stationarity condition.

Adiabatic Connection Theorem Consider the many-body Hamiltonian

Ĥ = Ĥλ = T̂ + V̂ (λ) + λV̂el−el (1.107)

where λ ∈ [0, 1]. The λ-dependence of

V̂ =

∫
dx vλ(x)ψ̂†(x)ψ̂(x) (1.108)

is defined in the following way:

1. For λ = 1, the system reverts to the full, interacting system, i.e. vλ=1(x) = vext(x).

2. For λ ∈ [0, 1), vλ(x) is such that the corresponding ground-state density has the same

value as in the case λ = 1. If such a potential exists, it is unique. In particular, for

λ = 0 we have vλ=0(x) = vKS(x).

Theorem 1.3.4 Let Ψ(λ) be the ground-state of Ĥλ and assume that the ground-state energy

is non-degenerate. Then the sum of the Hartree and the exchange correlation energy of the

full, interacting system can be written as

EH + Exc =

∫ 1

0

dλ 〈Ψ(λ)|V̂el−el|Ψ(λ)〉. (1.109)

Proof The total ground-state energy is defined by

E0 = 〈Ψ(1)|Ĥλ=1|ψ(1)〉. (1.110)

On the other hand E0 is given within DFT as

E0 = Ts[n] + EH[n] + Exc[n] (1.111)

= 〈Ψ(0)|Ĥλ=0|Ψ(0)〉 − EH[n] + Exc[n]−
∫

dx n(x)vxc(x). (1.112)

Thesis, Vienna, July 4, 2012



36 Ronald Starke: Green Functions and Electronic Structure Theory

Equating these expressions for the ground-state energy, we get

〈Ψ(1)|Ĥλ=1|ψ(1)〉 − 〈Ψ(0)|Ĥλ=0|Ψ(0)〉 = −EH[n] + Exc[n]−
∫

dx n(x)vxc(x). (1.113)

For the RHS we make a formal ansatz and using the Hellmann-Feynman theorem we get:

〈Ψ(1)|Ĥλ=1|ψ(1)〉 − 〈Ψ(0)|Ĥλ=0|Ψ(0)〉 =

∫ 1

0

dλ
∂

∂λ
〈Ψ(λ)|Ĥλ|Ψ(λ)〉

=

∫ 1

0

dλ 〈Ψ(λ)|∂λĤλ|Ψ(λ)〉

=

∫ 1

0

dλ 〈Ψ(λ)|V̂el−el|Ψ(λ)〉

+

∫ 1

0

dλ 〈Ψ(λ)|∂λV̂λ|Ψ(λ)〉.

The last integral can be transformed as∫ 1

0

dλ 〈Ψ(λ)|∂λV̂λ|Ψ(λ)〉 = 〈Ψ(1)|V̂λ=1|Ψ(1)〉 − 〈Ψ(0)|V̂λ=0|Ψ(0)〉 −
∫

dx vλ(x)∂λnλ(x)

= 〈Ψ(1)|V̂ext|Ψ(1)〉 − 〈Ψ(0)|V̂KS|Ψ(0)〉
= −〈Ψ(1)|V̂H|Ψ(1)〉 − 〈Ψ(0)|V̂xc|Ψ(0)〉
= −2EH − 〈Ψ(0)|V̂xc|Ψ(0)〉.

In the first line, the last integral accounts for the difference between 〈Ψ(λ)|∂λV̂λ|Ψ(λ)〉 and

∂λ〈Ψ(λ)|V̂λ|Ψ(λ)〉. This difference vanishes because nλ equals the ground-state density for

all λ and hence ∂λnλ(x) ≡ 0. Collecting everything together yields the theorem.

Reformulation The electron-electron interaction reads explicitly

V̂el−el =

∫
dxdx′ v(x− x′)ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x). (1.114)

This translates into the expression

〈Ψ0|V̂el−el|Ψ0〉 =

∫
dxdx′ v(x− x′)〈ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x)〉 (1.115)

for the expectation value. On the other hand, the pair correlation function g(x,x′) is defined

in second quantization :

〈ψ̂†(x)ψ̂†(x′)ψ̂(x)ψ̂(x′)〉
〈ψ̂†(x)ψ̂(x)〉〈ψ̂†(x′)ψ̂(x′)〉

=
n2(x,x′)

n(x)n(x′)
=
〈n̂(x)n̂(x′)〉 − δ(x− x′)n(x)

n(x)n(x′)
(1.116)
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where n(x) = 〈n̂(x)〉 = 〈ψ̂†(x)ψ̂(x)〉 etc. Therefore, we can rewrite 〈V̂el−el〉 in terms of the

pair-correlation function as

〈Ψ0|V̂el−el|Ψ0〉 =
e2

8πε0

∫
dxdx′

n(x)n(x′)

|x− x′|
g(x,x′). (1.117)

Let gλ(x,x
′) denote the pair correlation function with respect to the ground-state of Ĥ(λ).

The adiabatic-connection theorem can then be written as

EH + Exc =
e2

8πε0

∫ 1

0

dλ

∫
dxdx′

n(x)n(x′)

|x− x′|
gλ(x,x

′) (1.118)

or

Exc =
e2

8πε0

∫ 1

0

dλ

∫
dxdx′

n(x)n(x′)

|x− x′|
(gλ(x,x

′)− 1). (1.119)

On the other hand, according to equation (1.116) we have:

〈ψ̂†(x)ψ̂†(x′)ψ̂(x)ψ̂(x′)〉 = 〈n̂(x)n̂(x′)〉 − δ(x− x′)n(x). (1.120)

But, 〈n̂(x)n̂(x′)〉 equals the time-ordered density-density response-function evaluated at

equal times:

〈n̂(x)n̂(x′)〉 = i~χ(x,x′; τ = 0+). (1.121)

χ(x,x′; τ = 0) can be expressed in terms of the Fourier transform χ̃(x,x′;ω) as

χ(x,x′; τ = 0) =

∫
dω

2π
χ(x,x′;ω). (1.122)

Using all this, we get the Adiabatic-Connection-Fluctuation-Dissipation Theorem:

EH + Exc =
e2

8πε0

∫ 1

0

dλ

∫
dxdx′

1

|x− x′|

(∫
dω

2π
i~χλ(x,x′;ω)− δ(x− x′)n(x)

)
.

This expression is apparently divergent due to the Dirac delta which enforces x = x′. One

can show, however, that this divergence is cancelled by the term involving χ(x,x′) (see e.g.

[88]).

1.3.3. Time-Dependent Density Functional Theory

Runge-Gross Theorem Again we consider a many-body system with a Hamilonian of

the form (1.70) where the external potential V̂ext is now given by a time-dependent function

vext(xt). Time-dependent solutions Ψ(x1, . . . ,xN , t) of the Schrödinger equation give rise to

time-dependent densities n(xt) explicitly given by

n(xt) = 〈Ψ|ψ̂†(xt)ψ̂(xt)|Ψ〉 = N

∫
dx2 . . . dxN (Ψ∗ ·Ψ)(x,x2, . . . ,xN) (1.123)

In this situation, the analog of the Hohenberg-Kohn theorem is the Runge-Gross theorem

which we state without proof. (see e.g. [64])
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Theorem 1.3.5 If the densities n(xt) and n′(xt) evolving from a common initial state Ψ(t =

0) under the influence of external potentials vext(xt) and v′ext(xt) agree for all t and all x

then

vext(xt)− vext(xt) = f(t), (1.124)

i.e. the respective external potentials differ by a purely time-dependent function.

As in the time-independent case, this has the consequence that the external potential is

a functional of the density. However, there are also some new features which have to be

commented.

1. External potentials which differ by a function f(t) essentially coincide: a purely time-

dependent function f(t) in the Schrödinger equation leads only to a purely time-

dependent phase factor exp(−i/~
∫ t

dt′f(t′)). This phase-factor cancels out in all ex-

pectation values 〈Ψ| · |Ψ〉 because observables are operators in a Hilbert space and

hence act only on the spatial variables.

2. The functional of the density giving the external potential would in principle be dif-

ferent for every initial wave function Ψ(t = 0). In practice, one therefore considers

non-degenerate instantaneous ground-states.

3. The functionals of the density are to be understood as functionals of the whole function

n(xt), i.e. of the entire history of n, not as a family of functionals which for every t

give vext(xt) in terms of n(xt).

Precisely as in the time-independet case, one now considers an auxiliary Schrödinger equa-

tion:

i~∂tψi(xt) =

(
− ~2

2m
∆ + vKS(xt)

)
ψi(xt) (1.125)

with the condition that

n(xt) =
N∑
i=1

|ψi(xt)|2. (1.126)

From the details of the proof of the Runge-Gross theorem, one can establish that the unique-

ness of the external potential vKS is also guaranteed in the non-interacting case. Similarly,

one makes again the ansatz

vKS(xt) = vext(xt) + vH(xt) + vxc(xt) (1.127)

with

vH(xt) =
1

4πε0

∫
dx′

n(x′t)

|x− x′|
(1.128)
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which corresponds to a time-dependent, self-consistent Hartree kernel.

Pseudo-Dyson Equation for the Density Response Function Recall that the time-

dependent density-density response function is defined by

χ(xt,x′t′) =
δn(xt)

δvext(x′t′)
. (1.129)

Consider the change of the time-dependent exchange-correlation potential under the density

variation δn(xt):

vxc[n+ δn](xt)− vxc[n](xt) =

∫
dt′
∫

dx′ fxc(x,x
′; t− t′)δn(x′t′) (1.130)

or

fxc(x,x
′; t− t′) =

δvxc(x
′t′)

δn(xt)
=

δ2Exc[n]

δn(xt)δn(x′t′)
. (1.131)

The density-density response function χKS of the Kohn-Sham auxiliary system is defined by

δn(xt) =

∫
dx′dt′ χKS(xt,x′t′)(δvext(x

′t′) + δvH(x′t′) + δvxc(x
′t′)) (1.132)

or

χKS(xt,x′t′) =
δn(xt)

δvKS(x′t′)
. (1.133)

Using the chain-rule in the form

δn(xt)

δvext(x′t′)
=

∫
dx′′dt′′

δn(xt)

δvKS(x′′t′′)

δvKS(x′′t′′)

δvext(x′t′)
, (1.134)

the definition of fxc as well as

δvext(xt)

δvext(x′t′)
= δ(x− x′) (1.135)

δvH(xt)

δvext(x′t′)
=

∫
dx′′dt′′ v(x,x′′)δ(t− t′′)χ(x′′t′′,x′t′) (1.136)

δvxc(xt)

δvext(x′t′)
=

∫
dx′′dt′′

δvxc(xt)

δn(x′′t′′)

δn(x′′t′′)

δvext(x′t′)
(1.137)

one finds for χ(xt,x′t′)

χKS(xt,x′t′) +

∫
dx′′dx′′′ χKS(xt,x′′t′′)× (v(x′′t′′,x′′′t′′′) + fxc(x

′′t′′,x′′′t′′′))χ(x′′′t′′′,x′t′).

Neglecting the exchange-correlation kernel in this equation and using the formal density

response function from time-independent DFT is known as Random Phase Approximation
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(RPA),3 an approximation which in combination with the Adiabatic Connection Theorem is

now at the very heart of a great deal of progress in complex problems of materials science.

(see e.g. [88])

1.4. Linear Response Theory

1.4.1. Classical Electrodynamics

Maxwell’s equations read

∇ · E =
ρ

ε0

(1.138)

∇× E = −∂tB (1.139)

∇ ·B = 0 (1.140)

∇×B = µ0j + ε0µ0∂tE. (1.141)

They determine the fields E(xt), B(xt) as functionals of the sources ρ(xt), j(xt).

Splitting into External and Internal Quantities Due to the linearity of the homo-

geneous Maxwell equations, we can without loss of generality arbitrarily split the source

term ρ, j ≡ ρtot, jtot into

ρtot = ρext + ρint (1.142)

jtot = jext + jint. (1.143)

such that

E ≡ Etot = Eext + Eint (1.144)

B ≡ Btot = Bext + Bint (1.145)

where the external fields fulfill Maxwell’s equations with the external sources and the internal

fields fulfill Maxwell’s equations with the internal sources. For a fixed splitting of the sources,

the splitting into external and internal fields is unique up to a solution of the homogeneous

3Note, however, that this RPA has only a formal resemblance to the RPA within the context of Green

Function Theory. After all, where is the Random Phase in neglecting fxc? Strictly speaking, a random

phase approximation is an approximation of the form 〈Â(t)B̂(t′)〉 ≈ 〈Â(t)〉〈B̂(t′)〉. Inserting a complete

system of energy eigenstates shows that this corresponds indeed to neglecting the relative phases which

one may think of averaging to zero. Now, the RPA is really of this kind in that it approximates the

four-point propagator by a product of two-point propagators. This kind of RPA is therefore the quantum

analog of Boltzmann’s famous stoßzahlenansatz.
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Maxwell equations which can be arbitrarily partitioned between the external and the internal

fields. Physically, we think of the internal field Eint,Bint as belonging to the system we study

whereas the external fields Eext,Bext are prescribed. Furthermore, we may think of ρint, jint

as somehow localized (e.g. in a probe) whereas we think of ρext, jext as “far away”. We stress,

however, that the source splitting as such is indepedendent of such an interpretation. For

example, we could also split the sources into high frequency and low frequency components.

Furthermore, it is noteworthy that a spatial separation between the external and the internal

sources implies that external and internal sources separately obey continuity equations

∂tρint +∇ · jint = 0 (1.146)

∂tρext +∇ · jext = 0. (1.147)

Note that in the standard parlance of classical electrodynamics

−ε0Eint = P

ε0Eext = D

Etot = E

Bint = µ0M

Bext = µ0H

Btot = B.

Historically, this comes about because one thinks of P and M as electric and magnetic dipole

densities. The reason for this is a topic in its own right.4 First, we assemble some mathe-

matical prerequisites.

Helmholtz Decomposition The energy of the free electromagnetic field (E,B) is given by

E(t) =
1

2

∫
dx

(
ε0E

2(xt) +
1

µ0

B2(xt)

)
. (1.148)

We conclude that for the energy to be finite, the fields have to be square-integrable. The

state space for E and B respectively is given by HV = L(R3) ⊗ R3 at fixed time t. Any

vector field F ∈ L(R3)⊗R3 can be decomposed uniquely into a divergence and rotation free

part (the so-called longitudinal and transversal part) according to

F = FT + FL (1.149)

4Modern textbooks as [26, 57] introduce electrodynamics in media in terms of internal and external fields

whereas classical textbooks as [37, 48] rely on dipole densities. In condensed matter and many-body

theory [15, 35, 50], the partition in external and internal fields is common practice.
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with

FT =
1

4π
∇×

∫
dx′
∇× F(x′)

|x− x′|
(1.150)

FL = − 1

4π
∇
∫

dx′
∇ · F(x′)

|x− x′|
. (1.151)

such that

∇ · FT = 0 (1.152)

∇× FL = 0. (1.153)

The longitudinal and the transversal part can be shown to be orthogonal in HV. In other

words, we have an orthogonal decomposition HV = HT ⊕HL. The respective projectors PT

and PL are given through equations (1.150, 1.151). It follows that PL + PT = 1L2⊗R3 which

can also be read off from −∇×∇×+∇∇· = ∆ and ∆(1/|x− x′|) = −4πδ(x− x′). In the

following, we perform a lot of partial integrations which strictly would require the inclusion

of boundary or surface terms. As we require the fields to be square-integrable, these surface

terms vanish. On the other hand, such a mathematical assumption on the decay behaviour

seems to be the right idealization for conceptual matters as the real solid can always be

thought of as embedded in R3 without any sharp boundary. Systems in a finite volume V

with definite conditions on the behaviour at ∂V constitute an idealization.

Internal Field vs Dipole Moment Density Standard textbooks define P(x) and M(x)

respectively as the densities of electric and magnetic dipoles. To clarify this we have to define

the notion of electric and magnetic dipole densities in the first place. We begin with the

electric case. The dipole moment of a charge density ρ(x) is defined as the constant vector

P =

∫
dx xρ(x). (1.154)

The potential ϕ(x) corresponding to the charge density ρ(x) is given by

ϕ(x) =
1

4πε0

∫
dx′

ρ(x′)

|x− x′|
(1.155)

The Taylor expansion (around the origin) of the Coulomb kernel under the integral leads to

the multipole expansion

ϕ(x) =
1

4πε0

q

|x|
+

1

4πε0

P · x
|x|3

+ . . . (1.156)

where q =
∫

dx ρ(x) denotes the total charge. The first term in this infinite expansion

– the so-called monopole term – corresponds to the field resulting from the whole charge
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concentrated at the origin. The second term corresponds to a pure dipole field. Consider

now a charge distribution

ρ(x) = qδ(x) + (−q)δ(x + l). (1.157)

This charge distribution has a dipole moment given by

P = ql. (1.158)

The charge distribution of a point dipole (located at the origin) is obtained from the charge

distribution (1.157) by performing l → 0 such that P = const. This limit can be easily

performed by considering

ρη(x) =
q

η
δ(x) +

(−q)
η

δ(x + ηl). (1.159)

We then have

lim
η→0

ρη(x) = −(P · ∇δ)(x). (1.160)

This is the charge distribution of a point dipole. From

ϕ(x) =
1

4πε0

∫
dx′

ρ(x′)

|x− x′|
(1.161)

= − 1

4πε0

∫
dx′ (P · ∇δ)(x′) 1

|x− x′|
(1.162)

= − 1

4πε0

(P · ∇)
1

|x|
(1.163)

=
1

4πε0

P · x
|x|3

(1.164)

we read off that the charge density of a point dipole gives rise to a pure dipole field. The

charge distribution of a point dipole makes it plausible to define the charge distribution of a

continuous dipole density P(x) as

ρ(x) =

∫
dx′ P(x′) · (∇δ′)(x− x′). (1.165)

This charge distribution gives rise to the electric field

ϕ(x) =
1

4πε0

∫
dx′

P(x′) · (x− x′)

|x− x′|3
. (1.166)

Of course, in general this is not a pure dipole field. We now come to the magnetic case. The

dipole moment M of a current density j(x) is defined by the constant vector

M =
1

2

∫
dx x× j(x). (1.167)
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The vector potential A(x) corresponding to the current density j(x) is given by

A(x) =
µ0

4π

∫
dx′

j(x′)

|x− x′|
. (1.168)

The Taylor expansion (around the origin) of the Coulomb kernel under the integral leads to

the multipole expansion

A(x) =
µ0

4π

M× x

|x|3
+ . . . , (1.169)

i.e. in the magnetic case the first non-vanishing term corresponds to a pure dipole field.

Consider now the constant current distribution of a circular loop with radius r0 centered

around the origin in the x-y-plane. This current distribution is given by

j(x) = I

∫
C

dt
dx

dt
δ(x− x(t)) (1.170)

= Ir0δ(z)

∫ 2π

0

dt eϕ(t)δ(x− r0 cos t)δ(y − r0 sin t) (1.171)

where C : R→ R3 is given by

x(t) = r0(cos t, sin t, 0) (1.172)

and

eϕ(t) = − sin t ex + cos t ey. (1.173)

With x = |x|er and

er × eϕ(t) = const. = ez (1.174)

we then find for the corresponding magnetic moment

M =
1

2

∫
dx x× j(x) (1.175)

=
I

2
r2

0ez

∫
dx

∫ 2π

0

dt δ(x− r0 cos t)δ(y − r0 sin t)δ(z) (1.176)

=
I

2
r2

0ez

∫ 2π

0

dt

∫
dx δ(x− r0 cos t)δ(y − r0 sin t)δ(z) (1.177)

=
I

2
r2

0ez

∫ 2π

0

dt (1.178)

= Iπr2
0ez. (1.179)

Hence, the resulting magnetic moment is given by

M = IAez (1.180)
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where A = πr2
0. The charge distribution of a magnetic point dipole (located at the origin) is

obtained from the charge distribution (1.170) by performing r0 → 0 such that M = const.

This limit can be performed by considering the rescaling I 7→ I/η2, r0 7→ ηr0 and performing

limη→0 jη. The concrete calculation is somewhat more complicated than in the electric case.

First consider

jη(x) = Ir2
0

∫ 2π

0

dt eϕ(t)
1

ηr0

δ(x− ηr0 cos t)δ(y − ηr0 sin t)δ(z)

= Ir2
0

∫ 2π

0

dt (− sin t ex + cos t ey)
1

ηr0

(δ(x− ηr0 cos t)δ(y − ηr0 sin t)δ(z)− δ(x))

where we inserted a t-independent term δ(x) because∫ 2π

0

dt eϕ(t) ≡ 0. (1.181)

Now, in the limit η → 0 the delta terms in the integrand simply yield

− cos t δ′(x)δ(y)δ(z)− sin t δ(x)δ′(y)δ(z). (1.182)

With ∫ 2π

0

dt sin t cos t = 0 (1.183)∫ 2π

0

dt cos2 t = π (1.184)∫ 2π

0

dt sin2 t = π (1.185)

we get multiplying out

jη→0(x) = Iπr2
0(ex∂y − ey∂x)δ(x). (1.186)

Obviously, this generalizes to the formula

j(x) = −(M×∇δ)(x) (1.187)

for the current density of a magnetic point dipole at the origin in the plane orthogonal to M.

With the formulas for electric and magnetic point dipole charge and current density we can

now define electric and magnetic dipole densities P(x) and M(x) through the corresponding

charge and current densities as

ρ(x) =

∫
dx′ P(x′) · (∇δ′)(x− x′) (1.188)

j(x) =

∫
dx′ M(x′)× (∇δ′)(x− x′). (1.189)
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With

ϕ(x) =
1

4πε0

∫
dx′

ρ(x′)

|x− x′|

A(x) =
µ0

4π

∫
dx′

j(x′)

|x− x′|

these densities give rise to the fields

ϕ(x) =
1

4πε0

∫
dx′

P(x′) · (x− x′)

|x− x′|3
(1.190)

A(x) =
µ0

4π

∫
dx′

M(x′)× (x− x′)

|x− x′|3
. (1.191)

For continuous media, one assumes that these equations also hold in the time-dependent

case in the sense that

ϕ(xt) =
1

4πε0

∫
dx′

P(x′t) · (x− x′)

|x− x′|3
(1.192)

A(xt) =
µ0

4π

∫
dx′

M(x′t)× (x− x′)

|x− x′|3
. (1.193)

In principle, these relations are the definition of the time-dependent dipole densities P(xt)

and M(xt). Now, the fields E,B are given in terms of the potentials as

E(xt) = −∇ϕ(xt)− ∂tA(xt) (1.194)

B(xt) = ∇×A(xt) (1.195)

and hence with the idenities

1

4πε0

∫
dx′

P(x′t) · (x− x′)

|x− x′|3
= − 1

4πε0

∫
dx′
∇′ ·P(x′t)

|x− x′|
(1.196)

µ0

4π

∫
dx′

M(x′t)× (x− x′)

|x− x′|3
=

µ0

4π

∫
dx′
∇′ ×M(x′t)

|x− x′|
(1.197)

we find that

E(xt) =
1

4πε0

∇
∫

dx′
∇′ ·P(x′t)

|x− x′|
− µ0

4π

∫
dx′
∇′ × ∂tM(x′t)

|x− x′|
(1.198)

B(xt) =
µ0

4π
∇×

∫
dx′
∇′ ×M(x′t)

|x− x′|
. (1.199)

Within the realm of electrodynamics in continuous media, this is to be interpreted as

Eint(xt) =
1

4πε0

∇
∫

dx′
∇′ ·P(x′t)

|x− x′|
− µ0

4π

∫
dx′
∇′ × ∂tM(x′t)

|x− x′|
(1.200)

Bint(xt) =
µ0

4π
∇×

∫
dx′
∇′ ×M(x′t)

|x− x′|
. (1.201)
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where P(xt),M(xt) denote the dipole densities in the medium. On the other hand, the

so-called macroscopic Maxwell equations say that

∇× Etot(xt) ≡ ∇× E(xt) = −∂tBtot(xt) (1.202)

and with

E(xt) =
1

ε0

D(xt)− 1

ε0

P(xt) (1.203)

B(xt) = µ0H(xt) + µ0M(xt) (1.204)

and the fact that the D(xt),H(xt) fulfill the vacuum Maxwell equations, it follows that

1

ε0

∇×P(xt) = µ0∂tM(xt) (1.205)

which we now reinterpret as a microscopic equation. Independently from electrodynamics in

continuous media, one could argue that the expression of ϕ(xt),A(xt) in terms of the dipole

densities shows that P(xt), M(xt) can be altered by transversal/longitudinal vectors fields

without effect on the observable fields. We use this “gauge freedom” to postulate

∇×P(xt) = ε0µ0∂tM(xt), (1.206)

∇ ·M(xt) = 0. (1.207)

All in all, we have

E(xt) =
1

4πε0

∇
∫

dx′
∇′ ·P(x′t)

|x− x′|
− 1

4πε0

∫
dx′
∇′ × (∇′ ×P)(x′t)

|x− x′|
(1.208)

=
1

4πε0

∇
∫

dx′
∇′ ·P(x′t)

|x− x′|
− 1

4πε0

∇×
∫

dx′
∇′ ×P(x′t)

|x− x′|
. (1.209)

Comparison with the Helmholtz decomposition shows that

E(xt) = − 1

ε0

P(xt). (1.210)

Similarly it follows that

B(xt) = µ0M(xt) (1.211)

where one has to use ∇ ·M(xt) = 0 which again follows from the Maxwell equations. In

summary, we say: electric and magnetic dipole densities are – up to conversion factors –

identical to electric and magnetic fields. This has nothing to do with electrodynamics in

continuous media. Instead, it is a mathematical identity which applies in particular to the

fields inside the medium. For the special case of electrodynamics in continuous media, this
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means: P(xt),M(xt) are the dipole densities of the medium, −D(xt),H(xt) are the dipole

densities without the medium and −ε0E(xt), 1/µ0B are the total dipole densities. With

the introduction of the notion “dipole density” we simply recover the fields. Furthmore,

the equations of motion for the dipole densities which are derived for continuous media are

simply the Maxwell equations for the internal fields and therefore do not need any derivation.

Local Fields The simple interpretation of E as the total field in the medium seems to be

in contradiction with well-known arguments leading to the Clausius-Mosotti formula. The

standard reference [48] p.116 argues that in order to calculate the induced electric dipole

moment of a molecule, one cannot simply take the “macroscopic” E-field. Instead one has

to introduce still another quantity (in addition to D,P,E), namely the so-called local field

at the molecule (“internal field” as by Jackson; in german: “Nahfeld”). How does this square

with the fact that E actually is the total field in the medium? To answer this question, we

first have to note that although P simply is the electromagnetic field generated by the charges

in the medium, this does not imply that its contribution to the total field E is restricted to

the domain“where the medium is”. Instead, the field P outside the medium is determined by

the facts that (i) it has to obey the vacuum Maxwell equations ∇·P = 0, ∇×P = 0 because

its sources lie in the medium and (ii) it has to fit the boundary condition that it equals P

within the medium at the surface. In the case of the Clausius-Mosotti model, one thinks

of a given molecule the dipole moment of which is to be calculated as enclosed in a little

cavity (typically a sphere) which contains only the molecule under consideration. One then

thinks of P as the field inside the medium (which means in particular outside the cavity)

and calculates the resulting field in the center of the cavity. In other words, one calculates

the field inside an empty cavity embedded in a (homogeneously) polarized material. The

logic behind this is that the macroscopically measurable bulk P describes the field inside the

sample only on very large length scales. Obviously, this is due to the fact that in standard

treatments P is thought of as a macroscopic quantity resulting from a suitable averaging.

This loss of information is then compensated for by introducing yet another quantity, the

local field, which roughly reinstalls the original internal field P(x). Without the transition

to macroscopic fields, the field which induces the dipole moment of a given molecule located

at x is of course simply E(x).

Caveat about Singular Dipole Densities The equations

E(xt) = − 1

ε0

P(xt) (1.212)

B(xt) = µ0M(xt) (1.213)
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constitute rigorous identities relating the smooth, integrable dipole densities to “their” fields.

If we consider instead a singular dipole density, e.g. a point dipole, then these identities seem

to imply that the field would be zero everywhere except for where the dipole is and there

it is given by −1/ε0P or µ0M respectively. Of course, this is not true. Instead, the fields

generated by an electric or magnetic point dipole at the origin are given by the well-known

formulas [29, 30, 37]

E(x) =
1

4πε0

3(P · x)x− |x|2P
|x|5

− 1

3ε0

Pδ(x) (1.214)

B(x) =
µ0

4π

3(M · x)x− |x|2M
|x|5

+
2µ0

3
Mδ(x). (1.215)

Indeed, for a singular dipole density the field is singular where the dipole is. Intuitively, one

has to think about this in the following way: at the location of the dipole the singular con-

tribution “dominates”. This singular contribution is just proportional to the dipole moment.

So, if one goes to the limit where one has such a dipole P or M at every point in space,

then the contribution from the singular term ultimately dominates at every point yielding a

contribution proportional to P(x) or M(x). In fact, we can also start with equations (1.214,

1.215) and define the fields corresponding to continuous dipole densities as

E(x) =

∫
dx′

(
1

4πε0

3(P(x′) · (x− x′))(x− x′)− |x− x′|2P(x′)

|x− x′|5
− 1

3ε0

P(x′)δ(x− x′)

)
B(x) =

∫
dx′

(
µ0

4π

3(M(x′) · (x− x′))(x− x′)− |x− x′|2M(x′)

|x− x′|5
+

2µ0

3
M(x′)δ(x− x′)

)
.

An elementary reasoning using the same vector identities as above then yields

EL(x) = − 1

ε0

P(x) (1.216)

B(x) = µ0MT(x). (1.217)

As the point dipole fields correspond to an electrostatic or magnetostatic situation, this

implies precisely

E(x) = − 1

ε0

P(x) (1.218)

B(x) = µ0M(x). (1.219)

In fact, this breakdown of the dipole-densiy identification as electromagnetic field is at the

very heart of the present argumentation. For singular point dipoles, the dipole density as a

discrete sum over point dipoles divided by the volume is a well-defined distributional object

which is not identical to the electromagnetic field. These singular densities are motivated
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by classical physics where one can imagine them to be created by point particles. If, how-

ever, we are confronted with a continuous, microscopic charge density (as we expect it in

Quantum Mechanics), then it is not so obvious what the dipole density corresponding to this

continuous charge density is (as opposed to the total dipole moment of the charge density

which is well-known). The above arguments made it clear that the dipole density correspond-

ing to a continuous charge density is the electromagnetic field generated by that very density.

Alternative Definition of Dipole Densities involving Retardation Effects The def-

inition of the dipole densities through the corresponding fields via equations (1.192, 1.193)

seems to imply that the time-dependent dipole densities cannot – as in the static case –

literally interpreted as continuous distributions of “oscillating” dipoles because these latter

would lead to radiation, retardation effects etc. The derivation of the electromagnetic fields

starting from the fields of time-dependent point-dipoles as in radiation theory and then mak-

ing the transition to continuous distributions is an interesting problem in its own right. It

has been solved explicitly by Vrejoiu and Zus [101] leading to the result5

ϕ(xt) = − 1

4πε0

∫
dx′

(∇ ·P)(x′tret)

|x− x′|
(1.220)

A(xt) =
µ0

4π

∫
dx′

(∇×M)(x′tret)

|x− x′|

+
µ0

4π

∫
dx′

(∂tretP)(x′tret)

|x− x′|
. (1.221)

where

tret = t− |x− x′|
c

. (1.222)

and in an expression like (∇ ·P)(x′tret), the brackets mean that the operation is performed

for P(x′t′) which is afterwards evaluated at t′ = tret. We will now show that this definition

of the dipole densities agrees with our approach. First, observe that with

G(xt,x′t′) =
1

4π

δ
(
t− t′ − |x−x

′|
c

)
|x− x′|

(1.223)

the equations for ϕ and A can be rewritten as

ϕ(xt) = − 1

ε0

∫
dx′dt′ G(xt,x′t′)∇ ·P(x′t′)

A(xt) = µ0

∫
dx′dt′ G(xt,x′t′)∇×M(x′t′)

+ µ0

∫
dx′dt′ G(xt,x′t′)∂t′P(x′t′).

5This corresponds to equations (11) and (13) in [101]. The surface term has been neglected because here

we deal with square-integrable functions for which we can move the surface infinitely far off.
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On the other hand, G is just the retarded Green function for the d’Alembert operator 2, i.e.

an “inverse” operator 2−1 in the sense that

2G(xt,x′t′) = δ(x− x′)δ(t− t′). (1.224)

Therefore, acting on the above equation with 2 yields

2ϕ(xt) = − 1

ε0

∇ ·P(xt) (1.225)

2A(xt) = µ0∇×M(xt) + µ0∂tP(xt). (1.226)

In the Lorentz gauge, we can identify

2ϕ(xt) =
ρ(xt)

ε0

(1.227)

2A(xt) = µ0j(xt). (1.228)

A comparison shows that P and M fulfill the Maxwell equations in the sense that P = −ε0E

and µ0M = B. Therefore, also in the retarded approach, the dipole densities can be identified

with the fields. At first sight, it seems to be astonishing that the definition of electric

and magnetic dipole densities in terms of the retarded expressions (1.220, 1.221) should be

equivalent to the naive approach given by the instantaneous expressions (1.192, 1.193). Once

we understand the general identities P = −ε0E, µ0M = B, the reason for this apparent

paradox becomes clear: it resides of course in the gauge freedom Aµ 7→ Aµ − ∂µf .6 In

fact, through the identification of the dipole densities with the electromagnetic fields, the

definitions (1.220, 1.221) and (1.192, 1.193) simply correspond to different expressions in

different gauges for the potentials (ϕ/c,A) through the fields (E,B). Concretely, (ϕ/c,A)

can be represented as

ϕ(xt) = − 1

4π

∫
dx′

E(x′t) · (x− x′)

|x− x′|3
(1.229)

A(xt) =
1

4π

∫
dx′

B(x′t)× (x− x′)

|x− x′|3
. (1.230)

in the Coulomb gauge and as

ϕ(xt) = − 1

4π

∫
dx′
∇ · E(x′tret)

|x− x′|
(1.231)

A(xt) =
1

4π

∫
dx′
∇×B(x′tret)

|x− x′|

+
1

4π

∫
dx′

∂tretE(x′tret)

|x− x′|
. (1.232)

6This settles the dispute Leung/Ni vs Vrejoiu/Zus. [60, 101]
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in the Lorentz gauge as will be shown now. These formulas prove that the different definitions

of dipole densities (through equations (1.192, 1.193) and equations (1.220, 1.221)) correspond

to different gauges. We begin with the Lorentz gauge for which the equations of motion

simply read

2Aµ(x) = µ0j
µ(x). (1.233)

Expressing then Aµ(x) in terms of jµ(x) through the retarded Green function and using

Maxwell equations in the form

ρ = ε0∇ · E (1.234)

j =
1

µ0

∇×B− ε0∂tE (1.235)

immediately leads to the expressions (1.220, 1.221) under the identification P = −ε0E, µ0M =

B. In the Coulomb gauge, things are only slightly more complicated. The equations of mo-

tion in the Coulomb gauge read

∆ϕ = − ρ

ε0

(1.236)

2A = µ0jT (1.237)

where jT denotes the transversal part. Using Gauss’ law, the first equation immediately leads

to the expression of ϕ in terms of the dipole density. In order to reproduce the instantaneous

relations between A and M (or B) we rewrite the second equation as

∆A = −µ0jT + ∂2
t A (1.238)

and replace ∂2
t A by −∂tET because in the Coulomb gauge, the vector potential is purely

transversal and hence the transversal part of the electric field is given by −∂tA. Now, the

last equation can be solved for A using the inverse Laplace operator, i.e. the Coulomb kernel.

It remains to show that the integrand −µ0jT − ∂tET equals −∇×B. This follows easily by

considering the Maxwell equation

∇×B = µ0j + µ0ε0∂tE. (1.239)

The continuity equation ∂µj
µ = 0 implies that the longitudinal part of the RHS vanishes (as

it is in fact necessary on grounds of consistency). Still we have to emphasize that also in the

Lorentz gauge, only the inhomogeneous equations

∇ ·P = −ρ (1.240)

∇×M = j− ∂tP (1.241)
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follow rigorously whereas the longitudinal part of M and the transversal part P remain

arbitrary. The reason behind this is that even within a given gauge, the potentials (ϕ,A)

uniquely fix the fields (E,B) but not vice versa.

Maxwell Equations for Dipole Densities Once we identify P(xt),M(xt) as the elec-

tric and magnetic fields of the medium, we can write down the Maxwell equations for them

in the form

∇ ·P(xt) = −ρ(xt) (1.242)

∇×P(xt) = ε0µ0∂tM(xt) (1.243)

∇ ·M(xt) = 0 (1.244)

∇×M(xt) = j(xt)− ∂tP(xt). (1.245)

Note that this implies that in the general time-dependent case, the relations

ρ(x) =

∫
dx′ P(x′) · (∇δ′)(x− x′)

j(x) =

∫
dx′ M(x′)× (∇δ′)(x− x′).

do not hold any more. In fact, the above equations can be integrated by parts yielding

ρ(x) = −∇ ·P(x) (1.246)

j(x) = ∇×M(x). (1.247)

Obviously, these are just the static Maxwell equations. In particular, they imply ∇ · j = 0

and hence ∂tρ = 0. This shows again that in the time-dependent case, the static connection

between dipole densities and sources does not constitute the definition of the dipole densities.

Instead, the defining equations of time-dependent dipole densities are the aforementioned

equations

ϕ(xt) =
1

4πε0

∫
dx′

P(x′t) · (x− x′)

|x− x′|3

A(xt) =
µ0

4π

∫
dx′

M(x′t)× (x− x′)

|x− x′|3
.

These equations determine P(xt) and M(xt) only up to transversal and longitudinal vector

fields respectively. This “gauge” freedom allows one to determine P(xt) and M(xt) such that

they fulfill the Maxwell equations.
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Modern Theory of Polarization We define the macroscopic electric and magnetic polar-

ization as

P(t) =

∫
dx P(xt), (1.248)

M(t) =

∫
dx M(xt), (1.249)

In fact, it is well-known that the volume integrals of electromagnetic fields generated by

localized sources yield the corresponding dipole moments [49, 57].7 In the electric case this

can be shown easily by considering the Gauss law in the form

x∇ ·P(xt) = −x ρ(xt), (1.250)

integrating this over the volume and performing a partial integration. This leads to∫
dx P(xt) =

∫
dx xρ(xt). (1.251)

Similar arguments hold for the magnetic case. ([57], p.78f) On the other hand, the consti-

tutive equation of the Modern Theory of Polarization reads

P(t) =

∫ t

dt′ j(t′), (1.252)

where j(t′) =
∫

dx j(x, t′). We now show this equation directly from the Maxwell equations

for the microscopic quantities P(xt) and M(xt). Integrating the fourth Maxwell equation

(Ampère’s law ) yields ∫
dx ∇×M(xt) = j(t)− ∂tP(t). (1.253)

If we can show that the LHS vanishes under realistic assumptions, then a time integration

yields immediately

P(t) =

∫
dt′ j(t′). (1.254)

This is the fundamental equation of the modern theory of polarizability. [77, 78, 79] The

equation of motion for M(xt) in terms of j(xt) reads

2M(xt) = ∇× j(xt). (1.255)

This can be solved for M using the retarded Green function as

M(x, t) =
1

4π

∫
dx

(∇× j)(x′tret)

|x− x′|
(1.256)

7Kovetz uses these formulas to motivate the identification of dipole densities with internal fields.
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where (∇× j)(x′tret) means (∇× j)(x′t′) evaluated at t′ = tret. In condensed matter systems,

it is reasonable to assume that j stays inside a finite volume V for all times. Furthermore,

considering typical measurement setups for induced polarizations, we may assume that the

current starts to flow at a finite time t0. This implies that for all times t, there exists R > 0

such that for x′ ∈ V and all x with |x| ≥ R, we have tret < t0 and consequently M(xt) = 0.

Consider now ∫
dx (∇×M)i(xt) =

∫
dx δik(∇×M)k(xt). (1.257)

Using δij = ∂ixj and performing a partial integration yields∫
dx xi∂k(∇×M)k(xt) +

∫
dx ∂k(xi(∇×M)k(xt)). (1.258)

The first integral vanishes since it involves the divergence of a rotational vector field. The

second integral can be converted into a surface integral by Gauss’ theorem leading to

lim
R→∞

∫
|x|=R

dA xi n · (∇×M)(x, t). (1.259)

This equals zero as M(x, t) = 0 for sufficiently large R.

Permittivity Consider now Gauss’ law (1.138) in the form

∇ · Eext =
ρext

ε0

(1.260)

∇ · Eint =
ρint

ε0

. (1.261)

In many situations it is then a well justified hypothesis to assume a linear relation between

Eext and Etot in the general form

Ei
ext(xt) =

∫
dt′dx′ εi j(xt,x

′t′)Ej
tot(x

′t′) (1.262)

where ε is called permittivity tensor. In the case of an isotropic permittivity εi j ∝ δij, it is

more convenient to work with the potential ϕ such that

E = −∇ϕ (1.263)

∆ϕ = − ρ

ε0

. (1.264)

Due to linearity, for homogeneous systems the splitting carries over to the potential as

ϕtot = ϕext + ϕint (1.265)

ϕext(xt) =

∫
dx′dt′ ε(xt,x′t′)ϕtot(x

′t′) (1.266)
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because

Eext(xt) = −∇ϕext(xt) (1.267)

= −∇
∫

dx′dt′ ε(xt,x′t′)ϕtot(x
′t′) (1.268)

= −
∫

dx′dt′ ∇ε(x− x′; t− t′)ϕtot(x
′t′) (1.269)

=

∫
dx′dt′ ∇′ε(x− x′; t− t′)ϕtot(x

′t′) (1.270)

= −
∫

dx′dt′ ε(x− x′; t− t′)∇′ϕtot(x
′t′) (1.271)

=

∫
dx′dt′ ε(x− x′; t− t′)Etot(x

′t′) (1.272)

where suitable boundary conditions have been assumed. Recalling the fundamental solution

for the Laplace operator, one sees that the internal potential can be written in terms of the

internal charge density as

ϕint(xt) =
1

4πε0

∫
dx′

ρint(x
′t)

|x− x′|
. (1.273)

This ansatz removes the arbitrariness in the definition of ϕint. The external density response

function χ(xt,x′t′) is defined by the linear ansatz

ρint(xt) =

∫
dx′dt′ χ(xt,x′t′)ϕext(x

′t′) (1.274)

χ(xt,x′t′) =
δρint(xt)

δϕext(x′t′)
. (1.275)

Again, we stress that the second equation is the more general definition which also applies

for non-linear systems. Comparison with the defining equation for the permittivity yields

ε−1(x,x′;ω) = δ(x− x′) +

∫
dx′′ v(x,x′′)χ(x′′,x′;ω) (1.276)

with

v(x,x′) =
1

4πε0

1

|x− x′|
. (1.277)

Analogously, the total density response function χ̃(xt,x′t′) is defined by relating the internal

charge density to the total potential

ρint(xt) =

∫ ∞
−∞

dx′dt′ χ̃(xt,x′t′)ϕtot(x
′t′) (1.278)

χ̃(xt,x′t′) =
δρint(xt)

δϕtot(x′t′)
(1.279)
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In terms of the total density response function8, the permittivity reads

ε(x,x;ω) = δ(x− x′)−
∫

dx′′ v(x,x′′)χ̃(x′′,x′;ω). (1.280)

Comparing (1.276) and (1.280) in the compact form

ε = 1− vχ̃ (1.281)

ε−1 = 1 + vχ (1.282)

and using the geometric summation formula we see that χ and χ̃ are interrelated by

χ = χ̃+ χ̃vχ̃+ χ̃vχ̃vχ̃+ . . . (1.283)

which can also be written as a Dyson-like equation χ = χ̃+ χ̃vχ, i.e.

χ(x,x′;ω) = χ̃(x,x′;ω) +

∫
dx′′dx′′′ χ̃(x,x′′;ω)v(x′′,x′′′)χ(x′′′,x′;ω). (1.284)

This equation can also be shown directly through a functional chain rule as

χ(x, x′) ≡ δρint(x)

δϕext(x′)
(1.285)

=

∫
dx′′

δρint(x)

δϕtot(x′′)

δϕtot(x
′′)

δϕext(x′)
(1.286)

=

∫
dx′′

δρint(x)

δϕtot(x′′)

δ(ϕext(x
′′) + ϕint(x

′′))

δϕext(x′)
(1.287)

=

∫
dx′′

δρint(x)

δϕtot(x′′)

(
δ(x′′ − x′) +

δϕint(x
′′)

δϕext(x′)

)
(1.288)

= χ̃(x, x′) +

∫
dx′′dx′′′ χ̃(x, x′′)v(x′′, x′′′)

δρint(x
′′′)

δϕext(x′)
(1.289)

= χ̃(x, x′) +

∫
dx′′dx′′′ χ̃(x, x′′)v(x′′, x′′′)χ(x′′′, x′). (1.290)

Alternatively, assuming suitable invertibility properties, we can write

χ̃−1 = χ−1 + v. (1.291)

For a homogeneous systems, some equations become particularly lucid in the Fourier domain,

e.g.

ϕtot(k, ω) =
ϕext(k, ω)

ε(k, ω)
. (1.292)

8The terms “total” and “external density response function” are shorthand for “response function for vari-

ations with respect to the total/external field”. This does not imply that the total response function is

the sum of the external response function plus some rest. Instead, as we will see shortly, the relation

between the total and the external response function is given by a Dyson-like equation.
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Therefore, we can write mode-wise

ϕext = εϕtot

ϕint = (1− ε)ϕtot

ϕint =
1− ε
ε

ϕext

or multiplying through with −|k|2 (cf. [51], p.345)

ρext = ερtot

ρint = (1− ε)ρtot

ρint =
1− ε
ε

ρext.

Conductivity In order to turn Maxwell’s equations into a fully consistent and self-contained

theory, one has to specify the equation of motion of the sources in terms of the fields. Within

the realm of solid-state physics, one often assumes a simple, linear relation between j and E.

The most general linear relation is given by

ji(xt) =

∫
dt′dx′ σij(xt,x

′t′)Ej(x′t′). (1.293)

σ is called microscopic conductivity tensor. We read off that the conductivity tensor can also

be characterized as

σij(xt,x
′t′) =

δji(xt)

δEj(x′t′)
. (1.294)

This relation can be reinterpreted as the definition of the conductivity for a system in which

the current and the electric field are not linearly related. A special case is the homogeneous,

local, isotropic, time-independent conductivity

σij(xt,x
′t′) = σ0δ(x− x′)δ(t− t′)δij (1.295)

leading to

j = σ0E. (1.296)

Of course, on a fundamental level such a relation cannot be true already because it is at odds

the transformation properties (E is a spatial three-vector whereas j is the spatial part of a

four-vector). In the spirit of the above distinction between external and induced quantities

we now reinterpret Ohm’s law as

jint = σEext. (1.297)

Thesis, Vienna, July 4, 2012



Ronald Starke: Green Functions and Electronic Structure Theory 59

mode-wise. The external and the induced quantities fulfill the local current conservation law

separately yielding in the Fourier domain

−iωρint(k, ω) + ik · jint(k, ω) = 0. (1.298)

On the other hand

ρint(k, ω) =
1− ε
ε

ρext =
1− ε
ε
|k|2ε0ϕext(k, ω). (1.299)

Using E = −ikϕ, the combination of these leads to

ε−1(k, ω) = 1− i
σ(k, ω)

ωε0

. (1.300)

It is noteworthy that sometimes the conductivity is also defined with respect to the total

electric field

jint = σ̃Etot. (1.301)

It is moot to discuss which of these is the “right” definition. Instead, we state that these

notions of conductivity are related by

σ̃ = σε. (1.302)

Finally, we note that within the realm of classical electrodynamics, conductivity and per-

mittivity are concepts which are introduced ad hoc and which should be considered as the

introduction of free parameters characterizing materials. That is, classical electrodynamics

alone does not provide a basis to calculate these quantities.

Induced vs Macroscopic Quantites In the derivation of many relations we assumed

the material (described by ρint, jint) to behave linearly. The linear relationship between ϕext

and ρint implies that the charge density of the system vanishes in the absence of an external

field. This cannot be true for a system composed of charged particles. Instead, it is realistic

to assume that the difference between the charge density of the system in the absence of an

external field and in the presence of an external field responds linearly to that very external

field. We call that difference the induced charge density ρind. In other words, ρint = ρ0 + ρind

where only the second term responds (linearly) to the external field. This distinction is some-

times blurred by the usage of macroscopic fields. Here, we have to stress that in principle the

introduction of external and internal fields has nothing to do with the distinction between

microscopic and macroscopic fields: the first distinction results from a splitting of the source

terms in Maxwell’s equations, the second distinguishes between averaged and non-averaged

fields. By an averaged field we mean

F̄(xt) =

∫
dx f(x− x′)F(x′t) (1.303)
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where the averaging function f fulfills some natural properties (e.g. f is symmetric, localized

around the origin and integrates to 1). Now, within the realm of Linear Response Theory

one defines the averaging process such that the charge density in the absence of the external

field just vanishes (where we assume that the overall charge of the system vanishes any-

way). Therefore, if one works with the macroscopic quantities, the system behaves linear in

the sense that Linear Response Theory provides a first-order functional Taylor expansion of

the internal fields in terms of the external fields. The higher order terms are usually (but

not always) negligible because the external fields are very weak as compared to the field

strenghts in the vicinity of the atomic nuclei which constitute the material. However, an

explicit treatment of the averaging is unnecessary if one interprets from the very outset the

linear relations as referring to the induced instead of the internal quantities. In this text,

we therefore do not perform any averaging process of the fields. Instead, we reinterpret the

linear relations as referring to the induced quantites.

General Theory of Electromagnetic Response Functions We now come to the prob-

lem of the anisotropy and the inhomogeneity. For anistropic, inhomogeneous systems, the

relation between induced and external fields cannot be given by scalar quantities which in

the Fourier domain essentially depend on only one k-vector. The response of a system to

an external electromagnetic perturbation is usually described by a very huge number of

quantities:

• The conductivity tensor σ describes the response of the current density jind to an

external electric field Eext.

• The electric susceptibility tensor χe describes the response of the polarization P to the

total electric field Etot.

• The magnetic susceptibility χm describes the response of the magnetization M to an

external magnetic field Bext.

All in all, this makes 3 · 9 = 27 material parameters. Empirically, this way of describing

materials has proven to be highly effective. On the other hand, in view of the fact that

all electromagnetic quantities of the system can ultimately be traced back to the induced

electromagnetic 4-current jµ = (cρind, jind) whereas all external quantities ultimately result

from an external 4-potential Aµ = (ϕext/c,A), the 4 · 4 = 16 response functions

χµν(x, x
′) =

δjµind(x)

δAνext(x
′)

(1.304)
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corresponding to the effect of Aµext on jνind – we will henceforth call them the fundamental

electromagnetic response functions – suffices to deduce all the different responses.9 Apart

from reducing the total number of independent response functions, focussing on the fun-

damental response functions in the first place bears several advantages. First of all, the

fundamental response functions constitute a second-rank Lorentz tensor and therefore yield

a relativistic description of the materials responses, in particular a relativistic generalization

of Ohm’s law,

jµind(x) =

∫
dx′χµν(x, x

′)Aνext(x
′). (1.305)

It will later become apparent that the thus determined induced current is independent of

the gauge in the external field. The transformation property of the fundamental response

functions reads explicitly

χµν(x, x
′) = Λµ

αΛ β
ν χ

α
β(Λ−1x,Λ−1x′) (1.306)

with a proper, orthochronous Lorentz transformation Λ ∈ L↑+ ⊂ O(3, 1). The transforma-

tion property w.r.t the current coordinates is obvious whereas the transformation properties

with respect to electromagnetic potential can be shown by a functional chain rule. Another

important advantage is that, as opposed to the fields (E,B) the coupling of Aµ to a Hamil-

tonian can easily be written down on the most fundamental level. It is given by the minimal

coupling prescription pµ 7→ pµ − eAµ. As this corresponds to a field theoretical interaction

Hamiltonian jµA
ν , a quantum mechanical expression for the fundamental response function

can easily be calculated from the Kubo formula, i.e.,

δjµind(x)

δAνext(x
′)

= − i

~
θ(t− t′)〈[ĵµ(x), ĵν(x

′)]〉. (1.307)

As the current operator is bilinear in the field operator, this implies that the fundamental

response function can be calculated from the four-point propagator by taking suitable equal-

time limits10. However, the crucial question is whether or not one can derive a closed

analytical formula which expresses the usual response functions in terms of the fundamental

response functions. Now, we are facing two different problems: (i) how can we relate the

response of the induced 4-current to the response of P,M and (ii) how do we express the

reaction with respect to the external fields Eext,Bext in terms of the response to the external

four-potential Aµext. We start with the first problem which is the trivial one. In fact, we

9These response functions are indeed standard in the electronic structure community. [35]
10Usually, one works with the time-ordered four-point propagator instead of its retarded counterpart. This

does not affect our argument because in the frequency domain the time ordered and the retarded response

function differ only by infinitesimal iη in the denominator and therefore carry the same information.
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argued that P and M can be identified with the microscopic fields Eind,Bind generated by

the current jµind. The first problem therefore simply amounts to the calculation of the fields

in terms of the sources. That means, if e.g. the magnetic field B is given in terms of the

current j as

B(x) =

∫
dx′ G(x, x′)j(x′) (1.308)

where G is an appropriate (matrix valued) integral operator, then the response χm of µ0M =

Bind can be expressed in terms of the response of j as

µ0
δM i(x)

δBj
ext(x

′)
=
∑
k

∫
dy Gi

k(x, y)
δjk(y)

δBj
ext(x

′)
. (1.309)

On the most fundamental level, the integral operator which relates the fields to the sources

can be calculated as follows. We fix a gauge (e.g. the Lorentz gauge) and observe that

2Aµ = µ0j
µ and

E(xt) = −∇ϕ(xt)− ∂tA(xt) (1.310)

B(xt) = ∇×A(xt). (1.311)

implies

2E(xt) = − 1

ε0

∇ρ(xt)− µ0∂tj(xt) (1.312)

2B(xt) = µ0∇× j(xt). (1.313)

These equations can also be shown directly from the Maxwell equations. Choosing a Green

function for the d’Alembert operator then gives the fields in terms of the sources. Of course,

usually the precedure is way to complicated for solid-state physics because there retardation

effects usually do not matter. For example, in most cases it will sufficient to simply set

E = −∇ϕ, B = ∇×A where

ϕ(xt) =
1

4πε0

∫
dx′

ρ(x′t)

|x− x′|
(1.314)

A(xt) =
µ0

4π

∫
dx′

j(x′t)

|x− x′|
. (1.315)

We now come to the second problem. Indeed, this problem also seems to be trivial if one

considers the functional chain rule

δjµind(x)

δEi
ext(x

′)
=

∑
α

∫
dy

δjµind(x)

δAαext(y)

δAαext(y)

δEi
ext(x

′)
(1.316)

δjµind(x)

δBi
ext(x

′)
=

∑
α

∫
dy

δjµind(x)

δAαext(y)

δAαext(y)

δBi
ext(x

′)
. (1.317)
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However, the problem is now that the explicit dependence of the four-potential on the fields

depends on the gauge. We therefore have to show that equations (1.316), (1.317) do not

depend on the gauge. It is well-known that Aµ and Aµ − ∂µf give rise to the same fields.

The converse also holds true: if two potentials Aµ and A′µ determine the same fields E,B

they differ by a gauge transform. It is then sufficient for the equations (1.316), (1.317) to be

gauge independent if ∑
α

∫
dy

δjµind(x)

δAαext(y)

δ∂αf(y)

δEi
ext(x

′)
= 0 (1.318)

and similarly for the second equation. As the functional derivative commutes with the partial

derivative we conclude that – assuming partial integrability – that

∂′α
δjβind(x)

δAαext(x
′)

= ∂′αχβα(x, x′) = 0 (1.319)

is sufficient for the gauge independence. This will be shown now. For this purpose, we use

again the functional chain rule

δjµ(x)

δAν(x′)
=
∑
α,β

∫
dy

δjµ(x)

δF αβ(y)

δFαβ(y)

δAν(x′)
(1.320)

where the field strength tensor is given by F µν = ∂µAν − ∂νAµ. We can calculate explicitly

δFαβ(x)

δAν(x′)
= δβν(∂

αδ)(x− x′)− δαν(∂βδ)(x− x′). (1.321)

This yields
δjµ(x)

δAν(x′)
= −2∂′α

δjµ(x)

δFαν(x′)
(1.322)

and hence

∂′ν
δjµ(x)

δAν(x′)
= −2∂′ν∂′α

δjµ(x)

δF αν(x′)
= 0 (1.323)

because this corresponds to the contraction of a symmetric with an antisymmetric tensor.

Conductivity as the Fundamental Response Function We now compute the con-

ductivity in terms of the fundamental response. As we have shown that the overall result is

gauge independent, we may choose any gauge we want. For the conductivity, it seems to be

particularly suitable to work with a gauge where ϕ = 0 (Weyl or axial gauge), i.e.

E(xt) = −∂tA(xt). (1.324)

This leads to

A(xt) = −
∫ t

dt′ E(xt′) (1.325)
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and to the formal functional derivative

δAi(x)

δEj(x′)
= −δij

(∫ t

δ

)
(x− x′). (1.326)

Here, we introduced an integrated Dirac distribution via the prescription(∫ t

δ

)
[f ] =

∫ t

−∞
dt′ f(t′). (1.327)

In four dimension, this means explicitly(∫ t

δ

)
(x− x′) = θ(t− t′)δ(x− x′). (1.328)

We now find

σij(x, x
′) =

δji(x)

δEj(x′)
(1.329)

= −
∫

dy
δji(x)

δAj(y)

(∫ t

δ

)
(y − x′) (1.330)

= −
∫
t′

dt′′
δji(x)

δAj(x′t′′)
. (1.331)

Observing that11

F
(∫ t

f

)
(ω) =

1

iω
f̃(ω) (1.332)

we find that in the Fourier domain we have

σij(x,x
′;ω) =

1

iω
χi j(x,x

′;ω). (1.333)

Within the Kubo formalism, we can identify χi j with the current-current response function.

This yields the standard formula for the conductivity.12 The above discussion makes it

clear that the microscopic, frequency dependent conductivity already contains the complete

information about all electromagnetic response functions. Trivially, χi j can be reconstructed

from σij. Using the constraints

∂µχ
µ
ν(x, x

′) = 0

∂′νχµν(x, x
′) = 0

11Operator kernels transform as
∫

dtdt′ eiωtχ(t, t′)e−iω′t′ .
12Compare Bruus/Flensberg [15], equation (6.28). The second term stems from the non-classical contribution

ρ(x)A(x), which is not consiered here. The different sign is due to χij = −χij .
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and observing −∂′0 = ∂0,13 we can express χi0, χ
0
j and χ0

0 in terms of σij as

χ0
j(ω) = ∂iσ

i
j(ω) (1.334)

χi0(ω) = −∂′jσij(ω) (1.335)

χ0
0(ω) = − 1

iω
∂i∂
′jσij(ω). (1.336)

On the other hand, χ0
0 = χ = δρ/δϕext is just the usual density response function related to

the (scalar) permittivity through ε−1 = 1 + vχ and hence

ε−1 = 1− v 1

iω
∂i∂
′jσij(ω). (1.337)

In the particular case of an isotropic, homogeneous material, we have σij ∝ δij and σ(x,x′) =

σ(x−x′). The partial derivative ∂′j can then be replaced with −∂i and thus ∂i∂
′j 7→ −∂i∂i =

∂i∂i reverts to the Laplace operator which cancels after convolution with its inverse, minus

the Coulomb potential. We therefore recover the well-known formula

ε−1(k;ω) = 1− i

ωε0

σ(k;ω). (1.338)

Finally, we express the microscopic magnetic susceptibility in terms of the microscopic con-

ductivity. To do this, we start from the fundamental relation

µ0
δM i(x)

δBj
ext(x

′)
=

∫
dydy′

δM i(x)

δjkind(y)

δjkind(y)

δAlext(y
′)

δAlext(y
′)

δBj
ext(x

′)

=

∫
dydy′

δM i(x)

δjkind(y)
χkl(y, y

′)
δAlext(y

′)

δBj
ext(x

′)
.

For δM i(x)/δjkind(y) we find

δM i(x)

δjkind(y)
=
µ0

4π
εijk∂j

δ(t− t′)
|x− x′|

. (1.339)

For Aµ we impose the Coulomb gauge such that δA0/δBj = 0 and ∇ · A = 0. With the

Helmholtz decomposition theorem we get

A(xt) =
1

4π
∇×

∫
dx′

B(x′)

|x− x′|
. (1.340)

We then find again
δAi(x)

δBk
ind(y)

=
1

4π
εijk∂j

δ(t− t′)
|x− x′|

. (1.341)

13The response functions depend on the time differences.
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Now, a double partial integration shows that

(χm)i j(xt,x
′t′) = − µ0

(4π)2

∫
dydy′

1

|x− y|
εimk εjnl

∂

∂ym
∂

∂y′n
χkl(yt,y

′t′)
1

|y′ − x′|
. (1.342)

Defining the current-rotation response function

χ∇×j,∇×j(x, x
′) = εimk εjnl

∂

∂xm
∂

∂x′n
χkl(x, x

′), (1.343)

and using the Coulomb kernel v, the result can be written compactly as14

χm = −µ0

∫
dydy′ v(x, y)χ∇×j,∇×j(y, y

′) v(y′, x′). (1.344)

Substituting back the expression for χi j in terms of σij, we obtain a closed formula for the

magnetic susceptibility tensor in terms of the microscopic conductivity tensor. Furthermore,

expressing the above result in the Fourier domain and specializing to homogeneous and

isotropic systems leads to

(χm)i j = µ0
1

|k|4
εimk εjnl kmkn δ

k
lχ(k), (1.345)

or equivalently,

(χm)i j = µ0
1

|k|2

(
kikj
|k|2
− δij

)
χ(k). (1.346)

By noticing that the term in brackets corresponds to minus the projector on the transversal

part of χ(k), we recover the well-known relation between the magnetic susceptibility and the

transversal current response function15:

χm = −µ0 lim
k→0

χT(k, ω = 0)

k2
. (1.347)

Here, the limit k → 0 corresponds to integrating out spatial dependence whereas ω = 0

corresponds to the transition from response functions to thermodynamic susceptibilities at

temperature T = 0.

Maxwell Equations in Matter per definitionem give the total fields in terms of the

external sources. Now, in principle the external fields fulfill the Maxwell equations with

the external sources. Therefore, in order to express the total fields in terms of the exter-

nal sources, one has to express the external fields in terms of the total fields and feed this

14A Fourier space version of this equation for homogeneous materials has been found by a different method

by Takimoto. [94]
15Cf. Giuliani/Vignale [35], p. 147.
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expression back into the Maxwell equations. This necessitates e.g. the introduction of the

somewhat counterintuitive quantity ε which is actually not a response function because the

external field does not respond to the total field but vice versa. Consequently, ε is not re-

tarded either. Macroscopically, one restricts oneself to the case where the induced electric

field only depends on the external electric field and the induced magnetic field on the external

magnetic field. The dependence is given by a constant (tensor). Microscopically, things get

more complicated. The constant tensors are to be replaced by time and non-locally space

dependent integral operators and furthermore the induced fields depend on all external fields.

Therefore, it is more convenient to work with the fundamental response functions. First we

derive the connection between the external field Aµext and the total field Aµtot.
16 We have

2Aµind = µ0j
µ
ind (1.348)

and hence

Aµind = µ0Gj
µ
ind = (Gχ)µνA

ν
ext (1.349)

where χ denotes the fundamental response function and G is a Green function for the

d’Alembert operator. Therefore

Aµext = ((1 +Gχ)−1)µνAtot. (1.350)

Maxwell equation in matter therefore read in their most general form

2(1 +Gχ)−1Atot = µ0jext. (1.351)

Of course these equations are in general highly complicated integro-differential equations and

therefore not of Maxwellian form any more.

1.4.2. Thermodynamics

Thermodynamic Systems or macroscopic systems in equilibrium are characterized by a

set of degrees of freedom (E, T, {Xi}i=1,...,n), where E is called energy, T temperature and

the Xi are the so-called extensive or external parameters. The space Rn+2 spanned by

the degrees of freedom is called state space. In equilibrium, not the whole state-space is

accessible, but the possible combinations of the (E, T, {Xi}i=1,...,n) are restricted to fulfill a

so-called equation of state

f(E, T, {Xi}) = 0. (1.352)

16In the following we use a formal notation.
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Under suitable regularity conditions on f ,17 this equation defines a manifoldM, the manifold

of states. Any (sufficiently regular18) function f : M → R is called state variable. State

variables form an algebra. In particular, E = E(T, {Xi}) is a state variable. In this form, the

energy dependence is called caloric equation of state and the (T, {Xi}) can be interpreted as

local coordinates on the manifold of states. For any function f on a manifold, we can form

the corresponding one-form df (also called “differential”). It is a fundamental tenet that the

differential of the energy can be written as

dE = TdS +
n∑
i=1

AidXi (1.353)

with states variables (S, {Ai}i=1,...,n). This is called Gibbsian fundamental form. S is called

entropy. It is noteworthy that this form of writing dE is completely general in the sense

that it does not depend on the local coordinates on the manifold. Instead it relates in a

coordinate independent way the differential of the energy to the differentials of the state

variables (S, {Xi}). If we use indeed (T, {Xi}) as local coordinates (as we did in the caloric

equation of state), then with S = S(T, {Xi}) we have

∂E

∂T
= T

∂S

∂T
(1.354)

∂E

∂Xi

= T
∂S

∂Xi

+ Ai. (1.355)

If we have a set of functions f, x1, . . . , xn, y1, . . . , yn on a manifoldM with dimM = n such

that the differentials are related via

df =
n∑
i=1

xidyi, (1.356)

then the yi are called natural coordinates for f and the {xi}. In the natural coordinate

system xi = ∂f/∂yi necessarily holds. (We assume tacitly that the lines of constant yi define

a local coordinate chart.) Consequently, in the natural coordinates for the energy we have

E = E(S, {Xi}) and

∂E

∂S
= T (1.357)

∂E

∂Xi

= Ai. (1.358)

17In particular, f should be differentiable with non-vanishing gradient on the niveau surface. (cf. e.g. [83]

Chapter 1, [43] Chapter 2)
18Usually, on a manifold, one considers smooth functions f ∈ C∞(M). Physically, however, this is far

from being a necessity. Quite to the contrary, when it comes to phase transitions, it might just be the

non-regularity of a state variable which turns out to be the decisive feature. As this is not our concern

here, we will always tacitly assume sufficient regularity to compute formally.
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The Ai are the so-called generalized forces. Conversely, from the Gibbsian fundamental form,

we read off that

dS =
1

T
dE −

n∑
i=1

Ai
T

dXi (1.359)

i.e. the natural coordinates are given by S = S(E, {Xi}) and

∂S

∂E
=

1

T
(1.360)

∂S

∂Xi

= −Ai
T
. (1.361)

Next, we introduce the Helmholtz free energy

F = E − TS. (1.362)

Note that at T = 0 (the relevant case for Electronic Structure Theory), E = F . For the

associated one-form, we find using the Gibbsian fundamental form

dF = −SdT +
n∑
i=1

AidXi. (1.363)

Therefore, in the natural coordinates F = F (T, {Xi}). The

χij(T, {Xi}) =
∂Ai(T, {Xi})

∂Xj

=
∂2F (T, {Xi})
∂Xi∂Xj

(1.364)

are the so-called generalized susceptibilities. This terminology stems from the study of mag-

netism: for a thermodynamic system in an external magnetic field Bext = µ0H, the magne-

tization (in the i-th direction) and the susceptibility are defined as

Mi =
∂F

∂Bi

(1.365)

χij =
∂Mi

∂Bj

. (1.366)

The extensivity of E in the sense that

E(λS, {λXi}) = λE(S, {Xi}) (1.367)

for λ ∈ R+ is a frequent assumption which will certainly not hold in general. It leads to the

so-called Gibbs-Duhem equation

E(S, {Xi}) = TS +
n∑
i=1

XiAi. (1.368)
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By the Gibbsian fundamental form we obtain the Euler equation

SdT +
n∑
i=1

XidAi = 0. (1.369)

The Gibbs-Duhem equation for the Helmholtz free energy reads

F =
n∑
i=1

AiXi. (1.370)

Linear Response Theory is defined by the ansatz

χij = fij(T ) (1.371)

or Ai = Ai0(T )+
∑n

j=1 χij(T )Xj. Within Linear Response Theory, the Helmholtz free energy

is given by the simple expression

F (T, {Xi}) =
∑
i

Ai0(T )Xi +
1

2

∑
i,j

χij(T )XiXj. (1.372)

This can be interpreted as the leading term of a Taylor expansion

F (T, {Xi}) =
∑
i

Ai0(T )Xi +
1

2!

∑
i,j

χij(T )XiXj +
1

3!

∑
i,j,k

χijk(T )XiXjXk + . . . (1.373)

around Xi = 0. This latter ansatz is of course independent of the validity of the Gibbs-

Duhem relation.

Work done on the System by the External Field The formula

E =
1

2

∫
dx ρ(x)ϕ(x) =

ε0

2

∫
dx |E(x)|2 (1.374)

for the energy of the static charge density in the field created by itself is of unrestricted gen-

erality.19 Within the realm of thermodynamics, we interpret the splitting ρ = ρext +ρint; ϕ ≡
ϕtot = ϕext +ϕint such that the induced quantities refer to the thermodynamic system under

consideration whereas the external quantites are to be interpreted as a continuous family

(indexed by i 7→ x)20 of external parameters Xi. The total energy then splits into four

terms proportional to ϕextρext, ϕextρint, ϕintρext, ϕintρint. The first term is simply not consid-

ered because it does not refer to the thermodynamic system. The third term describes the

19The characterization of the electric field energy as an integral of the square of the field strength actually

goes beyond the static realm.
20Strictly speaking, this would require the introduction of infinite-dimensional state manifolds.
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back-reaction of the system on the external source and is therefore neglected (otherwise the

source would not be external). The remaining terms give

E =
1

2

∫
dx ρint(x)ϕtot(x) (1.375)

As in the general case, we can use ∇ · Eint = ρint/ε0 and −∇ϕ = E to get

E = Eel =
ε0

2

∫
dx Eint(x) · Etot(x) = −1

2

∫
dx P(x) · E(x) (1.376)

by a partial integration. Similar arguments starting from the expression for the static mag-

netic field generated by a static current

Em = −1

2

∫
dx j(x) ·A(x) =

1

2µ0

∫
dx |B(x)|2 (1.377)

lead to the expression

Em =
1

2

∫
dx M(x) ·B(x) (1.378)

for the energy of a magnetized medium in a total field B. A main advantage of these formulas

is that they allow for a characterization of the polarization P and the induced charge density

ρint as suitable functional derivatives of the energy with respect to fields or potentials. This

paves the way for a connection with thermodynamics. Note that if only the energy in the

external field is relevant (i.e. the self-energy of the induced charge can be neglected as in

dilute systems), then we can even replace the total quantities with the external. The quantity

F =
1

2

∫
dx ρint(x)ϕext(x) =

ε0

2

∫
dx Eint(x) · Eext(x) = − 1

2ε0

∫
dx P(x) ·D(x) (1.379)

can be identified with the Helmholtz free energy for a system with external parameters

ε0Eext = D within the limits of the Gibbs-Duhem equation for F . In particular, this implies

TS =
1

2

∫
dx ρint(x)ϕint(x) =

ε0

2

∫
dx Eint(x) · Eint(x). (1.380)

Indeed, the integral is positive definite. We now think of the induced charge density ρint as

a temperature-dependent functional

ρint = ρint([Eext], T )(x). (1.381)

Now, F depends on its natural coordinates and we have

dF =
1

2

∫
dx δρint(x)ϕext(x) +

1

2

∫
dx ρint(x)δϕext(x). (1.382)
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Identifying this with = −SdT +
∑

iAidXi and using

Ai =
∂F

∂Xi

(1.383)

as well as

δF

δϕext(x)
=

1

2
ρint(x) +

1

2

∫
dx′

δρint(x
′)

δϕext(x)
ϕext(x

′)

= +
1

2
ρint(x) +

1

2

∫
dx′ χ(x,x′)ϕext(x

′)

=
1

2
ρint(x) +

1

2
ρint(x)

or

ρint(x) =
δF

δϕext(x)
(1.384)

leads to

χ(x,x′) =
δ2F

δϕext(x)δϕext(x′)
(1.385)

for the generalized susceptibilities.21 Similar formulas hold in the magnetic case.

1.4.3. Quantum Mechanics

Quantum Mechanics can be related to classical thermodynamics by identifying the energy

E at temperature T and external parameters {Xi} with the expectation value

E = 〈Ĥ〉 (1.386)

in the canonical ensemble

ρ̂ =
exp

(
− Ĥ
kBT

)
Tr exp

(
− Ĥ
kBT

) (1.387)

where the Hamiltonian is of the form

Ĥ = Ĥ0 +
n∑
i=1

XiÂi. (1.388)

In particular, the partition function

Z(T, {Xi}) = Tr exp

(
− Ĥ

kBT

)
(1.389)

21If the Gibbs-Duhem equation does not hold, this equality is to understood as a definition where the

funtional derivative is evaluated at ϕext = 0.
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formally depends on the natural variables of the Helmholtz free energy. Indeed, we have the

well-known formula

F (T, {Xi}) = −kBT ln Z (1.390)

and hence

E(T, {Xi}) = −∂ln Z

∂β
(1.391)

Ai(T, {Xi}) =
∂F

∂Xi

. (1.392)

where β = (kBT )−1. In particular, this shows that the Gibbs-Duhem equations in general

do not hold because

−kBT ln Z 6=
∑
i

XiAi. (1.393)

Furthermore, as

S =
1

T
(E − F ) (1.394)

and

ln ρ̂ = −βĤ − Tr exp(−βĤ) (1.395)

implying

〈ln ρ̂〉 = −β〈Ĥ〉 − Tr exp(−βĤ) (1.396)

=
1

kBT
(−E + F ) (1.397)

we have

S(T, {Xi}) = −kBTr ρ̂ ln ρ̂. (1.398)

This is the famous von-Neumann entropy.

Kubo Formula Consider a quantum system which is initially described by the time-

independent Hamiltonian Ĥ0. Suppose, that at some time t = t0 an external perturbation

is applied to the system:

Ĥ(t) = Ĥ0 + θ(t− t0)Xj(t)Âj. (1.399)

with some real-valued function Xj(t). Furthermore, consider the observable Âi and suppose,

the system is initially in thermal equilibrium. Then the expectation value of Âi is given by

Ai = 〈Âi〉t≤t0 =
Tr(ρ̂0Âi)

Z0

=
1

Z0

∑
r

〈Ψr|Âi|Ψr〉e−βEr (1.400)
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with

ρ̂0 =
exp

(
− Ĥ0

kBT

)
Tr exp

(
− Ĥ0

kBT

) (1.401)

After the perturbation is turned on, the system is in a non-equilibrium state. That means,

initially, the states are distributed according to the canonical ensemble, but after the pertur-

bation is switched on, the distribution is still the same, but the states are now time-dependent

and evolve according to the perturbed Hamiltonian. This leads to a time-dependent change

in the expectation value of Âi given by

δAi(t) = 〈Âi〉t − 〈Âi〉t0 . (1.402)

Theorem 1.4.1 Up to linear order in the perturbation the change in the expectation value

is given by:

δAi(t) = − i

~

∫ t

t0

dt′ 〈[Âi(t), Âj(t′)]〉0Xj(t
′) (1.403)

= − i

~

∫ ∞
t0

dt′ θ(t− t′)〈[Âi(t), Âj(t′)]〉0Xj(t
′) (1.404)

= − i

~

∫ ∞
−∞

dt′ θ(t− t′)θ(t′ − t0)〈[Âi(t), Âj(t′)]〉0Xj(t
′) (1.405)

where 〈·〉0 refers to the expectation value in the unperturbed ensemble ρ̂0 (which will not be

written explicitly in the sequel) and the time-dependence of Âi(t) and Âj(t) is given by the

unperturbed Hamiltonian Ĥ0.

Remark Equation (1.403) is the famous Kubo formula. (see e.g. [15] or [35])

Proof We make a transition to the interaction picture where Ĥpert = θ(t − t0)Xj(t)Âj

is the perturbation. In the interaction picture, we have

ΨI
r(t) = e

i
~ Ĥ0tΨr(t) (1.406)

ΨI
r(t) = Ψr for t ≤ t0 (1.407)

ĤI(t) = e
i
~ Ĥ0tĤ(t)e−

i
~ Ĥ0t (1.408)

Û I(t, t0) ' 1− i

~

∫ t

t0

dt′ ĤI
pert(t

′) (1.409)

ĤI
pert(t) = θ(t− t0)Xj(t)e

i
~ Ĥ0tÂje

− i
~ Ĥ0t (1.410)

1

Z0

∑
r

e−βEr(t0)〈Ψr(t)|Âi|Ψr(t)〉 =
1

Z0

∑
r

e−βEr(t0)〈ΨI
r(t)|ÂIi (t)|ΨI

r(t)〉. (1.411)

The Kubo formula now follows from plugging the time evolution operator in the interaction

picture into this formula and retaining only terms up to first oder in Xj.
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Definition The quantities

χR
ij(t, t

′) = − i

~
θ(t− t′)〈[Âi(t), Âj(t′)]〉 (1.412)

χA
ij(t, t

′) =
i

~
θ(t′ − t)〈[Âi(t), Âj(t′)]〉 (1.413)

χij(t, t
′) = − i

~
〈T Âi(t)Âj(t′)〉 (1.414)

are called retarded, advanced and time-ordered response function. T denotes the time-

ordering operator.

Remark The importance of the time-ordered response function lies in the fact that it can

be calculated from the time-ordered Green functions for which there exists a perturbation

theory in terms of the electron-electron interaction. For the retarded and advanced response

functions, this is not the case. On the other hand, the following formulas show that the

time-ordered response functions being given, one can reconstruct the retarded and advanced

response functions.

Explicit Form By inserting complete systems of energy eigenstates of the reference Hamil-

tonian, we read off that in the frequency domain the response functions read

χR
ij(ω) =

1

Z0

∑
r,s

e−βEr(t0)

(
〈Ψr|Âi|Ψs〉〈Ψs|Âj|Ψr〉
~ω − (Es − Er) + iη

− 〈Ψr|Âj|Ψs〉〈Ψs|Âi|Ψr〉
~ω + (Es − Er) + iη

)
(1.415)

χA
ij(ω) =

1

Z0

∑
r,s

e−βEr(t0)

(
〈Ψr|Âi|Ψs〉〈Ψs|Âj|Ψr〉
~ω − (Es − Er)− iη

− 〈Ψr|Âj|Ψs〉〈Ψs|Âi|Ψr〉
~ω + (Es − Er)− iη

)
(1.416)

χij(ω) =
1

Z0

∑
r,s

e−βEr(t0)

(
〈Ψr|Âi|Ψs〉〈Ψs|Âj|Ψr〉
~ω − (Es − Er) + iη

− 〈Ψr|Âj|Ψs〉〈Ψs|Âi|Ψr〉
~ω + (Es − Er)− iη

)
(1.417)

In particular, the response functions at temperature T = 0 read

χR
ij(ω) =

∑
s

〈Ψ0|Âi|Ψs〉〈Ψs|Âj|Ψ0〉
~ω − (Es − E0) + iη

−
∑
s

〈Ψ0|Âj|Ψs〉〈Ψs|Âi|Ψ0〉
~ω + (Es − E0) + iη

(1.418)

χA
ij(ω) =

∑
s

〈Ψ0|Âi|Ψs〉〈Ψs|Âj|Ψ0〉
~ω − (Es − E0)− iη

−
∑
s

〈Ψ0|Âj|Ψs〉〈Ψs|Âi|Ψ0〉
~ω + (Es − E0)− iη

(1.419)

χij(ω) =
∑
s

〈Ψ0|Âi|Ψs〉〈Ψs|Âj|Ψ0〉
~ω − (Es − E0) + iη

−
∑
s

〈Ψ0|Âj|Ψs〉〈Ψs|Âi|Ψ0〉
~ω + (Es − E0)− iη

(1.420)

where the sum goes over a complete system Ψs of energy eigenstates in the N -particle space

and Er = Er(t0). This explicit form of the response functions is analogous to the Lehmann
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representation of the Green function which will be treated later.

Response Function vs Fluctuation Response Function The response function gives

the reaction of the expectation value Ai(t) = 〈Ψ(t)|Âi|Ψ(t)〉 upon a switch in the pertur-

bation Xj(t)Âj at time t′. Equivalently, one could say that the response function gives the

reaction of the expectation value of the fluctuation operator

δÂi = Âi − 〈Âi〉01. (1.421)

Furthermore, the perturbation can also be redefined as

Âj 7→ δÂj = Âj − 〈Âj〉01 (1.422)

because this would yield an extra perturbationXj(t)〈Âj〉1 which only leads to time-dependent

phase factor, but does not change the eigenvectors Ψr. We conclude that the response func-

tion and the fluctuation response function coincide, i.e.

χR
ij(t, t

′) = − i

~
θ(t− t′)〈[δÂi(t), δÂj(t′)]〉 (1.423)

χA
ij(t, t

′) =
i

~
θ(t′ − t)〈[δÂi(t), δÂj(t′)]〉 (1.424)

This can also be read off from the explicit form of the response function or from the defining

formulas where one has to note that a term proportional to the identity has a vanishing

commutator with every operator. For the time-ordered response function, however, this

does not hold true. There, we earn the extra term

−Ethermal(AiAj)

∫ t

t0

dt′ Xj(t
′) (1.425)

with

Ethermal(AiAj) =
1

Z0

∑
r

e−βEr(t0)〈Ψr|Âi|Ψr〉〈Ψr|Âj|Ψr〉 (1.426)

if we make the replacements Âi 7→ δÂi. This fact should be interpreted as a mathematical

pathology because for the time being the importance of the time-ordered response function

consists in that it allows for the reconstruction of the retarded or advanced response function.

In fact, the time-ordered response function is the only one for which the terms r = s in the

sum
∑

r,s do not cancel between the first and the second expression. It is these terms that

are responsible for the inequality

〈T Âi(t)Âj(t′)〉 6= 〈T δÂi(t)δÂj(t′)〉. (1.427)
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We are therefore free to redefine the time-ordered response function as

χij(t, t
′) = − i

~
〈T δÂi(t)δÂj(t′)〉 (1.428)

whenever it suits our purposes. In particular, with the time-ordered density response func-

tion χ, we introduce the time-ordered fluctuation response function which is often denoted

by P and called polarizability.22

Kubo Response Function and Susceptibility From the Kubo-formula, we read off that

the retarded response function can also be characterized as

χR
ij(t, t

′) =
δAi(t)

δXj(t′)
, t ≥ t′ ≥ t0 (1.429)

where it is understood that the derivative is evaluated at Xj(t) ≡ 0.23 In other words, up to

linear order in the perturbation we have

Ai(t) = Ai(0) +

∫
dt′ χR

ij(t, t
′)Xj(t

′) (1.430)

or more generally

Ai(t) = Ai(0) +

∫
dt′
∑
j

χR
ij(t, t

′)Xj(t
′) (1.431)

for a perturbation
∑
Xj(t)Âj(t). As the response functions depend only on the time-

difference, a Fourier transform with respect to τ = t− t′ yields

Ai(ω) = Ai0δ(ω) +
∑
j

χR
ij(ω)Xj(ω) (1.432)

giving the response of the mode Ai(ω) to a perturbation with the same frequency. In partic-

ular, χR
ij(ω = 0) yields a constant shift in Ai due to a constant perturbation. It is therefore

plausible to consider the Fourier transform of χR
ij(t, t

′) = χR
ij(τ) with respect to τ = t − t′

at frequency ω = 0 and to interpret χR
ij(ω = 0) as the thermodynamic susceptibility χij.

Obviously, numerically χR
ji(ω = 0) = χA

ij(ω = 0) = χR
ij(ω = 0), i.e. χR

ij is symmetric in the

indices. Furthermore, χ
R/A
ij (ω = 0) < 0. To check this idea, we have to calculate

χij =
∂2F

∂Xi∂Xj

.

22As we will see later, the distinction between χ, χ̃, P, P̃ has a clearcut interpretation in Quantum Field

Theory. The transition from χ, χ̃ to P, P̃ corresponds to the transition from the four-point propagator

G(1, 2, 3, 4) to L(1, 2, 3, 4) = G4(1, 2, 3, 4)−G(1, 3)G(2, 4) whereas the distinction between χ, P and χ̃, P̃

corresponds to the difference between reducible and irreducible quantities in the sense of a Feynman

graph summation.
23This condition garantuees that our definitions also hold true for non-linear systems.
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We find

∂jF = −kBT∂j lnZ (1.433)

= −kBT
∂jZ

Z
(1.434)

=

∑
r ∂jEr e−βEr

Z
. (1.435)

For the second derivatives ∂i∂jF , we get

= β

∑
r ∂iEr e−βEr

Z

∑
s ∂jEs e−βEs

Z
+

∑
r ∂i∂jEr e−βEr

Z
− β

∑
r ∂iEr∂jEr e−βEr

Z
.

With the Hellmann-Feynman theorem we get

∂iEr = ∂i〈Ψr({Xi})|Ĥ({Xi})|Ψr({Xi})〉
= 〈Ψr({Xi})|∂iĤ({Xi})|Ψr({Xi})〉
= 〈Ψr({Xi})|Âi|Ψr({Xi})〉
= Air({Xi})

and therefore

∂i∂jEr = ∂i〈Ψr({Xi})|Âj|Ψr({Xi})〉 (1.436)

= 〈∂iΨr({Xi})|Âj|Ψr({Xi})〉+ 〈Ψr({Xi})|Âj|∂iΨr({Xi})〉 (1.437)

= 2Re〈Ψr({Xi})|Âj|∂iΨr({Xi})〉. (1.438)

We assume that Ψr({Xi}) can be treated perturbatively as

Ψr({Xk + δikη}) = Ψr({Xk}) + η
∑
s 6=r

〈Ψr|Âi|Ψs〉
Er − Es

Ψs + . . . (1.439)

and hence

∂iΨr({Xk}) =
∑
s 6=r

〈Ψr({Xk})|Âi|Ψs({Xk})〉
Er − Es

Ψs({Xk}). (1.440)

We now find

∂i∂jEr =
∑
s6=r

(
〈Ψr|Âi|Ψs〉〈Ψs|Âj|Ψr〉

Er − Es
+
〈Ψr|Âj|Ψs〉〈Ψs|Âi|Ψr〉

Er − Es

)
. (1.441)

It is this term which obviously coincides with χR(ω = 0). (Note in this context again that

the divergent contributions to χR(ω = 0) resulting from the terms r = s just cancel between
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the two sums.) The remaining terms which can be compactly written as the thermal expec-

tation values β(−Ethermal(AiAj) + Ethermal(Ai)Ethermal(Aj)) are in general neither zero nor

even negligible.24

Susceptibility and Response Function at Zero Temperature The surprising differ-

ence between the static response function χij(ω = 0) and the susceptibility χij results from

the fact that the susceptibility involves effects due to the thermal weighting e−βEr/Z. Upon

a perturbation, not only the expectation values Ai, but also the weighting factors change.

The Kubo formula ignores this in that it works with a constant partition function Z0. It is

intuitively clear that the difference vanishes at zero temperature because there the thermal

weighting does not matter. We now show this explicitly by prooving that

β

∑
r ∂iEr e−βEr

Z

∑
r ∂jEr e−βEr

Z
− β

∑
r ∂iEr∂jEr e−βEr

Z
(1.442)

goes to zero as β →∞. We find

lim
β→∞

(
β

∑
r ∂iEr e−βEr

Z

∑
s ∂jEs e−βEs

Z
− β

∑
r ∂iEr∂jEr e−βEr

Z

)
(1.443)

= lim
β→∞

(
β

∑
r ∂iEr e−βEr

Z

∑
s ∂jEs e−βEs

Z
− β

∑
r,s ∂iEr∂jEr e−βEre−βEs

Z2

)
(1.444)

= lim
β→∞

∑
r,s(∂iEr∂jEs − ∂iEr∂jEr) βe−βEr−βEs

Z2
(1.445)

= lim
β→∞

∑
r,s(∂iEr∂jEs − ∂iEr∂jEr) βe−β(Er−E0)−β(Es−E0)∑

r e−β(Er−E0)
∑

r e−β(Er−E0)
(1.446)

=

∑
r,s limβ→∞(∂iEr∂jEs − ∂iEr∂jEr) βe−β(Er−E0)−β(Es−E0)∑

r limβ→∞ e−β(Er−E0)
∑

r limβ→∞ e−β(Er−E0)
(1.447)

=

∑
r,s limβ→∞(∂iEr∂jEs − ∂iEr∂jEr) βe−β(Er−E0)−β(Es−E0)∑

r limβ→∞ e−β(Er−E0)
∑

r limβ→∞ e−β(Er−E0)
(1.448)

= 0 (1.449)

because

lim
β→∞

βe−β(Er−E0)−β(Es−E0) = 0 (1.450)

24This result coincides with equation (3.119) of [35] p.135 which there goes under the name “adiabatic versus

isothermal response” and has been derived within a different setup.
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except when Er = Es = E0 in which case ∂iEr∂jEs − ∂iEr∂jEr = 0.25

Classification of Response Functions The above discussion made it clear that the re-

sponse function

χij(t, t
′) =

δAi(t)

δXj(t′)
(1.453)

is not a well-defined object without further specifications. In fact, if the response function is

to be calculated from a thermal ensemble, then for the response function to be well-defined

it is necessary to fix

1. the perturbation theory by which the states evolve and

2. the evolution of the weighting factors of the states.

The Kubo response theory specifies the first point by the ordinary time-dependent pertur-

bation theory. An alternative choice would be the adiabatic approximation26 (cf. [28], [68])

Ψr(t) = exp

(
− i

~

∫ t

t0

dt′Er(t
′)

)
ΨEr(t) +

∑
s 6=r

〈ΨEs(t)|Ĥpert|ΨEr(t)〉
Es(t)− Er(t)

ΨEs(t) (1.454)

where

Ψr(t ≤ t0) = ΨEr (1.455)

25In this proof we interchanged such limits as e.g.

lim
β→∞

lim
N→∞

N∑
r=0

= lim
N→∞

N∑
r=0

lim
β→∞

(1.451)

lim
N→∞

lim
M→∞

N∑
r=0

M∑
s=0

= lim
M→∞

lim
N→∞

N∑
r=0

M∑
s=0

. (1.452)

For this it would be sufficient if the f ir(β) =
√
β∂iEr

e−βEr
Z and f ijr (β) = β∂iEr∂jEr

e−βEr
Z2 constituted

uniformly convergent series, i.e. F i(β) =
∑∞
r=0 f

i
r(β) converges uniformly for, say, 0 < β0 < β ≤ ∞. A

sufficient criterion for the uniform convergence would be the normal convergence, i.e. the convergence of

the supremum norms
∑∞
r=0 ‖f ir‖0 within the domain of definition [β0,∞]. For the supremum norm, we

have ‖f ir‖0 = |∂iEr|e−β0Er . Convergence cannot be proven without further assumptions on the functional

dependence Er(X1, . . . , XN ). In any case, it would be sufficient if the Âi were bounded. Accepting free

interachangebility of all limits (including the derivatives ∂i), the equality χT=0
ij (ω = 0) = χT=0

ij becomes

trivial if we identify F = E for T = 0 in the first place. Therefore, the formal calculation yields the right

physical result.
26We follow the formula given by Fradkin [28] p.274 which does not include a “quantal phase factor accom-

panying adiabatic changes” ([10], [71]) In fact, it has been the merit of the Modern Theory of Polarization

to relate the concept of Polarization to a Berry Phase. Fradkin’s formula can be recovered by writing

the scalar product in the interaction picture and replacing the perturbation by i~∂t.
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and

Ĥ(t)ΨEr(t) = Er(t)ΨEr(t), (1.456)

i.e. the ΨEr(t) are the instantaneous eigenstates.27 In fact, it is this approximation which

is used for the derivation of the so-called Kubo formula28 for the Hall conductance, as used

for example in the famous TKNN paper [96] on the quantization of the Hall conductivity.

As to the second point, a priori everything is possible, but in praxi only two cases seem to

be relevant: (i) the weighting factors remain constant e−βEr(t0)/Z(t0) or (ii) the weighting

factors are given by the instantaneous Boltzmann factors e−βEr(t)/Z(t). In the last case,

the response function should be called isothermal because it corresponds to a system always

being in the instantaneous canonical ensemble corresponding to the fixed temperature T .29

Isothermal Response Function and Susceptibility We now calculate explicitly the

isothermal Kubo response function. The expectation value Ai is now given by

Ai(t) =
∑
r

e−βEr(t)

Z(t)
〈Ψr(t)|Âi|Ψr(t)〉. (1.457)

Consequently,

δAi(t)

δXj(t′)
=
∑
r

(
δ

δXj(t′)

e−βEr(t)

Z(t)

)
〈Ψr(t)|Âi|Ψr(t)〉+

∑
r

e−βEr(t)

Z(t)

δ

δXj(t′)
〈Ψr(t)|Âi|Ψr(t)〉.

For the second term, we find as in the case of the Kubo formula

− i

~
θ(t− t′)

∑
r

e−βEr(t)

Z(t)
〈Ψr|[Âi(t), Âj(t′)]|Ψr〉 (1.458)

which corresponds to the ordinary Kubo response but with the thermal weighting determined

by the instantaneous Hamiltonian.30 For the first term we calculate

δ

δXj(t′)

e−βEr(t)

Z(t)
= −βδ(t− t′)Ajr(t)

e−βEr(t)

Z(t)
+ βδ(t− t′)e−βEr(t)

Z2(t)

∑
s

Ajs(t)e
−βEs(t).

27The adiabatic approximation simply corresponds to a formal time-independent, first-order perturbative

expansion where the eigenvectors and eigenstates have been replaced by the instantaneous eigenvectors

and eigenstates.
28The Kubo formula therefore does not give a Kubo response function but rather an “adiabatic” response

function.
29Note in this context that in the ordinary Kubo response, T is only a parameter after the perturbation is

switched on.
30Per definitionem, one has to set Xj(t) = 0 after performing the functional derivative. Therefore, in the

end this expression really collapses to the ordinary Kubo response.
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leading to the overall contribution

−βδ(t− t′)
∑
r

Ajr(t)Air(t)
e−βEr(t)

Z(t)
+βδ(t− t′)

∑
r

e−βEr(t)

Z(t)
Air(t)

∑
s

Ajs(t)
e−βEs(t)

Z(t)
. (1.459)

to the isothermal response function. Obviously, this is indeed the time-dependent generaliza-

tion of the thermodynamic susceptibility calculated from the quantum mechanical partition

function.

Frozen vs Relaxed Response Functions Up to now, we considered a fixed reference

Hamiltonian Ĥ0 which beginning at some time t0 is perturbed such that the overall Hamil-

tonian reads

Ĥ(t) = Ĥ0 +
∑
j

θ(t− t0)Xj(t)Âj. (1.460)

In the special case of Electronic Structure Theory, the unperturbed Hamiltonian reads

Ĥ0 = − ~2

2m

N∑
i=1

∆i +
N∑
i+1

vext(xi) + el− el interaction terms (1.461)

where vext is to be understood as the external potential generated by the nuclei. In other

words, the external potential depends parametrically on the positions of nuclei Xi. These

classical nuclear positions are to be understood as the equilibrium positions of the nuclei or,

in a more quantum mechanical parlance, as the expectation value

xn = 〈x̂n〉 (1.462)

of the nuclear position operator evaluated in the nuclear state (typically the ground-state).

This makes it clear that the nuclei constitute a complicated quantum mechanical system

of its own right and the external perturbation does in general not naively couple to the

electronic system by an operator of the form
∑

j θ(t − t0)Xj(t)Âj. Instead, the external

perturbation also influences vext. A response functions which also takes into account the

effect of the perturbation on the external potential will be called a relaxed response function.

We now develop a simple theory of relaxed response functions. For this purpose, we expand

the external potential

vext(x; {xn(t)}) = vext(x; {xn0}) +
∑
i

(∇xnvext)(x; {xn}) · (xn(t)− xn0) (1.463)

= vext(x)−
∑
n∈Γ

F(x− xn) · u(xn0, t) (1.464)
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with the displacement field u(xn0, t) which is defined on the Bravais lattice xn0. We assume

that the electronic perturbation
∑

j θ(t − t0)Xj(t)Âj couples to the nuclear system in the

form ∑
j

θ(t− t0)Xj(t)B̂j (1.465)

with an appropriate operator B̂j. For the expectation values u(xi0, t) we use again the Kubo

response formalism

u(xn0; t) = − i

~

∫ t

t0

dt′
∑
j

〈[û(xn0, t), B̂j(t
′)]〉Xj(t

′). (1.466)

This leads to an additional electronic perturbation of the form

∑
n

3∑
k=1

θ(t− t0)Y k
n (t)Ĉk

n (1.467)

where

Ĉk
n = −

∫
dx F k(x− xn0)ρ̂(x) (1.468)

and

Y k
n (t) = uk(xn0; t). (1.469)

We therefore get an additional term in the response formula for Ai given by

δAi(t)

δXj(t′)
|relax =

∫
dt′′
∑
n

3∑
k=1

δAi(t)

δY k
n (t′′)

δY k
n (t′′)

δXj(t′)

=

(
i

~

)2

θ(t− t′)
∫ t

t′
dt′′
∑
n

3∑
k=1

〈[Âi(t), Ĉk
n(t′′)]〉〈[ûk(xn0, t

′′), B̂j(t
′)]〉

= −
(

i

~

)2

θ(t− t′)
∫ t

t′
dt′′
∫

dx
∑
n

〈[Âi(t), ρ̂(xt′′)]〉(∇xn0vext)(x) ·

〈[û(xn0, t
′′), B̂j(t

′)]〉

= −
(

i

~

)2

θ(t− t′)
∫ t

t′
dt′′
∫

dx
∑
n

〈[Âi(t), ρ̂(xt′′)]〉〈[F(x− xn0) ·

û(xn0, t
′′), B̂j(t

′)]〉.

This formula will get important later when it comes to electron-phonon interactions. With

hindsight to these later applications, we specify this formula to the case of the density

response with respect to an external potential which couples to both electrons and nuclei. In

that case, Âi to be replaced with the electronic density (fluctuation) and B̂j with the nuclear
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density (fluctuation). It will later be shown that the nuclear density fluctuation operator

can be written as

δρ̂nucl(xt) = −
∑
n

û(xn0t)(∇′δ)(x− xn0). (1.470)

We therefore get ∑
n∈Γ

F(x− xn0) · û(xn0, t
′′) (1.471)

= −
∑
n∈Γ

(∇vext)(x− xn0) · û(xn0, t
′′) (1.472)

= −
∑
n∈Γ

∫
dx′ (∇vext)(x− x′)δ(x′ − xn0) · û(xn0, t

′′) (1.473)

=
∑
n∈Γ

∫
dx′ vext(x− x′)(∇δ)(x′ − xn0) · û(xn0, t

′′) (1.474)

= −
∫

dx′ vext(x− x′)δρ̂(x′t). (1.475)

Identifying Ai with the electronic charge density, Bj with the nuclear charge density and Xj

with an external field, this leads to the intriguing formula

δρel(x)

δϕext(x′)
|relax ≡ χrelax

el (x, x′) =

∫
dx′′dx′′χfrozen

el (x, x′′)v(x′′, x′′′)χnucl(x
′′′, x′) (1.476)

or

χtot
el ≡ χfrozen

el + χrelax
el = χfrozen

el + χfrozen
el vχtot

nucl. (1.477)

This formula is actually of a more fundamental nature and its validity is in now way restricted

to the Kubo regime. Instead, this general formula follows directly from a functional chain

rule of the form

χrelax
el ≡ δρel(x)

δϕext(x′)
|relax (1.478)

=

∫
dx′′

δρel(x)

δvext(x′′)

δvext(x
′′)

δϕext(x′)
(1.479)

=

∫
dx′′dx′′′

δρel(x)

δvext(x′′)

δ

δϕext(x′)
v(x′′, x′′′)ρnucl(x

′′′) (1.480)

=

∫
dx′′dx′′′ χfrozen

el (x, x′′)v(x′′, x′′′)χtot
nucl(x

′′′, x′). (1.481)

Behind this formula lurks a still more general structure which can best be elucidated within

the Mean Field Theory formalism.
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Relaxed Response Theory from the Abstract Mean-Field Theoretical Point of

View Mean Field Theory considers two coupled systems with the fundamental Hamiltonian

ĤA
0 ⊗ 1H2 + 1H1 ⊗ ĤB

0 + Âk ⊗ B̂k. (1.482)

The goal of Mean Field Theory is to formulate standard Quantum Mechanics with a time-

independent Hamiltonian for the, say, first system. Of course, for such a coupled system this

can only be approximately true. As the name suggests, Mean Field Theory achieves this by

replacing B̂k by its “mean field”Bk = 〈B̂k〉. The mean field Hamiltonian for the first system

then simply reads

ĤA
0 +BkÂk. (1.483)

To this system, we can now couple a time-dependent perturbation

θ(t− t0)Xj(t)Âj. (1.484)

The “naive” or “frozen” Kubo formalism now has it that the expectation value of still another

observable, δÂi say, fluctuates as

δAi(t) =

∫
dt′ χA

ij(t, t
′)Xj(t

′). (1.485)

The relaxed Kubo formalism assumes instead that associated with the perturbation

θ(t− t0)Xj(t)Âj (1.486)

of the first system, we have a perturbation

θ(t− t0)Xj(t)B̂j (1.487)

of the second system. We therefore get the fluctuation

δBk(t) =

∫
dt′ χB

kj(t, t
′)Xj(t

′) (1.488)

or
δBk(t)

δXj(t′)
= χB

kj(t, t
′). (1.489)

The total perturbation of of the first system then reads

θ(t− t0)Xj(t)Âj + θ(t− t0)δBk(t)Âk. (1.490)

leading to an additional “relaxed” fluctuation in Ai given by∫
dt′ χik(t, t

′)δBk(t
′). (1.491)
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Consequently, the relaxed contribution is

δAi(t)

δXj(t′)
|relax =

∑
k

∫
dt′′ χA

ik(t, t
′′)χB

kj(t
′′, t′). (1.492)

This formula generalizes to

δAi(t)

δXj(t′)
|relax =

∑
k,l

∫
dt′′ χA

ik(t, t
′′)Lklχ

B
lj(t
′′, t′) (1.493)

for a fundamental interaction Hamilonian

Ĥint =
∑
i,j

LijÂi ⊗ B̂j. (1.494)

This formula will be important in the context of effective interactions.

Self-consistent Equations for Relaxed Response We already showed that

δρel(x)

δϕext(x′)
|relax ≡ χrelax

el (x, x′) =

∫
dx′′dx′′′χfrozen

el (x, x′′)v(x′′, x′′′)χnucl(x
′′′, x′).

We will later discuss in detail that the decoupled Hamiltonian is completely symmetric in

the electronic und nuclear degrees of freedom. We therefore conclude in anticipation of this

result that

δρnucl(x)

δϕext(x′)
|relax ≡ χrelax

nucl (x, x′) =

∫
dx′′dx′′χfrozen

nucl (x, x′′)v(x′′, x′′′)χel(x
′′′, x′) (1.495)

or in an obvious shorthand notation

χel = χfrozen
el + χfrozen

el vχnucl (1.496)

χnucl = χfrozen
nucl + χfrozen

nucl vχel. (1.497)

Iterating this system of equations shows that we have a formal solution for the total response

functions in terms of the frozen response functions given by

χel = (1− vχfrozen
nucl vχ

frozen
el )−1(χfrozen

el + χfrozen
el vχfrozen

nucl ) (1.498)

χnucl = (1− vχfrozen
el vχfrozen

nucl )−1(χfrozen
nucl + χfrozen

nucl vχ
frozen
el ). (1.499)

Furthermore, with vphon = vχnuclv, we find immediately

χrelax
el v = χfrozen

el vphon (1.500)

where χrelax
el = χtot

el − χfrozen
el .
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2. Second Quantization

2.1. Many-Body Quantum Mechanics

2.1.1. Fock Space

Quantization of Multiparticle Systems The quantization of a system of one particle with

position degree of fredom x, conjugate momentum p and phase space R3×R3 is implemented

by postulating the commutator relations

[x̂i, p̂j] = i~δij
[x̂i, x̂j] = 0

[p̂i, p̂j] = 0.

The John-von-Neumann uniqueness theorem says that these commutator relations have –

up to unitary equivalence – an unique irreducible Hilbert space representation given by

(x̂iψ)(x) = xiψ(x) (2.1)

(p̂iψ)(x) = −i~∂iψ(x). (2.2)

where ψ ∈ L2(R3,C, dx). If we deal instead with two particles, the commutator relations

read

[x̂iα, p̂βj ] = i~δijδαβ

[x̂iα, x̂βj ] = 0

[p̂αi , p̂
β
j ] = 0,

(with α, β ∈ {1, 2}) and the (up to unitary equivalence) uniquely defined representation

reads

(x̂iαψ)(x1,x2) = xiαψ(x1,x2) (2.3)

(p̂βi ψ)(x1,x2) = −i~∂βi ψ(x1,x2). (2.4)

This makes it clear that the state is now a function on the configuration space R6. In other

words, such a two particle system can by no means considered as a classical Field Theory
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(dealing with fields in ordinary three-dimensional space). We can formalize as follows: if

there are two systems with Hilbert spaces H1 and H2, then the total system has the Hilbert

space H1 ⊗ H2. In particular, if the two particles have Hilbert spaces H1 = H2 = H =

L2(R3,C, dx), then the two-particle system has the Hilbert space

L2(R3,C, dx)⊗ L2(R3,C, dx) ' L2(R3 ⊕R3,C, dx) ' L2(R6,C, dx). (2.5)

If {ϕα} denotes a complete orthonormal system in H, then {ϕα⊗ϕβ} is a complete orthonor-

mal system in H⊗H, where

〈x1 ⊗ x2|ϕα ⊗ ϕβ〉 ≡ 〈x1x2|ϕαϕβ〉 = ϕα(x1)ϕβ(x2). (2.6)

Fock Space We can be easily generalize to a system of N particles by defining the corre-

sponding Hilbert space as

HN =
N⊗
i=1

H. (2.7)

Furthermore, we introduce a zero particle space defined as H0 = C. The unit vector which

spans H0 is denoted by |0〉 and called vacuum. If we want to consider states with arbi-

trary particle number (including in particular superpositions of states with different particle

number), we have to introduce the Fock space over H defined as

F =
∞⊕
N=0

HN =
∞⊕
N=0

N⊗
i=1

H. (2.8)

Elements of F are infinite sequences Ψ = (Ψ0,Ψ1,Ψ2, . . .) where every ΨN is a N -particle

wave-function in HN and

‖Ψ‖2
F =

∞∑
i=0

‖Ψi‖2
Hi <∞. (2.9)

In this parlance, |0〉 = (1, 0, 0, . . .). The metric in the N -particle Hilbert space is given in

terms of the scalar product as ‖ΨN‖HN =
√
〈ΨN |ΨN〉HN where

〈ΨN |ΦN〉HN =

∫
dx1 . . .xN Ψ∗N(x1, . . . ,xN)ΦN(x1, . . . ,xN). (2.10)

The following exposition and the corresponding proofs are sketchy (for details, see e.g.

[31, 39, 86, 87, 89]).

Completely Symmetric and Completely Antisymmetric States By the Bose-Fermi

alternative, states of indistinguishable particles have to be either completely symmetric or

completely antisymmetric. Therefore, the states of N indistinguishable particles are actually
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restricted to a subspace of ⊗NH. It can easily be shown that the completely (anti)symmetric

elements of ⊗NH form a Hilbert subspace, i.e. a subspace which is closed in the norm in-

duced by the scalar product. From now on, the completely symmetric subspace of ⊗NH will

be denoted by ∨NH and the completely antisymmetric subspace will be denoted by ∧NH.

The corresponding subspaces of F are called bosonic Fock space and fermionic Fock space.

We introduce the (anti)symmetrizing operator AN
± ≡ A± : ⊗NH → ⊗NH defined by

A±(ϕ1 ⊗ . . .⊗ ϕN) =
1

N !

∑
π∈SN

(±1)πϕπ(1) ⊗ . . .⊗ ϕπ(N) (2.11)

where (−1)π means −1 up to the sign of the respective permutation. In the position state

basis, the action of the (anti)-symmetrizer reads

〈x1 . . .xN |A±(ϕ1 ⊗ . . .⊗ ϕN)〉 =
1

N !

∑
π∈SN

(±1)πϕ1(xπ(1)) · . . . · ϕN(xπ(N)). (2.12)

Completely symmetrized, normalized products will be denoted by ϕα1 ∨ . . .∨ ϕαN and com-

pletely antisymmetrized, normalised products will be denoted by ϕα1 ∧ . . . ∧ ϕαN . That

implies

ϕ1 ∨ . . . ∨ ϕN =

√
N !

n1! . . . ni!
A+ϕ1 ⊗ . . .⊗ ϕN (2.13)

ϕ1 ∧ . . . ∧ ϕN =
√
N !A−ϕ1 ⊗ . . .⊗ ϕN (2.14)

where n1 + . . . + ni = N and are nj the occupation numbers ≥ 1 of orbitals entering into

the tensor product ϕ1 ⊗ . . . ⊗ ϕN . A± is the projector on ∨NH or ∧NH respectively. In

particular, this means

A = A2 = A† (2.15)

and

A+|∨NH = 1 (2.16)

A−|∧NH = 1, (2.17)

i.e. A±Ψ = Ψ if Ψ ∈ ⊗NH is already (anti)symmetric. Furthermore, if {ϕα} denotes a

complete orthonormal system in H, then {ϕα1∨ . . .∨ϕαN} is a complete orthonormal system

in ∨NH and {ϕα1 ∧ . . . ∧ ϕαN} is a complete orthonormal system in ∧NH. ϕα1 ∧ . . . ∧ ϕαN
is called a Slater determinant and reads in the position state basis

〈x1 . . .xN |ϕα1 ∧ . . . ∧ ϕαN 〉 =
1√
N !

det(ϕαi(xj)). (2.18)
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Equation (2.10) induces (by restriction) a scalar product on ∧NH which reads in terms of

the orbitals

〈ψ1 ∧ . . . ∧ ψN |ϕ1 ∧ . . . ∧ ϕN〉∧NH = det(〈ψi|ϕj〉H). (2.19)

In particular, for two Slater determinants Ψ = ϕi1 ∧ . . . ∧ ϕiN and Ψ = ϕj1 ∧ . . . ∧ ϕjN over

the same complete, orthonormal set of orbitals {ϕi ∈ H|i ∈ N} we have

〈ϕi1 ∧ . . . ∧ ϕiN |ϕj1 ∧ . . . ∧ ϕjN 〉∧NH = det(δikjl) =

 (−1)π if {i1, . . . , iN} = {j1, . . . , jN}
0 otherwise.

where π is the permutation which translates the tupel (i1, . . . , iN) into (j1, . . . , jN).

Creators and Annihilators Finally, for Hilbert space functions ϕ ∈ H, we introduce

creators a†(ϕ) : HN → HN+1 and annihilators a(ϕ) : HN → HN−1 which are componentwise

defined by

a(ϕ)(ϕ1 ⊗ . . .⊗ ϕN) =
√
N〈ϕ|ϕ1〉 ϕ2 ⊗ . . .⊗ ϕN (2.20)

a†(ϕ)(ϕ1 ⊗ . . .⊗ ϕN) =
√
N + 1 ϕ⊗ ϕ1 ⊗ ϕ2 ⊗ . . .⊗ ϕN . (2.21)

These operators push forward to operators F → F . From the explicit definition, we read off

that ϕ 7→ a†(ϕ) is a linear mapping whereas ϕ 7→ a(ϕ) is antilinear. Fermionic creators and

annihilators are defined by

a†−(ϕ) = A−a†(ϕ)A− (2.22)

a−(ϕ) = A−a(ϕ)A−. (2.23)

Bosonic creators and annihilators are defined by replacing A− with A+. From now on, we

will omit creator and annihilator indices hoping that the character of the operators will be

clear from the context.

Lemma 2.1.1 For SLATER(ϕ1, . . . , ϕN) ≡ ϕ1 ∧ . . . ∧ ϕN we have

a†(ϕN+1)SLATER(ϕ1, . . . , ϕN) = (−1)NSLATER(ϕ1, . . . , ϕN+1) (2.24)

a(ϕi)SLATER(ϕ1, . . . , ϕN) = (−1)i−1SLATER(ϕ1, . . . , ϕ̂i, . . . , ϕN+1) (2.25)

where {ϕi}i∈N is a complete, orthonormal system. Furthermore,

a†(ϕi)SLATER(ϕ1, . . . , ϕN) = 0 (2.26)

a(ϕj)SLATER(ϕ1, . . . , ϕN) = 0 (2.27)

for i ∈ {1, . . . , N} and j > N .
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Proof The last statement is trivial because it follows directly from the construction of the

creators and annihilators. We come to

a†(ϕN+1)SLATER(ϕ1, . . . , ϕN) = SLATER(ϕ1, . . . , ϕN+1).

First, note that a†(ϕ) is linear in ϕ. Furthermore, the whole expression is completely anti-

symmetric due to the construction of the fermionic operators. As SLATER(ϕ1, . . . , ϕN) is

linear in every slot anyway, the whole expression is completely antisymmetric and linear and

therefore has to be proportional to SLATER(ϕ1, . . . , ϕN+1). The only thing to be checked

is the normalisation. This, however, follows from the fact that
√
N + 1A−ϕ1 ⊗ . . . ⊗ ϕN+1

is normalized to one. A similar argument works for a(ϕ). The prefactor can be shown from

the definition of the antisymmetrization operator.

Lemma 2.1.2 For Ψ ∈ ∧NH and ϕ ∈ H with ‖Ψ‖∧NH = ‖ϕ‖H = 1, we have

‖a†(ϕ)Ψ‖∧N+1H ≤ 1 (2.28)

‖a(ϕ)Ψ‖∧NH ≤ 1. (2.29)

Proof Expand Ψ in the Slater determinants ΦI over {ϕi}i∈N and assume without loss of

generality that ϕ ∈ {ϕi}i∈N, i.e. Ψ =
∑

I cIΦI with
∑

I |cI |2 = 1. Therefore a†(ϕ)Ψ =∑
I cIa

†(ϕ)ΦI =
∑

I cIΦ
′
I . Now, with the ΦI being orthonormal (in ∧NH), the Φ′I are again

orthonormal (in ∧N+1H) or zero. Therefore ‖
∑

I cIΦ
′
I‖ ≤ 1 which proves the lemma. A

similar argument works in the annihilator case.

Remark Note that the lemma shows in particular that creators and annihilators are bounded

operators HN → HN±1 and bounded operators F → F . (This last statement does not hold

true for bosonic creators and annihilators which are unbounded on F .) Furthermore, the

lemma is in accord with1

〈Ψ|a†iaiΨ〉 = 〈aiΨ|aiΨ〉 ≤ 1 (2.30)

implying that the occupation number of state i is never bigger than 1.

Commutation and Anticommutation Rules It is straightforward to show that for

fermionic creators and annihilators the following anticommutation relations (CAR) hold:

[a(ϕ), a†(ψ)]+ = 〈ϕ|ψ〉H 1F (2.31)

[a(ϕ), a(ψ)]+ = 0 (2.32)

[a†(ϕ), a†(ψ)]+ = 0. (2.33)

1If the function ϕ created or annihilated by a†(ϕ) or a(ϕ) respectively can be characterized by some index

(tupel) of quantum number, k say, we write concisely a†(ϕk) = a†k.
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The bosonic operators fulfill the corresponding commutation relations (CCR).

Field Operators For the creators and annihilators of the (generalized) position eigenstates,

we write

a†(δx) = ψ̂†(x) (2.34)

a(δx) = ψ̂(x). (2.35)

For reasons which will become clear later, the ψ̂(†)(x) are called field operators (corresponding

to the Schrödinger field and its complex conjugate). The CAR for the field operators reads

[ψ̂(x), ψ̂†(x′)]+ = δ(x− x′). (2.36)

As the action of the annihilator a(ϕ) on HN reads in the position state basis explicitly

(a(ϕ)Ψ)(x2, . . . ,xN) =
√
N

∫
dx1 ϕ

∗(x1)Ψ(x1,x2, . . . ,xN), (2.37)

we find for ϕ = δx the important formula

(ψ̂(x)Ψ)(x2, . . . ,xN) =
√
NΨ(x,x2, . . . ,xN). (2.38)

Note, however, that this formula is a typical non-relativistic result which in no way general-

izes to all kinds of field operators.

Quantum Harmonic Oscillator as a Many-Body System Consider a particle with

no degree of freedom. The corresponding state space H is obviously C and the Hamiltonian

operator is a constant, E0 say. The one-particle Schrödinger equation then reads

i~∂tϕ(t) = E0ϕ(t) (2.39)

where ∀t ∈ R : ϕ(t) ∈ C. Now, consider the system of arbitrarily many, indistinguishable

particles without degree of freedom. This system has a degree of freedom, namely the particle

number N . As we have the general relation

N⊗
i=1

C = C (2.40)

the Fock space turns out to be `2, i.e. the set of all sequences (c0, c1, . . . , cn, . . .) with∑∞
i=0 |ci|2 < ∞. As there is now only one state in the one-particle Hilbert space, the only

nontrivial CCR reads

[a, a†] = 1 (2.41)
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which is obviously the harmonic oscillator CCR. This gives an intuitive justification for the

fact that the spectrum of the harmonic oscillator consists of infinitely many equidistant

levels. The usual representation on L2(R,C, dx) given by

a =
1√
2

(x̂+ ip̂)

a† =
1√
2

(x̂− ip̂)

is equivalent to the Fock space representation. The action of a and a† reads in the Fock

space

a(c0, c1, c2, . . .) = (
√

1c1,
√

2c2, . . .)

a†(c0, c1, c2, . . .) = (0,
√

1c0,
√

2c1,
√

3c2, . . .).

This is – up to the prefactors – the so-called shift-algebra well-known from functional analysis.

A similar construction using [a, a†]+ = 1 yields the 2-level system.

2.1.2. Second Quantization of Operators

Self-Adjoint Operators Let Â be a self-adjoint operator on the one-particle Hilbert space

H. Second Quantization is an algebra homomorphism of the self-adjoint operators in H into

the linear operators in F(H) which is explicitly given by:

q(Â) = 0⊕ A⊕ (A⊗ 1+ 1⊗ A)⊕ (A⊗ 1⊗ 1+ 1⊗ A⊗ 1+ . . .)⊕ . . . (2.42)

It can be shown that q(Â) is indeed essentially self-adjoint on F . A simple example is the

projection operator |ϕi〉〈ϕi|, ϕi ∈ H, the second quantization of which is the occupation

number operator n̂i. Correspondingly, the second quantization of the identity (sum over

projectors) yields the total number operator N̂ . The homomorphism property means that

q(λÂ+ µB̂) = λq(Â) + µq(B̂) (2.43)

and, as a simple calculation shows, that the commutator relation

[Â, B̂] = Ĉ (2.44)

implies

[q(Â), q(B̂)] = q(Ĉ). (2.45)

In other words, second quantization preserves commutator relations. Note, however, that

even for bounded Â, q(Â) is in general unbounded. (1 ∈ B(H) bounded; q(1) = N̂ un-

bounded.)
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Unitary Operators In the case of a unitary operator, Û , we define:

q(Û) = 1⊕ Û ⊕ (Û ⊗ Û)⊕ . . .⊕ (⊗ni=1Û)⊕ . . . (2.46)

This definition is consistent with the fact the self-adjoint operators generate one-parameter

unitary groups. In fact, if Ĥ generates the time-evolution Û(t) = exp(−i/~Ĥt) then the

second quantized (free) time evolution q(Û) is generated by q(Ĥ). Similarly, one can define

the second quantization of two-particle operators (e.g. the two particle potential). With

these definitions, one shows easily that

Ûa†(ϕ)Û−1 = a†(Ûϕ) (2.47)

Ûa(ϕ)Û−1 = a(Ûϕ). (2.48)

In particular, if Û(t) = exp(− i
~Ĥt), then

a†(ϕ, t) = Û †(t)a†(ϕ)Û(t) = a†(Û(−t)ϕ) (2.49)

i~∂ta†(ϕ, t) = [a†(ϕ), Ĥ]. (2.50)

For the field operators this implies

ψ̂†(xt) = Û−1a†(δx)Û = a†(Û(−t)δx), (2.51)

i.e. ψ̂†(xt) creates the wave-function Û(−t)δx which after a time lapse t will take the form

of a Dirac delta Û(t)Û(−t)δx = δx localized at x. In other words, ψ̂(xt) creates a particle at

the space-time point (xt). Indeed, for an energy eigenstate ϕn(xt) = ϕn(x)e−i/~εnt we find

〈xt|ϕn〉 = 〈0|ψ̂(xt)|ϕn〉
= 〈0|ψ̂(xt)a†n|0〉
= 〈0|

∑
m

e−i εn~ tϕm(x)ama
†
n|0〉

=
∑
m

e−i εn~ tϕm(x)〈0|ama†n|0〉

=
∑
m

e−i εn~ tϕm(x)〈0|δmn|0〉

= e−i εn~ tϕn(x)〈0|0〉
= e−i εn~ tϕn(x).
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Normal Form Usually (at least for all bounded operators; cf. [9]), it is possible to write

Â in terms of creation and annihilation operators (normal form). The normal form of the

second-quantized operator q(Â) where Â ∈ B(H) reads

q(Â) =
∑
〈ϕi|Â|ϕj〉a†iaj (2.52)

where i, j index a complete orthogonal system in H. This can be easily seen by thinking of

Â as replacing every ϕ with Âϕ and using the important formula

q (|ϕi〉〈ϕj|) = a†(ϕi)a(ϕj). (2.53)

Consequently,

q(Â) =
∑
i

a†(Âϕj)a(ϕj) =
∑
i

a†(〈ϕi|Â|ϕj〉ϕi)a(ϕj) (2.54)

where we used the linearity of ϕ 7→ a†(ϕ). The restriction of q(Â) to H then coincides

with Â. If we allow for generalized coefficients (i.e. distribution valued), then every second

quantization q(Â) can be written in terms of creators and annihilators. For example, the

second quantized kinetic energy operators reads:

q(T̂ ) = − ~2

2m

∫
dx ψ̂†(x)∆xψ̂(x). (2.55)

Of course,

q(T̂ )|HN = − ~2

2m

N∑
i=1

∆xi . (2.56)

From the expression for q(T̂ ) we read off the following rule of thumb for the construction of

the second quantization in terms of the field operators: (i) write the expectation value of the

first quantized one-particle operator in some state and (ii) replace in this formal expression

the orbital with the field operator (annihilator) and the complex conjugate orbital with the

adjoint field operator (creator). If we promote a one-particle Hamiltonian Ĥ to a second

quantized Hamiltonian q(Ĥ) and postulate a Schrödinger equation

i~∂tΨ(t) = q(Ĥ)Ψ(t) (2.57)

for Ψ(t) ∈ F ∀t ∈ R, then the resulting theory is componentwise equivalent to standard

Quantum Mechanics (cf. [89] Chapter 6), i.e.

i~∂t prHNΨ(t) = q(Ĥ)|HN prHNΨ(t) (2.58)

where prHNΨ(t) is an ordinary N -particle wave-function. This result loses its validity as soon

as [Ĥ, N̂ ] 6= 0, i.e. as soon as the Hamiltonian does not conserve the particle number. For a

typical two-body multiplicative potential v(x1 − x2), we can write the second quantization:

V̂ = q(v) =
1

2

∑
〈i1i2|v|i3i4〉a†i1a

†
i2
ai4ai3 . (2.59)
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The restriction of V̂ on H2 then coincides with the multiplicative potential v(x1 − x2). On

H = H1, the operator V̂ vanishes identically.

Density Operator The second quantized density operator is given by

n̂(x) = ψ̂†(x)ψ̂(x). (2.60)

In the pure N -particle state Ψ the expectation value equals

n(x) = 〈Ψ|n̂(x)|Ψ〉 = N

∫
dx2 . . . dxN Ψ∗(x,x2, . . . ,xN)Ψ(x,x2, . . . ,xN). (2.61)

This shows that n̂(x) is the second-quantization of the first quantized integral operator

δ(x− x̂), i.e.:

n̂(x) = δ(x− x̂1)⊕ (δ(x− x̂1)⊗ 1H2 + 1H1 ⊗ δ(x− x̂2))⊕ . . . (2.62)

The density operator can also be considered as the occupation number operator for the

position eigenstate. In particular, the density-operator evaluated in the one-particle state ψ

gives n(x) = 〈ψ|ψ̂†(x)ψ̂(x)|ψ〉 = ψ∗(x)ψ(x).2 Now, consider the Fourier transform of the

expectation value of the density

n(k) =

∫
dx exp(−ikx)n(x). (2.63)

One shows easily, that n(k) is the expectation value of the operator

n̂(k) =
∑
q

a†k−qaq. (2.64)

Finally, the time derivative of the density operator yields

∂tn̂(x) = −∇ · ĵ(x) (2.65)

which implies current-conservation for the respective expectation values. Note that the

derivation of the current conservation in standard (one-particle) Quantum Mechanics would

imply for a N -particle system a conserved current on the configuration space RN .

Density Matrices A density matrix ρ̂ is a bounded operator, i.e. ρ ∈ B(H), with (i) ρ̂† = ρ̂

(self-adjointness), (ii) ρ̂ ≥ 0 (positive definiteness) and (iii) TrH ρ̂ = 1 (trace-class-property).

2Often,
∑N
i=1 δ(x − xi) is adressed as the (second quantized) density operator. Strictly speaking, this is

only the integral kernel. By contrast, δ(x− x̂) is rarely identified as the (first quantized) density operator.

Notable exceptions include [35, 70].
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Such an operator is necessarily compact and hence has a discrete spectrum. Consequently,

ρ̂ has a spectral resolution of the form

ρ̂ =
∑
s

ρs|Ψs〉〈Ψs| (2.66)

where ρs > 0 and
∑

s ρs = 1. ρs can be interpreted as the “classical probability” (incoherent

superposition) for the system to be in the state Ψs. The expectation value of the observable

Â in the state ρ̂ is defined via

〈Â〉ρ̂ = TrH ρ̂Â. (2.67)

The trace-class operators form a two-sided ideal in B(H). Therefore, with ρ̂ the operator

ρ̂Â is again trace-class and hence TrH ρ̂Â converges. The density matrix corresponding to a

pure state Ψ ∈ H is given by the projector |Ψ〉〈Ψ|.

Reduced Density Matrices Now, let H = H1 ⊗ H2. The reduced density matrix ρ̂1

is defined by the partial trace

ρ̂1 = TrH2 ρ̂. (2.68)

Then, ρ̂1 is a density matrix on H1. ρ̂1 corresponds to the measurement of observables of

the form Â = Â1 ⊗ 1H2 in the sense that

TrH ρ̂Â = TrH1 ρ̂1Â1. (2.69)

Multi-Electron Reduced Density Matrices Consider now a many-electron state Ψ ∈
HN = ∧NH. The s-particle reduced density matrix is defined by

ρ̂s = TrHN−s |Ψ〉〈Ψ| (2.70)

Evaluating the trace in the position-state basis shows that

〈x1 . . .xs|ρ̂s|x′1 . . .x′s〉 = ρs(x1, . . . ,xs,x
′
1, . . . ,x

′
s)

=

∫
dxs+1 . . . dxN Ψ∗(x1, . . . ,xs,xs+1, . . . ,xN)Ψ(x′1, . . . ,x

′
s,xs+1, . . . ,xN).

As with every operator, the time-evolution of ρ̂ is defined by the Heisenberg equation of

motion, which due to a different sign, in the case of the density matrix is called Liouville

equation. That means

i~∂tρ̂(t) = [Ĥ, ρ̂(t)] (2.71)

whereas time-dependent operators evolve according to

i~∂tÂ(t) = [Â(t), Ĥ]. (2.72)
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For the pure state Ψ, the Liouville equation for |Ψ〉〈Ψ| is of course equivalent to the

Schrödinger equation i~∂tΨ = ĤΨ. The general case can be obtained from the spectral res-

olution, the components of which get their induced time-dependence from the Schrödinger

equation i~∂tΨs = ĤΨs. In particular, the time evolution for Ψ induces time dependences

ρs(x1, . . . ,xs,x
′
1, . . . ,x

′
s; t). By taking the derivative i~∂t, one can then derive equations of

motion for the ρs. If the time-evolution of Ψ is governed by a Hamiltonian Ĥ = Ĥ0 + V̂ con-

taining a one-particle part Ĥ0 and a two-particle part V̂ , then every equation of motion for

ρs involves a term with ρs+2. (cf. [17]) In other words, the ρs form a hierarchy, the so-called

quantum BBGKY hierarchy (the quantum analogon of the classical BBGKY hierarchy [46]).

With the ρs we introduce the ns by

ns =
N !

(N − s)!
ρs. (2.73)

For example, if the N -particle wave-function is given by a Slater-Determinant

Ψ0(x1, . . . ,xN) =
1√
N !

detϕi(xj) (2.74)

the corresponding free n1 is given by

n̂1 =
N∑
i=1

|ϕi〉〈ϕi| (2.75)

n1(x′,x) =
N∑
i=1

ϕ∗i (x
′)ϕi(x). (2.76)

In general, the free ns factorize as

ns(x1, . . . ,xs,x
′
1, . . . ,x

′
s) = det(n1(xi,x

′
j)). (2.77)

With the normalization of the ns it is possible to write

ns(x1, . . . ,xs,x
′
1, . . . ,x

′
s) = 〈Ψ|ψ̂†(x1) . . . ψ̂†(xs)ψ̂(x′s) . . . ψ̂(x′1)|Ψ〉. (2.78)

The equation of motion for n1 (first equation in the BBGKY hierarchy) reads

i~∂tn̂1(t) = [n̂1, Ĥ0] + TrH2 [n̂2, V̂ ]. (2.79)

Later, we will work with a time-dependent generalization of these expressions, where ev-

ery field operator ψ̂(x) is replaced with a time-dependent field operator ψ̂(xt), the time-

dependence being given by the Heisenberg equation of motion. This will lead to the notion

of Green functions. The BBGKY hierarchy for the reduced density matrices will then turn
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out to be a special case of the corresponding hierarchy of equations of motion for the Green

functions and the factorization property for the reduced density matrices will turn out to be

a special case of the so-called Wick theorem.

Second Quantized Coulomb Potential In the N -particle sector, the first quantized

Coulomb potential reads

V̂Coul =
1

2

N∑
i,j=1

v(xi,xj) ≡
1

8πε0

N∑
i,j=1

e2

|xi − xj|
(2.80)

This translates into the second quantized form

q(V̂Coul) ≡ V̂ =
1

2

∫
dxdx′ ψ̂†(x)ψ̂†(x′)v(x,x′)ψ̂(x′)ψ̂(x). (2.81)

The matrix elements of V̂ in H2 can be calculated as

V ij
kl = 〈ϕi ⊗ ϕj|V̂ |ϕk ⊗ ϕl〉F

= 〈ϕi ⊗ ϕj|
1

2

∫
dxdx′ ψ̂†(x)ψ̂†(x′)v(x,x′)ψ̂(x′)ψ̂(x)|ϕk ⊗ ϕl〉F

=
1

2

∫
dxdx′ v(x,x′)〈ϕi ⊗ ϕj|ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x)ϕk ⊗ ϕl〉H2

=
1

2

∫
dxdx′ v(x,x′)〈ψ̂(x′)ψ̂(x)ϕi ⊗ ϕj|ψ̂(x′)ψ̂(x)ϕk ⊗ ϕl〉H0

=
1

2

∫
dxdx′ v(x,x′)〈

√
2!ϕi(x)ϕj(x

′)|
√

2!ϕk(x)ϕl(x
′)〉C

=

∫
dxdx′ ϕ∗i (x)ϕ∗j(x

′)v(x,x′)ϕk(x)ϕl(x
′).

The matrix element V ij
kl is neither symmetric with respect to the upper nor to with respect

to the lower indices but only with respect to a simultaneous switch in the sense that

V ij
kl = V ji

lk (2.82)

This is to be compared with the hermiticity of V̂ which translates into the orbital basis as

(V ∗)ij kl = V kl
ij. (2.83)

Equally important is the expectation value 〈V̂ 〉Φ evaluated in a Slater determinant Φ =

SLATER(ϕ1, . . . , ϕN). We calculate at first 〈ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x)〉 for which we find (de-
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noting (−1)π = ε(π))

=
N(N − 1)√
N !
√
N !

∑
π,σ∈SN

ε(π · σ)ϕ∗σ(1)(x)ϕ∗σ(2)(x
′)ϕπ(1)(x)ϕπ(2)(x

′)〈ϕσ(3)|ϕπ(3)〉 · . . . · 〈ϕσ(N)|ϕπ(N)〉

=
1

(N − 2)!

∑
π,σ∈SN

ε(π · σ)ϕ∗σ(1)(x)ϕ∗σ(2)(x
′)ϕπ(1)(x)ϕπ(2)(x

′)δσ(3)π(3) · . . . · δσ(N)π(N)

=
∑

π,σ∈SN , π(3)=σ(3),...,π(N)=σ(N)

ε(π · σ)ϕ∗σ(1)(x)ϕ∗σ(2)(x
′)ϕπ(1)(x)ϕπ(2)(x

′)

=
∑

π(1)=σ(1),π(2)=σ(2),π(3)=σ(3),...,π(N)=σ(N)

ε(π · σ)ϕ∗σ(1)(x)ϕ∗σ(2)(x
′)ϕπ(1)(x)ϕπ(2)(x

′) +

∑
π(1)=σ(2),π(2)=σ(1),π(3)=σ(3),...,π(N)=σ(N)

ε(π · σ)ϕ∗σ(1)(x)ϕ∗σ(2)(x
′)ϕπ(1)(x)ϕπ(2)(x

′)

=
N∑
i,j

ϕ∗i (x)ϕ∗j(x
′)ϕi(x)ϕj(x

′)−
N∑
i,j

ϕ∗i (x)ϕ∗j(x
′)ϕj(x)ϕi(x

′)

For 〈Ψ0|V̂Coul|Ψ0〉, we now have

1

2

N∑
i,j=1

∫
dxdx′ ϕ∗i (x)ϕ∗j(x

′)v(x,x′)ϕi(x)ϕj(x
′)− 1

2

N∑
i,j=1

∫
dxdx′ ϕ∗i (x)ϕ∗j(x

′)v(x,x′)ϕj(x)ϕi(x
′)

Consequently, the expectation value in the state SLATER(ϕ1, . . . , ϕN) can be expressed in

terms of the matrix elements with respect to {ϕi} as

〈V̂Coul〉 =
1

2

N∑
i,j

V ij
ij −

1

2

N∑
i,j

V ij
ji. (2.84)

The first term is usually called direct term whereas the second is called exchange term. One

shows easily (in the case of the exchange contribution by taking the Fourier transform)

that both the direct term and the exchange term are positive definite. Therefore, the total

Coulomb energy is always smaller than the Hartree energy.

Spin in Second Quantization Until now, we never treated the spin explicitly. The formu-

lary worked out automatically carries over to systems with spin if we implicitly understand

by the orbitals ϕi elements of L2(R3,C2, dx). When dealing with spin systems, however, it

comes in handy to write down a spin index explicitly, e.g.

ψ̂†σ(x) (2.85)

Thesis, Vienna, July 4, 2012



Ronald Starke: Green Functions and Electronic Structure Theory 101

with σ ∈ {↑, ↓} denotes the creator of δx(1, 0)T or δx(0, 1)T respectively. This allows for the

definition of a spin density operator via

ρ̂σ(x) = ψ̂†σ(x)ψ̂σ(x). (2.86)

The first quantized spin observable Ŝ = ~
2
σ, σ = (σ1, σ2, σ3) reads in second quantization

q(Ŝ) =
~
2

∑
i

(
a†i↓ai↑ + a†i↑ai↓, ia

†
i↓ai↑ − ia†i↑ai↓, a

†
i↑ai↑ − a

†
i↓ai↓

)
(2.87)

where the sum goes over a complete system {ϕi} in the one-particle Hilbert space. The

vector valued quantity

M =
e

m
〈Ψ|q(Ŝ)|Ψ〉 (2.88)

can then be identified with the classical magnetization. This will now be discussed.

General Form of the Electromagnetic Current Operator in Nonrelativistic Elec-

tronic Quantum Field Theory In many parts of this thesis we will start with a classical

model and deduce from it interaction terms which contain the classical (electronic) density

and current. These models are then quantized by replacing the classical density and cur-

rent by their quantum field theoretical operator counterparts. This raises immediately the

question, which one are the right operator counterparts? To answer this question one has

to go back to the classical theory of fields where one considers a classical (one-electron)

field interacting with the electromagnetic field. This model is then quantized by replacing

the classical field with the quantized field operator (as determined by the CAR). This re-

placement then carries over to all observables (up to possible ordering ambiguities, normal

order prescriptions etc.). Therefore, in order to find the general form of the current operator

one has to write down the general classical, free, electronic Field Theory in the first place.

One then couples the electro-magnetic field to the free theory via the gauge principle. The

expression for the current is then determined by the postulates that

1. the interaction Lagrangean density is of the form −Aµjµ3 and;

2. the current is conserved in the sense that ∂µj
µ = 0.

The first condition implies that the inclusion of a term −1/4µ0F
µνFµν into the Lagrangean

leads to Maxwell’s equations with jµ as source terms.4 Of course, it is the very definition of an

electromagnetic current that it acts as a source in Maxwell’s equations. The second condition

3Alternatively, one defines jµ = δS/δAµ; see e.g. [91] p.75.
4Strictly speaking, we run into trouble here because already the usual conserved current of the Schrödinger

equation depends on Aµ. The formal Maxwell equation ∂µF
µν = µ0j

ν would then imply a ”gauge break-
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is necessary because the Maxwell’s equations are only compatible with converved currents

and the conservation of jµ in an interaction Lagrangean Aµjµ implies gauge invariance. Now,

the general (= comprising all degrees of freedom) classical, nonrelativistic, electronic theory

is given by the Pauli equation

i~∂t1C2ψ =
(p · σ)2

2m
ψ (2.89)

with ψ ∈ L2(R3,C2, dx), σ = (σ1, σ2, σ3) and

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
.

The Pauli equation can be derived from the Lagrangean density

L(x) = ψ∗(x)i~∂tψ(x)− ψ∗(x)
(p · σ)2

2m
ψ(x). (2.90)

The action reads

S =

∫
d4x L(x) =

∫
d4x

(
ψ∗(x)i~∂tψ(x) +

1

2m
(p · σψ∗(x))(p · σψ(x))

)
(2.91)

where ψ∗(x)ψ(x) denotes the scalar product in C2. Variation with respect to ψ∗(x) then

directly yields the Pauli equation. The electromagnetic field now couples to the free Pauli

system by virtue of the gauge principle

pµ 7→ pµ − eAµ. (2.92)

Defining the spin-density as

S(xt) = ψ∗(x)
~
2
σψ(x) ≡ 〈ψ(x)|~

2
σ|ψ(x)〉C2 , (2.93)

we get the action S as the integral
∫

d4x of

ψ∗(x)i~∂tψ(x)− eA0(x)ψ∗(x)ψ(x)− 1

2m
((p− eA)ψ∗(x))((p− eA)ψ(x))− e

m
B(x) · S(x).

(2.94)

ing”. Presently, I am not sure about the interpretation of this fact. It may be a non-relativistic artefact

because the Dirac current is given by jµ(x) = eψ̄(x)γµψ(x) even in the presence of an external field.

On the other hand, one may argue that the vector potential entering the non-relativistic current cannot

be identified with the vector potential generated by that current within a semi-classical approximation.

However, the prescription to write the interaction Lagrangean in the form −Aµjµ leads to the right

definition of the current even for the case of the Schrödinger equation in an external four-potential.
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Factoring out Aµ in the interaction term and observing that B = ∇ × A we get with a

partial integration an interaction Lagrangean of the form −Aµjµ where the Pauli current is

given by

j0(x) = eψ∗(x)ψ(x)

j(x) =
e~

2mi
(ψ∗(x)(p− eA(x))ψ(x)− ((p− eA(x)ψ∗(x))ψ(x)) +

e

m
∇× S(x).

The last term is obviously the spinorial contribution to the current. This current is conserved

as can be easily shown by the equation of motion. In fact, the divergence of the spinorial

contribution vanishes identically. Consequently, the continuity equation can be proven pre-

cisely as in the case of the Schrödinger equation.5 In other words, the spinorial source of

magnetism is a current, namely a current term corresponding to the Pauli equation. Finally,

a word of warning is in order here. In general, the quantity S(xt) cannot be identified with

the classical magnetization. In other words, µ0S(xt) is not (the spinorial contribution to)

the internal magnetic field, already because in general ∇ · S 6= 0. This suggests to consider

instead the projection on the transversal part. This intuition is right indeed. In order to find

the classical magnetization, one has to consider the magnetic field generated by the spinorial

current js = e/m∇× S. This is given by

B(x) =
µ0

4π
∇×

∫
dx′

js(x
′)

|x− x′|
. (2.95)

A comparison with the Helmholtz decomposition theorem shows that the magnetization

density is given by the projection of S on the transversal part, i.e. M(xt) = e/mST(xt).

Note, however, that in products of the form∫
dx Bext(x) · S(x) (2.96)

we can identify S with the magnetization because the rotational vector field Bext automati-

cally projects out the longitudinal component of S.

Spin Current As

(p · σ)2 = p212×2 (2.97)

the action for the Pauli equation is SU(2,C) invariant. The most general SU(2,C) transfor-

mation reads

U(ϕ,n) = exp
(

iϕn · σ
2

)
= cos(ϕ/2) + in · σ sin(ϕ/2). (2.98)

5The “spinor current” term ∇ × S(x) is usually not mentioned in the literature. I found two references

which contain it. ([56], [73]) The reference [73] derives the spinor current of the Pauli equation from the

usual current of the Dirac equation in the nonrelativistic limit, whereas in [56] p.107 the spinor current

term comes somehow out of the blue.
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This leads to the infinitesimal transformation

δψ(x) =

(
∂U

∂ϕ
|ϕ=0δϕ

)
ψ(x) =

(
i

2
n · σδϕ

)
ψ(x). (2.99)

From the Noether theorem ([40, 47, 63, 102]) we get the general formula for the conserved

current

jµδϕ =
∑
a

∂L
∂(∂µψa)

δψa (2.100)

where the sum goes over all fields entering the Lagrangean (in this case the Pauli field and its

complex conjugate). As the resulting current has to be conserved for every n, we conclude

that we have a vector-valued conserved current

j0(x) =
~
2
ψ∗(x)σψ(x) = S(xt) (2.101)

ji(x) =
~2

4mi
(ψ∗(x)σ∂iψ(x)− (∂iψ)∗(x)σψ(x)) (2.102)

such that

∂tj
0 + ∂ij

i = 0. (2.103)

This equation can also be shown directly from the equation of motion. The proof is analo-

gous to the proof of current conservation in elementary Quantum Mechanics if one observes

[σ, ∂i] ≡ [σ ⊗ 1L2 ,1C2 ⊗ ∂i] = 0. We conclude that the SU(2,C)-invariance implies the

conservation of the spin current.

2.2. Field Quantization

2.2.1. Canonical Quantization of Fields

Canonical Quantization of Point-Particles A point-particle is described by a Lagrangean

L which is a function on some manifold (typically the tangent bundle to some configuration

space Q). The Lagrangean may depend on the position and its derivatives (velocity). The

transition to Hamiltonian mechanics is implemented by identifying the canonical momentum

pi =
∂L

∂ẋi
(2.104)

and performing a Legendre transform

H = piẋi − L. (2.105)
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The resulting Hamiltonian is to be understood as a function of x and the canonical momen-

tum p.6 For the sake of simplicity, we suppose the phase space to be R3 × R3. The time

evolution of an arbitrary time-independent function f :M→ R on the phase space is given

by the Poisson bracket [3, 36]:

ḟ = {f,H}. (2.106)

In classical mechanics, the state of the point particle is completely described by the instan-

taneous values x(t) and p(t). These are identical to the respective observables. In short:

1. State of the system: (x,p) ∈M = R3 ×R3.

2. Observable: function f : R3 ×R3 → R on the phase space.

3. Time evolution of the state: ẋi = {xi, H} = ∂H
∂pi

, ṗi = {pi, H} = − ∂H
∂xi

.

By contrast, the framework of Quantum Mechanics reads:

1. The state of the system is described by a function ψ ∈ H where H is a Hilbert space.

2. Expectation values of observables are given by 〈ψ|Â|ψ〉, where Â is a self-adjoint op-

erator on H.

3. Position and momentum operator obey [x̂, p̂] = i~1H. By the von-Neumann theorem,

for irreducible representations this is equivalent to

H = L(R3,C) (2.107)

(x̂ψ)(x) = xψ(x) (2.108)

(p̂ψ)(x) =
~
i
(∇ψ)(x) (2.109)

up to unitary transformations. We interpret ψ(x) to be the amplitude for the particle

to be at x.

4. The time-dependence of the operators is given by

i~∂tÂ(t) = [Â(t), Ĥ]. (2.110)

This time-dependence of the operators can be pulled back onto the states yielding the

Schrödinger equation.

6The case where the velocities cannot be expressed in terms of the momenta is indeed physically relevant;

see the illuminating discussion in [34].
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Consider now the space of polynomials in x and p up to second order. Let f, g be such

polynomials. By f̂ we denote the operator resulting from f by the replacement x 7→ x̂ and

p 7→ p̂. Then

{̂f, g} = − i

~
[f̂ , ĝ] (2.111)

irrespective of the ordering ambiguities. That means: the quantization of the Poisson bracket

is identical to the commutator of the quantization up to second order. For third order poly-

nomials, this correspondence breaks down.7 In other words, for polynomials up to second

order, the canonical commutator ensures that under quantization classical Poisson brackets

go over into commutators. On the other hand, the time-dependence of operators is given

by their commutators with the Hamiltonian. For free field it is required to be of second

order. Consequently, the (second order) operators fulfill the classical equations of motion as

operator identities. These identities can be sandwiched between Heisenberg states. Hence,

the classical theory is recovered in the limit of expectation values.

Field Quantization Consider now a classical Field Theory given by a Lagrangean den-

sity L(ψ(x), ∂µψ(x)). Usually, the Lagrangean depends on the field and its derivatives up to

first order.8 The classical equations of motion are then determined by the Euler-Lagrange

equations
∂L
∂ψ
− ∂

∂xµ
∂L
∂ψµ

= 0 (2.112)

where ψµ = ∂µψ and x = (xt). We identify the canonically conjugate variable to ψ(x) as

π(x) =
δS

δ∂tψ(x)
=
∂L(ψ(x), ∂µψ(x))

∂(∂tψ(x))
(2.113)

where S =
∫

d4x L denotes the action. A straightforward adaption of the canonical quanti-

zation procedure to the quantization of a classical field reads:

1. The state of the field is described by a functional Ψ = Ψ[ψ]. We interpret Ψ[ψ] to be

the amplitude for the field to be in the classical field configuration ψ.9

7This is known as Groenewold-Van-Hove theorem. [38] Another way to put it is to say that the correspon-

dence between Poisson brackets and commutators only holds to first order in ~.
8The Euler-Lagrange equations generalize easily to higher order derivatives. (cf. [52, 53])
9This field-functional point of view is not so widespread in field theory as it is very hard to perform real

calculations with the functional. (For explicit calculations with the functional see e.g. [40] Chapters

9-11. The functional point of view is also emphasised in [46, 89].) However, the field-functional point of

view is imperative, when one wants to interpret Quantum Field Theory as Quantum Mechanics applied

to systems with infinitely many degrees of freedom. Then, the functional is the direct analog of the

wave-function. Another problem with the functional point of view is that the functional Schrödinger

equation breaks manifest Lorentz invariance. Finally, the field functional point of view is important in

the context of canonical quantum gravity and the Wheeler-deWitt equation. [34, 72]
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2. Expectation values of observables are given by 〈Ψ|Â|Ψ〉 where

〈Ψ|Φ〉 =

∫
Dψ Ψ∗[ψ]Φ[ψ]. (2.114)

3. The field operator and its canonical momentum obey the (equal-time10) CCR or CAR

[ψ̂(xt), π̂(x′t)]± = i~δ(x− x′). (2.115)

For the canonical commutator, we usually write shortly [·, ·] ≡ [·, ·]−. In the case of

CCR, this can be realized by

ψ̂(x)Ψ[ψ] = ψ(x)Ψ[ψ] (2.116)

π̂(x)Ψ[ψ] =
~
i

δ

δψ(x)
Ψ[ψ] (2.117)

The Schrödinger field can be quantized using the CAR or the CCR. This is because

the spin-statistics theorem is a relativistic effect. (see e.g. [2])

4. The state of the field obeys a functional Schrödinger equation (also called Schwinger-

Dyson equation; see e.g. [40, 46, 70])∫
dx Ĥ(xt)Ψ(t) = i~∂tΨ(t). (2.118)

where the Hamiltonian Ĥ(xt) density is given in terms of ψ̂(xt) and π̂(xt) by the clas-

sical expression for the field energy density (disregarding ordering ambiguities). The

classical expression for the Hamiltonian density can be found by a Legendre transfor-

mation of the Lagrangean density:

H(x) = π(x)ψ̇(x)− L(ψ(x), ∂µψ(x)) (2.119)

On a fundamental level, the Lagrangean does not explicitly depend on space and time.

The Noether theorem then implies the existence of four conserved currents11

∂µT
µν = 0 (2.124)

10Within the non-relativistic regime, we do not have to care about a Lorentz invariant form of the

(anti)commutator relations as there is a preferred time variable.
11This can also be shown directly. (cf. e.g. [70]) If L depends on x only through the fields, then

∂νδ
ν
µL = ∂µL (2.120)

=
∂L

∂ψ(x)
∂µψ(x) +

∂L
∂(∂νψ(x))

∂µ∂νψ(x) (2.121)

=

(
∂ν

∂L
∂(∂νψ(x))

)
∂µψ(x) +

∂L
∂(∂νψ(x))

∂µ∂νψ(x) (2.122)

= ∂ν

(
∂L

∂(∂νψ(x))
∂µψ(x)

)
. (2.123)
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where

T µν ≡
∂L

∂(∂µψ)
∂νψ − δµνL (2.125)

T is called energy-momentum tensor. T 00 equals the Hamiltonian. In non-relativistic

Quantum Field Theory, we usually have systems in external potentials which destroys

spatial translation invariance. Although unusual, in principle also in non-relativistic

quantum physics the Hamiltonian can be interpreted as the 00-component of the

energy-momentum derived from a suitable Lagrangean. (see e.g. [16])

5. Equivalently, one can postulate Heisenberg time evolution for the field operators. The

Heisenberg equation of motion then implies that the field operators formally fulfill the

classical equation of motion as operator identities, which can be sandwiched directly

between state vectors. This ensures that the classical theory is recovered in the limit

of expectation values.12 In the case of standard Quantum Mechanics, this is known as

Ehrenfest theorem. The importance of the Heisenberg picture is that it allows to get

rid of the Schrödinger picture which sometimes – not only in the relativisitic domain

– leads to conceptual problems.

2.2.2. Quantization of the Schrödinger Field

Heuristic Approach to the Quantization of the Schrödinger Field Consider a quan-

tum system with Hilbert space H = L2(R3,C, dx) and a Hamiltonian Ĥ with a purely

discrete spectrum. A solution ψ(xt) of the Schrödinger equation can then be expanded in

the complete system {ϕn(x) : n ∈ N0} of eigenfunctions of the Hamiltonian:

ψ(xt) =
∞∑
n=0

ϕn(x)an(t) (2.126)

an(t) =

∫
dx ϕ∗n(x)ψ(xt). (2.127)

If ψ(xt) is to fulfill the Schrödinger equation i~∂tψ(xt) = Ĥψ(xt), then the time dependence

of the expansion coefficients an has to be given by an(t) = an(0)e−iεn/~t. The expectation

value of the energy reads:

H = 〈ψ|Ĥ|ψ〉 =
∞∑
n=0

εna
∗
nan =

∞∑
n=0

~ωna∗nan. (2.128)

12This statement is to be understood cum grano salis. For example, for a one-particle system the expectation

values fulfill ṗ = −∇ϕ but in general 〈ϕ(x)〉 6= ϕ(〈x〉)
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This is reminiscent of the Hamiltonian operator of independent harmonic oscillators with

frequencies ωn which would formally read

Ĥ =
∞∑
n=0

~ωn
(
a†nan +

1

2

)
. (2.129)

This harmonic oscillator analogy can be pushed further by investigating the equation of

motion for an(t)

i~∂tan(t) = εnan(t). (2.130)

Now, in general an is a complex amplitude which we write as

an =
1√
2

(rn + isn) (2.131)

with rn, sn ∈ R. The equation of motion for an then implies

∂trn = ωnsn (2.132)

∂tsn = −ωnrn (2.133)

which after eliminating yields

r̈n = −ω2
nrn (2.134)

s̈n = −ω2
nsn. (2.135)

The coupled equations of motion show that rn and sn are conjugate in the sense that

ṙn =
∂Hn

∂sn
(2.136)

ṡn = −∂Hn

∂rn
(2.137)

if we set

Hn =
ωn
2

(
s2
n + r2

n

)
= ωna

∗
nan. (2.138)

On a heuristic level, we quantize by replacing these classical harmonic oscillators with quan-

tum harmonic oscillators. The commutation relation for the conjugate variables

[r̂n, ŝn] = i (2.139)

then translates into

[an, a
†
n] = 1. (2.140)
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To quantize the whole Schrödinger field, we suppose that through second quantization all

the an(t) are replaced by harmonic oscillator annihilators as above whereas the ϕn remain

classical fields. We then have for the commutator:

[ψ̂(xt), ψ̂†(x′t)] =
∑
m,n

[an(t), a†m(t)]ϕn(x)ϕ∗m(x′). (2.141)

It follows that

[ψ̂(xt), ψ̂†(x′t)] = δ(x− x′) (2.142)

is equivalent to

[an(t), a†m(t)] = δnm. (2.143)

The Hamiltonian operator for the field now reads:

Ĥ =
∑
n

εna
†
nan. (2.144)

From this we read off that the quantized field can be interpreted as an infinite ensemble of

independent harmonic oscillators. The quantum harmonic oscillators are the amplitudes of

the respective field modes.

Canonical Quantization Consider the classical Lagrangean density for a classical com-

plex valued field ψ : R4 → C in the external potential v(x) = v(xt):

L(ψ, ∂µψ;x) = i~ψ∗(x)∂tψ(x)− ~2

2m
∇ψ∗(x) · ∇ψ(x)− v(x)ψ∗(x)ψ(x). (2.145)

The corresponding Hamiltonian density reads:

H(ψ, ∂µψ;x) =
1

i~

(
~2

2m
∇π(x) · ∇ψ(x) + v(x)π(x)ψ(x)

)
(2.146)

with the conjugate momentum

π(x) =
δS

δ∂tψ(x)
= i~ψ∗(x). (2.147)

The Euler-Lagrange equation for the classical field ψ leads to the classical equation of motion:

i~∂tψ(x) = − ~2

2m
∆ψ(x) + v(x)ψ(x). (2.148)

The transition to the corresponding Quantum Field Theory (cf. [76, 89, 95]) is implemented

by replacing the classical fields with operators such that the operators corresponding to
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conjugate variables fulfill the canonical (anti)commutation rule (CCR/CAR). For the field

operators of the Schrödinger Field, the nontrivial CCR or CAR at fixed time t read:

[ψ̂(xt), π̂(x′t)]± = i~δ(x− x′). (2.149)

This obviously agrees with the result we already found by the heuristic approach. The main

advantage of the canonical approach is that it works for any system which allows for a La-

grangean description and is not dependent on the identification of harmonic modes.

General Connection between Quantum Field Theory and Many-Body Physics

We now want to represent the CAR for the field operators on some concrete Hilbert space

F . Therefore, we consider the operator a†x on the fermionic Fock space creating a particle

in the state ψ(x′) = δ(x′ − x). The corresponding annihilator is written ax. Clearly these

operators fulfill the CAR (see Chapter 2.1.1):

[ax, a
†
x′ ]+ = δ(x− x′). (2.150)

Therefore, we can represent the field operator ψ̂(x) on the Fock space F by the replacement

ψ̂(x) 7→ ax. Indeed, within the realm of non-relativistic Quantum Field Theory, one can

even prove that any irreducible representation of the CCR/CAR is unitarily equivalent to the

bosonic/fermionic Fock space representation. [87] This is in sharp contrast to the relativistic

case where in general (in the interacting case) one does not have a Fock space at all. (see e.g.

[39]) Furthermore, it is impossible to find a relativistic transformation law for an N -particle

state of the form ΨN(x1, . . . ,xN ; t) which depends on N spatial arguments but only one time

argument13. Clearly this leads to a conflict with Lorentz transformations which in general

mix spatial and temporal coordinates.

We conclude that the quantization of the Schrödinger field corresponds to the transition

from one-particle Quantum Mechanics to Many-Body Quantum Mechanics (with arbitrary

particle number14). In particular, this explains why the creators and annihilators of position

eigenstates are referred to as field operators.

13Indeed, in the early days of Quantum Field Theory, Dirac developed a multi-time formalism within which

a generic n-particle wave-function depends on n different times; cf. [90].
14The deeper reason for this is that both many-particle systems with variable particle number and classical

fields are systems with an infinite number of degrees of freedom.
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2.3. Phononic Field Theory

2.3.1. Quantization of Lattice Oscillations

Classical Lattice Dynamics Consider a one-dimensional, finite, classical, harmonic lattice,

i.e. a discrete collection {un} of classical degrees of freedom indexed by n ∈ ZN = Z/NZ.

The advantage of interpreting the indices n as a group is that this automatically implies the

periodic boundary conditions un+N = un. In the context of Electronic Structure Theory the

lattice is interpreted as the crystal lattice and the {un} as the nuclear (or ionic) elongations

(or displacements). In principle, the un can also be interpreted as some more general quantity

associated with the lattice site n. In the latter case, un actually denotes a discretized field,

i.e. a field u = u(xn0) on a discretized space:

un = u(an) = u(xn0). (2.151)

The interpretation of this equation is that the “elongation” at lattice site xn0 is given by the

evaluation of the (“elongation” or “displacement”) field at that very point na. The position

of the n-th particle is then given by

xn = xn0 + un. (2.152)

“Classical”means in this context that the system has a configuration space RN corresponding

to the N positions of the particles or (in the more general interpretation) of the N values

which determine the field configuration. The state of the system is at every instant t given by

a point in the phase space RN ×RN and the time-evolution is given by Hamilton’s equations

dxn(t)

dt
=

∂H

∂pn
(2.153)

dpn(t)

dt
= − ∂H

∂xn
. (2.154)

In the harmonic approximation, the Hamiltonian is given by

H =
N∑
n=1

p2
n

2M
+
κ

2

N∑
n=1

(un − un+1)2 (2.155)

corresponding to the equation of motion

M
d2un(t)

dt2
= κ(un−1(t)− 2un(t) + un+1(t)). (2.156)

This equation has solutions of the form

un(t) = un(0) exp(−iωkt+ ikxn0) (2.157)
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where

k ∈ {0, 2π

aN
, . . . , (N − 1)

2π

aN
} (2.158)

and

ω(k) ≡ ωk =

√
4κ

M
| sin

(
ak

2

)
| =

√
2κ

M
| cos ka− 1|. (2.159)

In the following, summations over the wavevector k always denote a summation over the

finite set
2π

L
ZN , (2.160)

with L = Na, i.e. ∑
k

=
∑

k∈ 2π
L
ZN

(2.161)

The general solution of the equation of motion is given by

xn(t) =
1√
N

∑
k

qk exp(−iωkt+ ikxn0) (2.162)

where the qk have to be fixed by the initial conditions. For later purposes, we note that the

inclusion of an additional coupling of the particles

λ

2
u2
n (2.163)

to their equilibrium positions leads to a modification of the dispersion relation as

ω2
k =

2κ

M
(1− cos ka) +

λ

M
. (2.164)

The original Hamiltonian leads to a wave-equation in the continuum limit a → 0 whereas

the coupling to the equilibrium positions modifies this wave-equation to a Klein-Gordon

equation. The coupling constant corresponds to an effective mass µ of the quasiparticles

given by

µ =
~
c

√
λ

M
. (2.165)

This fact is sometimes used as a heuristic introduction for the Klein-Gordon equation. (cf.

e.g. [95])

Quantization The quantization is now implemented by replacing the classical observables

xn and pm with operators x̂n and p̂m such that

[x̂n, p̂m] = i~δnm (2.166)
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where

x̂n = xn01+ ûn. (2.167)

The state of the lattice is then described by a wave-function

Ψ(x1, . . . , xN ; t) ∈ L2(RN ,C) (2.168)

which obeys a Schrödinger equation

i~∂tΨ(x1, . . . , xN ; t) = ĤΨ(x1, . . . , xN ; t) (2.169)

where the Hamiltonian operator Ĥ is given by

Ĥ =
N∑
n=1

p̂2
n

2M
+
κ

2

N∑
n=1

(ûn − ûn+1)2. (2.170)

So far, this is simply the canonical quantization of a system of N particles. The role of

the lattice consists in making plausible the concrete form of the Hamiltonian. We will now

perform a transition to normal coordinates which will pave the way to the field-theoretical

point of view. Equation (2.162) suggests to use the expansion coefficients of the general

solution as coordinates, i.e. we define the coordinates qk by the point transformation

un =
1√
N

∑
k

qk exp(ikxn0) (2.171)

or

u = Uq (2.172)

with

Uij =
1√
N

exp(ikjxi0) =
1√
N

exp(iakji) =
1√
N

exp

(
2πi

N
ij

)
(2.173)

kj =
2π

L
j (2.174)

where L = Na. As p = mẋ, this induces the transformation

pn =
1√
N

∑
k

πk exp(ikxn0) (2.175)

for the momenta πk(t) = mq̇k(t). As xn and pn are real, the new coordinates fulfill

q∗k = q−k ≡ q2πN/L−k (2.176)

π∗k = π−k ≡ π2πN/L−k (2.177)
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because

u∗n =
1√
N

∑
k

q∗k exp(−ikxn0) (2.178)

=
1√
N

∑
k

q2πN/L−k exp

(
i
2π

L
Nxn0 − ikxn0

)
(2.179)

=
1√
N

∑
2πN/L−k

q2πN/L−k exp

(
i

(
2π

L
N − k

)
xn0

)
. (2.180)

The matrix U is a discrete Fourier transform (cf. appendix (A.2.2)), therefore induces a

unitary transformation CN → CN and hence preserves the standard norm. In particular, we

have
N∑
i=1

u2
i =

∑
k∈ 2π

L
ZN

q∗kqk. (2.181)

This implies immediately

1

2M

∑
p2
n =

1

2M

∑
k

π∗kπk (2.182)∑
u2
n =

∑
u2
n+1 =

∑
q∗kqk. (2.183)

For the mixed term
∑
un+1un we find

N∑
n=1

un+1un =
1

N

∑
n

∑
k,l

qkqle
ikxn0eilxn0eila (2.184)

=
1

N

∑
k,l

qkqle
ila
∑
n

ei(k+l)xn0 (2.185)

=
1

N

∑
k,l

qkqle
ilaNδk,−l (2.186)

=
∑
k

qkq−ke
−ika (2.187)

=
∑
k

qkq
∗
ke
−ika. (2.188)

Furthermore, the reality conidition
∑
un+1un ∈ R implies

∑
k

qkq
∗
ke
−ika =

∑
k

qkq
∗
ke

ika. (2.189)

Thesis, Vienna, July 4, 2012



Ronald Starke: Green Functions and Electronic Structure Theory 117

In the new coordinates, the Hamiltonian therefore reads:

H =
N∑
n=1

p2
n

2M
+
κ

2

N∑
n=1

(un − un+1)2 (2.190)

=
N∑
n=1

p2
n

2M
+
κ

2

N∑
n=1

(u2
n − 2unun+1 + u2

n+1) (2.191)

=
∑
k

π∗kπk
2M

+
κ

2

∑
k

(q∗kqk − qkq∗keika − qkq∗ke−ika + q∗kqk) (2.192)

=
∑
k

π∗kπk
2M

− κ

2

∑
k

q∗kqk(e
ika − 2 + e−ika) (2.193)

=
∑
k

(
π∗kπk
2M

+
Mω2

k

2
q∗kqk

)
. (2.194)

Introducing yet again new coordinates ak and a∗k via

qk =

√
~

2Mωk
(ak + a∗−k) (2.195)

πk = i

√
~Mωk

2
(a∗k − a−k) (2.196)

the Hamiltonian takes the particularly simple form

H =
∑
k

~ωk
(
a∗kak +

1

2

)
. (2.197)

The quantization procedure xn, pn 7→ x̂n, p̂n now translates into a replacement of the classical

coordinates ak, a
∗
k by operators ak, a

†
k which fulfill

[ak, a
†
l ] = δkl

[ak, al] = 0

[a†k, a
†
l ] = 0

and the Hamiltonian can be rewritten as

Ĥ =
∑
k

~ωk
(
a†kak +

1

2

)
. (2.198)

This shows that in the new coordinates the system is a collection of independent harmonic

oscillators. Consequently, the ground-state can easily be written down

Ψ0 = ⊗k∈ 2π
L
ZN
|0k〉 (2.199)
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where |0k〉 is the ground-state of the k-th harmonic oscillator characterized by:

ak|0k〉 = 0. (2.200)

However, it is worth noting that all this is still completely equivalent to the canonical quan-

tization of N non-relativistic particles with Hamiltonian (2.170). In fact

Ψ0(x1, . . . , xN) = 〈x1, . . . , xN | ⊗k∈ 2π
L
ZN
|0k〉 (2.201)

is the ground-state of the Hamiltonian (2.170). This is to be understood in the following

sense: |0k〉 is the function

ϕ0(qk) =

(
Mωk
π~

)1/4

exp

(
−Mωk

2~
q∗kqk

)
(2.202)

(ground-state of the harmonic oscillator in the position state representation) with

qk = qk(x1, . . . , xN). (2.203)

Ψ0 is then given by

Ψ0(x1, . . . , xN) ∝ ϕ0(q1(x1, . . . , xN)) · . . . · ϕ0(qN(x1, . . . , xN)). (2.204)

This shows that the quantization of a (“displacement”) field on a lattice with N lattice points

is completely equivalent to the standard Quantum Mechanics of N particles.

Lattice Dynamics of One-Quasiparticle Wave-function Denoting Ψ0 = |0〉, we now

consider a general one-quasiparticle state

|1〉 =
∑
k

fka
†
k|0〉 (2.205)

with the wave-function in Fourier space fk. The dynamics of the whole lattice implies

i~∂t|1〉 = Ĥ|1〉 =
3

2

∑
k

fk~ωka†k|0〉. (2.206)

As the free Hamiltonian preserves the functional form of |1〉 (does not change the quasi-

particle number), the time-dependence of the state |1〉 can be completely absorbed into the

expansion coefficient fk := fk(t) which implies for these

i~∂tfk(t) =
3

2
~ωkfk(t) (2.207)
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or

fk(t) = fk0e−i3/2~ωkt. (2.208)

We now define a quasiparticle wave-function in real space by

ψ(xi0) =
1√
N

N−1∑
j=0

exp

(
i
2π

N
ij

)
fkj =

1√
N

N−1∑
j=0

exp

(
i
2π

Na
jia

)
fkj =

1√
N

N−1∑
j=0

exp(ikjxi0)fkj

and the respective time-dependence by

ψ(xi0, t) =
1√
N

N−1∑
j=0

exp(ikjxi0)fkj(t) (2.209)

Our goal is now to derive an equation of motion in real space for the wave-function ψ(xi0, t).

We therefore introduce the operators

(∇+
a f)(xn0) =

f(x(n+1)0)− f(xn0)

a
(2.210)

(∇−a f)(xn0) =
f(xn)− f(x(n−1)0)

a
(2.211)

which we call forward and backward lattice derivative. From this definition, we find

((∇+
a∇−a )(f))(xn0) =

f(x(n+1)0)− 2f(xn0) + f(x(n−1)0)

a2
(2.212)

In particular, for f(xn0) = eikxn0 we find

(∇+
a f)(xn0) =

eika − 1

a
f(xn0) (2.213)

(∇−a f)(xn0) =
1− e−ika

a
f(xn0) (2.214)

((∇+
a∇−a )(f))(xn0) =

2

a2
(cos ka− 1) (2.215)

Thesis, Vienna, July 4, 2012



120 Ronald Starke: Green Functions and Electronic Structure Theory

We now compute

∂2
t ψ(xi0, t) =

1√
N

N−1∑
j=0

exp(ikjxi0)∂2
t fkj(t)

= − 1√
N

N−1∑
j=0

exp(ikjxi0)
9

4
ω2
kfkj(t)

= − 9√
16N

N−1∑
j=0

ω2
k exp(ikjxi0)fkj(t)

= − 9√
16N

N−1∑
j=0

2κ

M
(1− cos ka) exp(ikjxi0)fkj(t)

=
18κa2

√
64NM2

N−1∑
j=0

∇+
a∇−a exp(ikjxi0)fkj(t)

=
9κa2

4M
∇+
a∇−a

1√
N

N−1∑
j=0

exp(ikjxi0)fkj(t)

=
9κa2

4M
∇+
a∇−a ψ(xi0, t)

or (
1

v2
q

∂2
t −∇+

a∇−a
)
ψ(xi0, t) = 0. (2.216)

with

vq =

√
9κa2

4M
=

3

2

√
κa2

M
. (2.217)

We now compare this one-quasiparticle wave-equation with the original equation (2.156) for

the classical displacement field xi0(t)− xi0 = u(xi0, t). By the help of the lattice derivatives,

the equation of motion can be rewritten as(
1

v2
c

∂2
t −∇+

a∇−a
)
u(xi0, t) = 0. (2.218)

where

vc =

√
κa2

M
. (2.219)

In the continuum limit a→ 0, both equations become wave-equations of the standard form(
1

v2
∂2
t −∆

)
f(x, t) = 2f(x, t) = 0 (2.220)

where the divergence in 1/v2 has to be absorbed in a suitable dependence κ = κ(a). The

astonishing difference in the velocities vc and vq due to the factor
√

9/4 = 3/2 is a quantum
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effect which is is caused by the zero point energy 1/2~ωk. Without this zero-point energy,

the equation of motion for the Fourier mode would read

i~∂tfk(t) = ~ωkfk(t) (2.221)

and a similar calculation would yield vq = vc. In other words, due to the zero-point energy

phonons do not move we the speed of sound!

Hilbert Space of One-Phonon Wave-functions, Local Phonon Creation and An-

nihilation Operators The Hilbert space H of one-phonon states is given by CN . In the

reciprocal space, a one-phonon state f : ZN → C is a function on the FBZ with the inter-

pretation that fk is the amplitude for the phonon to have the lattice wave vector k. The

induced scalar product reads

〈f |g〉 =
∑
k,k′

f ∗kgk′〈0|aka
†
k′ |0〉 =

∑
k

f ∗kgk. (2.222)

With the one-phonon Hilbert space being given, one can easily construct the (bosonic) Fock

space for arbitrarily many phonons. A general eigenstate of the phonon number operator

N̂ =
∑
k

a†kak (2.223)

reads

|Ψf
n〉 =

∑
k1,...,kn

f(k1, . . . , kn)a†k1
. . . a†kn|0〉. (2.224)

Due to the commutation rule [a†k, a
†
l ] = 0 ∀k, l the many-quasiparticle wave-function

f(k1, . . . , kn)

can without restriction of generality be chosen totally symmetric. In other words, on the

level of the quasiparticles the quantum dynamics of the lattice induces a bosonic theory with

arbitrarily many particles in contrast to the constituent lattice N -particle wave-function

Ψ(x1, . . . , xN) (N fixed!) which in general is neither symmetric nor antisymmetric (the

constituent particles can be distinguished by their lattice number). Furthermore, the quasi-

particle number is in general neither conserved nor bounded (disregarding the physical fact

that for too high energies, the lattice may be blown apart) as opposed to the constituent

particles, whose number is fixed. Note that phonons are not quite quantized lattice oscilla-

tions (whatever this actually means), but quantum states of the lattice which can be written
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in the form (2.224). Starting from the phonon creation and annihilation operators ak and

a†k we can construct local creation and annihilation operators

ψ̂†(xn0) =
1√
N

∑
k

exp(−ikxn0)a†k (2.225)

ψ̂(xn0) =
1√
N

∑
k

exp(ikxn0)ak (2.226)

which we can sloppily interpret as operators creating or annihilating a phonon at xn0, i.e. a

phonon with the real space wave-function ψ(xm0) = δmn.

2.3.2. Phonon Propagator

Quantum Displacement Field We want to compute expectation values of the displace-

ment field operator

x̂n = û(xn0) + xn0 (2.227)

and its products in various states, in particular in the field theoretical vacuum state |0〉
(ground-state of the lattice). Using equations (2.171, 2.195) and replacing −k 7→ k under

the sum, we can write

x̂n − xn0 = û(xn0) =

√
~

2NM

∑
k

1
√
ωk

(ake
ikxn0 + a†ke

−ikxn0). (2.228)

We call û(xn0) the quantum phonon field. In the language of first quantization, it is the

indexed position operator of the constituent particles. Note that the quantum phonon field

û(xn0) does not create a phonon at xn0 because (i) it contains both creators and annihilators

and (ii) it contains 1√
ωk

.15 Obviously x̂†n = x̂n. From 〈0|ak|0〉 = 〈0|a†k|0〉 = 0, we conclude

〈x̂n〉 = 0. This result generalizes to any phonon number eigenstate. By equation (2.228) one

easily establishes the following equal-time commutators

[ûn(t), ûm(t)] = 0 (2.229)

[∂tûn(t), ∂tûm(t)] = 0 (2.230)

[ûn(t), ∂tûm(t)] =
i~
M
δnm. (2.231)

15In this respect, the quantum phonon field behaves as almost all quantized fields, in particular in the rela-

tivistic domain. Only the quantized Schrödinger field has the property of creating/annihilating particles

at a certain point stricto sensu, i.e. in the sense of the many-body Fock space. This is due to the fact

that the Schrödinger equation is first order in time.
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This shows that the phonon field fulfills the canonical commutators of a a quantum field on

a lattice. We now establish the time dependence of the operator

ûn(t) =

√
~

2NM

∑
k

1
√
ωk

(ak(t)e
ikxn0 + a†k(t)e

−ikxn0). (2.232)

From

i~∂tak = −[Ĥ, ak] = ~ωkak (2.233)

i~∂ta†k = −[Ĥ, a†k] = −~ωka†k (2.234)

we conclude

ak(t) = ake
−iωkt (2.235)

a†k(t) = a†ke
iωkt. (2.236)

This implies

x̂n(t)− xn0 = û(xn0t) =

√
~

2NM

∑
k

1
√
ωk

(ake
−iωkt+ikxn0 + a†ke

iωkt−ikxn0). (2.237)

By the dispersion relation ω = ωk, it follows that the phonon field operator fulfills the clas-

sical equation of motion (2.218).

Phonon Propagator The phononic Green function is defined by

−i~Dphon(xn0t, xm0t
′) = 〈0|T û(xn0t)û(xm0t

′)|0〉 (2.238)

Using ∂tθ(t) = δ(t), the CCR (2.229, 2.230, 2.231) and the fact that x̂n(t) fulfills the classical

equation for the displacement field, one shows easily that the phonon Green function fulfills

the equation of motion(
M∂2

t − a2κ∇+
a∇−a

)
Dphon(xn0t, xm0t

′) = δ(t− t′)δnm. (2.239)

An explicit calculation yields for −i~Dphon(xn0t, xm0t
′)

=
~

2NM

∑
k

(
θ(t− t′)
ωk

eik(xn0−xm0)−iωk(t−t′) +
θ(t′ − t)
ωk

eik(xm0−xn0)−iωk(t′−t)
)

=
i~

2NM

∑
k

∫
dω

2π

(
1

ωk

eik(xn0−xm0)−iω(t−t′)

ω − ωk + iη
+

1

ωk

eik(xm0−xn0)−iω(t−t′)

ω + ωk − iη

)
=

i~
NM

∑
k

∫
dω

2π

eik(xn0−xm0)−iω(t−t′)

ω2 − ω2
k + iη
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where we again substituted k 7→ −k under the sum
∑

k. The transformation from the second

to the third line holds in the limit η → 0. We read off that

Dphon(k, k′;ω) =
1

M

−δkk′
ω2 − ω2

k + iη
. (2.240)

Recall in this context that k varies over the finite set of wave vectors in the FBZ.

Generalization to 3 Dimensions In the case of three dimensions, the most general har-

monic Hamiltonian reads

H = T + V =
∑
n

M

2
(∂tu)2(xn0, t) +

1

2

∑
n,m

〈u(xn0, t)|K(xn0,xm0)u(xm0, t)〉R3

where we think of K as the Hessian matrix of some kind of potential energy E({x(xn0)}).
In other words, the Hamiltonian corresponds to a truncated Taylor expansion around the

equilibrium positions xn0. In general, the potential energy E({x(xn0)}) includes the static

nuclear Coulomb interaction and the electronic ground-state energy as a function of the

nuclear positions. Therefore, E({x(xn0)}) does not have a classical origin and instead repre-

sents an“electron-mediated”interaction. Interactions of nuclei at arbitrary distance xn0−xm0

correspond to higher order lattice derivatives in the field-theoretical picture (as opposed to

nearest neighbor interactions which imply first-order lattice derivatives). The potential term

of the Hamiltonian reads in full detail

1

2

∑
n,m

3∑
i,j=1

Kij(xn0,xm0)ui(xn0, t)u
j(xm0, t). (2.241)

and has a number of well-known symmetries. These will be derived in the following. We

start with a some of definitions. The Bravais lattice of the crystal under consideration can

be written as

Γai,L = {n1a1 + n2a2 + n3a3; (n1, n2, n3) ∈ Z× Z× Z; ai i = 1, 2, 3 lin. indt.}. (2.242)

We interpret Γai,L as a subset of R3. Let R be an element of the euclidean group of R3. If

R enjoys the property

R(Γai,L) = Γai,L (2.243)

it is called a symmetry of the lattice. A lattice function

f : Γ× . . .× Γ → K ∈ {R,C} (2.244)

(xn10, . . . ,xnm0) 7→ f(xn10, . . . ,xnm0) (2.245)
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is said to be Bravais invariant if for any lattice symmetry transformation R, the equation

f(xn10, . . . ,xnm0) = f(Rxn10, . . . ,Rxnm0) (2.246)

holds. (In particular, if f(xn0) is Bravais invariant, it is constant.) Furthermore, the lattice

function f being given, we define its pull back R∗f to be given by

(R∗f)(xn10, . . . ,xnm0) = f(Rxn10, . . . ,Rxnm0). (2.247)

Bravais invariance then simply means R∗f = f . For a vector valued lattice function f , we

define the push forward R∗f through

(R∗f)(xn10, . . . ,xnm0) = R′f(R−1xn10, . . . ,R
−1xnm0) (2.248)

where R′ denotes the differential (tangential map) of R. A vector valued function on the

lattice is said to be Bravais contravariant if R∗f = f . The generalization to Bravais covariant

and contravariant tensors of various degrees is obvious. Finally, a functional E[f ,g, . . .] of

vector valued lattice functions is called Bravais invariant iff

E[f ,g, . . .] = E[R∗f ,R∗g, . . .]. (2.249)

Lemma 2.3.1 The potential energy

1

2

∑
n,m

〈u(xn0, t)|K(xn0,xm0)u(xm0, t)〉R3 (2.250)

is a Bravais invariant functional.

Corollary 2.3.2 With u(xn0, t), the push-forward (R∗u)(xn0, t) is a solution of the equation

of motion.

Proof For this to hold true, it suffices that

K(xn0,xm0) =
∂2E({xl})
∂xn∂xm

|{u(xl0)=0, ∀l} (2.251)

is a Bravais covariant tensor. The energy is explicitly given as

E({xl}) = 〈Ψ0({xl})|Ĥ({xl})|Ψ0({xl})〉+
Z2e2

8πε0

∑
m,n

1

|xn − xm|
(2.252)

where Ĥ depends on xn through vext(x). Using second-order perturbation theory and the

Hellman-Feynman theorem, we find

Kij(xn0,xm0) = 2Re
∑
s

〈Ψ0|∂V̂ext

∂xin
|Ψs〉〈Ψs|∂V̂ext

∂xjm
|Ψ0〉

E0 − Es
+ δnm〈Ψ0|

∂2V̂ext

∂xin∂x
j
m

|Ψ0〉

+
Z2e2

8πε0

∑
m,n

∂2

∂xin∂x
j
m

1

|xn − xm|
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where all electronic eigenvectors, energies and derivatives of the external potential are evalu-

ated at xn = xn0. The lattice symmetry is also a symmetry of Ĥ({xl0}) and the derivatives

of V̂ext evaluated at the equilibrium positions are lattice covariant. The same applies to the

derivatives of the electrostatic energy of the ions. (The derivatives of the potentials are even

covariant under the full euclidean group.) Therefore, every of the terms involved possesses

the lattice symmetry and we conclude that Kij(xn0,xm0) is a lattice covariant tensor.

2

In particular, K is invariant under inversion and lattice translation K(x+a,x′+a) = K(x,x′)

and can therefore be written as

Kij(xn0 − xm0) (2.253)

with

Kij(xn0) = Kij(−xn0) (2.254)

Kji(xn0) = Kij(xn0) (2.255)

where we used the trivial identity

Kij(xn0,xm0) = Kji(xm0,xn0) (2.256)

which follows from the characterization of K as a second derivative tensor. Using the sym-

metry properties, we see that the equation of motion for the classical displacement field

reads

M∂2
t u

i(xn0, t) = −
∑
m,j

Ki
j(xn0 − xm0)uj(xm0, t). (2.257)

We consider a pure Fourier mode

uikλ(xn0, t) = eikλe
−iωkλt+ik·xn0 (2.258)

with k ∈ FBZ. We then have

M∂2
t u

i
kλ(xn0, t) = −Mω2

kλu
i
kλ(xn0, t) (2.259)

and∑
m,j

Ki
j(xn0 − xm0)ujkλ(xm0, t) =

∑
m,j

Ki
j(xn0 − xm0)ejkλe

−iωkλt+ik·xm0

=
∑
j

e−iωkλt+ik·xn0ejkλ
∑
m

Ki
j(xn0 − xm0)eik·(xm0−xn0)

=
∑
j

e−iωkλt+ik·xn0ejkλ
∑
m

Ki
j(xm0)e−ik·xm0

=
∑
j

K̃i
j(k)ejkλe

−iωkλt+ik·xn0 .
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In other words, ukλ(xn0, t) is a solution of the equation of motion iff ekλ is an eigenvector of

the dynamical matrix

K̃i
j(k) =

∑
m

Ki
j(xm0)e−ik·xm0 (2.260)

with eigenvalue Mω2
kλ. The phononic field (3-dimensional quantum displacement operator)

can then be expanded as

x̂n(t)− xn0 = û(xn0, t) =

√
~

2NM

∑
λ,k∈FBZ

1
√
ωkλ

(akλekλe
−iωkλt+ik·xn0 + e∗kλa

†
kλe

iωkλt−ik·xn0)

(2.261)

and is an operator-valued solution of the equation of motion, i.e.

M∂2
t û

i(xn0, t) = −
∑
m,j

Ki
j(xn0 − xm0)ûj(xm0, t). (2.262)

or

(M∂2
t + K)û(xn0, t) = 0 (2.263)

where

(Ku)(xn0) ≡
∑
m

K(xn0 − xm0)u(xm0, t). (2.264)

The creators and annihilators fulfill

[akλ, alµ] = 0 (2.265)

[a†kλ, a
†
lµ] = 0 (2.266)

[akλ, a
†
lµ] = δklδλµ (2.267)

which is equivalent to the equal-time commutators

[û(xn0, t), û(xm0, t)] = 0 (2.268)

[∂tû(xn0, t), ∂tû(xm0, t)] = 0 (2.269)

[û(xn0, t), ∂tû(xm0, t)] =
i~
M
δnm13×3. (2.270)

The Hamiltonian can be written as

Ĥ =
∑
kλ

~ωkλ

(
a†kλakλ +

1

2

)
. (2.271)

In 3 dimensions, we define the phonon propagator as

−i~Dphon(xn0t,xm0t
′) = 〈0|T û(xn0t)û(xm0t

′)|0〉. (2.272)
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For ∂2
t 〈0|T û(xn0t)û(xm0t

′)|0〉, we find

∂t(δ(t− t′)〈û(xn0t)û(xm0t
′)〉+ θ(t− t′)〈∂tû(xn0t)û(xm0t

′)〉)
∂t(−δ(t− t′)〈û(xm0t

′)û(xn0t)〉+ θ(t′ − t)〈û(xm0t
′)∂tû(xn0t)〉)

= ∂t(δ(t− t′)〈û(xn0t)û(xm0t)〉+ θ(t− t′)〈∂tû(xn0t)û(xm0t
′)〉)

∂t(−δ(t− t′)〈û(xm0t)û(xn0t)〉+ θ(t′ − t)〈û(xm0t
′)∂tû(xn0t)〉)

= δ′(t− t′)〈û(xn0t)û(xm0t)〉+ δ(t− t′)〈∂tû(xn0t)û(xm0t)〉+ δ(t− t′)〈û(xn0t)∂tû(xm0t)〉
+δ(t− t′)〈∂tû(xn0t)û(xm0t)〉+ θ(t− t′)〈∂2

t û(xn0t)û(xm0t
′)〉

−δ′(t− t′)〈û(xm0t)û(xn0t)〉 − δ(t− t′)〈∂tû(xm0t)û(xn0t)〉 − δ(t− t′)〈û(xm0t)∂tû(xn0t)〉
−δ(t′ − t)〈û(xm0t)∂tû(xn0t)〉) + θ(t′ − t)〈û(xm0t

′)∂2
t û(xn0t)〉)

= δ′(t− t′)〈û(xn0t)û(xm0t
′)〉+ 2δ(t− t′)〈∂tû(xn0t)û(xm0t

′)〉+ θ(t− t′)〈∂2
t û(xn0t)û(xm0t

′)〉
+δ(t− t′)〈û(xn0t)∂tû(xm0t)〉 − δ(t− t′)〈∂tû(xm0t)û(xn0t)〉
−δ′(t− t′)〈û(xm0t)û(xn0t)〉 − 2δ(t− t′)〈û(xm0t

′)∂tû(xn0t)〉+ θ(t′ − t)〈û(xm0t
′)∂2

t û(xn0t)〉
= θ(t− t′)〈∂2

t û(xn0t)û(xm0t
′)〉+ θ(t′ − t)〈û(xm0t

′)∂2
t û(xn0t)〉

2δ(t− t′)〈∂tû(xn0t)û(xm0t)− û(xm0t)∂tû(xn0t)〉
+δ(t− t′)〈û(xn0t)∂tû(xm0t)− ∂tû(xm0t)û(xn0t)〉

= θ(t− t′)〈∂2
t û(xn0t)û(xm0t

′)〉+ θ(t′ − t)〈û(xm0t
′)∂2

t û(xn0t)〉

− i~
M
δ(t− t′)δnm.

We read off that the phonon propagator fulfills(
M∂2

t + K
)
Dphon(xn0t,xm0t

′) = δ(t− t′)δnm13×3 (2.273)

or in full detail(
M∂2

t +
∑
l∈Γ

K(xn0,xl0)

)
Dphon(xl0,xm0; t− t′) = δ(t− t′)δnm13×3. (2.274)

This implies for the Fourier domain(
−Mω2 +

∑
k′′∈Γ∗

K̃(k,k′′)

)
Dphon(k′′,k;ω) =(

−Mω2 +
∑

k′′∈Γ∗;λ

Mω2
kλδkk′′eλ(k)⊗ e∗λ(k)

)
Dphon(k′′,k;ω) = 13×3.

Using
3∑

λ=1

eλ(k)⊗ e∗λ(k) = 13×3 (2.275)
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we see that the phonon propagator in the Fourier domain therefore reads

Dphon(k,k′;ω) =
1

M

3∑
λ=1

−δkk′
ω2 − ω2

kλ + iη
eλ(k)⊗ e∗λ(k). (2.276)

The regularization factor iη has been inserted ad-hoc to recover the time-ordered propagator.

This framework can be generalized to polyatomic bases by introducing a number of displace-

ment fields ui(xn0t) (one for each sort of atom) and including a suitable (linear) interaction

between these.

Remark about the Dependence of the Green Function on the Quantum State

In the proof for the quantum field theoretical propagator constituting a Green function of

the classical equation of motion, we used only the derivative of the Heaviside function, the

fact that field operator fulfills the classical equation of motion and the linearity of the ex-

pectation value functional 〈·〉 (which allows one to pull the equation of motion into the

expectation value). The fact that the time-ordered product is evaluated in the ground-state

has not been used. Any other (time-indepedendent) state (even mixed!) would do. On the

other hand, the general form of the Green function in terms of eλ(k), ωkλ etc. can be deduced

from purely classical considerations. At first sight, this seems to imply that the quantum

field theoretical Green function is indepedendent of the quantum state. This, however, is

not true. In fact, the quantum state comes into play when one is to fix the regularization

iη of the poles which in principle has to be done separately for each pole. Even real-valued

superpositions of different regularizations are possible which becomes relevant in the case of

mixed states. Classically, the regularization is completely undetermined and therefore has

to be fixed by so-called physical considerations (“causality”). Quantum mechancially, the

regularization is fixed by the underlying quantum state.16

Phonon Propagator vs Lagrangean A straightforward calculation shows that in terms

of the phonon propagator, the classical Lagrangean of the displacement can be written suc-

cinctly as

L(t) = T − V = −1

2

∫
dt′
∑
n,m

〈u(xn0, t)|D−1
phon(xn0t,xm0t

′)u(xm0, t
′)〉R3 (2.277)

the action being given by S =
∫

dt L(t). This formula will become extremely important

for the derivation of effective phonon-mediated interactions. It is a lattice analogon of well-

known field-theoretical facts (cf. e.g. [54, 85, 86]): the (free) propagator is the inverse of the

16As we will see later, mutatis mutandis the same applies the electronic Green function where the regular-

ization prescription can be expressed in terms of occupied and unoccupied one-particle states.
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operator in the quadratic part of the Lagrangean.

Phonon Propagator vs Density Response Functions In order to express the nuclear

density and current response functions in terms of the phonon propagator we first take a

somewhat alternative route to the density and current operators. Consider a quantum one-

particle system with wave-function ψ(x) which we interpret as the quantization of some

classical one-particle system described by the Hamiltonian function H(x,p). Classically, the

density is given by

n(xt) = δ(x− x(t)), (2.278)

where x(t) denotes the classical trajectory. We postulate that the density operator simply

results from the classical density by the replacement x(t) 7→ x̂(t) where x̂(t) is the position

operator in the Heisenberg picture. Using the spectral resolution, this yields the operator

n̂(xt) =

∫
dy δ(x− y)|yt〉〈yt| (2.279)

where |yt〉 = ψ̂†(yt)|0〉. The evaluation of this operator in the state ψ yields indeed the

standard expression

n(xt) = 〈ψ|n̂(xt)|ψ〉 = ψ∗(xt)ψ(xt). (2.280)

Similarly, for the current we have the classical expression

j(xt) =
dx(t)

dt
δ(x− x(t)) (2.281)

which translates into the quantum operator

ĵ(xt) =
dx̂(t)

dt
δ(x− x̂(t)) (2.282)

= − i

~
[x̂(t), Ĥ]δ(x− x̂(t)) (2.283)

=
p̂

m
δ(x− x̂(t)) (2.284)

=

∫
dy

p̂

m
δ(x− y)|yt〉〈yt|. (2.285)

The evaluation of this expression in the state ψ shows that the resulting current is in general

not real-valued. Of course, this is due to ordering ambiguities and can therefore easily be

remedied by starting from the classically equivalent expression

ĵ(xt) =
1

2

(
dx̂(t)

dt
δ(x− x̂(t)) + δ(x− x̂(t))

dx̂(t)

dt

)
(2.286)
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which leads to the standard current

j(xt) = 〈ψ|̂j(xt)|ψ〉 =
~

2mi
(ψ∗(x)∇ψ(x)− (∇ψ∗(x))ψ(x)). (2.287)

This result can now be applied to solid state physics. The charge density of the nuclei is

given by

ρnucl(xt) =
∑
n

Zeδ(x− xn(t)). (2.288)

The first order deviation from the equilibrium density is then given17

δρnucl(xt) = −
∑
n

Zeu(xn0, t) · (∇δ)(x− xn0). (2.289)

This translates into the operator

δρ̂nucl(xt) = −
∑
n

Zeû(xn0, t) · (∇δ)(x− xn0). (2.290)

The (time-ordered) polarizability

χnucl(xt,x
′t′) = − i

~
〈T δρ̂nucl(xt)δρ̂nucl(x

′t′)〉 (2.291)

can then be expressed in terms of the phonon propagator as

χnucl(xt,x
′t′) = Z2e2

∑
n,m

〈(∇δ)(x− xn0)|Dphon(xn0t,xm0t)(∇δ)(xm0 − x′)〉R3 . (2.292)

A similar formula can be written down for the current response function in terms of the

phonon propagator. These formulas will become relevant in the theory of effective phonon-

mediated interactions. The formula n̂(x) = δ(x− x̂) ≈ δ(x−x0)−(x̂−x0) ·(∇δ)(x−x0) can

also be used to derive the standard dipolar Hamiltonian Eext · x̂ for an atom in an external

electric field as

Ĥint =

∫
dx ϕext(x)ρ̂(x) (2.293)

= ϕext(0)− x̂ ·
∫

dx eϕext(x)(∇δ)(x) (2.294)

= ϕext(0)− eEext(0) · x̂ (2.295)

= ϕext(0)− E · P̂ (2.296)

17The Taylor expansion of the Dirac distribution ultimately has the meaning of a Taylor expansion of the

respective test functions which in this context are assumed to be analytical. The first order Taylor

expansion therefore does not mean that the Dirac distribution is really approximated by its Taylor series

of a certain order. Instead, it means that the first order expansion is a good approximation for the state

on which it acts.
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where P̂ denotes the dipole operator. Note that in this context x̂ is an abstract operator in

the Hilbert and therefore does not “feel” the integration over x.

Condensed Matter vs Quantum Gravity The classical displacement field u : Γ → R3

is naturally defined on the lattice Γ. For the moment, we consider the displacement field on

large length scales which allows one to perform the continuum limit. In that case, the“source

space” becomes Γ = R3. Equipping the “target space” R3 with the usual euclidean metric,

we consider the pull back under u of the metric on the source space.18 It is well-known [58]

that the induced metric on the source space reads

gij = δij + uij (2.297)

with

uij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.298)

Physically, the induced metric on the source space gives the distances of the displaced“atoms”

in terms of the undisplaced coordinates. One can now consider field theories on the (original,

undisplaced) lattice, e.g. Ising-like spin models. These will contain terms which involve

the lattice spacings (e.g. nearest neighbor interactions). In principal, one can consider

modifications of such models in which these lattice spacing are to be calculated with the

non-trivial, induced metric, i.e. in which the lattice-field “interacts” with the metric (at least

the metric acts on the spin field). Now, under quantization, the displacement field becomes

an operator and so do all derived concepts such as the metric itself and possible geometric

operators (length, area, volume) which one can form with the metric. (cf. e.g. [82] p.42) The

resulting theory, even if of poor relevance in condensed matter physics, would be analogous

to quantum gravity.19 Nonetheless, one also has to stress some crucial differences: as opposed

to gravity [98], in condensed matter, (i) the fields interacting with the metric naturally live

on a predetermined lattice, (ii) the metric is a derived concept and therefore does not carry

indepedendent degrees of freedom, (iii) consequently, there is no analogon of the Einstein

equations, (iv) the metric is Riemannian, (v) the time coordinate is not involved.

18“Target space” and “source space” is actually string theoretical parlance [40, 102], but seems to be highly

intuitive in this case. In fact, the present problem is analogous to the usual bosonic string theory provided

one identifies the physical space not with the 26-dimensional target space but with the 2-dimensional

source space of the string. In other words, ui(xn0, t) is the analogon of the classical string Xµ(σ, τ). From

this point of view, string theory simply describes a Field Theory in 2 dimensions, actually even quantum

gravity (apart from the fact that the string dynamics is defined by the Nambu-Goto action and not by

the Einstein-Hilbert action which would yield a topological constant in 2 dimensions). Needless to say,

this analogy has been stressed time and again by the string theorists themselves. (cf. e.g. [97] p.19)
19A “world crystal” theory of gravitation has been proposed by Hagen Kleinert. [52, 53, 54]
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Field Theoretical Language Particle Picture

Field Degrees of Freedom Particles position and momentum at Lattice Sites

ψ(xn0) = ψ(na) xn

π(xn0) = π(na) pn

Field Quantization Many-Body Quantum Mechanics

[ψ̂(xn0), π̂(xm0)] = i~δnm [x̂n, p̂m] = i~δnm

State of the Field = Functional of the classical

field ψ

State of the Particles = Many-Body Wave Func-

tion

Ψ[ψ] = Ψ(ψ(x10), . . . , ψ(xN0)) Ψ(x1, . . . , xN )

Lattice Functional Integral Scalar Product

〈Ψ|Φ〉 =
∫
Dψ Ψ∗[ψ]Φ[ψ] 〈Ψ|Φ〉 =

∫
dx1 . . . dxN (Ψ∗ · Φ)(x1, . . . , xN )

Explicit Form of Field Operators Explicit Form of Position and Momentum Oper-

ator

ψ̂(xn0)Ψ[ψ] = ψ(xn0)Ψ[ψ] x̂nΨ(x1, . . . , xN ) = xnΨ(x1, . . . , xN )

π̂(xn0)Ψ[ψ] = ~
i

δ
δψ(xn0)Ψ[ψ] p̂nΨ(x1, . . . , xN ) = ~

i
∂
∂xn

Ψ(x1, . . . , xN )

Expectation Value of the Field at xn0 Expectation value of the position of particle n

〈ψ(xn0)〉 = 〈Ψ|ψ̂(xn0)|Ψ〉 〈xn〉 = 〈Ψ|x̂n|Ψ〉

Field Quanta Quasiparticles∫
dk f(k)a†k|0〉

∑
k f(k)a†k|Ψ0〉

Excitation of Oscillation Particle Creation

Deexcitation of Oscillation Particle Annihilation

Multiple Excitation Many Particle State∫
dk1 . . . dki f(k1, . . . , ki)a

†
ki
. . . a†k1 |0〉

∑
k1...ki

f(k1, . . . , ki)a
†
ki
. . . a†k1 |Ψ0〉

Continuum Limit Thermodynamic Limit

a→ 0 N →∞
classical field ψ(x) continuous matter distribution displacement field

u(x)

Quantum State of the Field Quantum State of the Matter Distribution

Functional Ψ[ψ] Function of infinitely many variables

Field Theoretical Vacuum |0〉 Quantum Mechanical Groundstate |Ψ0〉 of the

Matter Distribution (here: formal infinite prod-

uct of harmonic oscillator ground-states)

Table 2.1.: Particles vs Fields
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3. Green Functions and Quasiparticles

3.1. Quantum Field Theoretical Green Functions

3.1.1. Definition and Properties

Definition The expectation values

(i~)nG2n(1, . . . , n;n+ 1, . . . , 2n) = 〈Ψ0|T ψ̂(1) . . . ψ̂(n)ψ̂†(2n) . . . ψ̂†(n+ 1)|Ψ0〉. (3.1)

are called 2n-point (n-particle) Green functions.

Remarks

1. T denotes the time-ordering operator. The explicit formula for the time-ordering of

2n field operators reads:

T ψ̂(x1t1) . . . ψ̂(xntn)ψ̂†(xn+1tn+1) . . . ψ̂†(x2nt2n) =
∑
π

(−1)π ×

θ(tπ(1) − tπ(2))θ(tπ(2) − tπ(3)) . . . θ(tπ(2n−1) − tπ(2n))ψ̂
(†)(xπ(1)tπ(1)) . . . ψ̂

(†)(xπ(2n)tπ(2n))

In general, the arguments of the field operators are composite variables: (1) = (x1, t1, σ1).

In particular, ψ̂(†)(1) ≡ ψ̂
(†)
σ1 (x1t1) denotes a Heisenberg operator with the time-evolution

being induced by:

i~∂tψ̂(†) = [ψ̂(†), Ĥ] (3.2)

i.e.

ψ̂(†)(xt) = e
i
~ Ĥtψ̂(†)(x)e−

i
~ Ĥt. (3.3)

Ψ0 denotes an N -particle ground-state Ψ0 ∈ HN ⊂ F of some Hamiltonian Ĥ to be

specified later. We will suppress the spin indices whenever possible. In the following

formulas, the spin degree of freedom can be remade explicit by substituting ψ̂(x) 7→
ψ̂σ(x); ϕ(x) 7→ ϕσ(x);

∫
dx 7→

∑
σ

∫
dx etc. The prefactor (i~)n in the definition of

the n-particle Green function is of importance for the conventions in the equation of

motion theory. In particular, it has the effect of turning the two-particle Green function
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of a non-interacting system into a Green function in the sense of standard Quantum

Mechanics. The inverse numbering of the second n arguments in the definition of the

n-particle Green function is not imperative, but will turn out to be a good convention.

2. In particular, the two-point Green function

i~G2(xt,x′t′) ≡ i~G(xt,x′t′) = 〈Ψ0|T ψ̂(xt)ψ̂†(x′t′)|Ψ0〉. (3.4)

is simply called Green function or propagator.

3. We introduce a non-interacting ground-state Φ0 of the n-particle system: Ĥ0Φ0 = E0Φ0

where Ĥ0 is the one-particle operator part of Ĥ. The corresponding Green function

will be denoted by G0(xt,x′t′).

4. The formal correspondence between quantum field theoretical and single-particle Green

functions (= Green functions in standard Quantum Mechanics) is elucidated by ob-

serving that

〈x′|Û(t′, t)|x〉 = 〈x′t′|xt〉 = 〈0|ψ̂(x′t′)ψ̂†(xt)|0〉 (3.5)

where |0〉 refers to the Fock vacuum. Therefore, both single-particle and many-body

(two-point) Green functions can – up to prefactors and time ordering – be written in

the form

〈state|ψ̂(x′t′)ψ̂†(xt)|state〉. (3.6)

As ψ(xt)|0〉 ≡ 0, one can even introduce a time-ordering operator in the single-particle

Green function.

5. We define the retarded Green function, the advanced Green function, the greater Green

function and the lesser Green function through:

i~GR(xt,x′t′) = θ(t− t′)〈{ψ̂(xt), ψ̂†(x′t′)}〉 (3.7)

−i~GA(xt,x′t′) = θ(t′ − t)〈{ψ̂(xt), ψ̂†(x′t′)}〉 (3.8)

i~G>(xt,x′t′) = 〈ψ̂(xt)ψ̂†(x′t′)〉 (3.9)

i~G<(xt,x′t′) = 〈ψ̂†(x′t′)ψ̂(xt)〉. (3.10)

In particular, we have

GR = θ(t− t′)(G> +G<) (3.11)

−GA = θ(t′ − t)(G< +G>) (3.12)

G2 = θ(t− t′)G> − θ(t′ − t)G<. (3.13)

Note, however, that the so-called greater and lesser Green functions actually are not

Green functions because they fulfill the homogeneous equations.
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6. The definition of Green functions as ground-state expectation values corresponds to

the zero-temperature case T = 0. The definition can be generalized to arbitrary tem-

peratures T > 0 by replacing the ground-state expectation value 〈Ψ0| · |Ψ0〉 with the

expectations with respect to the canonical ensemble ρ̂ ∝ exp
(
− Ĥ
kBT

)
. The correspond-

ing Green functions are called temperature Green functions. As the temperature Green

functions depend on the Hamiltonian in a complicated manner (through the time evo-

lution and through the Boltzmann factor), their perturbation theory becomes clumsy.

One therefore often considers the temperature Green functions in imaginary time.

These imaginary-time Green functions are called Schwinger functions. (cf. [15, 21])

Fortunately, in Electronic Structure Theory, one can restrict attention to the ordinary

Green functions (i.e. the Green functions at zero-temperature). This is due to the

fact that the natural temperature scale for a metal is given by the Fermi temperature

which is usually of order 104 K. On this scale room temperature is roughly zero.

Elementary Properties Due to

(i~)Gi
j(t, t

′) =

∫
dxdx′ ϕ∗i (x)G(xt,x′t′)ϕj(x

′)

= 〈Ψ0|T
∫

dx ϕ∗i (x)ψ̂(xt)

∫
dx′ ϕj(x

′)ψ̂†(x′t′)|Ψ0〉

= 〈Ψ0|T ai(t)a†j(t′)|Ψ0〉

the Green function (as well as its higher-order counterparts) is a well-defined distribution.

Using the explicit time-dependence ψ̂(t) = eiĤ/~tψ̂e−iĤ/~t, we see that we can write

i~G>(xt,x′t′) = eiE0(t−t′)/~〈Ψ0|ψ̂(x)Û(t, t′)ψ̂†(x′)|Ψ0〉 (3.14)

with the time-evolution operator

Û(t, t′) = exp

(
− i

~
Ĥ(t− t′)

)
. (3.15)

Therefore, for the time-dependent family of integral operators G>(t, t′) : H → H; ϕ(x) 7→∫
dx′ G>(xt,x′t′)ϕ(x′), we find

‖G>(t, t′)‖ = sup
ϕ∈H

‖G>(t, t′)ϕ‖
‖ϕ‖

= ~−1 sup
Φ∈PN+1

‖Û(t, t′)Φ‖
‖Φ‖

≤ ~−1 sup
Φ∈HN+1

‖Û(t, t′)Φ‖
‖Φ‖

= ~−1‖Û(t, t′)‖
= ~−1
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where P denotes the one-particle excitation space associated with the N -particle ground-

state Ψ0 given by {Φ ∈ Hn+1|∃ϕ ∈ H : Φ = a†(ϕ)Ψ0}. Hence, G> is bounded. Analogously,

one shows that G< is bounded and by (3.11), GR, GA and G are bounded integral operators

for t, t′ fixed. Finally, as fermionic field operators within the range of a time-ordering anti-

commute, we conclude that G(1, . . . , n;n + 1, . . . , 2n) is totally antisymmetric with respect

to permutations of the first n or the second n arguments (but not with respect to arbitrary

permutations).

Evaluation of Observables in Terms of Green Functions Every second-quantized

observable of normal form (expansion in terms of creators and annihilators) can be eval-

uated in terms of Green functions by taking suitable equal-time limits. For example, the

density operator

n̂(x) = ψ̂†(x)ψ̂(x) (3.16)

has the expectation value

n(x) = 〈n̂(x)〉 = −i~G(xt,xt+). (3.17)

For the second-quantized current observable

ĵ(x) =
e~

2mi
(ψ̂†(x)∇ψ̂(x)− (∇ψ̂†(x))ψ̂(x)) (3.18)

we find

j(x) =
e

2m

(
− lim

t′→t+
lim
x′→x

~
i
∇G(xt,x′t′) + lim

t′→t+
lim
x′→x

~
i
∇′G(xt,x′t′)

)
. (3.19)

For the Coulomb potential

V̂Coul =
1

2

∫
dxdx′ v(x− x′)ψ̂†(x′)ψ̂†(x)ψ̂(x)ψ̂(x′) (3.20)

we find

〈V̂Coul〉 =
(i~)2

2

∫
dxdx′ v(x− x′) lim

t3→t+1
lim
t4→t+3

lim
t1→t+2

G4(xt1,x
′t2,xt3,x

′t4). (3.21)

Although the standard Hamiltonian contains a two-particle operator part (namely V̂Coul), it

is possible to evaluate Ĥ in terms of G2 ≡ G alone (instead of using G4 as in the above

formula for the expectation value of the Coulomb potential). For this purpose, one uses the

equation of motion for the Heisenberg operator ψ̂(xt) in the form

(i~∂t − Ĥ0)ψ̂(xt) =

∫
dx′ v(x′ − x)ψ̂†(x′t)ψ̂(x′t)ψ̂(xt). (3.22)

Thesis, Vienna, July 4, 2012



Ronald Starke: Green Functions and Electronic Structure Theory 141

Consequently,

〈V̂Coul〉 =
1

2

∫
dxdx′ v(x′ − x)〈ψ̂†(xt)ψ̂†(x′t)ψ̂(x′t)ψ̂(xt)〉

=
1

2

∫
dx lim

t′′→t+
lim
x′′→x

(i~∂t − Ĥ0)〈ψ̂†(x′′t′′)ψ̂(xt)〉

= − i~
2

∫
dx lim

t′′→t+
lim
x′′→x

(i~∂t − Ĥ0)G(xt,x′′t′′).

The one-particle operator part Ĥ0 can trivially be evaluated in terms of G as

〈Ĥ0〉 = −i~
∫

dx lim
t′′→t+

lim
x′′→x

Ĥ0G(xt,x′′t′′) (3.23)

and therefore

〈Ĥ〉 = 〈Ĥ0〉+ 〈V̂Coul〉 = − i~
2

∫
dx lim

t′′→t+
lim
x′′→x

(i~∂t + Ĥ0)G(xt,x′′t′′). (3.24)

This is the so-called Migdal formula.

3.1.2. Equation of Motion Theory

Introduction In this subsection, the equation of motion theory is reviewed. The most

intuitive approach to calculate the Green function consists in deriving an equation of motion.

This is done by differentiating the defining equation for the Green function with respect to

t. By linearity this differentiation ∂t is pulled under the expectation value where it acts on

a field operator ψ̂(xt). The equation of motion for a Heisenberg operator ψ̂(xt) reads:

i~∂tψ̂(xt) = − ~2

2m
∆ψ̂(xt) + vext(x)ψ̂(xt) +

∫
dx′ v(x′ − x)ψ̂†(x′t)ψ̂(x′t)ψ̂(xt)

= − ~2

2m
∆ψ̂(xt) + [ψ̂(xt), V̂ ].

One then plugs this into the expectation value and reorders the formulas in terms of Green

functions. The appearance of a term with three field operators in the time-derivative for

one field operator signals that the equation of motion for G2 contains a term proportional

to G4. From the Heisenberg equation of motion we conclude that this is a general feature:

the equation of motion for G2n involves G2n+2. In other words, the Green functions form an

infinite hierarchy. We now calculate the equation of motion for G2 explicitly.

Lemma 3.1.1 G(xt,x′t′) fulfills the following equation of motion:

(i~∂t +
~2

2m
∆x)G(xt,x′t′) = δ(t− t′)δ(x− x′) +

1

i~
〈T [ψ̂(xt), V̂ ]ψ̂†(x′t′)〉. (3.25)
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Proof We use

[ψ̂(x), Ĥ0] = − ~2

2m
∆xψ̂(x) (3.26)

T ψ̂(xt)ψ̂†(x′t′) = θ(t− t′)ψ̂(xt)ψ̂†(x′t′)− θ(t′ − t)ψ̂†(x′t′)ψ̂(xt) (3.27)

∂tθ(t) = δ(t) (3.28)

{ψ̂(xt), ψ̂†(x′t)} = δ(x− x′). (3.29)

Therefore, we get:

(i~)2∂tG(xt,x′t′) = i~∂t〈θ(t− t′)ψ̂(xt)ψ̂†(x′t′)− θ(t′ − t)ψ̂†(x′t′)ψ̂(xt)〉
= i~δ(t− t′)〈ψ̂(xt)ψ̂†(x′t′)〉

− ~2

2m
∆xθ(t− t′)〈ψ̂(xt)ψ̂†(x′t′)〉

+θ(t− t′)〈[ψ̂(xt), V̂ ]ψ̂†(x′t′)〉
+i~δ(t− t′)〈ψ̂†(x′t′)ψ̂(xt)〉

+
~2

2m
∆xθ(t− t′)〈ψ̂†(x′t′)ψ̂(xt)〉

−θ(t− t′)〈ψ̂†(x′t′)[ψ̂(xt), V̂ ]〉
= i~δ(t− t′)〈ψ̂(xt)ψ̂†(x′t′)〉

+i~δ(t− t′)〈ψ̂†(x′t′)ψ̂(xt)〉

− ~2

2m
∆xi~G(xt,x′t′)

〈T [ψ̂(xt), V̂ ]ψ̂†(x′t′)〉
= i~δ(t− t′)δ(x− x′)

− ~2

2m
∆xi~G(xt,x′t′)

〈T [ψ̂(xt), V̂ ]ψ̂†(x′t′)〉.

In the last step we used the equal-time commutator because the Dirac-delta enforces equal-

time arguments on the operators. (All expressions have to be interpreted as distributions

acting on test functions f(xt).) Furthermore, note that derivatives can be pulled under the

expectation value because the scalar product 〈Ψ| · |Φ〉 is a continuous (in the operator norm)

functional mapping of operators into numbers.

Interaction Term We now turn to the potential. First, consider the case of an exter-

nal potential:

V̂ext =

∫
dy vext(y)ψ̂†(y)ψ̂(y). (3.30)
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We then have

[ψ̂(x), V̂ext] = [ψ̂(x),

∫
dy vext(y)ψ̂†(y)ψ̂(y)]

=

∫
dy vext(y)[ψ̂(x), ψ̂†(y)ψ̂(y)]

=

∫
dy vext(y)

(
ψ̂(x)ψ̂†(y)ψ̂(y)− ψ̂†(y)ψ̂(y)ψ̂(x)

)
=

∫
dy vext(y)

(
ψ̂(x)ψ̂†(y)ψ̂(y) + ψ̂†(y)ψ̂(x)ψ̂(y)

)
=

∫
dy vext(y)

(
{ψ̂(x), ψ̂†(y)}ψ̂(y)

)
= vext(x)ψ̂(x)

and hence

〈T [ψ̂(xt), V̂ext]ψ̂
†(x′t′)〉 = vext(x)〈T ψ̂(xt)ψ̂†(x′t′)〉

= vext(x)i~G(xt,x′t′).

Consequently in the presence of an external potential, the equation of motion for the Green

function reads: (
i~∂t +

~2

2m
∆x − vext(x)

)
G0(xt,x′t′) = δ(t− t′)δ(x− x′) (3.31)

For later purposes, we note that the conjugate equation of motion reads(
−i~∂′t +

~2

2m
∆x′ − vext(x

′)

)
G0(xt,x′t′) = δ(t− t′)δ(x− x′), (3.32)

which can be shown analogously. We conclude that for non-interacting systems, the Green

function reverts to a Green function in the sense of standard Quantum Mechanics (or partial

differential equations). Now, we consider a two-particle interaction:

V̂ =

∫
dydy′

1

2
v(y,y′)ψ̂†(y′)ψ̂†(y)ψ̂(y)ψ̂(y′). (3.33)

We calculate

[ψ̂(x), V̂ ] = [ψ̂(x),

∫
dydy′

1

2
v(y,y′)ψ̂†(y)ψ̂†(y′)ψ̂(y′)ψ̂(y)]

=

∫
dydy′

1

2
v(y,y′)[ψ̂(x), ψ̂†(y)ψ̂†(y′)ψ̂(y′)ψ̂(y)].
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For the commutator [ψ̂(x), ψ̂†(y)ψ̂†(y′)ψ̂(y)ψ̂(y′)], we get:

= ψ̂(x)ψ̂†(y)ψ̂†(y′)ψ̂(y′)ψ̂(y)− ψ̂†(y)ψ̂†(y′)ψ̂(y′)ψ̂(y)ψ̂(x)

= ψ̂(x)ψ̂†(y)ψ̂†(y′)ψ̂(y′)ψ̂(y)− ψ̂†(y)ψ̂†(y′)ψ̂(x)ψ̂(y′)ψ̂(y)

= ψ̂(x)ψ̂†(y)ψ̂†(y′)ψ̂(y)ψ̂(y′) + ψ̂†(y)ψ̂(x)ψ̂†(y′)ψ̂(y′)ψ̂(y)

−ψ̂†(y)δ(y′ − x)ψ̂(y′)ψ̂(y)

= δ(x− y)ψ̂†(y′)ψ̂(y′)ψ̂(y)− δ(y′ − x)ψ̂†(y)ψ̂(y′)ψ̂(y)

Consequently, [ψ̂(x), V̂ ] yields:

=

∫
dydy′

1

2
v(y,y′)

(
δ(x− y)ψ̂†(y′)ψ̂(y′)ψ̂(y)− δ(y′ − x)ψ̂†(y)ψ̂(y′)ψ̂(y)

)
=

(∫
dy′

1

2
v(x,y′)ψ̂†(y′)ψ̂(y′)

)
ψ̂(x) +

(∫
dy

1

2
v(y,x)ψ̂†(y)ψ̂(y)

)
ψ̂(x)

Using the symmetry of the potential 1
2
v(x,y) = 1

2
v(y,x), we get(∫

dy v(x,y)ψ̂†(y)ψ̂(y)

)
ψ̂(x). (3.34)

Hence, 〈T [ψ̂(xt), V̂ ]ψ̂†(x′t′)〉 yields

= 〈T
(∫

dy v(x,y)ψ̂†(yt)ψ̂(yt)

)
ψ̂(xt)ψ̂†(x′t′)〉

=

∫
dy v(x,y)〈T (ψ̂†(yt)ψ̂(yt)ψ̂(xt)ψ̂†(x′t′)〉

In general, when there are both external potentials and interactions, the equation of motion

reads:

(i~∂t +
~2

2m
∆x − vext(x))G(xt,x′t′) = δ(t− t′)δ(x− x′) +

1

i~
〈T [ψ̂(xt), V̂ ]ψ̂†(x′t′)〉.

Generalization to Arbitrary Green Functions The general equation of motion formula

for 2n-point Green functions is gained by considering

(i~∂t1 +
~2

2m
∆− vext(x1))G(x1t1, . . . ,xntn; xn+1tn+1, . . . ,x2nt2n). (3.35)

A somewhat lengthy calculation (analogous to the one-particle Green function) shows that

([67], equation (5.4))

(i~∂t1 +
~2

2m
∆− vext(x1))G2n(x1t1, . . . ,x2nt2n) =

2n∑
i=n+1

δ(t1 − ti)δ(x1 − xi)(−1)i−1G2n−2(x̂1t1, . . . ,xntn; xn+1tn+1, . . . , x̂iti, . . . ,x2nt2n)+

(i~)−n〈T [ψ̂(x1t1), V̂ ]ψ̂(x2t2) . . . ψ̂(xntn)ψ̂†(xn+1tn+1) . . . ψ̂†(x2nt2n)〉.
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where the last term can be written as

(i~)−n
∫

dx′ v(x1 − x′)〈T ψ̂†(x′t1)ψ̂(x′t1)ψ̂(x1t1)ψ̂(x2t2) . . . ψ̂(xntn)ψ̂†(xn+1tn+1) . . . ψ̂†(x2nt2n)〉

= −i~
∫

dx′ v(x1 − x′)G2n+2(x′t1,x1t1, . . . ,xntn, ; x
′t1,x2nt2n, . . . ,xn+1tn+1).

This shows that in general the equation of motion for the 2n-function involves the expectation

value of a product of 2n+ 2 operators. (This is due to the fact that the interaction is given

by a pair potential. For arbitrary interactions there could be contributions of even higher

order.) For later purposes we state the

Theorem 3.1.2 The free 2n-point functions G2n
0 (1, . . . , n;n+ 1, . . . , 2n) factorize as

G2n
0 (1, . . . , n;n+ 1, . . . , 2n) = detG0(i, n+ j)|i,j=1,...,n (3.36)

Remark This is a Green function version of the so-called Wick theorem, which will be

treated later. Here, we state this theorem because it has the same structure as the equation

of motion for a free 2n-point Green function. As the free Green function G0(xt,x′t′) is the

right-inverse integral operator to the free Hamiltonian i~∂t1 + ~2

2m
∆−vext(x1), one can imme-

diately gain back the equation of motion of the free 2n-point Green function from the Wick

theorem. Cavalierly accepting the Green function also as a left-inverse1, a multiplication

with G0(xt,x1t1) and a subsequent integration
∫

dx1dt1 yields

G2n(x1t1, . . . ,x2nt2n) =

2n∑
i=n+1

(−1)i−1G0(x1t1,xiti)G
2n−2(x̂1t1, . . . ,xntn; xn+1tn+1, . . . , x̂iti, . . . ,x2nt2n)+

− i~
∫

dx′dt′dxdt G0(x1t1,xt)v(xt,x′t′)G2n+2(x′t′,xt, . . . ,xntn; x′t′,xn+1tn+1, . . . ,x2nt2n).

where after the convolution we have renamed xt 7→ x1t1 and vice versa. In particular, this

applies to the free Green functions G2n
0 themselves where the interaction terms vanishes:

G2n
0 (x1t1, . . . ,x2nt2n) =

2n∑
i=n+1

(−1)i−1G0(x1t1,xiti)G
2n−2
0 (x̂1t1, . . . ,xntn; xn+1tn+1, . . . , x̂iti, . . . ,x2nt2n).

Iteration of this formula yields the Wick theorem.

1This can be shown by by a partial integration and the conjugate equation of motion.
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3.1.3. Self-Energy

Introduction The equation of motion for the two-point function reads

(i~∂t +
~2

2m
∆x)G(xt,x′t′) = δ(t− t′)δ(x− x′) +

1

i~
〈T [ψ̂(xt), V̂ ]ψ̂†(x′t′)〉

The fundamental drawback of the equation of motion is that it cannot be used to calculate

G because it is not a closed equation. One therefore assumes that the equation of motion

for G(xt,x′t′) can be rewritten in the form:(
i~∂t +

~2

2m
∆x − vext(x)

)
G(xt,x′t′) = δ(t− t′)δ(x− x′) +∫

dt′′dx′′ Σ̃(xt,x′′t′′)G(x′′t′′,x′t′)

where Σ̃ = Σ̃[G] is (highly non-linear) functional of G.

Definition The integral operator Σ̃(xt,x′t′) is called irreducible or proper self energy.

Remarks

1. Remembering that
(

i~∂t + ~2

2m
∆x − vext(x)

)
is the inverse of G0(xt,x′t′), we see that

the equation of motion in terms of Σ̃ can be rewritten as

G(xt,x′t′) = G0(xt,x′t′) +

∫
dx′′dt′′dx′′′dt′′′ G0(xt,x′′t′′)Σ̃(x′′t′′,x′′′t′′′)G(x′′′t′′′,x′t′)

or symbolically

G = G0 +G0Σ̃G (3.37)

This is called Dyson equation and constitutes the many-body analog of (1.67).

2. We reproduce this introduction of the self-energy through a redefinition of the equation

of motion because it is a standard trick in the literature. It should be stressed, however,

that the introduction of Σ̃ has no meaning as long as it is not clear how Σ̃ can be

actually calculated as a functional of G. We will later see that typical ansätze can be

derived from Green function perturbation theory.

3. External potentials can be absorbed in a redefinition of the self energy via

Σ̃(x,x′t′) 7→ Σ̃(x,x′t′)− vext(x
′)δ(x− x′)δ(t− t′). (3.38)

This becomes important if one starts with a DFT reference Green function. The self-

energy then has to be redefined as Σ̃ − vxc − vH, because the exchange-correlation

potential is not present in the original Hamiltonian. Σ̃xc = Σ̃− vH is called exchange-

correlation self-energy.
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4. Per constructionem, the self-energy is defined through the equation:

〈T [ψ̂(xt), V̂ ]ψ̂†(x′t′)〉 = i~
∫

dt′′dx′′ Σ̃(xt,x′′t′′)G(x′′t′′,x′t′). (3.39)

The catch here is that the convolution of the self-energy with the two-point function

goes over space and time whereas on the LHS there are only spatial integrations. In

order to write this equation in a more symmetric fashion, we transform as

〈T [ψ̂(xt), V̂ ]ψ̂†(x′t′)〉 = −(i~)2

∫
dx′′ v(x− x′′)G4(xt,x′′t,x′t′,x′′t)

= −(i~)2

∫
dx′′dt′′ v(x− x′′)δ(t− t′′)G4(xt,x′′t′′,x′t′,x′′t′′)

= −(i~)2

∫
dx′′dt′′ v(xt,x′′t′′)G4(xt,x′′t′′,x′t′,x′′t′′)

with the instantaneous potential v(x, x′) = v(xt,x′t′) = v(x−x′)δ(t−t′). The problem

of the equal-time limit in G4 will be treated later. Symbolically, the introduction of

the self-energy now amounts to the replacement (cf section 4.1.4)

−i~V ·G4 =: Σ̃G. (3.40)

For later purposes, we note in this context that the equation of motion can in this

notation be written as

G = G0 − i~G0V ·G4. (3.41)

We see that this replacement is possible iff the Green function G is formally invertible

(as an operator kernel in xt): if it is invertible, then Σ̃ ∝ V G4G−1. Conversely, if Σ̃

exists, then i~∂t − Ĥ0 − Σ̃ is the inverse of G.

5. For a time-independent Hamiltonian, the self-energy depends only on the time-difference

Σ̃ = Σ̃(x,x′; t− t′). Consequently, we find∫
dt′′dx′′ Σ̃(xt,x′′t′′)G(x′′t′′,x′t′)

=

∫
dt′′dx′′ Σ̃(x,x′′; t− t′′)G(x′′,x′t′′ − t′)

=

∫
dt′′dx′′ Σ̃(x,x′′; t− t′′)G(x′′,x′; t− t′ − (t− t′′)).

Consequently, this integral is a convolution in t the outcome of which is again a function

of the time difference t− t′ only. (This has to be the case on grounds of consistency.)

In the frequency domain, we get for the self-energy contribution∫
dx′′ Σ̃(x,x′′, ~ω)G(x′′,x′, ~ω). (3.42)
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6. The reducible self-energy is defined by the ansatz:

G(xt,x′t′) = G0(xt,x′t′) +

∫
dx′′dt′′dx′′′dt′′′ G0(xt,x′′t′′)Σ(x′′t′′,x′′′t′′′)G0(x′′′t′′′,x′t′)

or symbolically

G = G0 +G0ΣG0. (3.43)

By iteration of the Dyson equation, one shows easily the relation

Σ = Σ̃ + Σ̃G0Σ. (3.44)

7. In the case of a homogeneous system (vext(x) = const.), both the Green function and

the self-energy depend only on the difference of their arguments. A Fourier transfor-

mation of the Dyson equation with respect to these differences then yields

G(k) = G(k) +G0(k)Σ̃(k)G(k) (3.45)

with k = (ω,k). In Fourier space, the free Green function reads:

G0(k) =
1

~ω − ε0(k)± iη
(3.46)

where ε0(k) is the dispersion relation of the free Schrödinger equation. Therefore, the

full propagator in Fourier space reads:

G(k) =
1

~ω − ε0(k)− Σ̃(k)
. (3.47)

3.2. Lehmann Representation

3.2.1. Definition

Derivation of the Lehmann Representation In the expression for the two-point Green

function we insert the identity on the Fock space F in the form

1F =
∑
N

∑
s

|N s〉〈N s| (3.48)

between the field operators where |N s〉 denotes a complete system of N -particle energy

eigenstates with energy Es and the sum goes over all particle numbers and all eigenstates

for fixed particle numbers. We set |Ψ0〉 ≡ |N 0〉 and get

i~G(xt,x′t′) =
∑
s

θ(t− t′)〈N 0|ψ̂(xt)|N + 1 s〉〈N + 1 s|ψ̂†(x′t′)|N 0〉

−
∑
s

θ(t′ − t)〈N 0|ψ̂†(x′t′)|N − 1 s〉〈N − 1 s|ψ̂(xt)|N 0〉.
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Next, we use

ψ̂(†)(xt) = e
i
~ Ĥtψ̂(†)(x)e−

i
~ Ĥt (3.49)

and act with the time-evolution operators directly on the energy eigenstates. This yields

i~G(xt,x′t′) =
∑
s

θ(t− t′)e−
i
~ (EN+1

s −EN0 )(t−t′)〈N 0|ψ̂(x)|N + 1 s〉〈N + 1 s|ψ̂†(x′)|N 0〉

−
∑
s

θ(t′ − t)e−
i
~ (EN−1

s −EN0 )(t′−t)〈N 0|ψ̂†(x′)|N − 1 s〉〈N − 1 s|ψ̂(x)|N 0〉

We define

fs(x) = f+
s (x) = 〈N 0|ψ̂(x)|N + 1 s〉 (3.50)

fs(x) = f−s (x) = 〈N − 1 s|ψ̂(x)|N 0〉 (3.51)

ε+
s = EN+1

s − EN
0 (3.52)

ε−s = EN−1
s − EN

0 (3.53)

The f±s are called Lehmann amplitudes and the ε±s are called quasiparticle energies. Intro-

ducing τ = t− t′, the Green function can be written compactly as

i~G(x,x′; τ) =
∑
s

θ(τ)e−
i
~ ε

+
s τf+

s (x)f+∗
s (x′)−

∑
s

θ(−τ)e
i
~ ε
−
s τf−s (x)f−∗s (x′).

The Lehmann representation is the direct analog of the Kallen-Lehmann representation for

the propagator in relativistic Quantum Field Theory. (see e.g. [92] Chapter 13)

Spectral Representation We define the Fourier transform of the Green function by

G(ω) =

∫ ∞
−∞

dτ e+ i
~EτG(τ) (3.54)

G(τ) =

∫ ∞
−∞

dω

2π
e−

i
~EτG(ω) (3.55)

with E = ~ω and use the master formula (see e.g. appendix on Fourier transforms and

complex analysis) ∫ ∞
−∞

dτ θ(±τ)e∓
i
~ (E0−iη)τ+ i

~Eτ = ∓~
i

1

E ∓ (E0 − iη)
(3.56)

to get

G(x,x′;ω) =
∑
s

f+
s (x)f+∗

s (x′)

E − ε+
s + iη

+
∑
s

f−s (x)f−∗s (x′)

E + ε−s − iη
(3.57)
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This form of the Lehmann representation is the many-body analog of equation (1.52). By

the same method, one shows that

GR(x,x′;ω) =
∑
s

f+
s (x)f+∗

s (x′)

E − ε+
s + iη

+
∑
s

f−s (x)f−∗s (x′)

E + ε−s + iη
(3.58)

GA(x,x′;ω) =
∑
s

f+
s (x)f+∗

s (x′)

E − ε+
s − iη

+
∑
s

f−s (x)f−∗s (x′)

E + ε−s − iη
. (3.59)

In other words, from a numerical point of view G,GR and GA all have the same Fourier trans-

form. (The iη in the denominator says nothing about the “value” of the Fourier transform

at ω but is a way of bookkeeping, i.e. it says to which Fourier preimage the function belongs.)

Introduction of the Chemical Potential The spectral Lehmann representation shows

that the Green function has poles at

±ε±s = ±(EN±1
s − EN

0 ) (3.60)

= ±(EN±1
s − EN±1

0 + EN±1
0 − EN

0 ) (3.61)

= ±(εN±1
s ± µN) (3.62)

where

εN±1
s = EN±1

s − EN±1
0 (3.63)

is the so-called optical spectrum and

µN = EN+1
0 − EN

0 (3.64)

is the chemical potential at temperature T = 0. In the spirit of the thermodynamic limit we

assume µN ≈ µN−1 =: µ. We have the following inequalities

µN ≥ 0 (3.65)

εNs ≥ 0 (3.66)

ε+
s ≥ µ (3.67)

−ε−s ≤ µ. (3.68)

Introducing

es =

 ε+
s if es ≥ µ

−ε−s if es ≤ µ
(3.69)

we can write the Green function even more compactly as

i~G(x,x′; τ) =
∑

s; N±1

fs(x)f ∗s (x′)e−
i
~ esτ (θ(τ)θ(es − µ)− θ(−τ)θ(µ− es)) (3.70)

G(x,x′;ω) =
∑

s; N±1

fs(x)f ∗s (x′)

~ω − es + sg(es − µ)iη
. (3.71)
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3.2.2. Properties

Lemma 3.2.1 The Lehmann amplitudes have the following properties:

1. The Lehmann amplitudes are square-integrable: fs ∈ L2(R3,C).

2. The Lehmann amplitudes are complete.

3. The Lehmann amplitudes fulfill ‖fs‖ ≤ 1.

4. The Lehmann amplitudes constitute an overcomplete set if ‖fs‖ < 1 at least for one

fs. In this case, the Lehmann amplitudes are in general not orthogonal.

Proof

1. We introduce ΨN
sx = ψ̂(x)ΨN+1

s . It follows that

〈ΨN
sx|ΨN

sx〉 = 〈ΨN+1
s |n̂(x)|ΨN+1

s 〉 = n(x). (3.72)

On the other hand∫
dx f+∗

s (x)f+
s (x) =

∫
dx 〈ΨN

xs|Ψ0〉〈Ψ0|ΨN
sx〉 ≤

∫
dx 〈ΨN

sx|ΨN
sx〉 = N + 1. (3.73)

This shows ‖f+
s ‖ ≤ ∞. The arguments for f−s are analogous.

2. Follows from∑
s

fs(x)f ∗s (x′) =
∑
s

〈N 0|ψ̂†(x)|N − 1 s〉〈N − 1 s|ψ̂(x′)|N 0〉+∑
s;

〈N 0|ψ̂(x)|N + 1 s〉〈N + 1 s|ψ̂†(x′)|N 0〉

= 〈N 0|ψ̂†(x)1F ψ̂(x′)|N 0〉+ 〈N 0|ψ̂(x)1F ψ̂
†(x′)|N 0〉

= 〈N 0|{ψ̂†(x), ψ̂(x′)}|N 0〉
= δ(x− x′)〈N 0|N 0〉
= δ(x− x′).

3. By the second point ∑
s

|fs〉〈fs| = 1H. (3.74)

Assume ‖fr‖ > 1 for some r. Let er be the unit vector in the r-th direction. Then

1 = 〈er|er〉 =
∑
s

〈er|fs〉〈fs|er〉 ≥ 〈er|fr〉〈fr|er〉 > 1. (3.75)

This contradiction proves ∀r : ‖fr‖ ≤ 1.
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4. By the second point, the Lehmann amplitudes certainly constitute a complete set.

Overcompleteness means: a proper subset of {fs} is already complete. In order to

prove that such a subset exists, we show that a generic Lehmann amplitude f with

‖f‖ < 1 is not independent of the remaining amplitudes fs. It then follows that the

set {fs} \ {f} is already complete. Now, assume that f is linearly independent of

the fs. It follows that there exists some e ∈ H; ‖e‖ = 1 such that 〈e|fs〉 = 0 for

fs 6= f and 〈e|f〉 6= 0. f can be written as f = g + 〈e|f〉e where g⊥e and |〈e|f〉|2 < 1.

Consequently

|f〉〈f | = |g〉〈g|+ |〈e|f〉|2|e〉〈e|+ 〈f |e〉|g〉〈e|+ 〈e|f〉|e〉〈g| (3.76)

On the other hand

|f〉〈f |+
∑
s

|fs〉〈fs| = 1H (3.77)

Application of the identity in this form on the vector |e〉 eo ipso yields a contradiction.

This proves in particular the last point because in an overcomplete set not all functions

can be orthogonal.

Example Let ϕi(x) be a complete system of energy eigenstates of a one-particle Hamiltonian

Ĥ0. The corresponding non-interacting, many-body ground-state ΦN
0 is given by a Slater

determinant:

ΦN
0 (x1, . . . ,xN) =

1√
N !

det(ϕi(xj))i,j=1...N (3.78)

One shows easily: the f−s coincide with the occupied orbitals and the f+
s with the unoccupied

orbitals. The corresponding quasiparticle energies are given by the respective one-particle

energies of the Hamiltonian Ĥ0.

Lemma 3.2.2 Let Û be a symmetry of the Hamiltonian, i.e. a unitary operator with

[Û , Ĥ] = 0. The Lehmann amplitudes can then be chosen as eigenstates of Û .

Proof In any case, there exists a complete orthonormal system of (possibly generalized)

eigenvectors Ψs of both Û and Ĥ and we are free to define the f±s with respect to these

Ψs. Introducing a Hilbert space basis {ϕn} in the one-particle Hilbert space H, we can then

write

ψ̂(x) =
∑
n

ϕn(x)an (3.79)

and hence

f+
s (x) =

∑
n

〈Ψ0|a(ϕn)|ΨN+1
s 〉ϕn(x). (3.80)
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By applying the definition of creators and annihilators, one shows easily that for any Û

Ûa†(ϕ)Û † = a†(Ûϕ) (3.81)

Ûa(ϕ)Û † = a(Ûϕ). (3.82)

This implies

a(ϕ) = Û †a(Ûϕ)Û . (3.83)

On the other hand, as the Hilbert space basis in equation (3.79) is arbitrary, we have

ψ̂(x) =
∑
n

(Ûϕn)(x)a(Ûϕ). (3.84)

We therefore find

(Ûfs)(x) =
∑
n

〈Ψ0|a(ϕn)|ΨN+1
s 〉(Ûϕn)(x) (3.85)

=
∑
n

〈Ψ0|Û †a(Ûϕn)Û |ΨN+1
s 〉(Ûϕn)(x) (3.86)

= 〈Ψ0|Û †
∑
n

a(Ûϕn)(Ûϕn)(x)Û |ΨN+1
s 〉 (3.87)

= 〈Ψ0|Û †ψ̂(x)Û |ΨN+1
s 〉. (3.88)

Hence,

(Ûf+
s )(x) = 〈Ψ0|Û †ψ̂(x)Û |ΨN+1

s 〉 = ei(gN+1
s −gN0 )〈Ψ0|ψ̂(x)|ΨN+1

s 〉 = ei(gN+1
s −gN0 )fs(x)

where ÛΨN
s = eigNs ΨN

s . Similarly one argues for f−s .

This result can be easily generalized to the following:

Lemma 3.2.3 Let G be an abelian symmetry group of the Hamiltonian Ĥ with unitary

representation Ûg; g ∈ G on F = ⊕∞n=0Hn. Then the Lehmann amplitudes can be chosen

such that they are eigenvectors of the Ûg.

The typical application is the abelian group of lattice translations. The lemma then says

that the Lehmann amplitudes can be chosen to be of Bloch form. This can also be shown

directly. The energy eigenstates ΨN+1
s and ΨN

0 can be chosen to diagonalize Ûa with Bloch

vectors K and K0 respectively. Therefore, we have

f+
s (x + a) = 〈ΨN+1

s |ψ̂(x + a)|ΨN
0 〉

= 〈ΨN+1
s |e−

i
~ P̂aψ̂(x)e

i
~ P̂a|ΨN

0 〉
= 〈ΨN+1

s |Û−aψ̂(x)Ûa|ΨN
0 〉

= ei∆Kaf+
s (x).
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with ∆K = K − K0. Here, Ua is defined to act on ψ(x) as (Uaψ)(x) = ψ(x + a). In

particular, for a lattice invariant Hamiltonian, we have:

Corollary 3.2.4 The self-energy integral operator Σ̃(xt,x′t′) is invariant under the joint

translation x,x′ 7→ x− a,x′ − a.

Proof The Green function G is invariant under joint translations as can be seen e.g. from

the Lehmann representation using the lattice translation invariance of the amplitudes. With

G itself, G−1 is also lattice translation invariant as follows from

δ(x′ − x)δ(t− t′) =

∫
dx′′dt′′ G−1(xt,x′′t′′)G(x′′t′′,x′t′)

=

∫
dx′′dt′′ G−1(xt,x′′t′′)G(x′′ − a, t′′; x′ − a, t′)

=

∫
dx′′dt′′ G−1(x + a, t; x′′ + a, t′′)G(x′′t′′,x′t′).

The free reference Green function has at least the symmetry group of the Green function.

The invariance of the self-energy now follows from the Dyson equation in the form

Σ̃(ω) = G−1
0 (ω)−G−1(ω). (3.89)

Lemma 3.2.5 If we have a set {(f±s (x), ε±s )} of functions and numbers (“energies”) fulfilling

the (in general non-linear) eigenvalue equation(
− ~2

2m
∆ + vext(x)

)
f±s (x) +

∫
dx′ Σ̃(x,x′;±ε±s /~)f±s (x′) = ±ε±s f±s (x), (3.90)

then the Green function G constructed from these very {(f±s (x), ε±s )} by virtue of

i~G(x,x′; τ) =
∑

s; N±1

fs(x)f ∗s (x′)e−
i
~ esτ (θ(τ)θ(es − µ)− θ(−τ)θ(µ− es)) (3.91)

fulfills

G = G0 +G0Σ̃G. (3.92)

Remarks

1. Equation (3.90) is called quasiparticle equation.

2. In order to decide whether a given solution fs(x), εs of the quasiparticle equation cor-

responds to a one-particle excitation or to a one-hole excitation, the chemical potential

µ has to be given. Only in special cases, where the self-energy evaluated at fixed

amplitudes gives a frequency independent, self-adjoint operator, the solutions of the
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quasiparticle equation turn out to be orthogonal and hence the Lehmann amplitudes

corresponding to the N lowest lying εs can be associated with the “occupied” ampli-

tudes f−s . This, however, does not work in general. As the Lehmann amplitudes in

general have norm ≤ 1, but nontheless reproduce the correct ground-state energy, there

are in the interacting case much more “occupied” amplitudes f−s than particles.

3. In general, Σ̃[(f±s (x), ε±s )] is a functional of G reexpressed in terms of the Lehmann

amplitudes and quasiparticle energies. The quasiparticle equation is therefore not only

non-linear on the one-particle Hilbert space. It is also non-linear in the frequency:

as such the self-energy is a family of Hilbert space operator kernels Σ̃(ω). In the

quasiparticle equation, the frequency at which this family of operators is evaluated has

to coincide with the eigenvalue of the respective amplitude.

4. The converse direction – the Lehmann amplitudes fulfill the quasiparticle equation –

is a standard theorem. A proof can be found e.g. in ([32], appendix B).

Proof First, we introduce the time-dependent Lehmann amplitudes

f±s (xt) = fs(x)e∓iε±s t (3.93)

f±s (xω) = 2πfs(x)δ(~ω ∓ ε±s ) (3.94)

where

fs(xω) =

∫
dt fs(xt)e

iωt (3.95)

fs(xt) =

∫
dω

2π
fs(xω)e−iωt. (3.96)

We now multiply the quasiparticle equation with e−iest and transform as

0 =

(
∓ε±s −

~2

2m
∆ + vext(x)

)
f±s (xt) +

∫
dx′ Σ̃(x,x′;±εs/~)f±s (x′t)

=

(
−i~∂t −

~2

2m
∆ + vext(x)

)
f±s (xt) +

∫
dx′
∫

dω Σ̃(x,x′;ω)δ(~ω ∓ ε±s )f±s (x′)e−iωt

=

(
−i~∂t −

~2

2m
∆ + vext(x)

)
f±s (xt) +

∫
dx′
∫

dω

2π
e−iωtΣ̃(x,x′;ω)f±s (x′ω)

=

(
−i~∂t −

~2

2m
∆ + vext(x)

)
f±s (xt) +

∫
dx′dt′ Σ̃(x,x′; t− t′)f±s (x′t′)

i.e.

i~∂tf±s (xt) =

(
− ~2

2m
∆ + vext(x)

)
f±s (xt) +

∫
dx′dt′ Σ̃(x,x′; t− t′)f±s (x′t′). (3.97)
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We now find

i~∂tG(xt; x′t′) = ∂t
∑

s; N±1

fs(xt)f
∗
s (x′t′)(θ(t− t′)θ(es − µ)− θ(t′ − t)θ(µ− es))

=
∑

s; N±1

∂tfs(xt)f
∗
s (x′t′)(θ(t− t′)θ(es − µ)− θ(t′ − t)θ(µ− es)) +∑

s; N±1

fs(xt)f
∗
s (x′t′)(δ(t− t′)θ(es − µ) + δ(t′ − t)θ(µ− es))

=
∑

s; N±1

1

i~
((Ĥ0 + Σ̃)fs)(xt)f

∗
s (x′t′)(θ(t− t′)θ(es − µ)− θ(t′ − t)θ(µ− es))

+δ(x− x′)δ(t− t′)
= ((Ĥ0 + Σ)G)(xt; x′t′) + δ(x− x′)δ(t− t′)

i.e.

(i~∂t − Ĥ0)G = 1+ Σ̃G

or G = G0 +G0Σ̃G.

Observables in Terms of Lehmann amplitudes The ground-state density, the one-

particle reduced density matrix, the ground-state current and the ground-state energy can

be expressed in terms of the (“occupied”) Lehmann amplitudes as

n(x) =
∑
s

f−s (x)f−∗s (x) (3.98)

n(x,x′) =
∑
s

f−s (x)f−∗s (x′) (3.99)

j(x) =
e~

2mi

∑
s

(
f−∗s (x)∇f−s (x)− (∇f−∗s (x))f−s (x)

)
(3.100)

E0 =
∑
s

∫
dx f−∗s (x)

(
Ĥ0 +

1

2
Σ̃

)
fs(x). (3.101)

The last equation can be shown easily from the Migdal formula. The prefactor 1/2 in front of

the self-energy is analogous to the Hartree-Fock energy.2 The equations for the observables

in terms of the Lehmann amplitudes are analogous to a system of non-interacting particles.

In particular, the formula for the one-particle density matrix allows for the expression of an

arbitrary one-particle observable Â as

〈Â〉 =
∑
occ

〈fs|Â|fs〉. (3.102)

2More precisely, the Hartree-Fock energy formulas are a special case of this.
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The Lehmann amplitudes therefore provide an effective independent-particle picture of a

many-body system. Ĥ0 + Σ̃ can be considered as an auxiliary Hamiltonian for these “quasi-

particles”. Note, however, that Σ̃ depends implicitly on the Lehmann amplitudes and quasi-

particle energies and is furthermore neither hermitean nor frequency indepedendent. A

further difference to a true independent particle system is – as already mentioned – the fact

that the total energy is not given by the sum of the one-particle eigenvalues.

Definition The distribution

A(x,x′;ω) = 〈x|Â(ω)|x′〉 =
∑

s; N±1

fs(x)f ∗s (x′)δ(~ω − εs) (3.103)

is called spectral function where

Â(ω) =
∑

s; N±1

|fs〉δ(~ω − εs)〈fs| (3.104)

is the quasiparticle density of states operator.

Lemma 3.2.6 The following relations hold:

G(x,x′;ω) = ~
∫ µ

−∞
dω′

A(x,x′;ω′)

E + ~ω′ − iη
+ ~

∫ ∞
µ

dω′
A(x,x′;ω′)

E − ~ω′ + iη
(3.105)∫ µ

−∞
dω A(x,x′;ω) = n(x,x′) (3.106)∫ ∞

−∞
dω A(x,x′;ω) = δ(x− x′) (3.107)

A(x,x′;ω) =
1

π
|Anti G(x,x′;ω)| (3.108)

A(x,x′;ω) =
1

2πi
(GA(x,x′;ω)−GR(x,x′;ω)) (3.109)

where Anti denotes the antihermitean part.

Proof The first and the second identity follow trivially from the properties of the Dirac

distribution. For the third identity, one has to use the completeness relation for the Lehmann

amplitudes in addition. For the fourth identity, we use the standard formula

lim
η→0

1

E ± iη
= P

(
1

E

)
∓ iπδ(E). (3.110)

Therefore, for any Lehmann contribution to the Green function we have

fs(x)f ∗s (x′)

~ω − es + sg(es − µ)iη
= P

(
fs(x)f ∗s (x′)

~ω − es

)
− sg(es − µ)iπfs(x)f ∗s (x′)δ(~ω − es)

where the first term is obviously the hermitean and the second term the antihermitean part.

Similarly one shows the fifth equation.
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Definition The distribution

N(ω) = TrH Â(ω) (3.111)

is called quasiparticle density of states.

Density of States vs Quasiparticle Density of States For an arbitrary quantum me-

chanical system with the Hamiltonian Ĥ and the (not necessarily one-particle) Hilbert space

H, the density of states operator is defined by the operator valued distribution

ρ̂(ω) = δ(~ω − Ĥ) (3.112)

and the density of states is given by the distribution

ρ(ω) ≡ TrHδ(~ω − Ĥ) =
∑
n

δ(~ω − En) (3.113)

where the sum goes over all energy eigenstates. E.g., the partition function can be written

in terms of the density of states as

Z(T ) = ~
∫

dω ρ(ω)e
− ~ω
kBT . (3.114)

The quasiparticle density is therefore not identical to the density of states of the respective

many-electron system.

The following lemmata can be easily shown. (Recall that 〈ϕi|f−s 〉 = 〈ΨN−1
s |a(ϕi)|Ψ0〉.)

Lemma 3.2.7 The occupation number ni of the state ϕi can be obtained from the quasipar-

ticle density of states via ∫ µ

−∞
dω 〈ϕi|Â(ω)|ϕi〉 = 〈Ψ0|n̂i|Ψ0〉. (3.115)

Lemma 3.2.8 The quasiparticle density of states fulfills

N(ω) =
∑
s

‖fs‖2δ(~ω − εs). (3.116)

Complex Poles and Life-Times The above lemma shows that the quasiparticle density of

states has – apart from a constant shift of value EN
0 – the same singular support as the density

of states, but differs from it by the weighting function ‖fs‖2. In a true many-body system,

the distance of the energy levels gets very narrow such that in the thermodynamic limit one

may think of N(ω) as a continuous distribution on the ω-axis. If we label the Lehmann

amplitudes by the energy itself, then we read off from the last lemma that – neglecting a
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possible continuous degeneracy function – the spectral function is the norm squared of the

Lehmann amplitude as a function of ω. Now, assume that for some reason or other the

quantity which is actually of interest is that very spectral function and that it displays a

number of peaks, say of a Lorentzian type. Then, a model Green function the role of which

consists in that it reproduces roughly the right spectral function can be easily written down

by using Lehmann contributions of the form

f(x)f ∗(x)e−iεst−Γt. (3.117)

Promoting

A(x,x′;ω) =
1

π
|Anti G(x,x′;ω)| (3.118)

to a defining equation, we see that the above Lehmann contribution leads to a contribution

in the spectral function of the form

‖f‖2 Γ

(~ω − εs)2 − Γ2
, (3.119)

i.e. to a Lorentz peak. On the other hand, in the corresponding Lehmann contribution to

the Green function, Γ−1 plays the formal role of a decay rate. This is the famous connection

between peak widths and decay rates or life-times. It has led many authors to claim that the

Green function itself acquires complex poles. This seems to be wrong because the Lehmann

representation shows that the poles (or – in the case of a continuous spectrum – the branch

cut) always lie at the real axis.

3.3. Solid State Physics

3.3.1. Lattice Symmetry

Introduction We now deal with a standard electronic Hamiltonian with the external po-

tential vext(x). The one-particle Hilbert space of the system under consideration is given

by H = L2([0, L]3,C, | det(a1, a2, a3)|dx; ψ(0, x2, x3) = ψ(L, x2, x3) etc.) (Born-von-Karman

boundary conditions). The symmetry group

Γai,L = {n1a1+n2a2+n3a3; (n1, n2, n3) ∈ ZN1×ZN2×ZN3 ; ai, i = 1, 2, 3 lin. indt.} (3.120)

of the external potential vext(xi + a) = vext(xi) ∀a ∈ Γai,L is called direct lattice, Bravais

lattice or crystal lattice. Here, ai = aiei where the ei are unit vectors and ai is the lattice

spacing in the i-th direction. The number of points in the direct lattice is given by

N =
L3

a1a2a3

= N1N2N3. (3.121)
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Furthermore, we set

bi = 2πεijk
aj × ak

|a1 · (a2 × a3)|
(3.122)

and call

Γ̃ai,L = {n1b
1 + n2b

2 + n3b
3; (n1, n2, n3) ∈ Z3} (3.123)

reciprocal lattice. Finally,

Γ∗ai,L = { n1

N1

b1 +
n2

N2

b2 +
n3

N3

b3; (n1, n2, n3) ∈ ZN1 × ZN2 × ZN3} (3.124)

is called dual lattice or first Brillouin zone (FBZ). The direct lattice and the dual lattice

have the same number of points whereas the reciprocal lattice has infinitely many points.

For any a ∈ Γai,L, the unitary representation Ûa on HN is given by

(ÛaΨ)(x1, . . . ,xN) = Ψ(x1 + a, . . . ,xN + a) (3.125)

The unitary representation of Ûa on F is defined componentwise. Unitarity follows from the

translation invariance of the Lebesgue measure. One shows easily that for any such repre-

sentative Ûa we have ÛaĤÛ
−1
a = Ĥ.

Bloch Functions Consider now a unitary representation Ûa of the lattice translation group

Γ and a complete, orthonormal basis {ϕi}i∈N of the separable Hilbert space H. The set

Ûaϕi, i fixed where a goes over all Γ is finite and invariant under the unitary representation

of Γ. On the other hand, the set {Ûaϕi : a ∈ Γ, i ∈ N} is again countable and complete.

It follows that the representation of Γ is fully reducible. As the lattice translation group is

abelian, so is its representation. By the lemma of Schur, a matrix which commutes with all

representatives in an irreducible representation is proportional to the identity. Consequently,

all Ûa are proportional to the identity which for an irreducible representation is only possible

if the representation space is one-dimensional. Such a one-dimensional representation space

is necessarily spanned by an eigenvector of all Ûa. The fact that Ûa1Ûa2 = Ûa1+a2 then

implies that the eigenvalues are of the form eik·a, k being the index of the representation. If

ψk(x) is an eigenvector of Ûa with that very eigenvalue, then uk(x) = e−ik·xψk(x) is invariant

under all Ûa, i.e. uk(x) is a lattice periodic function. Put differently, in H we can choose a

basis of the so-called Bloch form

ψk(x) = eikxuk(x) (3.126)

where uk(x) is a lattice periodic function. As the lattice translation group representation

and the Hamiltonian commute, they can be diagonalized simultaneously. Plugging the Bloch
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form into the Schrödinger equation, we find that uk(x) then has to obey(
− ~2

2m
(∇+ ik)2 + vext(x)

)
uk(x) = ε(k)uk(x). (3.127)

k being given, this equation has infinitely many solutions. We label these by the so-called

band index n. We conclude that there is a complete set of orthogonal functions diagonalizing

both Ĥ and all Ûa. These functions are of the form:

ψnk(x) = exp(ikx)unk(x). (3.128)

Due to the lattice periodicity vext has only Fourier components in the reciprocal lattice:

v(x) =
∑
G∈Γ̃

vGeiGx, (3.129)

Accordingly, for the wave-function we make the ansatz:

ψ(x) =
∑
k

ψkeikx. (3.130)

Plugging this into the stationary Schrödinger equation, we get:(
~2|k|2

2m
− ε
)
ψk +

∑
G∈Γ̃

vGψk−G = 0, (3.131)

Consequently, only those modes are coupled together, which differ by reciprocal lattice vec-

tors. We can therefore set

uk(x) =
∑
G∈Γ̃

ψk−Ge−iGx. (3.132)

This implies the important relation

uk+G(x) = uk(x)e−iGx. (3.133)

As the last factor is again lattice periodic it can be absorbed in the definition of u. This

implies that we can restrict attention to those uk with k in the first Brillouin zone.

Many-Body System in Periodic Potential The above arguments generalize to the many-

body case HN for which the energy eigenstates ΨN
s ≡ ΨN

nK can be chosen as eigenvectors

of all Ûa with eigenvalue eiK·a. The space of eigenvectors with Bloch vector K is spanned

by the Slater determinants of N Bloch functions ψniki with the restriction that
∑N

i=1 ki = K.
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Wannier Functions of a given band index are defined by

wnxm(x) =
1√
N

∑
k∈Γ∗

exp(−ikxm)ψnk(x) (3.134)

ψnk(x) =
1√
N

∑
xm∈Γ

exp(ikxm)wnxm(x). (3.135)

This is a discrete Fourier transform in the finite dimensional Hilbert space spanned by

the ψnk with n fixed (the Wannier functions are not the Fourier transforms of the Bloch

functions in H). It follows that the transitions from the Bloch functions to the Wannier

functions is unitary and hence 〈wnxm , wn′xm′
〉 = δnn′δmm′ and wnxm is concentrated about

xm. Furthermore, from the definition of the Wannier functions one shows easily that

wn(xm+xm′ )
(x + xm′) = wnxm(x) (3.136)

for all xm,xm′ ∈ Γ.

3.3.2. Band-Structure and Fermi Surface

Definition The family (indexed by n) of functions en(∆K) = ±EN±1
n (K) ∓ EN

0 (K0) is

called band structure. The hypersurface in the dual “space” (lattice) en(∆K) = µN is called

Fermi surface.

Measurement of band structure by angular resolved Photoemission Spectroscopy

A piece of material is irradiated by photons of well-defined frequency and wave-vector such

that electrons are ejected in a certain direction. In the description of the photon absorption

process we make the following assumptions:

1. Terms of second order in the electromagnetic field operator can be neglected.

2. The transition rate between initial and final states is roughly given by Fermi’s golden

rule.

3. One electron is ejected per photon absorbed.

4. The ejected electron is free.

5. The material is initially in its ground-state and finally in an excited energy eigenstate.
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The first point says that the interaction Hamiltonian is given by

Ĥint = p̂⊗ Â (3.137)

resulting from the minimal coupling p̂ 7→ p̂ − eÂ after neglecting higher order terms. The

second point implies that a current can be detected only if the matrix element

〈f |Ĥint|i〉 (3.138)

does not vanish. By the last three points we conclude that the initial state and the final

state can be written as

|i〉 = | . . . nqλ . . .〉 ⊗ |ΨN
0 〉 (3.139)

|f〉 = | . . . nqλ − 1 . . .〉 ⊗ |eikx ∧ΨN−1
s 〉 (3.140)

where | . . . nqλ . . .〉 denotes the photon number eigenstate of the electromagnetic field with

nqλ photons of wavelength q and polarization λ. The operator of the electromagnetic field

reads (cf. e.g. [62], Chapter 6)

Â(xt) =
∑
q′λ

√
~

2ε0V ωq′

(
aq′λeq′λe

−iωq′ t+iq′x + a†q′λe
∗
q′λe

+iωq′ t−iq′x
)

(3.141)

where ωq = c|q| and we assumed the electromagnetic field to be enclosed in the same

finite volume with the same boundary conditions as the electrons. Therefore, for 〈. . . nqλ −
1 . . . |Â| . . . nqλ . . .〉 we find

∑
q′λ

√
~

2ε0V ωq′
eq′λ〈. . . nqλ − 1 . . . |aq′λ| . . . nqλ . . .〉e−iωqt+iqx =

√
~nqλ

2ε0V ωq

eqλe
−iωqt+iqx

and the transition matrix element is proportional to

〈eikx ∧ΨN−1
s |p̂|eiqxΨN

0 〉. (3.142)

Now, suppose ΨN−1
s and ΨN

0 are lattice translation eigenstates with Bloch vectors K and

K0 respectively. Then the initial state has total Bloch vector K0 + q and the final state has

total Bloch vector K + k because a free wave with wave vector k is also a Bloch function

with unk ≡ 1. The total momentum operator is the generator of the translations and hence

commutes with all translations, in particular with the lattice translations. Therefore, for the

matrix element not to vanish it is necessary that the total final Bloch vector equals the total

initial Bloch vector:

K + k = K0 + q. (3.143)
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Furthermore, Fermi’s golden rule enforces energy conservation (with respect to the unper-

turbed Hamiltonian):

EN−1
s (K) +

~2|k|2

2m
= EN

0 (K0) + ~c|q|. (3.144)

Now, q and hence ~ωq – the energy and wave-vector of the photons – are controlled exper-

imentally and k and hence ~2|k|2
2m

– the wave-vector and energy of the ejected electron – is

measured. These data then allow for the deduction of en(∆K).

Independent Electrons and Quasiparticles A non-interacting many-body energy eigen-

state of Blochvector K reads

ΨK(x1, . . . ,xN) = SLATER(ψn1k1(x1), . . . , ψnNkN (xN)) (3.145)

with K =
∑N

i=1 ki and energy E =
∑N

i=1 εniki . The ground-state is found by choosing the

N lowest lying values εniki . In the simplest case, the energy EN+1
n (K) of a singly-excited

(N + 1)-particle state differs from the energy EN
0 of the N -particle ground-state by the en-

ergy eigenvalue εnk of a Bloch function. For singly-excited states, we then have ∆K = k.

Therefore, the band-structure comprises the one-particle energy functions εn(∆K) = εnk.

Using µN = EN+1
0 − EN

0 , one sees that the Fermi surface is given by the surface in k-space

of the k-vectors of the highest (in energy) occupied Bloch functions. By the quasiparti-

cle equation, this paradigm generalizes to the interacting case: the band-structure is the

quasiparticle energy as a function of the Bloch vector of the quasiparticle wave-functions

(Lehmann amplitudes) and the Fermi surface is given by the surface in k-space where the

quasiparticle energy reaches the chemical potential.

Definition The occupation number operator n̂k for the Bloch vector k is given by

n̂k =
∑
n

a†nkank (3.146)

Here, n denotes the band index and the sum goes over all bands.

Lemma 3.3.1 The occupation number operator is independent of the external potential

which determines the band index.

Proof The total Hilbert space decomposes in an orthogonal sum ⊕Hk of subspaces indexed

by the (total) Bloch momentum k. The lemma then means that the operator n̂k is invariant

under a unitary change of basis in the respective subspace which is true because n̂k is the
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second quantization of the projector onto that subspace. Explicitly, one finds

n̂k =
∑
i

a†(ϕi)a(ϕi)

=
∑
i

a†

(∑
j

U i
jψj

)
a

(∑
k

U i
kψk

)
=

∑
ijk

(U∗)ikU
i
ja
†(ψj)a(ψk)

=
∑
ijk

(U∗T)kiU
i
ja
†(ψj)a(ψk)

=
∑
jk

δkja
†(ψj)a(ψk)

=
∑
j

a†(ψj)a(ψj)

where {ϕi} and {ψk} denote othonormal bases in Hk.

Behaviour of nk at the Fermi Surface In general, for the occupation ni = 〈a†(ϕi)a(ϕi)〉
we can write

ni ≡ 〈Ψ0|n̂i|Ψ0〉

=

∫ µ

−∞
dω 〈ϕi|Â(ω)|ϕi〉

=

∫ µ

−∞
dω |〈ϕi|fnk〉|2δ(enk − ω)

=
∑
enk≤µ

|〈ϕi|fnk〉|2

=
∑
nk

|〈ϕi|f−nk〉|
2.

In the subspace Hk, we can choose the Lehmann amplitudes fnk as a (non-orthogonal) basis.

Further, note that fnk ⊥ fmk′ for k 6= k′ because in this case the Lehmann amplitudes

correspond to eigenvectors with different eigenvalues of a unitary operator. One shows easily

that in terms of the Lehmann amplitudes nk =
∑

n a
†(fnk)a(fnk) and hence

nk =
∑
n

∑
m,l, em≤µ

|〈fnk|fml〉|2. (3.147)

This shows that if k traverses the Fermi surface, the Bloch vector occupation number nk

jumps from
∑

n,m,l |〈f
−
nk|f

−
ml〉|2 to

∑
n,m,l |〈f

+
nk|f

−
nl〉|2.
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4. Perturbation Theory, Self-Consistent

Equations and Infinite Resummations

4.1. Green Function Perturbation Theory

4.1.1. Time-Dependent Perturbation Theory

Introduction Perturbation Theory for Green functions is based on three fundamental the-

orems:

1. The Gell-Mann and Low theorem connects the interacting Green function to a pertur-

bative series in the non-interacting Green functions.

2. The Wick theorem reduces the non-interacting n-point Green function to a sum of

products of non-interacting two-point functions and therefore allows for a representa-

tion of perturbative expansions in terms of Feynman graphs (the straight lines of which

represent free Green functions).

3. The Cancellation Theorem restricts this expansion in Feynman graphs to the so-called

connected graphs.

Preliminaries We deal with a general many-body Hamiltonian of the form:

Ĥ = Ĥ0 + Ĥ1 (4.1)

where Ĥ0 represents an unperturbed Hamiltonian (typically: kinetic energy + external poten-

tial) whereas Ĥ1 represents some kind of perturbation (typically: a two-particle interaction

potential).

Adiabatic Switching On is defined as the replacement of the original, time-independent

Hamiltonian Ĥ with the new time-dependent Hamiltonian

Ĥ(t) = Ĥ0 + ge−η|t|Ĥ1 (4.2)
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where η ∈ R+. A coupling constant g has been drawn out of the interaction Hamiltonian for

technical purposes which will later become clear. For large times, t→ ±∞, the Hamiltonian

equals the free Hamiltonian and for t = 0 it becomes the full Hamiltonian of the interacting

system. We define an interaction picture corresponding to this new Hamiltonian via

ΨI(t) = ei
Ĥ0
~ tΨ(t) (4.3)

where Ψ(t) ≡ ΨS(t) is the state-vector in the Schrödinger picture. The time evolution of ΨI

now reads:

i~∂tΨI = Ĥ ′1I(t)ΨI (4.4)

or

i~∂tΨI = ge−η|t|Ĥ1I(t)ΨI (4.5)

where

Ĥ ′1I(t) = ei
Ĥ0
~ tĤ1(t)e−i

Ĥ0
~ t (4.6)

= ge−η|t|ei
Ĥ0
~ tĤ1e−i

Ĥ0
~ t (4.7)

≡ ge−η|t|Ĥ1I(t). (4.8)

Time-Evolution Operator in Time-Dependent Perturbation Theory We recall the

general formalism in time-dependent perturbation theory for an arbitrary Hamiltonian Ĥ(t) =

Ĥ0 + Ĥ1(t). The time-evolution operator in the interaction picture is given explicitly by

Û(t, t0) = e
i
~ Ĥ0te−

i
~ Ĥ(t−t0)e−

i
~ Ĥ0t0 (4.9)

and obeys the differential equation

i~∂tÛ(t, t0) = Ĥ1I(t)Û(t, t0). (4.10)

This is equivalent to the self-consistent integral equation

Û(t, t0)− Û(t0, t0) = − i

~

∫ t

t0

dt1 Ĥ1I(t1)Û(t1, t0). (4.11)

A formal perturbation series for Û is obtained by iterating this self-consistent equation (using

Û(t0, t0) = 1):

Û(t, t0) = 1+

(
− i

~

)∫ t

t0

dt1 Ĥ1I(t1) +

(
− i

~

)2 ∫ t

t0

dt1

∫ t1

t0

dt2 Ĥ1I(t1)Ĥ1I(t2) + . . . (4.12)
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It is well-known that integrals of the form∫ t

t0

dt1

∫ t1

t0

dt2 . . .

∫ tn−1

t0

dtn Ĥ1I(t1)Ĥ1I(t2) . . . Ĥ1I(tn) (4.13)

can be replaced by1

1

n!

∫ t

t0

dt1

∫ t

t0

dt2 . . .

∫ t

t0

dtn T Ĥ1I(t1)Ĥ1I(t2) . . . Ĥ1I(tn) (4.14)

leading to the concise expression

Û(t, t0) =
∞∑
n=0

Û (n)(t, t0) =
∞∑
n=0

(
− i

~

)n
1

n!

∫ t

t0

dt1

∫ t

t0

dt2 . . .

∫ t

t0

dtn T Ĥ1I(t1)Ĥ1I(t2) . . . Ĥ1I(tn).

(4.15)

This is sometimes symbolically written as

Û(t, t0) = T exp

(
− i

~

∫ t

t0

dt1 Ĥ1I(t1)

)
. (4.16)

If the time-evolution operator for the time-dependent Hamiltonian exists, then it necessarily

fulfills the self-consistent integral equation Û = 1 − i/~
∫

dtĤ1Û . This, however, does not

imply that the formal perturbation exists. For the case of adiabatic switching on, we define

Ûη(t, t0) =
∞∑
n=0

(
− i

~

)n
gn

n!

∫ t

t0

dt1

∫ t

t0

dt2 . . .

∫ t

t0

dtn e−η(|t1|+...+|tn|)T Ĥ1I(t1)Ĥ1I(t2) . . . Ĥ1I(tn).

Gell-Mann and Low Theorem Consider the noninteracting ground-state (supposed to be

non-degenerate) Φ0 at t→ −∞ and let it evolve with Ĥ(t) up to t = 0. That means, we set

Ψη(t = 0) = Ûη(t = 0,−∞)Φ0 ≡ ÛηΦ0 ≡ Ψη. (4.17)

One might now expect that Ψη(t = 0) is somehow related to the eigenstates of the original

Hamiltonian Ĥ at least in the limit η → 0. A precise statement about this connection is

given by the Gell-Mann-Low theorem:

Theorem 4.1.1 If the limit

lim
η→0

Ψη

〈Φ0|Ψη〉
≡ lim

η→0

Ûη(0,−∞)Φ0

〈Φ0|Ûη(0,−∞)|Φ0〉
=:

Ψ

〈Φ0|Ψ〉
(4.18)

exists, then it is an eigenvector of the full (time-independent, original) Hamiltonian Ĥ =

Ĥ0 + Ĥ1, i.e.

ĤΨ = EΨ, (4.19)

for some E.

1For a fixed time-order this integral yields a contribution which coincides with (4.13). The prefactor then

cancels out the overcounting.
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In the following, we will need several lemmata.

Lemma 4.1.2 We have

(∂t1 + . . .+ ∂tn) θ(tπ(1) − tπ(2)) . . . θ(tπ(n−1) − tπ(n)) = 0 (4.20)

where π is an arbitrary permutation in Sn.

Proof First, observe

∂t1 + . . .+ ∂tn = ∂tπ(1)
+ . . .+ ∂tπ(n)

. (4.21)

Therefore, we consider without loss of generality:

(∂t1 + . . .+ ∂tn) θ(t1 − t2) . . . θ(tn−1 − tn). (4.22)

This equals

((∂t1 + ∂t2)θ(t1 − t2)) . . . θ(tn−1 − tn) + θ(t1 − t2) ((∂t3 + ∂t4)θ(t3 − t4)) . . . θ(tn−1 − tn) + . . .

On the other hand,

(∂t1 + ∂t2)θ(t1 − t2) = δ(t1 − t2)− δ(t2 − t1) = 0. (4.23)

Therefore, all summands vanish.

Lemma 4.1.3 We have the distributional identity

n∑
m=0

1

m!(n−m)!

∑
π∈Sn

m∏
i=1

θ(t− tπ(i))
n∏

i=m+1

θ(tπ(i) − t) = 1. (4.24)

Proof Clearly,

θ(t− ti) + θ(ti − t) = 1. (4.25)

Therefore
n∏
i=1

(θ(t− ti) + θ(ti − t)) = 1. (4.26)

Let A = {1, . . . , n}. We then write for
∏n

i=1(θ(t− ti) + θ(ti − t))

=
n∑

m=0

∑
B⊂A
|B|=m

∏
i∈B

θ(t− ti)
∏

i∈A−B

θ(ti − t)

=
n∑

m=0

1

m!(n−m)!

∑
B⊂A
|B|=m

∑
π∈Sm(B)

∏
i∈B

θ(t− tπ(i))
∑

π∈Sn−m(A−B)

∏
i∈A−B

θ(tπ(i) − t)

=
n∑

m=0

1

m!(n−m)!

∑
π∈Sn

m∏
i=1

θ(t− tπ(i))
n∏

i=m+1

θ(tπ(i) − t).
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Lemma 4.1.4 The integral over a time-ordered operator product can be split according to∫∞
−∞ dt1 . . . dtn T Ô(t1) . . . Ô(tn) =∑n

l=0

(
n
l

) ∫ t
−∞ dt1 . . . dtl T Ô(t1) . . . Ô(tl)

∫∞
t

dtl+1 . . . dtn T Ô(tl+1) . . . Ô(tn). (4.27)

where the Ô(ti) are supposed to commute for equal times (i.e. they commute within the range

of a time-ordering operator).

Proof We calculate explicitly∫ ∞
−∞

dt1 . . . dtn T Ô(t1) . . . Ô(tn)

=

∫ ∞
−∞

dt1 . . . dtn
∑
σ∈Sn

θ(tσ(1) − tσ(2)) . . . θ(tσ(n−1) − tσ(n))Ô(tσ(1)) . . . Ô(tσ(n))

=

∫ ∞
−∞

dt1 . . . dtn
∑
σ∈Sn

θ(tσ(1) − tσ(2)) . . . θ(tσ(n−1) − tσ(n))×

n∑
m=0

1

m!(n−m)!

∑
π∈Sn

m∏
i=1

θ(t− tπ(i))
n∏

i=m+1

θ(tπ(i) − t)Ô(tσ(1)) . . . Ô(tσ(n))

=
n∑

m=0

1

m!(n−m)!

∫ ∞
−∞

dt1 . . . dtn
∑
σ∈Sn

θ(tσ(1) − tσ(2)) . . . θ(tσ(n−1) − tσ(n))×

∑
π∈Sn

m∏
i=1

θ(t− tπ(i))
n∏

i=m+1

θ(tπ(i) − t)Ô(tσ(1)) . . . Ô(tσ(n))

where we used lemma (4.1.3) in the third line. Now, we consider

∑
σ∈Sn

θ(tσ(1) − tσ(2)) . . . θ(tσ(n−1) − tσ(n))
∑
π∈Sn

m∏
i=1

θ(t− tπ(i))
n∏

i=m+1

θ(tπ(i) − t)

and fix permutations π and σ. The corresponding contribution reads

θ(tσ(1) − tσ(2)) . . . θ(tσ(n−1) − tσ(n))
m∏
i=1

θ(t− tπ(i))
n∏

i=m+1

θ(tπ(i) − t) (4.28)

The factor
∏m

i=1 θ(t − tπ(i)) is only nonzero if tπ(i) < t ∀i = 1. . . . ,m and correspondingly

tπ(i) > t ∀i = m+ 1, . . . , n and therefore

tπ(i) > tπ(j) ∀j = 1, . . . ,m; i = m+ 1, . . . , n. (4.29)

On the other hand, the first factor enforces

tσ(1) > tσ(2) > . . . > tσ(n). (4.30)
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The last two conditions are only consistent if {tσ(1), . . . , tσ(n−m)} = {tπ(m+1), . . . , tπ(n)} and all

permutations π which fulfill this condition, yield the same contribution (there are m!(n−m)!

such permutations). As the θ-factors commute, the contribution of all permutations π which

fulfill the above conditions, can be written

m!(n−m)!θ(tσ(1) − tσ(2)) . . . θ(tσ(n−1) − tσ(n))×
θ(tσ(1) − t) . . . θ(tσ(n−m) − t) . . . θ(t− tσ(n−m+1)) . . . θ(t− tσ(n))

Furthermore, as dt1 . . . dtn = dtσ(1) . . . dtσ(n), we can write explicitly

=

∫ ∞
−∞

dt1 . . . dtn T Ô(t1) . . . Ô(tn)

=
n∑

m=0

∑
σ∈Sn

∫ ∞
−∞

dtσ(1) . . . dtσ(n)

θ(tσ(1) − t) . . . θ(tσ(n−m) − t) . . . θ(t− tσ(n−m+1)) . . . θ(t− tσ(n))×
θ(tσ(1) − tσ(2)) . . . θ(tσ(n−1) − tσ(n))Ô(tσ(1)) . . . Ô(tσ(n))

=
n∑

m=0

∑
σ∈Sn

∫ ∞
t

dtσ(1) . . . dtσ(n−m)

∫ t

−∞
dtσ(n−m+1) . . . dtσ(n)

θ(tσ(1) − tσ(2)) . . . θ(tσ(n−1) − tσ(n))Ô(tσ(1)) . . . Ô(tσ(n))

=
n∑

m=0

∑
σ∈Sn

∫ ∞
t

dtσ(1) . . . dtσ(n−m)

θ(tσ(1) − tσ(2)) . . . θ(tσ(n−m−1) − tσ(n−m))× Ô(tσ(1)) . . . Ô(tσ(n−m))×∫ t

−∞
dtσ(n−m+1) . . . dtσ(n)

θ(tσ(n−m+1) − tσ(n−m+2)) . . . θ(tσ(n−1) − tσ(n))Ô(tσ(n−m+1)) . . . Ô(tσ(n)).

=
n∑

m=0

(
n

m

) ∑
σ∈Sn−m

∑
σ′∈Sm

∫ ∞
t

dtσ(1) . . . dtσ(n−m)

θ(tσ(1) − tσ(2)) . . . θ(tσ(n−m−1) − tσ(n−m))Ô(tσ(1)) . . . Ô(tσ(n−m))

∫ t

−∞
dtσ′(n−m+1) . . . dtσ′(n)

θ(tσ′(n−m+1) − tσ′(n−m+2)) . . . θ(tσ′(n−1) − tσ′(n))Ô(tσ′(n−m+1)) . . . Ô(tσ′(n))

=
n∑

m=0

(
n

m

)∫ ∞
t

dt1 . . . dtn−m T Ô(t1) . . . Ô(tn−m)

∫ t

−∞
dtn−m+1 . . . dtn T Ô(tn−m+1) . . . Ô(tn).

Heuristically, the lemma can be proven as follows: dividing equation (4.27) by n! shows that

the lemma is equivalent to

Û (n)(−∞,∞) =
n∑
l=0

Û (l)(−∞, t)Û (n−l)(t,∞). (4.31)
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This follows from plugging the perturbative expansion into

Û(−∞,∞) = Û(−∞, t)Û(t,∞) (4.32)

and equating powers of the coupling constant.

Proof of the Theorem We consider

(Ĥ0 − E0)Ψη ≡ (Ĥ0 − E0)ÛηΦ0 = [Ĥ0, Ûη]Φ0. (4.33)

Our general strategy is: rework this equality until it depends on η only through the quan-

tity Ψη/〈Ψη|Φ0〉 (which, by the assumption, exists and whose limit η → 0 stays finite) and

through η explicitly and then perform the limit η → 0. We start by evaluating the commuta-

tor [Ĥ0, Ûη] within the limits of perturbation theory. The formal expansion of time-evolution

operator Ûη is explicitly given by

Ûη =
∞∑
n=0

(
− i

~

)n
1

n!

∫ 0

−∞
dt1 . . . dtn T Ĥ ′1I(t1) . . . Ĥ ′1I(tn) (4.34)

=
∞∑
n=0

(
− i

~

)n
gn

n!

∫ 0

−∞
dt1 . . . dtn eη(t1+...+tn)T Ĥ1I(t1) . . . Ĥ1I(tn). (4.35)

We calculate the commutator with every summand separately:

[Ĥ0, Ĥ1I(t1) . . . Ĥ1I(tn)]. (4.36)

As the commutator is a derivation in the operator algebra (and hence fulfills a Leibniz rule),

we find for the last expression

[Ĥ0, Ĥ1I(t1)]Ĥ1I(t2) . . . Ĥ1I(tn) + Ĥ1I(t1)[Ĥ0, Ĥ1I(t2)]Ĥ1I(t3) . . . Ĥ1I(tn) + . . . (4.37)

By the general time-evolution law of operators

i~∂tÂ(t) = [Â(t), Ĥ], (4.38)

every commutator can be replaced by −i~∂ti and we get

[Ĥ0, Ĥ1I(t1) . . . Ĥ1I(tn)] =
~
i

(∂t1 + . . .+ ∂tn) Ĥ1I(t1) . . . Ĥ1I(tn). (4.39)

It is possible to pull the time-derivatives out of the operating range of the time-ordering

operator. This can be seen as follows: if we replace

T ~
i

(∂t1 + . . .+ ∂tn) Ĥ1I(t1) . . . Ĥ1I(tn) (4.40)
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by
~
i

(∂t1 + . . .+ ∂tn) T Ĥ1I(t1) . . . Ĥ1I(tn) (4.41)

and observe

T Ĥ1I(t1) . . . Ĥ1I(tn) =
∑
π∈Sn

θ(tπ(1) − tπ(2)) . . . θ(tπ(n−1) − tπ(n))Ĥ1I(tπ(1)) . . . Ĥ1I(tπ(n)), (4.42)

we earn an extra term where the time-derivatives act on the Heaviside functions. For both

expressions to be equal, it is sufficient that

(∂t1 + . . .+ ∂tn) θ(tπ(1) − tπ(2)) . . . θ(tπ(n−1) − tπ(n)) = 0. (4.43)

This is indeed true according to lemma (4.1.2). The n-th order term in [Ĥ0, Ûη] now reads

−
(
− i

~

)n−1
gn

n!

∫ 0

−∞
dt1 . . . dtn eη(t1+...+tn)(∂t1 + . . .+ ∂tn)T Ĥ1I(t1) . . . Ĥ1I(tn) (4.44)

where the minus sign appears because(
− i

~

)n ~
i

= −
(
− i

~

)n−1

. (4.45)

As the Ĥ1I(ti) commute (they are two-particle operators within the range of a time-ordering

operator), we can replace this last expression by

−
(
− i

~

)n−1
gn

(n− 1)!

∫ 0

−∞
dt1 . . . dtn eη(t1+...+tn)∂t1T Ĥ1I(t1) . . . Ĥ1I(tn). (4.46)

Integrating by parts now yields

− Ĥ1I(t1 = 0)

(
− i

~

)n−1
gn

(n− 1)!

∫ 0

−∞
dt2 . . . dtn eη(t2+...+tn)T Ĥ1I(t2) . . . Ĥ1I(tn)

+

(
− i

~

)n−1
gnη

(n− 1)!

∫ 0

−∞
dt1 . . . dtn eη(t1+...+tn)T Ĥ1I(t1) . . . Ĥ1I(tn).

We begin by considering the first term and sum over all orders:

∞∑
n=1

Ĥ1I(t1 = 0)

(
− i

~

)n−1
gn

(n− 1)!

∫ 0

−∞
dt2 . . . dtn eη(t2+...+tn)T Ĥ1I(t2) . . . Ĥ1I(tn)

= gĤ1I(t1 = 0)
∞∑
n=1

(
− i

~

)n−1
gn−1

(n− 1)!

∫ 0

−∞
dt2 . . . dtn eη(t2+...+tn)T Ĥ1I(t2) . . . Ĥ1I(tn)

= gĤ1I(t1 = 0)
∞∑
n=0

(
− i

~

)n
gn

n!

∫ 0

−∞
dt2 . . . dtn eη(t2+...+tn)T Ĥ1I(t2) . . . Ĥ1I(tn)

= gĤ1I(0)Ûη
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The second term is a little bit more complicated and can only be calculated by playing a fur-

ther trick. Now we use the fact that we assumed Ĥ1 to be proportional to a coupling constant

g (typically, the square of the electron charge). The n-th order term is then proportional to

gn. The prefactor in the n-th order term of the form

gn

(n− 1)!

can now be rewritten as

g
d

dg

gn

n!
.

Pulling g d
dg

to the front and summing all orders in the second term then clearly yields

i~ηg
d

dg
Ûη. (4.47)

Therefore, we finally get

(Ĥ0 − E0)Ψη = −gĤ1I(0)ÛηΦ0 + i~ηg
d

dg
ÛηΦ0 (4.48)

or

(Ĥ − E0)Ψη = i~ηg
d

dg
Ψη. (4.49)

We now take the scalar product of this expression with the vector

Φ0

〈Ψη|Φ0〉
(4.50)

and get
〈Φ0|Ĥ1|Ψη〉
〈Φ0|Ψη〉

= i~ηg
d

dg
ln〈Φ0|Ψη〉. (4.51)

Furthermore, with (
Ĥ − E0 − i~ηg

d

dg

)
Ψη = 0

we get(
Ĥ − E0 − i~ηg

d

dg

)
Ψη

〈Φ0|Ψη〉
= −Ψηi~ηg

d

dg

1

〈Φ0|Ψη〉
=

Ψη

〈Φ0|Ψη〉
i~ηg

d

dg
ln〈Φ0|Ψη〉

or (
Ĥ − E0 − i~ηg

d

dg
ln〈Φ0|Ψη〉

)
Ψη

〈Φ0|Ψη〉
= i~ηg

d

dg

Ψη

〈Φ0|Ψη〉
(4.52)

and therefore (
Ĥ − E0 −

〈Φ0|Ĥ1|Ψη〉
〈Φ0|Ψη〉

)
Ψη

〈Φ0|Ψη〉
= i~ηg

d

dg

Ψη

〈Φ0|Ψη〉
. (4.53)
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The above equation depends on η only through the expression

Ψη

〈Φ0|Ψη〉
(4.54)

and through η explicitly on the RHS. As Ψη
〈Φ0|Ψη〉 exists by assumption, we can now safely

perform the limit η → 0 to get(
Ĥ − E0 −

〈Φ0|Ĥ1|Ψ〉
〈Φ0|Ψ〉

)
Ψ

〈Φ0|Ψ〉
= 0. (4.55)

In other words Ψ
〈Φ0|Ψ〉 is an eigenvector of Ĥ − E0 with eigenvalue

〈Φ0|Ĥ1|Ψ〉
〈Φ0|Ψ〉

:= ∆E. (4.56)

This proves the theorem.

Remarks

1. In the proof given in [21], equation (6.51) already uses a result inferred from the

assumption. The above reformulation shows that this little defect can be easily cured.

2. The proof works equally well if −∞ is replaced by +∞. Furthermore, it can be shown

that the respective limiting vectors Ψ coincide.

Adiabatic Assumption From now on we assume that the adiabatic switching on yields in

particular the interacting ground-state, i.e. Ψ = Ψ0. Furthermore, we assume that both the

interacting and the noninteracting ground-state are non-degenerate.

Corollary 4.1.5 The interacting ground-state expectation value of the Heisenberg opera-

tor OH(t) can be related to non-interacting ground-state expectation value of the respective

operator in the interaction picture via

〈Ψ|ÔH(t)|Ψ〉
〈Ψ|Ψ〉

=
〈Φ0|T ÔI(t) exp

(
− i

~

∫∞
−∞ dt Ĥ1I(t)

)
|Φ0〉

〈Φ0|Ûη(∞,−∞)|Φ0〉
. (4.57)

Proof First, we rewrite the denominator 〈Ψ|Ψ〉. By the adiabatic assumption and the

Gell-Mann and Low theorem, we have

lim
η→0

Ûη(0,±∞)Φ0

〈Φ0|Ûη(0,±∞)|Φ0〉
= lim

η→0

Ψη

〈Φ0|Ψη〉
=

Ψ

〈Φ0|Ψ〉
. (4.58)
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Introducing twice the factor |〈Ψη|Φ0〉|2, we rewrite

〈Ψ|ÔH(t)|Ψ〉
〈Ψ|Ψ〉

= lim
η→0

〈Ψη |ÔH(t)|Ψη〉
|〈Ψη |Φ0〉|2

〈Ψη |Ψη〉
|〈Ψη |Φ0〉|2

(4.59)

Therefore,

〈Ψ|Ψ〉
|〈Φ0|Ψ〉|2

= lim
η→0

〈Φ0|Û †η(0,+∞)Ûη(0,−∞)|Φ0〉
|〈Φ0|Ψ〉|2

= lim
η→0

〈Φ0|Ûη(+∞, 0)Ûη(0,−∞)|Φ0〉
|〈Φ0|Ψ〉|2

= lim
η→0

〈Φ0|Ûη(+∞,−∞)|Φ0〉
|〈Φ0|Ψ〉|2

=:
〈Φ0|Ŝ|Φ0〉
|〈Φ0|Ψ〉|2

Similarly, for 〈Ψ|ÔH(t)|Ψ〉, we get

= lim
η→0

〈Φ0|Ûη(∞, 0)Ûη(0, t)ÔI(t)Ûη(t, 0)Ûη(0,−∞)|Φ0〉
|〈Ψη|Φ0〉|2

= lim
η→0

〈Φ0|Ûη(∞, t)ÔI(t)Ûη(t,−∞)|Φ0〉
|〈Ψη|Φ0〉|2

If we now can show that

T Ûη(∞, t)ÔI(t)Ûη(t,−∞) = T ÔI(t)Ûη(∞,−∞), (4.60)

then we are done. Consider therefore the expansion of T ÔI(t)Ûη(∞,−∞) and use lemma

(4.1.4) to get

=
∞∑
n=0

(
− i

~

)n
gn

n!

∫ ∞
−∞

dt1 . . . dtn e−η(|t1|+...+|tn|)T ÔI(t)Ĥ1I(t1) . . . Ĥ1I(tn)

=
∞∑
n=0

(
− i

~

)n
gn

n!

∑
m+l=n

n!

m!l!

∫ ∞
t

dt1 . . . dtm e−η(|t1|+...+|tm|)T Ĥ1I(t1) . . . Ĥ1I(tm)ÔI(t)×∫ t

−∞
dt1 . . . dtl e−η(|t1|+...+|tl|)T Ĥ1I(t1) . . . Ĥ1I(tl)

=
∞∑
m=0

(
− i

~

)m
gm

m!

∫ ∞
t

dt1 . . . dtm e−η(|t1|+...+|tm|)T Ĥ1I(t1) . . . Ĥ1I(tm)ÔI(t)×

∞∑
l=0

(
− i

~

)l
gl

l!

∫ t

−∞
dt1 . . . dtl e−η(|t1|+...+|tl|)T Ĥ1I(t1) . . . Ĥ1I(tl)

= Ûη(∞, t)ÔI(t)Ûη(t,−∞)→ Û(∞, t)ÔI(t)Û(t,−∞).
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This proves the corollary.

Remark The corollary can be generalized to products of operators for which its reads

〈Ψ|T Ô1H(t1) . . . ÔnH(tn)|Ψ〉
〈Ψ|Ψ〉

=
〈Φ0|T exp

(
− i

~

∫∞
−∞ dt Ĥ1I(t)

)
Ô1I(t1) . . . ÔnI(tn)|Φ0〉

〈Φ0|Ŝ|Φ0〉
.

Magic Gell-Mann and Low Formula2 In particular, the Gell-Mann-Low theorem for

expectation values allows for an expansion of interacting Green functions in non-interacting

Green functions. Explicitly, the formal perturbation series for the interacting Green function

reads:

i~G(xt,x′t′) =

∑∞
n=0

(
− i

~

)n gn

n!

∫∞
−∞ dt1 . . . dtn 〈Φ0|T ĤI(t1) . . . ĤI(tn)ψ̂(xt)ψ̂†(x′t′)|Φ0〉∑∞

n=0

(
− i

~

)n gn

n!

∫∞
−∞ dt1 . . . dtn 〈Φ0|T ĤI(t1) . . . ĤI(tn)|Φ0〉

(4.61)

where the field operators are taken in the Heisenberg picture, i.e. they evolve according

to the free Hamiltonian Ĥ0. The goal will now be to decompose this formal perturbative

expression for G into a sum over free Green functions G0.

4.1.2. Perturbation Theory for Green Functions

Introduction In this subsection we sketch how the perturbation theory for Green functions

can be reworked in order to give an expansion for G2 in terms of G2
0 and the Coulomb po-

tential. The aim consists partly in review and partly in the fixation of conventions.

Particles and Holes In the following, we consider a free field ψ̂(xt) ≡ ψ̂(x) corresponding

to a free Hamiltonian (i.e. one-particle operator) Ĥ0. The free field has an expansion

ψ̂(x) =
∞∑
n=0

ϕn(x)an (4.62)

ψ̂†(x) =
∞∑
n=0

ϕ∗n(x)a†n (4.63)

into the eigenmodes of Ĥ0. As Ĥ0 is a one-particle operator, we have the simple time-

dependence

an(t) = exp

(
− i

~
εn

)
an (4.64)

a†n(t) = exp

(
i

~
εnt

)
a†n (4.65)

2The magic in this formula will become clear later.

Thesis, Vienna, July 4, 2012



Ronald Starke: Green Functions and Electronic Structure Theory 179

and therefore

ψ̂(xt) =
∞∑
n=0

ϕn(xt)an (4.66)

ψ̂†(xt) =
∞∑
n=0

ϕ∗n(xt)a†n (4.67)

with ϕn(xt) = ϕn(x)e−i/~εnt. Furthermore, we restrict our attention to the operator alge-

bra generated by the field operators ψ̂(†)(x). Consider now an N -particle ground-state Φ0

of the non-interacting Hamiltonian Ĥ0 and let ϕn be the energetically ordered system of

orthonormal eigenvectors of Ĥ0 with energies εi. The ground-state can now be written as

Φ0 = a†N . . . a
†
1|0〉 =

1√
N !

det(ϕi(xj))|i,j=1,...,N (4.68)

where a†i = a†(ϕi). The energy of this state then is EN
0 =

∑N
i=1 εi. We now have the following

annihilation properties:

ai|Φ0〉 = 0, i > N (4.69)

a†i |Φ0〉 = 0, i ≤ N. (4.70)

For i ≤ N we therefore rename

bi := a†i (4.71)

b†i = ai (4.72)

such that we now have ai|Φ0〉 = bi|Φ0〉 = 0. If we write ai or bi it is now understood that

i > N or i ≤ N respectively. Note that we do not redefine the field operators, in particular,

ψ̂(x)|Φ0〉 6= 0. Instead we only rename the harmonic oscillator operators such that all

operators which have the property of annihilating the ground-state Φ0 are formally written

as annihilators. We call these operators, i.e. the ai and bi, the ground-state annihilators.

Furthermore, note that this definition depends on the ground-state under consideration.3 In

particular, this implies that the so-called normal order, which we are now going to define,

also depends on the ground-state under consideration, i.e. even for fixed Ĥ0 it depends on

the particle number. One therefore should not speak of the normal order but instead of the

normal order with respect to a certain ground-state. Finally, for the definition of the normal

order it will be convenient to use the symbol ci for the ground-state annihilators, i.e. ci = bi

for i ≤ N and ci = ai for i > N . c†i is defined analogously. In the following, we consider

operators which lie in the algebra generated by the field operators c†i and ci and can therefore

be expanded in monomials of the products in c†iand ci.

3In relativistic Quantum Field Theory, the ground-state is simply replaced with the vacuum.
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Definition The normal order N is a linear mapping of the operator algebra generated by

the c†iand ci which is defined by the following two prescriptions:

1. For products of the form

c†i1 . . . c
†
in
cin+1 . . . cin+m

we define

N c†jc
†
i1
. . . c†incin+1 . . . cin+m = c†jc

†
i1
. . . c†incin+1 . . . cin+m

N cjc†i1 . . . c
†
in
cin+1 . . . cin+m = (−1)nc†i1 . . . c

†
in
cjcin+1 . . . cin+m .

2. For arbitrary products, the normal order is defined by the recursive prescription:

N c(†)
in+1

. . . c
(†)
i1

= N
(
c

(†)
in+1
N
(
c

(†)
in
. . . c

(†)
i1

))
. (4.73)

From these rules, one deduces that on monomials which consist exclusively of creators or

annihilators, the action of N is trivial:

N ci1 . . . cin = ci1 . . . cin (4.74)

N c†i1 . . . c
†
in

= c†i1 . . . c
†
in

(4.75)

and that for products of two field operators, we have

N c†icj = c†icj

N cic†j = −c†jci.

The rule of thumb for the normal order therefore is: “annihilators to the right, creators to

the left, internal order of creators and annihilators unchanged, every transposition yields a

factor (−1) (or (+1) for bosonic field operators with which we do not deal here)”.

Definition The contraction Cψ̂(†)(x1)ψ̂(†)(x2) of two Heisenberg field operators ψ̂(†)(xi) is

given by

Cψ̂(†)(x1)ψ̂(†)(x2) = T ψ̂(†)(x1)ψ̂(†)(x2)−N ψ̂(†)(x1)ψ̂(†)(x2) (4.76)

Explicit Form of Contraction We now calculate the contraction explicitly. First, we

express the field operator in terms of the c†, c:

ψ̂(x) =
∑
εn>εF

ϕn(x)cn +
∑
εn≤εF

ϕn(x)c†n

ψ̂†(x) =
∑
εm>εF

ϕ∗m(x)c†m +
∑
εm≤εF

ϕ∗m(x)cm.
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Therefore, for N ψ̂(x1)ψ̂(x2) we find

= N
∑
εn>εF

∑
εm>εF

ϕn(x1)ϕm(x2)cncm +N
∑
εn>εF

∑
εm≤εF

ϕn(x1)ϕm(x2)cnc
†
m +

N
∑
εn≤εF

∑
εm>εF

ϕn(x1)ϕm(x2)c†ncm +N
∑
εn≤εF

∑
εm≤εF

ϕn(x1)ϕm(x2)c†nc
†
m

=
∑
εn>εF

∑
εm>εF

ϕn(x1)ϕm(x2)cncm −
∑
εn>εF

∑
εm≤εF

ϕn(x1)ϕm(x2)c†mcn +∑
εn≤εF

∑
εm>εF

ϕn(x1)ϕm(x2)c†ncm +
∑
εn≤εF

∑
εm≤εF

ϕn(x1)ϕm(x2)c†nc
†
m

=
∑
εn>εF

∑
εm>εF

ϕn(x1)ϕm(x2)cncm +
∑
εn≤εF

∑
εm≤εF

ϕn(x1)ϕm(x2)c†nc
†
m.

Similarly, for T ψ̂(x1)ψ̂(x2) we get

= T
∑
εn>εF

∑
εm>εF

ϕn(x1)ϕm(x2)cncm + T
∑
εn>εF

∑
εm≤εF

ϕn(x1)ϕm(x2)cnc
†
m +

T
∑
εn≤εF

∑
εm>εF

ϕn(x1)ϕm(x2)c†ncm + T
∑
εn≤εF

∑
εm≤εF

ϕn(x1)ϕm(x2)c†nc
†
m

where T ϕn(x1)ϕm(x2)cnc
†
m is to be understood as

T ϕn(x1)ϕm(x2)cn(t1)c†m(t2) = ϕn(x1)ϕm(x2)T cn(t1)c†m(t2). (4.77)

To calculate C, we observe that for non-interacting systems the CAR carry over to the

time-dependent case in the sense that

{cn(t), cm(t′)} = e−
i
~ (εnt+εmt′){cn, cm} (4.78)

{c†n(t), c†m(t′)} = e
i
~ (εnt+εmt′){c†n, c†m} (4.79)

{cn(t), c†m(t′)} = e−
i
~ (εnt−εmt′){cn, c†m}. (4.80)

Therefore, we find

T (cn(t)c†m(t′) + c†m(t′)cn(t)) = 0

(T − N )c†n(t)cm(t′) = −θ(t′ − t){cm(t′), c†n(t)}
(T − N )cn(t)c†m(t′) = θ(t− t′){cn(t), c†m(t′)}
(T − N )cn(t)cm(t′) = 0

(T − N )c†n(t)c†m(t′) = 0.

From these facts, one reads off that

Cψ̂(x1)ψ̂(x2) = 0 (4.81)

Cψ̂†(x1)ψ̂†(x2) = 0. (4.82)
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Finally, we calculate

Cψ̂(x1)ψ̂†(x2) = −Cψ̂†(x2)ψ̂(x1). (4.83)

For the product ψ̂(x1)ψ̂†(x2), we find

=
∑
εn>εF

∑
εm>εF

ϕn(x1)ϕ∗m(x2)cnc
†
m +

∑
εn>εF

∑
εm≤εF

ϕn(x1)ϕ∗m(x2)cncm +∑
εn≤εF

∑
εm>εF

ϕn(x1)ϕ∗m(x2)c†nc
†
m +

∑
εn≤εF

∑
εm≤εF

ϕn(x1)ϕ∗m(x2)c†ncm

Now, the action of both C annihilates the second and the third term. For the first term, we

find explicitly

=
∑
εn>εF

∑
εm>εF

ϕn(x1)ϕ∗m(x2)Ccn(t1)c†m(t2)

=
∑
εn>εF

∑
εm>εF

ϕn(x1)ϕ∗m(x2)(T − N )cn(t1)c†m(t2)

= θ(t1 − t2)
∑
εn>εF

∑
εm>εF

ϕn(x1)ϕ∗m(x2){cn(t1), c†m(t2)}

= θ(t1 − t2)
∑
εn>εF

∑
εm>εF

ϕn(x1)ϕ∗m(x2)e−i/~(εnt1−εmt2){cn, c†m}

= θ(t1 − t2)
∑
εn>εF

∑
εm>εF

ϕn(x1)ϕ∗m(x2)e−i/~(εnt1−εmt2)δnm

= θ(t1 − t2)
∑
εn>εF

ϕn(x1)ϕ∗n(x2)e−i/~εn(t1−t2)

and for the fourth term

=
∑
εn≤εF

∑
εm≤εF

ϕn(x1)ϕ∗m(x2)Cc†n(t1)cm(t2)

=
∑
εn≤εF

∑
εm≤εF

ϕn(x1)ϕ∗m(x2)(T − N )c†n(t1)cm(t2)

= −θ(t2 − t1)
∑
εn≤εF

∑
εm≤εF

ϕn(x1)ϕ∗m(x2){c†n(t1), cm(t2)}

= −θ(t2 − t1)
∑
εn≤εF

ϕn(x1)ϕ∗n(x2)ei/~εn(t1−t2).

This is precisely the Lehmann representation of G0. We conclude that

Cψ̂(x1t1)ψ̂†(x2t2) = i~G0(x1t1,x2t2) (4.84)

where G0 denotes the free reference Green function corresponding to Ĥ0 and N particles.4

4Note, that this holds in the non-interacting case.
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Corollary 4.1.6 Cψ̂(†)(x1)ψ̂(†)(x2) is a distribution in (x1, x2), i.e. acts only as a multipli-

cation operator on F . (“the contraction yields a c-number”)

Definition The generalization the action of C to arbitrary monomials is given by

C2nψ̂
(†)(x1) . . . ψ̂(†)(x2n)

=
∑
i<j

(−1)i+j+1
(
Cψ̂(†)(xi)ψ̂

(†)(xj)
)
ψ̂(†)(x1) . . . ˆ̂ψ(†)(xi) . . . ˆ̂ψ(†)(xj) . . . ψ̂

(†)(x2n)

In particular C2 = C.

Definition The sum over all contractions of a product of field operators ψ̂(†)(x1) . . . ψ̂(†)(x2n)

is given by the expression

n∏
i=1

C2(n−i)ψ̂
(†)(x1) . . . ψ̂(†)(x2n).

Lemma 4.1.7 The ground-state expectation value of a product of field operators which is

normally ordered with respect to that very ground-state vanishes identically.

Proof First, note that in general

N ψ̂(†)(x1) . . . ψ̂(†)(xn)|Φ0〉 6= 0 (4.85)

because in the normally ordered products there are contributions consisting entirely of c†n.

These contributions vanish, however, in the expectation value 〈Φ0| · |Φ0〉 because

〈Φ0|c†1 . . . c†n|Φ0〉 = 〈cn . . . c1Φ0|Φ0〉 = 0. (4.86)

Any contribution in the field operator product whose operator part does not exclusively

consist of c† yields automatically zero because the normal ordering operator will commute

the ground-state annihilators to the front where they act on Φ0 directly.

Theorem 4.1.8 (Wick) The time-ordered product of field operators can be decomposed into

normal ordered products and contractions according to

T ψ̂(†)(x1) . . . ψ̂(†)(x2n) = N ψ̂(†)(x1) . . . ψ̂(†)(x2n) +N (sum over all contractions). (4.87)

Wick-Theorem for Non-Interacting 2n-Point Green Functions If we evaluate

T ψ̂(1) . . . ψ̂(n)ψ̂†(2n) . . . ψ̂†(n+ 1) (4.88)
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in the ground-state Φ0 and use the fact that all non-contracted terms vanish, we regain the

master formula

G0(1, . . . , n, 2n, . . . , n+ 1) = det(G0(i, n+ j))|i=1,...,n; j=1,...,n (4.89)

which we already found within the context of the equation of motion theory.

Expansion in Free Propagators We have seen in the last section that the perturba-

tion theory for the two-point Green function can be condensed into the magic Gell-Mann

and Low formula which we write compactly as.

i~G(xt,x′t′) =
∞∑
n=0

(
− i

~

)n
gn

n!

∫ ∞
−∞

dt1 . . . dtn 〈T ĤI(t1) . . . ĤI(tn)ψ̂(xt)ψ̂†(x′t′)〉/〈Ŝ〉.

We now discuss how the numerator in this formula can be decomposed in terms of the

free propagator. Using the explicit form of the interacting Hamiltonian ĤI(t) given by∫
dxdx′ v(x′ − x)ψ̂†(x′t)ψ̂†(xt)ψ̂(xt)ψ̂(x′t), this turns a generic n-th order term in the per-

turbative expansion of G into a complicated multiple integral of 2n+ 1 free propagators and

n interaction terms v(x− x′). Rewriting the interaction term as

ĤI(t) =

∫
dxdx′dt′ v(x′ − x)δ(t− t′)ψ̂†(x′t′)ψ̂†(xt)ψ̂(xt)ψ̂(x′t′) (4.90)

we see that the n-th order term is given by the integral

∞∑
n=0

(
− i

~

)n
gn

n!

∫ ∞
−∞

dx1dx′1 . . . dxndx′n

over

v(x1 − x′1) . . . v(xn − x′n)〈T ψ̂†(x1)ψ̂†(x′1)ψ̂(x′1)ψ̂(x1) . . . ψ̂†(xn)ψ̂†(x′n)ψ̂(x′n)ψ̂(xn)ψ̂(x)ψ̂†(x′)〉c

where x = (xt), dx = dxdt and v(x) = v(x)δ(t). One convinces oneself easily that an even

permutation transforms

ψ̂†(x1)ψ̂†(x′1)ψ̂(x′1)ψ̂(x1) . . . ψ̂†(xn)ψ̂†(x′n)ψ̂(x′n)ψ̂(xn)ψ̂(x)ψ̂†(x′)

into

ψ̂(x′1)ψ̂(x1) . . . ψ̂(x′n)ψ̂(xn)ψ̂(x)ψ̂†(x1)ψ̂†(x′1) . . . ψ̂†(xn)ψ̂†(x′n)ψ̂†(x′).

and therefore

(i~)−n〈T ψ̂(x′1)ψ̂(x1) . . . ψ̂(x′n)ψ̂(xn)ψ̂(x)ψ̂†(x1)ψ̂†(x′1) . . . ψ̂†(xn)ψ̂†(x′n)ψ̂†(x′)〉
= i~G4n+2

0 (x′1, x1, . . . , x
′
n, xn, x;x′, x′n, xn, . . . , x

′
1, x1).
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The master formula decomposes this (4n + 2)-point function G4n+2
0 into sums of products

of 2n + 1 two-point functions G0. An n-th order term in the expansion of G can then be

represented by graph: the arguments of the G0 and v are the vertices or points and the G0, v

are the edges or lines. The lines corresponding to G are the particle lines, those corresponding

to v are the interaction lines. At the vertex 1, G0(1, 2) is called an ingoing line and G0(2, 1)

an outgoing line. The arguments which are integrated over are called internal points. x, x′

are the external points. An internal point is necessarily linked to an incoming particle line,

an outgoing particle line and an interaction line (where ingoing and outgoing particle line

can be given by the same propagator as in v(1, 2)G0(2, 2)). The edges joining the external

points are called external lines. A graph in which all points are connected to the external

points (through a sequence of lines) is called connected. Note that if we have in a certain

graph a disconnected contribution, then the same expression necessarily arises also in the

denominator of the Gell-Mann and Low formula which can be decomposed analogously to

the numerator. One can show that the sum of all these disconnected contributions can be

factored out leading to the famous cancellation theorem:

Theorem 4.1.9 All disconnected contributions in the numerator of the perturbation series

for the Green function given by the Gell-Mann and Low theorem in the form (4.61) can be

factored out and exactly cancel the respective contributions of the denominator.

The upshot of this is that we restrict attention in the following to the connected graphs.

A graph in which the external lines are omitted is called amputated or in the case of G2 a

self-energy graph. Clearly, if Σ denotes the sum over all such graphs then

G(1, 2) = G0(1, 2) +

∫
d3d4 G0(1, 3)Σ(3, 4)G0(4, 2). (4.91)

This shows that the perturbatively defined Σ is identical to the reducible self-energy. A graph

that cannot be separated into two pieces by removing a single G0-line is called irreducible

(in G0). If Σ̃ denotes the subset of the Σ-graphs which are irreducible, then

Σ = Σ̃ + Σ̃G0Σ̃ + Σ̃G0Σ̃G0Σ̃ + . . . = Σ̃ + Σ̃G0(Σ̃ + Σ̃G0Σ̃ + . . .) = Σ̃ + Σ̃GΣ (4.92)

and hence

G = G0 +G0Σ̃G (4.93)

showing that Σ̃ is identical to the proper self-energy.

Feynman Rules We have seen that a given perturbative contribution to G can be rep-

resented by a graph. In order to gain back a perturbative contribution from a given (ad-
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missible) graph, one has to observe the so-called Feynman rules. Admissible graphs are

constructed inductively5:

1. The 2 first-order self-energy graphs are: G(1, 2)v(1, 2) and v(1, 2)G(2, 2).

2. A (n + 1)-th order graph is constructed from a n-th order graph according to: (i)

choose once or twice a particle line (including the possibility of choosing twice the

same line). (ii) Replace the chosen particle lines G(1, 2) and G(4, 5) by G(1, 3)G(3, 2)

and G(4, 6)G(6, 5) and join them by v(3, 6). If you have choosen only one line, then

replace G(1, 2) with G(1, 3)G(3, 1)v(3, 4)G(4, 4).

In order to evaluate a given n-th order graph (constructed inductively according to the above

rules):

1. Integrate out the internal points. (The labelling of the internal points is irrelevant.

There are n! labellings corresponding to different contraction schemes in G4n+2
0 which

all yield the same value. This cancels the prefactor 1/n! in the Gell-Mann and Low

formula.)

2. Multiply by (i~)ngn.6

3. Include factor (−1) for every closed fermion loop.

Self-Consistent Methods The two first-order diagrams for the self-energy read in the

space-time domain:

−
∫

dx′dt′ v(xt,x′t′)i~G0(x′t′,x′t′+) (4.94)

and

v(xt,x′t′)i~G0(xt,x′t′). (4.95)

The first expression is called Hartree term and the second is the Fock term. Note, that the

total first order contribution to G can be written as

G = G0 − i~G0V ·G4
0 (4.96)

where G4
0(1, 2, 3, 4) = G(1, 3)G(2, 4) − G(1, 4)G(2, 3). As every n-th order perturbative

contribution to the Green function can also be interpreted as a (n− 1)-th order contribution

to the first order contribution, the total perturbation series sums up to

G = G0 − i~G0V ·G4. (4.97)

5The problem of the interpretation of equal-time Green functions will be discussed later.
6From now on, the coupling constant will be reabsorbed in the interaction potential.
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Multiplication with G−1
0 shows that the Gell-mann and Low theorem implies the equation

of motion for G. Conversely, as the equation of motion theory implies the factorization of

the free 2n-point functions, the perturbative expansion for G can be gained back from the

equation of motion hierarchy by iteration. In other words, equation of motion theory and

perturbation theory are equivalent. If we now want to calculate the first order contributions

to the Green function, we have

G = G0 +G0Σ1G0 (4.98)

where Σ1 = Σ1[G0] is the sum of the Hartree and the Fock term. Without introducing

further diagrams, we can go beyond this simple level of perturbation theory by turning this

simple explicit equation into a self-consistent equation

G = G0 +G0Σ̃1[G0]G (4.99)

or even

G = G0 +G0Σ̃1[G]G. (4.100)

By iteration, one shows that the first of these equations corresponds to an infinite summation

of Hartree and Fock terms linked by propagator lines whereas the second equation even

corresponds to an infinite summation of graphs in which Hartree and Fock terms can be

inserted into each other up to arbitrary order. One shows easily that there are only 2 (out

of 10) second order graphs which are not included in this summation. In other words, self-

consistent perturbation theory is highly superior to standard perturbation theory because it

corresponds to an infinite summation of graphs of a certain type. The drawback of these self-

consistent methods is that the determining equation for G is not explicit because G enters

in both sides. One therefore usually works with the corresponding quasiparticle equation(
− ~2

2m
∆ + vext(x)

)
f±s (x) +

∫
dx′ Σ̃(x,x′,±ε±s )f±s (x′) = ±ε±s f±s (x).

If we want to find a self-consistent equation for the fs we have to substitute Σ̃1[G] for Σ̃ and

write the result in terms of the fs themselves (substituting the Lehmann representation for

G into the expressions for the diagrams). Obviously, the Hartree and the Fock term read in

terms of Lehmann amplitudes∫
dx′′

∑
r

v(x′,x′′)f−r (x′′)f−∗r (x′′) (4.101)

and ∑
r

f−r (x)v(x,x′)f−∗r (x′). (4.102)
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The resulting equations for the Lehmann amplitudes are indeed the Hartree-Fock equa-

tions. Note that within this approximation, the self-energy depends only on the occupied

orbitals. Due to the instantaneous potential v, the first-order self-energy Σ1 has no depen-

dence on time/frequency. Finally, notice that contrary to conventional textbook wisdom, the

Hartree-Fock orbitals and energies clearly do have a physical interpretation, namely they are

approximate Lehmann amplitudes and quasiparticle energies. For later purposes, we now

prove what we will call the self-energy splitting formula.

Lemma 4.1.10 Let

Σ̃ = Σ̃1 + Σ̃2 (4.103)

be an arbitrary decomposition of the self-energy and define

G1 = G0 +G0Σ̃1G1. (4.104)

Then

G = G1 +G1Σ̃2G. (4.105)

Proof This follows from the Dyson equation rewritten in the form

Σ̃1(ω)+Σ̃2(ω) = Σ̃(ω) = G−1
0 (ω)−G−1(ω) = G−1

0 (ω)−G−1
1 (ω)+G−1

1 (ω)−G−1(ω). (4.106)

2

We now apply this result to the above Hartree-Fock solution. The lemma then says: If we

take the Hartree-Fock propagator := G1 as the non-interacting reference Green function in

the Dyson equation G = G1 +G1Σ2G then the remaining self-energy Σ2 corresponds to the

(infinite) sum of all skeleton diagrams expressed in terms of G1. In particular, Σ2 does not

contain any first order diagrams (these would be the Hartree and the Hartree Fock diagram

already summed up in G1) and only 2 second order diagrams which correspond to the first

vertex correction and the first bubble diagram.7

7This is the reason why [93] p.390 states that perturbative expansion of the self-energy starts only with

second-order terms.
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4.1.3. Four-Point Propagator, Polarizability and Bethe-Salpeter

Equation

Introduction of the Four-Point Propagator The four-point propagator is defined by

(i~)2G4(x1t1,x2t2,x3t3,x4t4) = 〈Ψ0|T ψ̂(x1t1)ψ̂(x2t2)ψ̂†(x4t4)ψ̂†(x3t3)|Ψ0〉. (4.107)

Precisely as in the case of the two-point propagator, for (i~)2G4(x1t1,x2t2,x3t3,x4t4) we get

the perturbative expansion

=
∞∑
n=0

(
− i

~

)n
gn

n!

∫ ∞
−∞

dt1 . . . dtn 〈T ĤI(t1) . . . ĤI(tn)ψ̂(x1t1)ψ̂(x2t2)ψ̂†(x4t4)ψ̂†(x3t3)〉c

where the subscript “c” indicates that the summation is restricted to connected graphs. By

the Wick theorem, the free four-point propagator fulfills

G4
0(1, 2, 3, 4) =

1

(i~)2
〈Φ0|T ψ̂(1)ψ̂(2)ψ̂†(4)ψ̂†(3)|Φ0〉 = G0(1, 3)G0(2, 4)−G0(1, 4)G0(2, 3).

(4.108)

For the full (=interacting) propagator, this suggests the ansatz

G4(1, 2, 3, 4) = G(1, 3)G(2, 4)−G(1, 4)G(2, 3)

−i~
∫

d(5, 6, 7, 8) G(1, 5)G(2, 6)Γ(5, 6, 7, 8)G(7, 3)G(8, 4).

A comparison with the perturbative expansion shows that the scattering amplitude Γ has

the meaning of a sum over all amputated skeleton graphs which can be put between two

electron-hole pairs. If we define a subsum I of Γ which corresponds to all graphs in Γ which

are irreducible in the electron-hole channel, then we necessarily have

Γ = I + i~IGGI + (i~)2IGGIGGI + . . . ,

i.e.

Γ(1, 2, 3, 4) = I(1, 2, 3, 4) +

i~
∫

d(5, 6, 7, 8) I(1, 5, 3, 6)G(6, 7)G(8, 5)Γ(7, 2, 8, 4).

This is the well-known Bethe-Salpeter equation.8

8The Bethe-Salpeter equation is the direct analog of the Bethe-Salpeter equation in high-energy physics;

cf. e.g. [47] p.482.
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Density Response Function The reducible, time-ordered density-density response func-

tion at temperature T = 0 in the non-degenerate N -particle ground-state ΨN
0 := Ψ0 is

defined as

χ(xt,x′t′) = − i

~
〈Ψ0|T ψ̂†(xt)ψ̂(xt)ψ̂†(x′t′)ψ̂(x′t′)|Ψ0〉. (4.109)

Precisely as in the case of the Lehmann representation of the Green function, by inserting

complete sets {ΨN
s ≡ Ψs} of N -particle energy eigenstates with energies EN

s := Es and

Fourier transforming with respect to t− t′, we get the spectral representation:

i~χ(xt,x′t′) = θ(t− t′)〈Ψ0|ψ̂†(xt)ψ̂(xt)ψ̂†(x′t′)ψ̂(x′t′)|Ψ0〉+

θ(t′ − t)〈Ψ0|ψ̂†(x′t′)ψ̂(x′t′)ψ̂†(xt)ψ̂(xt)|Ψ0〉
= θ(t− t′)

∑
s

〈Ψ0|ψ̂†(xt)ψ̂(xt)|Ψs〉〈Ψs|ψ̂†(x′t′)ψ̂(x′t′)|Ψ0〉+

θ(t′ − t)
∑
s

〈Ψ0|ψ̂†(x′t′)ψ̂(x′t′)|Ψs〉〈Ψs|ψ̂†(xt)ψ̂(xt)|Ψ0〉

=
∑
s

θ(t− t′)e−i/~(Es−E0)(t−t′)〈Ψ0|ψ̂†(x)ψ̂(x)|Ψs〉〈Ψs|ψ̂†(x′)ψ̂(x′)|Ψ0〉+∑
s

θ(t′ − t)e−i/~(Es−E0)(t′−t)〈Ψ0|ψ̂†(x′)ψ̂(x′)|Ψs〉〈Ψs|ψ̂†(x)ψ̂(x)|Ψ0〉

=
∑
s

θ(t− t′)e−i/~(Es−E0)(t−t′)〈Ψ0|n̂(x)|Ψs〉〈Ψs|n̂(x′)|Ψ0〉+∑
s

θ(t′ − t)e+i/~(Es−E0)(t−t′)〈Ψ0|n̂(x′)|Ψs〉〈Ψs|n̂(x)|Ψ0〉

with the density operator n̂(x) = ψ̂†(x)ψ̂(x). In the frequency domain, this yields

χ(x,x′;ω) =
∑
s

(
〈Ψ0|n̂(x)|Ψs〉〈Ψs|n̂(x′)|Ψ0〉

~ω − (Es − E0) + iη
− 〈Ψ0|n̂(x′)|Ψs〉〈Ψs|n̂(x)|Ψ0〉

~ω + (Es − E0)− iη

)
. (4.110)

For later purposes, we need in particular the density fluctuation-response function

P (xt,x′t′) = − i

~
〈Ψ0|T δn̂(xt)δn̂(x′t′)|Ψ0〉 (4.111)

with

δn̂(xt) = ψ̂†(xt)ψ̂(xt)−〈ψ̂†(xt)ψ̂(xt)〉 = ψ̂†(xt)ψ̂(xt)−n(xt) = ψ̂†(xt)ψ̂(xt)−n(x). (4.112)

In the literature, the density fluctuation-response function is usually called polarizability.

From equation (4.110), we read off that the replacement n̂(xt) 7→ δn̂(xt) has the simple

effect of cancelling the term

〈Ψ0|n̂(x)|Ψ0〉〈Ψ0|n̂(x′)|Ψ0〉
~ω + iη

− 〈Ψ0|n̂(x′)|Ψ0〉〈Ψ0|n̂(x′)|Ψ0〉
~ω − iη

(4.113)

Thesis, Vienna, July 4, 2012



Ronald Starke: Green Functions and Electronic Structure Theory 191

because 〈Ψ0|δn̂(x)|Ψs〉 = 〈Ψ0|n̂(x)−n(x)|Ψs〉 = 〈Ψ0|n̂(x)|Ψs〉−n(x)〈Ψ0|Ψs〉 = 〈Ψ0|n̂(x)|Ψs〉
for s 6= 0 and 〈Ψ0|δn̂(x)|Ψs=0〉 = 0.

Four-Point Propagator and Density Response Function One shows easily that

χ(x1t1,x2t2) = i~ lim
t3→t+1

lim
t4→t+2

G4(x1t1,x2t2,x1t3,x2t4) (4.114)

or more compactly

χ(1, 2) = i~G4(1, 2, 1+, 2+). (4.115)

Similarly, one shows the important relation (see next subsection)

P (1, 2) = i~L(1, 2, 1+, 2+) (4.116)

where L(1, 2, 3, 4) = G4(1, 2, 3, 4)−G(1, 3)G(2, 4) is called connected four-point propagator.

That means, the transition from the density to the density fluctuation response corresponds

to the transition from G4 to L on the level of the Green functions. The last formula together

with the Wick theorem and the Lehmann representation shows that that a non-interacting

polarizability can be expressed in terms of the orbtials of the ground-state as

P (x,x′;ω) =
∑

a unocc

∑
i occ

(
ϕ∗i (x)ϕa(x)ϕ∗a(x

′)ϕi(x
′)

~ω − (εa − εi) + iη
− ϕ∗i (x

′)ϕa(x
′)ϕ∗a(x)ϕi(x)

~ω + (εa − εi)− iη

)
. (4.117)

The cancellation of the term s = 0 is here already implemented through the condition that

a sums over unoccupied and i over occupied states.

4.1.4. Self-Consistent Set of Equations

Introduction We have seen in the last subsection that infinite subclasses of all Feynman

diagrams contributing to the full Green function G can be summed up by going over from a

sum of diagrams in ordinary perturbation theory G = G0 +G0Σ[G0, V ]G0 to the correspond-

ing self-consistent equation G = G0 +G0Σ̃[G, V ]G. In principle, Σ̃[G, V ] is the infinite sum

over all one-particle, irreducible graphs. Consequently, it is impossible to write down a closed

expression for Σ̃ in terms of G and V . It is therefore desirable to find a set of self-consistent

equations depending on some perturbative quantity I which automatically generates the hi-

erarchy of infinite summations if I is suitably expanded. Furthermore, we require this set

of equations to be written in terms of (formal) matrix products, which has the advantage

that the equations do not depend on the usage of the space-time domain (i.e. carry over

directly to an orbital basis and to the frequency domain). It will turn out that this can be
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achieved by suitably combining the Bethe-Salpeter equation with the equation of motion the-

ory. Hence, I will turn out to be the (particle-hole-channel) irreducible scattering amplitude.

Conventions We introduce the following matrix products of four-point quantities

(AB)(1, 2, 3, 4)
def
=

∫
d(5, 6) A(1, 5, 3, 6)B(6, 2, 5, 4) (4.118)

(A ·B)(1, 2)
def
=

∫
d(3, 4, 5) A(1, 4, 5, 3)B(3, 5, 4, 2). (4.119)

Products of two-point functions are defined in the standard way:

(AB)(1, 2) =

∫
d3 A(1, 3)B(3, 2). (4.120)

Furthermore, we define a left and a right Dirac distribution via

δ±[f ] =

∫
dt f(t)δ(t±) = lim

t→0±
f(t). (4.121)

We can think of δ± as acting on an extended space of test functions which are continuous

up to countably many jumps. We introduce a four-point Coulomb kernel by

V (1, 2, 3, 4) = v(1, 4+)δ(4, 2+)δ(3, 1+). (4.122)

with δ(1, 2+) = δ(x1 − x2)δ(t1 − t+2 ) and v(1+) = v(x)δ(t+). On top of that, we introduce

the four-point quantity

L(1, 2, 3, 4) = G4(1, 2, 3, 4)−G(1, 3)G(2, 4). (4.123)

and the new reference propagator G0(1, 2) defined through

(i~∂t − Ĥ0(1)− vH(1))G0(1, 2) = δ(1, 2) (4.124)

where vH(1) is a Hartree-type potential with a density n(1) to be specified later.

Theorem 4.1.11 We have the following closed, exact set of equations:

G = G0 − i~G0V · L (4.125)

L = L0 + i~L0IL (4.126)

W = V + i~V LV (4.127)

where L0(1, 2, 3, 4) = −G(1, 4)G(2, 3).
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Remarks

1. Exactitude: “Exact” here refers to the fact that formally the self-consistent equations

sum up to arbitrary order. Only the first and the third equation are exact in the

mathematical sense, the third being a definition. The second equation will be proven

from the Bethe-Salpeter equation for the scattering amplitude and therefore ultimately

hinges on the use of perturbation theory.

2. Closure: The self-consistent set of equations is closed in the sense that for any desired

level of accuracy one can choose an expression for I in terms of Feynman graphs which

in turn can be expressed through V,W,G and L. I itself is a formal infinite series

over such graphs and therefore a closed (= finite algebraic) expression for I in terms of

V,W,G and L cannot be written down. The expansion of I will be treated in section

4.2.

3. Self-Consistency: The equation for W is a definition.9 As to the self-consistency, W is

actually superfluous. It is only introduced for the purpose of having concise expressions

for I. On the other hand, strictly speaking, G0 is a functional of the full propagator

G0 = G0[G] because – as the proof will show – the density entering in the definition of

G0 is the self-consistent density of the full propagator G.

Proof Only the first and the second equation have to be proven. In the beginning, the

derivations will be formal, i.e. in order not to overload the notation, the left- and right Dirac

deltas will be replaced with ordinary deltas. The time-order will be checked afterwards.

1. Recall the equation of motion for the Green function

(i~∂t +
~2

2m
∆x − vext(x))G(xt,x′t′) = δ(t− t′)δ(x− x′) +

1

i~
〈T [ψ̂(xt), V̂ ]ψ̂†(x′t′)〉

which by the help of

V̂ ≡ V̂ (t) = ei Ĥ~ t

∫
dxdx′ v(x− x′)ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x)e−i Ĥ~ t

=

∫
dxdx′ v(x− x′)ψ̂†(xt)ψ̂†(x′t)ψ̂(x′t)ψ̂(xt)

and

[ψ̂(xt), V̂ ] =

∫
dx′ v(x− x′)ψ̂†(x′t)ψ̂(x′t)ψ̂(xt) (4.128)

9Note, however, that W is the condensed matter analog of the full electromagnetic propagator. From this

perspective, W = V + V LV is not a definition.
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leads to

(i~∂t+
~2

2m
∆x−vext(x))G(xt,x′t′) = δ(t−t′)δ(x−x′)−i~

∫
dx′′ v(x−x′′)G4(x′′, x, x′′, x′).

where x = (xt) and v(x− x′) = v(x− x′)δ(t− t′). The last term can be rewritten as∫
dx′′ v(x− x′′)G4(x′′, x, x′′, x′) =

∫
d4 v(1, 4)G4(4, 1, 4, 2)

=

∫
d(3, 4, 5) v(5, 4)δ(1, 5)δ(3, 4)G4(3, 5, 4, 2)

=

∫
d(3, 4, 5) V (1, 4, 5, 3)G4(3, 5, 4, 2)

with

V (1, 2, 3, 4) = δ(2, 4)δ(1, 3)v(3, 2) = δ(2, 4)δ(1, 3)v(1, 4). (4.129)

Now, recall that

L(1, 2, 3, 4) = G4(1, 2, 3, 4)−G(1, 3)G(2, 4). (4.130)

Consequently,∫
d(3, 4, 5) V (1, 4, 5, 3)G4(3, 5, 4, 2) =

∫
d(3, 4, 5) V (1, 4, 5, 3)L4(3, 5, 4, 2)

+

∫
d(3, 4, 5) V (1, 4, 5, 3)G(3, 4)G(5, 2).

But with∫
d(3, 4, 5) V (1, 4, 5, 3)G(3, 4)G(5, 2) =

∫
d(3, 4, 5) v(1, 3)δ(1, 5)δ(3, 4)G(3, 4)G(5, 2)∫
d3 v(1, 3)G(1, 2)G(3, 3)

and

i~G(xt,xt) ≡ i~G(xt,xt+) = −n(x) (4.131)

we see that

−i~
∫

d(3, 4, 5) V (1, 5, 3, 4)G(3, 2)G(4, 5) = vH(1)G(1, 2) (4.132)

and therefore

(i~∂t+
~2

2m
∆x−vext(x)−vH(x))G(xt,x′t′) = δ(t−t′)δ(x−x′)−i~

∫
dx′′ v(x−x′′)L(x′′, x, x′′, x′).

Redefining G0 as the inverse of (i~∂t + ~2

2m
∆x − vext(x)− vH(x)), this equation can be

written more abstractly as

G(1, 2) = G0(1, 2)− i~
∫

d(3, 4, 5, 6) G0(1, 6)V (6, 4, 5, 3)L(3, 5, 4, 2) (4.133)
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Finally, we check the time-order. The redefinition of the Coulomb potential leads to

∫
d(3, 4, 5) V (1, 4, 5, 3)G4(3, 5, 4, 2)

=

∫
d(3, 4, 5) v(1, 3+)δ(3, 4+)δ(5, 1+)G4(3, 5, 4, 2)

= lim
t5→t−1

lim
t3→t+1

lim
t4→t+3

∫
dx3 v(1, 3+)G4(x3t3,x1t5,x3t4,x2t2)

= −(i~)2

∫
dx3 v(x1 − x3)〈T ψ̂†(x3t1)ψ̂(x3t1)ψ̂(x1t1)ψ̂†(x2t2)〉

where it has been used that the left- and right- Dirac delta imply the limit to be taken

such that t5 ≤ t1 ≤ t3 ≤ t4. We thus obtain precisely the expression which one gets

from the equation of motion theory.

2. We now show that L obeys a Bethe-Salpeter-like equation. The starting point is the

well-known Bethe Salpeter equation Γ = I + IGGΓ for the scattering amplitude Γ

which reads

Γ(1, 2, 3, 4) = I(1, 2, 3, 4) + i~
∫

d(5, 6, 7, 8) I(1, 5, 3, 6)G(6, 7)G(8, 5)Γ(7, 2, 8, 4).

(4.134)

The connection between the four-point propagator and the scattering amplitude is

given by

G4(1, 2, 3, 4) = G(1, 3)G(2, 4)−G(1, 4)G(2, 3)

−i~
∫

d(5, 6, 7, 8) G(1, 5)G(2, 6)Γ(5, 6, 7, 8)G(7, 3)G(8, 4).

or

L(1, 2, 3, 4) = −G(1, 4)G(2, 3)−i~
∫

d(5, 6, 7, 8)G(1, 5)G(2, 6)Γ(5, 6, 7, 8)G(7, 3)G(8, 4).

Plugging in the Bethe-Salpeter equation for Γ, we get for−L(1, 2, 3, 4) the self-consistent
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expression

= G(1, 4)G(2, 3) + i~
∫

d(5, 6, 7, 8) G(1, 5)G(2, 6)I(5, 6, 7, 8)G(7, 3)G(8, 4) +

(i~)2

∫
d(5, 6, 7, 8, 9, 10, 11, 12)×

G(1, 5)G(2, 6)I(5, 9, 7, 10)G(10, 11)G(12, 9)Γ(11, 6, 12, 8)G(7, 3)G(8, 4)
6↔9
8↔10= G(1, 4)G(2, 3) + i~

∫
d(5, 6, 7, 8) G(1, 5)G(2, 6)I(5, 6, 7, 8)G(7, 3)G(8, 4) +

(i~)2

∫
d(5, 6, 7, 8, 9, 10, 11, 12)×

G(1, 5)G(2, 9)I(5, 6, 7, 8)G(8, 11)G(12, 6)Γ(11, 9, 12, 10)G(7, 3)G(10, 4)

= G(1, 4)G(2, 3) + i~
∫

d(5, 6, 7, 8) G(1, 5)G(7, 3)I(5, 6, 7, 8)×

(G(2, 6)G(8, 4) + i~
∫

d(9, 10, 11, 12) G(2, 9)G(12, 6)Γ(11, 9, 12, 10)G(8, 11)G(10, 4))

= G(1, 4)G(2, 3)− i~
∫

d(5, 6, 7, 8) G(1, 5)G(7, 3)I(5, 6, 7, 8)L(8, 2, 6, 4)

or

L(1, 2, 3, 4) = L0(1, 2, 3, 4) + i~
∫

d(5, 6, 7, 8) L0(1, 5, 3, 6)I(6, 7, 5, 8)L(8, 2, 7, 4)

(4.135)

with L0(1, 2, 3, 4) = −G(1, 4)G(2, 3). The equation (4.135) coincides with equation

(43) in the seminal paper of Kadanoff and Baym[8] derived by the method of functional

derivatives.

Definition The irreducible counterparts L̃ and Ĩ of L and I are defined via

I = Ĩ + V (4.136)

L̃ = L0 + i~L0ĨL̃. (4.137)

Lemma 4.1.12 We have the formal identities

L = L̃+ i~L̃V L (4.138)

LV = L̃W. (4.139)

Proof

1. This follows from rewriting equation L = L0 + i~L0IL as

L−1
0 − L−1 = i~I (4.140)
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and hence

L−1
0 − L̃−1 + L̃−1 − L−1 = i~Ĩ + i~V. (4.141)

In this argument, we implicitly assumed that L can be inverted. From the definition of

L we read off that L can certainly be inverted if L0 can because in that case L−1
0 − i~I

is the inverse of L. L0(1, 2, 3, 4) = −G(1, 4)G(2, 3) in turn can be inverted if G can be

inverted. Thus, the invertibility of the full Green function is crucial. This, however,

is a standard assumption in any approach. To the best of my knowledge it has never

been proved.

2. By the help of the first identity, this follows from

L̃W = L̃V + i~L̃V LV

= (L̃+ i~L̃V L)V

= LV.

Theorem 4.1.13 The self-consistent equations are equivalent to the following “irreducible”

set of equations:

G = G0 − i~G0W · L̃ (4.142)

L̃ = L̃0 + i~L̃0ĨL̃ (4.143)

W = V + i~V L̃W (4.144)

where L̃0 = L0.

Proof The second equation is a definition. We prove the first and the third equation.

1. We introduce the transpose of a four-point quantity by

AT(1, 2, 3, 4) = A(2, 1, 4, 3). (4.145)

AT is the algebraic transpose in the sense of the four-point product∫
d(5, 6) A(1, 5, 3, 6)B(6, 2, 5, 4). (4.146)

With

L(1, 2, 3, 4) = L(2, 1, 4, 3)

L̃(1, 2, 3, 4) = L̃(2, 1, 4, 3)
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we concluce that

WT = V T + i~V TLV T (4.147)

and therefore

L̃W = LV (4.148)

implies

L̃WT = LV T. (4.149)

Now consider ∫
d(3, 4, 5) V (1, 4, 5, 3)L(3, 5, 4, 2). (4.150)

This can be written as∫
d5

∫
d(3, 4) V (1, 4, 5, 3)L(3, 5, 4, 2) =

∫
d5 (V L)(1, 5, 5, 2)

=

∫
d(5, 6) δ(5, 6)(V L)(1, 5, 6, 2).

Using (V L)(1, 2, 3, 4) = (LV T)(2, 1, 4, 3), we get∫
d(5, 6) δ(5, 6)(V L)(1, 5, 6, 2) =

∫
d(5, 6) δ(5, 6)(LV T)(5, 1, 2, 6)

=

∫
d(5, 6) δ(5, 6)(L̃WT)(5, 1, 2, 6)

=

∫
d(5, 6) δ(5, 6)

∫
d(3, 4) L̃(5, 3, 2, 4)WT(4, 1, 3, 6)

=

∫
d(5, 6) δ(5, 6)

∫
d(3, 4) L̃(3, 5, 4, 2)W (1, 4, 6, 3)

=

∫
d(5, 6) δ(5, 6)

∫
d(3, 4) W (1, 4, 6, 3)L̃(3, 5, 4, 2)

=

∫
d(5, 6) δ(5, 6)(WL̃)(1, 5, 6, 2),

i.e. V · L = W · L̃.

2. Follows from

W = V + i~V LV

= V + i~V L̃V + (i~)2V L̃V LV

= V + i~V L̃(V + i~V LV )

= V + i~V L̃W.
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Green Functions and Density Functional Theory Consider the self-energy operator Σ̃

as a sum over graphs. By inspection, we see that Σ̃ can be written as a sum of an operator,

which is local in both space and time, of an only temporally local operator and a non-local

operator (simply if we classify the Feynman graphs according to the criterion whether they

given rise to a local function or not):

Σ̃(xt,x′t′) = Σ̃1(x)δ(x− x′)δ(t− t′) + Σ̃2(x,x′)δ(t− t′) + Σ̃3(xt,x′t′)

= Σ̃1(x)δ(x− x′)δ(t− t′) + Σ̃xc(x,x
′; t− t′).

An analysis of the Feynman graphical expansion now shows that Σ̃1 is the sum over all

graphs which result from the first-order Hartree graph −
∫

d2 v(1, 2)i~G0(2, 2+) by inserting

arbitrarily many interaction lines. This, however, has simply the effect of turning G0 into the

exact propagator G. On the other hand, for the exact propagator, the quantity −i~G(2, 2+)

equals the exact ground-state density. In other words, the local self-energy contribution is

the exact Hartree potential: Σ̃1(x) = vH(x). Per constructionem, the exact ground-state

density equals the density of the Kohn-Sham auxiliary system. It therefore seems reasonable

to break the self-consistency condition involving G0 and replace the self-consistent, non-

interacting reference propagator with a fixed reference propagator which is the inverse of a

Hartree Hamiltonian where the density stems from the Kohn-Sham equations. This fixed ref-

erence propagator then has the effect of implicitly summing the total local contribution to Σ̃.

Auxiliary Vertex Function We introduce the auxiliary quantities

Ξ(1, 2, 3, 4) = δ(1, 4)δ(2, 3) + i~
∫

d(5, 6) Γ(1, 5, 3, 6)G(6, 4)G(2, 5) (4.151)

Ξ̃(1, 2, 3, 4) = δ(1, 4)δ(2, 3) + i~
∫

d(5, 6) Γ̃(1, 5, 3, 6)G(6, 4)G(2, 5) (4.152)

where we define

Γ̃(1, 2, 3, 4) = Ĩ(1, 2, 3, 4) +

∫
d(5, 6, 7, 8) Ĩ(1, 5, 3, 6)G(6, 7)G(8, 5)Γ̃(7, 2, 8, 4). (4.153)

In particular in the space-time domain we can write

Λ(1, 2; 3) = Λ̃0(1, 2; 3) + i~
∫

d(4, 5) Γ(1, 5, 2, 6)G(6, 3)G(3, 5)

Λ̃(1, 2; 3) = Λ̃0(1, 2; 3) + i~
∫

d(4, 5) Γ̃(1, 5, 2, 6)G(6, 3)G(3, 5)

such that

Λ(x1t1,x2t2; x3t3) = Ξ(x1t1,x2t2,x3t3,x2t2) (4.154)

Λ̃(x1t1,x2t2; x3t3) = Ξ̃(x1t1,x2t2,x3t3,x2t2). (4.155)
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The four-point quantity Ξ will be called auxiliray vertex function. Λ is called vertex correc-

tions. The auxiliary vertex function also obeys a Bethe-Salpeter like equation. Plugging the

Bethe-Salpeter equation into the defining equation for the intermediate vertex function, we

get

Ξ̃(1, 2, 3, 4) = δ(1, 4)δ(2, 3) + i~
∫

d(5, 6) Γ̃(1, 5, 3, 6)G(6, 4)G(2, 5)

= δ(1, 4)δ(2, 3) + i~
∫

d(5, 6) Ĩ(1, 5, 3, 6)G(6, 4)G(2, 5)

+(i~)2

∫
d(5, 6, 7, 8, 9, 10) Ĩ(1, 7, 3, 8)G(8, 9)G(10, 7)Γ̃(9, 5, 10, 6)G(6, 4)G(2, 5)

5↔7
6↔8= δ(1, 4)δ(2, 3) + i~

∫
d(5, 6) Ĩ(1, 5, 3, 6)G(6, 4)G(2, 5)

+(i~)2

∫
d(5, 6, 7, 8, 9, 10) Ĩ(1, 5, 3, 6)G(6, 9)G(10, 5)Γ̃(9, 7, 10, 8)G(8, 4)G(2, 7)

= δ(1, 4)δ(2, 3) + i~
∫

d(5, 6, 9, 10) Ĩ(1, 5, 3, 6)G(6, 9)G(10, 5)×

(δ(9, 4)δ(2, 10) + i~
∫

d(7, 8) Γ̃(9, 7, 10, 8)G(8, 4)G(2, 7))

= δ(1, 4)δ(2, 3) + i~
∫

d(5, 6, 9, 10) Ĩ(1, 5, 3, 6)G(6, 9)G(10, 5)Ξ̃(9, 2, 10, 4)

i.e.

Ξ̃(1, 2, 3, 4) = δ(1, 4)δ(2, 3) + i~
∫

d(5, 6, 7, 8) Ĩ(1, 5, 3, 6)G(6, 7)G(8, 5)Ξ̃(7, 2, 8, 4). (4.156)

Similarly, one shows

Ξ(1, 2, 3, 4) = δ(1, 4)δ(2, 3) + i~
∫

d(5, 6, 7, 8) I(1, 5, 3, 6)G(6, 7)G(8, 5)Ξ(7, 2, 8, 4). (4.157)

Equating 2 = 4 and relabeling 4 7→ 3 yields equations

Λ̃(1, 2; 3) = δ(1, 2)δ(2, 3) + i~
∫

d(5, 6, 7, 8) Ĩ(1, 5, 2, 6)G(6, 7)G(8, 5)Λ̃(7, 8; 3). (4.158)

which is also sometimes called Bethe-Salpeter equation. Equivalently, one has

Λ(1, 2; 3) = δ(1, 2)δ(2, 3) + i~
∫

d(5, 6, 7, 8) I(1, 5, 2, 6)G(6, 7)G(8, 5)Λ(7, 8; 3). (4.159)

In the electronic structure community, this last equation is usually referred to as the Bethe-

Salpeter equation. This shows that there are a number of different but equivalent Bethe-

Salpeter equations which we summarize in the following table.
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Quantity BSE Comment

Scattering Amplitude Γ = I + IGGΓ original BSE; equation (4.134)

irr Scattering Amplitude Γ̃ = Ĩ + ĨGGΓ̃ irr part of BSE; equation (4.153)

intermediate Vertex Fct Ξ = 1 + IGGΞ equation (4.157)

irr intermediate Vertex Fct Ξ̃ = 1 + ĨGGΞ̃ equation (4.156)

conn Four-Point Prop L = L0 + L0IL equation (4.135)

irr conn Four-Point Prop L̃ = L0 + L0ĨL̃ equation (4.136)

Vertex Corrections Λ = 1 + IGGΛ only in real-space; equation (4.159)

irr Vertex Corrections Λ̃ = 1 + ĨGGΛ̃ only in real-space; equation (4.158)

Table 4.1.: Bethe-Salpeter Equations

Derivation of Hedin’s Equations We now derive from the self-consistent set of equations a

set of equations called Hedin’s equations, which were first derived by Lars Hedin (cf. [41, 42])

and which are the common starting point of Electronic Structure Theory. We start from

L̃(1, 2, 3, 4) = L0(1, 2, 3, 4) + i~
∫

d(5, 6, 7, 8) L0(1, 5, 3, 6)Ĩ(6, 7, 5, 8)L̃(8, 2, 7, 4)

Ξ̃(1, 2, 3, 4) = δ(1, 4)δ(2, 3) + i~
∫

d(5, 6, 7, 8) Ĩ(1, 5, 3, 6)G(6, 7)G(8, 5)Ξ̃(7, 2, 8, 4).

The last equation is the fifth Hedin equation. We read off that the connection between L̃

and Ξ̃ is given by

L̃(1, 2, 3, 4) =

∫
d(5, 6) L0(1, 5, 3, 6)Ξ̃(6, 2, 5, 4)

= −
∫

d(5, 6) G(1, 6)G(5, 3)Ξ̃(6, 2, 5, 4).

This is the second Hedin equation. The third Hedin equation is W = V + i~V L̃W . We now

have to bring the self-energy into play. We use

(W · L̃)(1, 2) =

∫
d(3, 4, 5) W (1, 4, 5, 3)L̃(3, 5, 4, 2) (4.160)

and

L̃(1, 2, 3, 4) = −G(1, 4)G(2, 3)− i~
∫

d(5, 6, 7, 8) G(1, 5)G(2, 6)Γ̃(5, 6, 7, 8)G(7, 3)G(8, 4).

Thesis, Vienna, July 4, 2012



202 Ronald Starke: Green Functions and Electronic Structure Theory

Therefore,

(W · L̃)(1, 2) =

∫
d(3, 4, 5) W (1, 4, 5, 3)L̃(3, 5, 4, 2)

= −
∫

d(3, 4, 5) W (1, 4, 5, 3)(G(3, 2)G(5, 4)

+i~
∫

d(9, 6, 7, 8) G(3, 9)G(5, 6)Γ̃(9, 6, 7, 8)G(7, 4)G(8, 2))

= −
∫

d(3, 8, 4, 5) W (1, 4, 5, 3)(δ(3, 8)G(8, 2)G(5, 4)

+i~
∫

d(9, 6, 7) G(3, 9)G(5, 6)Γ̃(9, 6, 7, 8)G(7, 4)G(8, 2)).

Introducing now the exchange correlation self-energy Σ̃xc by

(i~)−1Σ̃xc(1, 8)
def
=

∫
d(3, 4, 5) W (1, 4, 5, 3)(G(5, 4)δ(3, 8)

+i~
∫

d(9, 6, 7) G(3, 9)G(5, 6)Γ̃(9, 6, 7, 8)G(7, 4))

=

∫
d(3, 4, 5) W (1, 4, 5, 3)×

(G(5, 4)δ(3, 8) + i~
∫

d6 G(5, 6)

∫
d(9, 7) Γ̃(6, 9, 8, 7)G(3, 9)G(7, 4))

=

∫
d(5, 6) G(5, 6)

∫
d(3, 4) W (1, 4, 5, 3)×

(δ(6, 4)δ(3, 8) + i~
∫

d(9, 7) Γ̃(6, 9, 8, 7)G(3, 9)G(7, 4)))

=

∫
d(5, 6) G(5, 6)

∫
d(3, 4) W (1, 4, 5, 3)Ξ̃(6, 3, 8, 4)

=

∫
d(3, 4, 5, 6) G(5, 6)W (1, 4, 5, 3)Ξ̃(6, 3, 8, 4).

we get

−(W · L̃)(1, 2) = (i~)−1

∫
d3 Σ̃xc(1, 3)G(3, 2). (4.161)
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Hedin’s equations now read

G(1, 2) = G0(1, 2) +

∫
d(3, 4) G0(1, 3)Σ̃xc(3, 4)G(4, 2)

Σ̃xc(1, 2) = i~
∫

d(3, 4, 5, 6) G(5, 6)W (1, 4, 5, 3)Ξ̃(3, 6, 4, 2)

L̃(1, 2, 3, 4) = −
∫

d(5, 6) G(1, 6)G(5, 3)Ξ̃(6, 2, 5, 4)

W (1, 2, 3, 4) = V (1, 2, 3, 4) + i~
∫

d(5, 6, 7, 8) V (1, 7, 3, 5)L̃(5, 6, 7, 8)W (8, 2, 6, 4)

Ξ̃(1, 2, 3, 4) = δ(1, 4)δ(2, 3) + i~
∫

d(5, 6, 7, 8) Ĩ(1, 5, 3, 6)G(6, 7)G(8, 5)Ξ̃(7, 2, 8, 4).

Usually, Hedin’s equations are not written down in this form. Instead, the above set of

equations is the “unitarily covariant form” of Hedin’s equations. Here, the term “unitarily

covariant” means that the equations are form-invariant under unitary transformations in

the one-particle Hilbert space. This can be seen by reinterpreting the space-time indices

1 = (x1, t1) as referring to orbitals and frequencies and noting that the unitarily covariant

Hedin equations are defined in terms of operator products.

Standard Form of Hedin’s Equations results from the above set by reinstalling all

deltas in V and W and introducing P̃ (1, 2) = i~L̃(1, 2, 1+, 2+), Λ̃(1, 2; 3) = Ξ̃(1, 3, 2, 3).

Indeed from

W (1, 7, 8, 2) = V (1, 7, 8, 2) + i~
∫

d(3, 4, 5, 6) V (1, 5, 8, 3)L(3, 4, 5, 6)V (6, 7, 4, 2)

we find

w(1, 2) = v(1, 2) +

∫
d(3, 4) v(1, 3)P (3, 4)v(4, 2)

where the right time order is automatically produced through the redefinition of the Coulomb

potential and W (1, 2, 3, 4) = w(1, 4)δ(4, 2)δ(3, 1). Hedin’s equations then ultimately boil

down to

G(1, 2) = G0(1, 2) +

∫
d(3, 4) G0(1, 3)Σ̃xc(3, 4)G(4, 2)

Σ̃xc(1, 2) = i~
∫

d(3, 4) G(1, 4)W (1, 3)Λ̃(4, 2; 3)

P̃ (1, 2) = −i~
∫

d(5, 6) G(1, 6)G(5, 1+)Λ̃(6, 5; 2)

w(1, 2) = v(1, 2) +

∫
d(3, 4) v(1, 3)P̃ (3, 4)v(4, 2)

Λ̃(1, 3; 2) = δ(1, 2)δ(2, 3) + i~
∫

d(5, 6, 7, 8) Ĩ(1, 5, 3, 6)G(6, 7)G(8, 5)Λ̃(7, 8; 2).
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In their standard form, Hedin’s equations are the direct condensed matter analog10 of the

Schwinger-Dyson equations (cf. e.g. [47] p.475f) in high-energy physics. The unitary covari-

ance is broken by equal-point limits and point-wise products.

Convential Derivation of Hedin’s Equations Originally, Hedin’s equations have been

found through arguments using functional derivatives. For the convenience of the reader

we briefly review these arguments without going into details. We follow closely [14, 41, 42].

One starts with a Gell-Mann and Low perturbative expression for the two-point propagator

where the perturbation is given by the auxiliary, second-quantized “potential”.

Û(t) =

∫
dx1x2 u(x1t1,x2t2)ψ̂†(x2)ψ̂(x1). (4.162)

The aim of this construction is to calculate functional derivatives with respect to this po-

tential and then to set U := 0. In particular, with the Gell-Mann and Low formula one

shows
δG(1, 2)

δu(3, 4)
= −G4(1, 4, 2, 3) +G(1, 2)G(4, 3). (4.163)

As this formula expresses the four-point propagator in terms of a functional derivative of the

two-point-propagator, this can now be plugged into the equation of motion for G and the

insertion of an identity in the form 1 = G−1G then shows that

Σ̃xc(1, 2) = i~
∫

d(3, 4, 5) v(1+, 3)
δG(1, 4)

δu(3)
G−1(4, 2) (4.164)

or

Σ̃xc(1, 2) = −i~
∫

d(3, 4, 5) v(1+, 3)G(1, 4)
δG−1(4, 2)

δu(3)
(4.165)

where u(3, 4) := u(3)δ(3, 4). The second equation for Σ follows from the first be taking the

funtional derivative with respect to u of the equation 1 = G−1G using the Leibniz rule.

(Note that here, as always, one has to assume that G is an invertible integral operator.)

Now, recall classical electrodynamics where we defined

ϕtot = ϕext + ϕint.

10The Green function G, the vertex function Λ̃ and the self-energy Σ̃ have a direct high-energy counterpart.

The high-energy counterpart of the so-called screened potential W is the exact photon propagator and

the analog of the polarizability is the photon self-energy. Hedin’s equations can then be identified with

equations (19.2, 19.5, 19.9, 19.10, 19.12) in the standard reference [12] on relativistic quantum Field

Theory. See also http://de.wikipedia.org/wiki/Dyson-Schwinger-Gleichungen (June 25, 2012).

The equations given there correspond to the first, third and fifth Hedin equation in Fourier space.
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In the context of quantum many-body theory, we interpret the induced potential as the

Hartree type potential in the external field u. Therefore, one introduces

v(1) = u(1)− i~
∫

d2 v(1, 2)G(2, 2+). (4.166)

One now replaces derivatives δ
δu

by the chain rule with derivatives δ
δv

and gets

Σ̃xc(1, 2) = −i~
∫

d(3, 4, 5) v(1+, 3)
δG−1(1, 4)

δv(5)

δv(5)

δu(3)
G(4, 2). (4.167)

In accordance with classical electrodynamics, one defines

ε−1(1, 2) =
δv(1)

δu(2)
. (4.168)

Furthermore, we set

w(1, 2) =

∫
d3 v(1, 3)ε−1(3, 2)

Λ̃(1, 2; 3) = −δG
−1(1, 2)

δv(3)

and hence

Σ̃xc(1, 2) = i~
∫

d(3, 4) G(1, 4)w(3, 1+)Λ̃(4, 2; 3). (4.169)

In order to get an equation for the irreducible vertex function, one uses G−1 = G−1
0 −v− Σ̃xc

calculates

Λ̃(1, 2; 3) = δ(1, 2)δ(1, 3) +
δΣ̃xc(1, 2)

δv(3)

= δ(1, 2)δ(1, 3) +

∫
d(4, 5)

δΣ̃xc(1, 2)

δG(4, 5)

δG(4, 5)

δv(3)

= δ(1, 2)δ(1, 3) +

∫
d(4, 5, 6, 7)

δΣ̃xc(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Λ̃(6, 7; 3)

where in the last line we inserted G−1G, used again the trick GδvG
−1 + δvGG

−1 = 0 and

inserted the definition of Λ̃. Finally, by the definition of ε and v we find

ε−1(1, 2) = δ(1, 2) +

∫
d3 v(1, 3)P (3, 2) (4.170)

where

P (1, 2) = −i~
δG(1, 1+)

δu(2)
. (4.171)
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As −i~G(1, 1+) = n(1) this is in accordance with the classical relation χ = δρint/δϕext. In

analogy to the classical relation χ̃ = δρind/δϕtot we define

P̃ (1, 2) = −i~
δG(1, 1+)

δv(2)
(4.172)

and by an application of the chain rule we retrieve

P (1, 2) = P̃ (1, 2) +

∫
d(3, 4) P̃ (1, 3)v(3, 4)P (4, 2) (4.173)

precisely as in classical electrodynamics. By again inserting G−1G into the defining equation

for P̃ and switching the derivative from G to G−1 we finally find

P̃ (1, 2) = −i~
∫

d(3, 4) G(1, 3)G(4, 1)Λ̃(3, 4; 2). (4.174)

This concludes the conventional derivation of Hedin’s equations.

Remarks A comparison with the derivation of the minimal set from the self-consistent

equations shows in particular that

i~Ĩ(1, 2, 3, 4) =
δΣ̃xc(1, 3)

δG(2, 4)
(4.175)

i~I(1, 2, 3, 4) =
δΣ̃(1, 3)

δG(2, 4)
. (4.176)

with Σ̃ = Σ̃loc + Σ̃xc = vH + Σ̃xc. Finally, we also conclude that the so-called screened po-

tential W does not describe an “effective” (i.e. screened) interaction between the electrons.

Such a picture would be wrong on various grounds: (i) the electrons cannot screen their own

interaction because screening means to take out certain degrees of freedom and to compen-

sate for this by an effective interaction, (ii) the time-ordered response function is not the

physical response function, (iii) a Schrödinger equation where the screened potential enters

instead of the Coulomb potential would lead to wrong results, (vi) the role of W is to subsum

a certain class of diagrams. It is, however, possible to interpret W as the screened Coulomb

interaction of the nuclei as will be explained later.

Thesis, Vienna, July 4, 2012



Ronald Starke: Green Functions and Electronic Structure Theory 207

Reducible Version of Hedin’s Equations? It is tempting to write down a reducible

counterpart of Hedin’s equations as

G(1, 2) = G0(1, 2) +

∫
d(3, 4) G0(1, 3)Σxc(3, 4)G0(4, 2)

Σxc(1, 2) = i~
∫

d(3, 4, 5, 6) G(5, 6)W (1, 4, 5, 3)Ξ(3, 6, 4, 2)

L(1, 2, 3, 4) = −
∫

d(5, 6) G(1, 6)G(5, 3)Ξ(6, 2, 5, 4)

W (1, 2, 3, 4) = V (1, 2, 3, 4) + i~
∫

d(5, 6, 7, 8) V (1, 7, 3, 5)L(5, 6, 7, 8)W (8, 2, 6, 4)

Ξ(1, 2, 3, 4) = δ(1, 4)δ(2, 3) + i~
∫

d(5, 6, 7, 8) I(1, 5, 3, 6)G(6, 7)G(8, 5)Ξ(7, 2, 8, 4).

This, however, is wrong on various grounds: (i) in the derivation of Σxc from V L one

cannot factor out G0 instead of G, (ii) the connection between Σxc and Σ̃xc is given by

Σxc = Σ̃xc + Σ̃xcG0Σxc which is inconsistent with the connection between Ξ and Ξ̃. This

is also the reason why Hedin’s equations only come in as an irreducible set of equations.

In other words, as opposed to the self-consistent set, Hedin’s equations exist only for the

irreducible quantities.
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4.2. Standard Approximations to the Self-Consistent

Equations

4.2.1. Definition of Standard Approximations

Introduction One of the most intriguing features of the self-consistent sets of equations

G = G0 − i~G0V · L or G = G0 − i~G0W · L̃ (4.177)

L = L0 + i~L0IL or L̃ = L̃0 + i~L̃0ĨL̃ (4.178)

W = V + i~V IV or W = V + i~V ĨW (4.179)

is that all standard approximations naturally fit into a hierarchy of approximations for the

four-point propagator or – equivalently – for L. In this hierarchy, the accuracy grows along

two different directions: inclusions of further graphs and self-consistency. Self-consistency

means that the approximative expression for L or L̃ is given in terms of the full propagator

G whereas in the corresponding non-self-consistent approximation the same expression is

given in terms of G0. Therefore, every approximation comes in two different guises: in a self-

consistent in a non-self-consistent version. The self-consistent version of first-order perturba-

tion theory (in terms of the Hartree propagator) is the Hartree-Fock approximation, the self-

consistent version of the Random Phase approximation (RPA)11 is the GW -approximation

and the self-consistent version of the ladder approximation is the W -approximation. Con-

cretely, we have the following definitions:12

11Both of these approximations have it that the four-point propagator factorizes. This is analogous to the

factorization of the two-particle correlation function in the classical theory of kinetics. Therefore, the

RPA is a quantum version of Boltzmann’s famous Stoßzahlenansatz. [45]
12where GG means G(1, 4)G(2, 3) and W̄ (1, 2, 3, 4) = W (2, 1, 3, 4).
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Approximation L L̃ L0 I Ĩ

Hartree 0 0 0 0 0

1st order PT L̃ L0 −G0G0 0 0

Hartree-Fock L̃ L0 −GG 0 0

RP Approximation L = L̃+ i~L̃V L L0 −G0G0 V 0

GW Approximation L = L̃+ i~L̃V L L0 −GG V 0

Ladder Approximation L = L̃+ i~L̃V L L̃ = L̃0 + i~L̃0ĨL̃ −G0G0 V + Ĩ −V̄
W Approximation L = L̃+ i~L̃V L L̃ = L̃0 + i~L̃0ĨL̃ −GG V + Ĩ −W̄
Beyond L = L̃+ i~L̃V L L̃ = L̃0 + i~L̃0ĨL̃ −GG V + Ĩ Ĩ[G, V,W ]

Table 4.2.: Selfconsistent Set and Standard Approximations

Finally, note that the Green function perturbation theory carries over to the temperature

T > 0 case in the sense that the Feynman rules still hold with the proviso that the non-

interacting reference Green functions are to be replaced with their temperature counterparts.

([35], appendix A.3.4) Furthermore, the equation of motion theory also carries over to T > 0

directly because it is based on operator identities and otherwise makes only use of the fact the

Green function is a linear functional of the field operators. Therefore, the self-consistent set

of equations also holds for temperature Green functions and the above approximation scheme

generalizes immediately to T > 0. As this thesis is about Electronic Structure Theory, we

do not investigate this case.

4.2.2. Hartree-Fock Approximation

Self-Energy in the Hartree-Fock Approximation To calculate the self-energy, we start

from

−(W · L̃)(1, 2) ≡ −(V · L)(1, 2) = (i~)−1

∫
d3 Σ̃xc(1, 3)G(3, 2). (4.180)

Concretely, for the Hartree-Fock approximation we find

(V · L)(1, 2) =

∫
d(3, 4, 5) V (1, 4, 5, 3)L(3, 5, 4, 2)

= −
∫

d(3, 4, 5) V (1, 4, 5, 3)G(3, 2)G(5, 4)

= −
∫

d(3, 4, 5) v(1, 3+)δ(1, 5)δ(4, 3)G(3, 2)G(5, 4)

= −
∫

d3 v(1, 3+)G(1, 3)G(3, 2)
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and hence

Σ̃HF
xc (1, 2) = i~v(1, 2+)G(1, 2). (4.181)

Finally, we calculate the corresponding expression in the frequency domain. Introducing the

time-difference variable τ = t1 − t2 we have

Σ̃HF
xc (x1,x2; τ) = v(x1,x2)δ−(τ)i~G(x1,x2; τ) (4.182)

and hence

Σ̃HF
xc (x1,x2;ω) = v(x1,x2)

∫
dω′

2π
(Fδ−)(ω′)i~G(x1,x2;ω − ω′). (4.183)

In order to calculate the Fourier transform of δ±, we apply it to a test-function and find (cf.

[69], p.70)

(F−1δ±)[f̃ ]
def
= δ±[F−1f̃ ]

= δ±
(∫

dω

2π
e−iωtf̃(ω)

)
= lim

t→0±

∫
dω

2π
e−iωtf̃(ω)

!
=

∫
dω

2π
(Fδ±)(−ω)f̃(ω).

From this, we read off that

(Fδ±)(ω) = lim
t→0±

eiωt =: e±iωδ (4.184)

where δ is a positive infinitesimal in the distributional sense (i.e. integrate first and then

perform the limit δ → 0). This implies for the frequency domain

Σ̃HF
xc (x1,x2;ω) = v(x1,x2)

∫
dω′

2π
e−iω′δ i~G(x1,x2;ω − ω′) (4.185)

= v(x1,x2)

∫
dω′

2π
e−i(ω−ω′)δ i~G(x1,x2;ω′) (4.186)

= v(x1,x2)

∫
dω′

2π
eiω′δ i~G(x1,x2;ω′) (4.187)

i.e. Σ̃HF
xc (x1,x2;ω) := Σ̃HF

xc (x1,x2) is effectively independent of ω (through a shift in the

integration variable – the resulting prefactor eiωδ does not feel the integration and becomes

unity after performing the limit δ → 0). In order to perform the frequency integral, we use

the residue theorem (the applicability of which is guaranteed by the convergence factor eiω′δ

stemming from the Fourier transform of the instantaneous Coulomb potential) and close the
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contour in the upper half-plane. This leads to the inclusion of the poles corresponding to

the occupied states. For these, the Green function reverts to the reduced density matrix and

therefore

Σ̃HF
xc (x1,x2) = −v(x1,x2)n2(x2,x1). (4.188)

The prefactor −1 comes in as follows: ~ is absorbed in the integration measure d~ω (G has

poles at es = ~ωs) and the contour integral contributes 2πi times the residues. We conclude

that the Hartree-Fock approximation can also be interpreted as an approximation for the

hierarchy of reduced density matrices such that

n2(x1,x2,x3,x4) = n1(x1,x3)n1(x2,x4)− n1(x1,x4)n1(x2,x3). (4.189)

Hartree-Fock and Green Functions We have already shown that the quasiparticle equa-

tion for the Lehmann amplitudes corresponding to the Hartree-Fock approximation for Σ̃xc

coincides with the Hartree-Fock equations. This induces a reinterpretation of the Hartree-

Fock approximation. In the conventional approach (which we shortly review below), the

Hartree-Fock approximation is a ground-state method. There, the Hartree-Fock eigenvec-

tors and eigenvalues do not have a natural interpretation. Their role consists exclusively

in the production of an approximate ground-state energy through their Slater determinant.

Within the Green function approach, we see that the Hartree-Fock orbitals and eigenvalues

are to be interpreted as quasiparticle wave-functions (Lehmann amplitudes) and quasiparti-

cle energies. The corresponding Hartree-Fock propagator implies a self-consistent summation

of first-order graphs.

Hartree-Fock Approximation as a Variational Method Variational methods are based

on the well-known Rayleigh-Ritz principle which we formulate as

Theorem 4.2.1 The functional E : H → R given by

Ψ 7→ E[Ψ] =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

. (4.190)

with the self-adjoint operator Ĥ is stationary at Φ = Ψ if and only if Ψ is an eigenvector of

Ĥ. The corresponding eigenvalue of Ĥ is given by E[Ψ]. Moreover, E[Ψ] takes its absolute

minimum at the ground-state Ψ0 of Ĥ.

The Rayleigh-Ritz principle motivates the idea of approximating the ground-state by min-

imizing the Rayleigh-Ritz functional for a certain class of wave-functions. Within the

Hartree-Fock Method, Ψ is supposed to be an antisymmetrized product of one-particle wave-

functions, i.e. a Slater determinant Ψ = ϕ1 ∧ . . . ∧ ϕN and the orbitals ϕi are chosen such
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that the corresponding Slater determinant minimizes the Rayleigh-Ritz functional in the

set of Slater determinants. The stationarity of the energy expectation value against first-

order variations (under the boundary condition of fixed norm) translates into a non-linear

eigenvalue equation for the Hartree-Fock orbitals with the resulting one-particle, auxiliary

Hamiltonian being given by

ĤHF = − ~2

2m
∆ + V̂ext + V̂H − V̂F (4.191)

where

V̂H =

∫
dx vH(x)ψ̂†(x)ψ̂(x) (4.192)

V̂F =

∫
dxdx′ ψ̂†(x′)vF(x′,x)ψ̂(x) (4.193)

with

vH(x) =
e2

4πε0

N∑
i=1

∫
dx′

ϕ∗i (x
′)ϕi(x

′)

|x− x′|
(4.194)

vF(x,x′) =
e2

4πε0

N∑
i=1

ϕi(x)ϕ∗i (x
′)

|x− x′|
. (4.195)

Explicitly, the orbitals ϕi are determined by the non-linear eigenvalues problem

ĤHF[{ϕj}j=1,...,N ]ϕi = εiϕi (4.196)

with the proviso that the corresponding N eigenfunctions minimize the energy expectation

value. The Hartree-Fock solution ΨN
HF is then given by SLATER(ϕ1, . . . , ϕN) where the ϕi

are the solutions of the non-linear Hartree-Fock equations. For the expectation values in the

self-consistent solution ΨN
HF = ϕ1 ∧ . . . ∧ ϕN we find

〈V̂H〉 =
e2

4πε0

N∑
i,j=1

∫
dxdx′

ϕ∗i (x)ϕi(x)ϕ∗j(x
′)ϕj(x

′)

|x− x′|
(4.197)

〈V̂F〉 =
e2

4πε0

N∑
i,j=1

∫
dxdx′

ϕ∗i (x)ϕj(x)ϕ∗j(x
′)ϕi(x

′)

|x− x′|
(4.198)

or

〈V̂H〉 =
e2

4πε0

N∑
i,j=1

∫
dxdx′

ρi i(x)ρjj(x
′)

|x− x′|
(4.199)

〈V̂F〉 =
e2

4πε0

N∑
i,j=1

∫
dxdx′

ρi j(x)ρji(x
′)

|x− x′|
(4.200)
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with ρi j(x) = 〈ϕi|ρ̂(x)|ϕj〉. The first term, the so-called Hartree energy, can be understood

in purely classical terms: it corresponds to the Coulomb interaction of the charge densities

of two particles in state ϕi and ϕj respectively. The second term, the so-called exchange

interaction, has no classical counterpart. Notice that the self-interaction contributions to

the above integrals (i = j) cancel between the Hartree and the exchange term. For the

Hartree-Fock ground-state energy, we find

EN
HF ≡ 〈Ĥ〉ΨNHF

= 〈Ĥ0〉ΨNHF
+ 〈V̂Coul〉ΨNHF

= 〈Ĥ0〉ΨNHF
+

1

2
〈V̂H〉ΨNHF

− 1

2
〈V̂F〉ΨNHF

(4.201)

whereas the evaluation of the Hartree-Fock Hamiltonian yields

〈ĤHF〉ΨNHF
=

N∑
i=1

εi = 〈Ĥ0〉ΨNHF
+ 〈V̂H〉ΨNHF

− 〈V̂F〉ΨNHF
= 〈Ĥ0〉ΨNHF

+ 2〈V̂Coul〉ΨNHF
. (4.202)

Hartree-Fock Approximation as Self-Consistent Mean-Field Theory In general, we

define a mean-field operator ĤΨ
MF corresponding to

Ĥ = ÂB̂ (4.203)

as

ĤΨ
MF = Â〈B̂〉Ψ + 〈Â〉ΨB̂ − 〈Â〉Ψ〈B̂〉Ψ. (4.204)

Following this philosophy, we now want to define a mean-field Coulomb potential. First, we

write the Coulomb potential in an orbital basis as

V̂Coul =
1

2

∑
ijkl

V ij
lka
†
ia
†
jakal. (4.205)

Essentially, we have to define mean-field operators corresponding to the operator products

a†ia
†
jalak. We define the corresponding mean field operator as the sum over all products

of the form 〈a(†)
1 a

(†)
2 〉Φ0a

(†)
3 a

(†)
4 minus all products of the form 〈a(†)

1 a
(†)
2 〉Φ0〈a

(†)
3 a

(†)
4 〉Φ0 where

Φ0 is assumed to be a Slater determinant over a complete set of orthonormal orbitals, the

Coulomb potential is expanded in the same set of orbitals and the averaged operators have

to be commuted into a nearest neighbor position before being contracted. We then get

V̂ Φ0
MF =

1

2

∑
ijkl

V ij
lk(〈a

†
jak〉Φ0a

†
ial + 〈a†ial〉Φ0a

†
jak − 〈a

†
jal〉Φ0a

†
iak − 〈a

†
iak〉Φ0a

†
jal)

−1

2

∑
ijkl

V ij
lk(〈a

†
jak〉Φ0〈a

†
ial〉Φ0 − 〈a

†
jal〉Φ0〈a

†
iak〉Φ0)

=
∑
ijkl

V ij
lk(〈a

†
jak〉Φ0a

†
ial − 〈a

†
jal〉Φ0a

†
iak)− 〈V̂Coul〉Φ01F

=: V̂ Φ0
HF − 〈V̂Coul〉Φ01F .
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We then have 〈a†iak〉Φ0 = δikni. This implies that V̂ Φ0
HF is the formal Hartree-Fock poten-

tial corresponding to the Slater determinant Φ0. The Hartree-Fock equations can then be

characterized as

ĤΦ0
HFΦ0 ≡ (ĤΦ0

MF + 〈V̂Coul〉Φ01)Φ0 = E0Φ0. (4.206)

That means: the Hartree-Fock solution Φ0 is a self-consistent mean-field ground-state. If the

mean-field Hamiltonian ĤΨ
MF is computed with the solution Φ0 of the Hartree-Fock equations,

we regain precisely the mean-field Hamiltonian which was used to calculate the Hartree-Fock

solution. Note, however, that it has to be checked that the Hartree-Fock solutions actually

yield a minimum and not only an extremum of the Hartree-Fock functional.

4.2.3. Beyond Hartree-Fock

GW Approximation for the Four-Point Green Function The GW approximation is

algebraically equivalent to the Hartree-Fock equation, but replaces L with L̃. That means,

within the GW approximation, L̃ (instead of L) is given by

L̃(1, 2, 3, 4) = −G(1, 4)G(2, 3). (4.207)

This makes it evident that the GW approximation is highly superior to the Hartree-Fock

approximation. The price we have to pay is that the corresponding quasiparticle equation is

much more complicated: (i) the self-energy gets frequency dependent and the quasiparticle

energies therefore have to fulfill the quasiparticle condition es(ωs) = ~ωs, (ii) the self-energy

depends on all Lehman amplitudes (and not only on the occupied Lehmann amplitudes as

in the Hartree-Fock case), (iii) the expression for the self-energy operator in terms of the

Lehmann amplitudes is much more complicated than in the Hartree-Fock case, (iv) even for

fixed Lehman amplitudes, the self-energy operator is not symmetric. Precisely as in the case

of the Hartree-Fock approximation, one shows that the GW self-energy is given by

Σ̃GW
xc (1, 2) = i~w(1, 2+)G(1, 2) (4.208)

motivating the name GW approximation.

W -Approximation We say that an approximation contains vertex corrections, whenever

Ξ̃(1, 2, 3, 4) 6= δ(1, 4)δ(2, 3). Analogously, we can say that Ĩ 6= 0 or by the 5th Hedin equation

Ξ̃(1, 2, 3, 4) = δ(1, 4)δ(2, 3) + i~
∫

d(5, 6, 7, 8) Ĩ(1, 5, 3, 6)G(6, 7)G(8, 5)Ξ̃(7, 2, 8, 4).
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The W -approximation is given by

Ĩ(1, 2, 3, 4) = −W̄ (1, 2, 3, 4) = −W (1, 2, 4, 3). (4.209)

In the space-time domain, this yields the particularly simple equation

Λ̃(1, 2; 3) = δ(1, 3)δ(3, 2)− i~w(1, 2+)

∫
d(4, 5) G(1, 4)G(5, 2)Λ̃(4, 5; 3). (4.210)

Interpretation The W -approximation can be easily interpreted graphically. First, consider

the bare vertex13

Λ̃0(1, 2; 3) = δ(1, 3)δ(3, 2) (4.211)

The first vertex correction to the bare vertex is given by∫
d(4, 5) Ver(4, 1, 2, 5)Λ̃0(4, 5; 3) = −G(1, 3)w(1, 2)G(3, 2) (4.212)

where

Ver(1, 2, 3, 4) = −i~G(2, 1)w(2, 3)G(4, 3). (4.213)

One sees easily that this induces iteratively an infinite subclass of vertex corrections (the

loop corrections) via

Λ̃n(1, 2; 3) = −Λ̃0(1, 2; 3)−
∫

d(4, 5) Ver(4, 1, 2, 5)Λ̃n−1(4, 5; 3) (4.214)

such that the summation of that infinite subclass of loop corrections corresponds to the fixed

point equation

Λ̃(1, 2; 3) = Λ̃0(1, 2; 3)− i~w(1, 2)

∫
d(4, 5) G(1, 4)G(5, 2)Λ̃(4, 5; 3). (4.215)

It is noteworthy that the decisive equation (4.215) already appears in an appendix to Hedin’s

classical paper ([41], equation A33). Hedin arrived at this equation by a completely different

way, namely by taking the partial derivative (i.e. neglect implicit G-dependence of W ) of

Σ in the GW -approximation, δΣ(1,2)
δG(3,4)

= i~w(1, 2)δ(3, 4), and replugging this result in the

self-consistent equation for the vertex function.

13Strictly speaking, such expressions are ill-defined because they involve point-wise products of the Dirac

distribution. This is avoided in the four-point formalism.
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5. Beyond the Standard Model of

Electronic Structure Theory

5.1. Classical Effective Field Theory

5.1.1. Classical Electrodynamics

Classical Lagrangean The action for the electromagnetic field1 Aµ = (ϕ/c,A) in the

presence of an external current jµ = (cρ, j) is given by

S =

∫
d4x

(
− 1

4µ0

F µν(x)Fµν(x)− Aµ(x)jµ(x)

)
+ Sel[ψ] (5.1)

where

Fµν = ∂µAν − ∂νAµ. (5.2)

The last term Sel[ψ] in equation (5.1) denotes the free part of the action referring to the

“matter” (typically electronic) degrees of freedom. The Euler-Lagrange equations

δS

δAµ(x)
=

∂L
∂Aµ(x)

− ∂ν
∂L

∂(∂νAµ(x))
= 0 (5.3)

lead to the Maxwell equations2

∇ · E =
ρ

ε0

(5.4)

∇× E = −∂tB (5.5)

∇ ·B = 0 (5.6)

∇×B = µ0j + ε0µ0∂tE (5.7)

1The action for the electromagnetic field is of course highly non-unique. The present form is canonical for

classical physics because it is of the standard Yang-Mills form SYang−Mills = 1/4
∫
MTr F ∧ ∗F where ∗

denotes the Hodge operator [5, 71, 84]. However, it turns out that for this action, not all components of

the 4-potential are dynamical which makes the Coulomb gauge quantization almost imperative for this

action. Therefore, in order to quantize e.g. in the Lorentz gauge, one has to modify the action. For

details, we refer to the standard quantum field theoretical literature, as e.g. [40, 46, 47, 63]
2Strictly speaking, the action leads to the inhomogeneous Maxwell equations in the form ∂νF

νµ = µ0j
µ.

The homogeneous Maxwell equations are automatically fulfilled due to the definition of the fields in terms

of the potentials.
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where the electromagnetic field (E,B) is given in terms of the potential as

E(xt) = −∇ϕ(xt)− ∂tA(xt) (5.8)

B(xt) = ∇×A(xt). (5.9)

The Maxwell equations have non-trivial solutions even in the absence of soures jµ (vacuum

solutions). As the general solution to the inhomogeneous equations is given by a particular

solution of the inhomogeneous problem plus the general solution of the homogeneous prob-

lem, this implies that the electromagnetic field is not determined by the sources. In other

words, the electromagnetic field carries independent degrees of freedom which have to be

fixed by appropriate boundary and initial value conditions.

Coulomb Gauge The action of the free electromagnetic field is invariant under the gauge

transformation

Aµ 7→ Aµ − ∂µf. (5.10)

This transformation also leaves the fields (E,B) invariant. Therefore, there is a certain

freedom in the choice of the fields Aµ. This freedom can be used to impose conditions on

Aµ. Within the realm of non-relativistic Quantum Field Theory, a convenient choice is

∇ ·A = 0 (5.11)

or

A = AT = PTA (5.12)

AL = 0. (5.13)

This condition is obviously not Lorentz covariant (but invariant under rotations and trans-

lations). This fact alone does not contradict the Lorentz symmetry of the electromagnetic

theory. It simply means that equation (5.11) – contrary to e.g. the Maxwell equations –

cannot hold in all inertial frames. Our convention therefore is: equation (5.11) holds where

the solid is at rest. From equations (5.8, 5.9) and the Maxwell equations, one finds the

general equations of motion for the potentials

−∆ϕ− ∂t(∇ ·A) =
ρ

ε0

(5.14)

1

c2
∂2
t A−∆A +∇

(
∇ ·A +

1

c2
∂tϕ

)
= µ0j. (5.15)

In the Coulomb gauge this simplifies as

∆ϕ = − ρ

ε0

(5.16)(
1

c2
∂2
t −∆

)
A = µ0j−

1

c2
∂t∇ϕ. (5.17)
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From

∂tρ+∇ · j = 0 (5.18)

it then follows that

∇ ·
(
µ0j−

1

c2
∂t∇ϕ

)
= 0. (5.19)

Therefore, the equation of motion for A can be rewritten as(
1

c2
∂2
t −∆

)
A = µ0jT. (5.20)

In order to find the general solution to this equation, we introduce the Coulomb propagator

Dij by (
1

c2
∂2
t −∆

)
Dij

T (x, x′) = δijT (x− x′) (5.21)

where δijT (x− x′) denotes the integral kernel of PT.

Fourier Decomposition The general Fourier decomposition with respect to x of an ar-

bitrary vector field F ∈ HV reads

F(x) =

∫
dk

(2π)3

3∑
i=1

eifi(k)eik·x. (5.22)

As we deal with a linear superposition, we are free to choose a different basis ei(k) for every

Fourier mode. Concretely, we fix the ei(k) such that for every k they form an orthogonal

system and e1(k) = k/|k|. We then have

F(x) =

∫
dk

(2π)3

3∑
i=1

ei(k)fi(k)eik·x (5.23)

∇ · F(x) =

∫
dk

(2π)3
ik · e1(k)f1(k)eik·x (5.24)

∇× F(x) =

∫
dk

(2π)3

3∑
i=2

ik× ei(k)fi(k)eik·x. (5.25)

We read off that for every mode eik·x, |e2(k)〉〈e2(k)|+ |e3(k)〉〈e3(k)| is the projector on HT.

Taking matrix elements of
3∑
i=1

|ei〉〈ei| = 13×3 (5.26)

we see that the integral kernel of PT is given by

δijT (x− x′) =

∫
dk

(2π)3
eik·(x−x′)

(
δij − kikj

|k|2

)
. (5.27)
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As [2, PT] = 0, we get

DT = DPT (5.28)

where (
1

c2
∂2
t −∆

)
D(x, x′) = δ(x− x′)13×3. (5.29)

The latter can be easily solved in the Fourier domain. This yields for the Coulomb propagator

Dij
T (x− x′) = −

∫
d4k

(2π)4

e−ik(x−x′)

k2

(
δij − kikj

|k|2

)
(5.30)

with kx = ωt− k · x and k2 = ω2/c2 − |k|2. The full electromagnetic propagator Dµν(k) is

then given by3

D(k) =

(
1/|k|2 0

0 Dij
T (k)

)
. (5.31)

Under coordinate transformations, Dµν behaves like a second rank tensor. Therefore, in gen-

eral Dµν(k) does not preserve its form. Instead, equation (5.31) holds where the Coulomb

gauge condition holds.

Quantization of the Electromagnetic Field in Vacuo In the Coulomb gauge, the

conjugate momentum to A0 vanishes. Therefore, only A is considered a dynamical variable.

Explicitly, one has

πi =
∂L

∂(∂tAi)
= −Ei = ∂tAi. (5.32)

The transition to the corresponding Quantum Field Theory is implemented through the

equal-time commutation relation

[Êi(xt), Âj(x′t)] = i~δijT (x− x′). (5.33)

This is consistent with ∇ · E = 0. The (non-trivial part of the) Feynman propagator in the

Columb gauge is defined by

−i~Dij
F (x− x′) = 〈0|T Âi(x)Âj(x′)|0〉. (5.34)

Using (c−2∂2
t −∆)Âi = 0 and ∂tθ(t− t′) = δ(t− t′) one shows easily that the propagator is

a classical Green function and therefore in the Fourier domain given by

Dij
F (x− x′) = −

∫
d4k

(2π)4

e−ik·(x−x′)

k2 + iη

3∑
l=2

(el(k)⊗ el(k))ij. (5.35)

Apart from the regularization prescription, this coincides with (5.30).

3In fact, this follows strictly from the facts that (i) the propagator is quantum field theoretically defined

as ∝ 〈T Âµ(x)Âν(x′)〉, (ii) A0 is non-dynamical and therefore a c-number and (iii) 〈Âi(x)〉 = 0 in the

ground-state.
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5.1.2. Effective Electronic Field Theory

Functional Integral Approach In Quantum Field Theory, one assumes a functional inte-

gral representation for the Green functions of the general form [80]

〈0|T φ̂(x1) . . . φ̂(xn)|0〉 =
1

Z

∫
Dφ φ(x1) . . . φ(xn)eiS[φ]/~ (5.36)

where the normalization factor Z is given by
∫
Dφ eiS[φ]/~. (for details, see e.g. [75] Chapter

9, equation (9.18)) In principle, this carries over to the case of Quantum Electrodynamics,

where the action S = S[ψ,Aµ] is given by equation (5.1).4 Here we are dealing with two

fields, the electromagnetic field Âµ(x) and the electronic field ψ̂(x) (Pauli-Schrödinger or

Dirac). Suppose now we are only interested in the electronic Green functions5

〈0|T ψ̂(x1) . . . ψ̂†(xn)|0〉 =
1

Z

∫
DψDψ̄DAµ ψ(x1) . . . ψ̄(xn)eiS[ψ,Aµ]/~ (5.37)

where the bar denotes the conjugate Grassmann variable. This suggests to define an effective

action through

eiSeff [ψ]/~ =

∫
DAµ eiS[ψ,Aµ]/~ (5.38)

such that

〈0|T ψ̂(x1) . . . ψ̂†(xn)|0〉 =
1

Z

∫
DψDψ̄ ψ(x1) . . . ψ̄(xn)eiSeff [ψ]/~. (5.39)

The effective action can be calculated analytically in terms of Gaussian integrals yielding in

terms of photon propagator Dµν(x− x′) the well-known result (see e.g. [59] p.225)

Seff [ψ] = Sel[ψ]− 1

2

∫
dxdx′ jµ(x)Dµν(x− x′)jν(x′). (5.40)

4For fermionic variables, the corresponding fields in the path integral formalism become anticommuting

and the functional integral becomes a Grassmann integral.
5This path integral is actually ill-defined due to the gauge freedom or – equivalently – the non-existence of

a propagator which fulfills − 1
4F

µνFµν = 1
2A

µ(D−1)µνA
ν . (cf. e.g. [11, 75, 85]) In fact, in the functional

integral, one integrates over infinitely many gauge equivalent field configurations. The kernel of “D−1”=

ηµν2− ∂µ∂ν just consists of the pure gauges ∂µΛ. On the other hand, such a propagator is necessary, in

order to solve the path integral in terms of Gaussian integrations. This is a standard problem in gauge

theory which is cured by an insertion of 1 in the form 1 =
∫
DΛ ∆ΦΠ[Aµ]δ(F [AµΛ]) where ∆ΦΠ denotes the

Fadeev-Popov determinant, F [·] is a gauge-fixing condition and the integral goes over all gauge transforms.

DΛ = ΠxdΛ(x) and dΛ(x) denotes the Haar-measure on the gauge group U(1). This integration over the

“gauge-orbit” can then be separated out and cancels with the normalization factor. All in all, this leads

to a redefinition of the generating functional as
∫
DAµ ∆ΦΠ[Aµ]δ(F [Aµ])eiS[Aµ]/~. The Fadeev-Popov

ghosts come in when the Fadeev-Popov determinant is represented as a Grassmann-Gaussian integral

over fermionic ghost fields. Inter alia, this leads to a modification of the action L 7→ L − 1/ξ(∂µA
µ)2

(the gauge fixing term) where ξ is a real parameter. (In the Lorentz gauge this term is just zero.) In

the following, we do not touch upon these problems because we use the path-integral only as a heuristic

method.
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Interpretation The effective action can be understood as describing “effectively” a subset

of the fundamental degrees of freedom by averaging or integrating out the other degrees of

freedom. Typically, this idea is used in quantum Field Theory when one wants to integrate

out the high-energy degrees of freedom. In the above example, the partition of the degrees of

freedom is canonically given: there are the electronic degrees of freedom for which one wants

to have an effective action and the electromagnetic or photonic degrees of freedom which one

wants to integrate out. (cf. e.g. [86]) In the case of high energy and low energy degrees of

freedom, the situation is not so simple but can nonetheless be interpreted similarly. Consider

e.g. a quantum Field Theory with the Fock-space F over the one-particle Hilbert space H
which we take as L2(R,C, dk) (one particle wave-functions in momentum space). We can

split R into A := [−kc, kc] and B := R − [−kc, kc], i.e. into high and low energy degrees of

freedom. The one-particle Hilbert space decomposes accordingly into L2(A) ⊕ L2(B). For

the corresponding Fock space we have F(L2(A)⊕L2(B)) = F(L2(A))⊗F(L2(B)). Suppose

now the Hamiltonian Ĥ of the system is given by the kinetic energy Ĥ0 plus the Coulomb

interaction V̂ . The free field operator corresponding to Ĥ0 naturally decomposes into a low

and a high frequency part,

ψ̂(x) =
∑
|k|≤kc

eikxak +
∑
|k|>kc

eikxak = ψ̂<(x) + ψ̂>(x). (5.41)

The free Hamiltonian Ĥ0 can then be brought into the form

Ĥ0 = Ĥ<
0 ⊗ 1F(L2(B)) + 1F(L2(A)) ⊗ Ĥ>

0 , (5.42)

but the Coulomb interaction involves mixed terms with products like ψ̂>(x)ψ̂<(x). This

shows that with the partition of the system into high and low energy degrees of freedom, the

Hamiltonian can be brought into the form of two interacting systems. Integrating out the

high (or low) energy degrees of freedom then follows the same logic as in the derivation of

the effective electronic action from the fundamental electromagnetic Lagrangean.6

The effective interaction also has a simple classical interpretation: it results from the fun-

damental action by eliminating the electromagnetic field by solving the equation of motion

for Aµ in terms of jν using the electromagnetic Green function.7 Put differently, the prop-

agator provides an effective interaction – this should be borne in mind as a paradigm. In

this context, it is crucial that the quantum field theoretical propagator is indeed a classical

6In this form, the effective action approach has been pursued e.g. by [75], section 12.1. in the path-integral

framework.
7The prefactor 1/2 comes in because the free term contributes FµνFµν = −2Aµ(D−1)µνAν which upon

elimination Aµ = Dµνjν yields −1/2 the contribution of the interaction term.
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Green function for the corresponding field equation of motion.8 Fundamentally, however,

such a procedure leads to various problems which are ultimately due to the fact that the

electromagnetic fields carries independent degrees of freedom, i.e. independent initial condi-

tions on the electromagnetic field have to be fixed. This fact makes itself felt in the effective

action approach through the problem of choosing the “right” Green function Dµν(x − x′).

In other words, the effective action is literally ill-defined: there are infinitely many effective

actions because there are infinitely many Green functions to the electromagnetic field which

differ by free field solutions.9 In the Fourier domain, this means that there are different

regularization procedures for the formal solution 1/k2. Two different regularizations always

differ by a free solution. Choosing a Green functions corresponds to fixing initial conditions

on the electromagnetic field.

A further specialty of the effective action consists in its non-locality. As discussed in the

next paragraph, such a non-local action can be treated within the usual formalism as long

as its underlying Lagrangean – now being a function of two variables – is symmetric. For

this it is necessary that the electromagnetic propagator is symmetric. This is indeed the

case for the Feynman propagator, but not for the more physical retarded propagator. On

the other hand, the Feynman propagator is in general not real-valued which would render

the effective interaction uninterpretable. Fortunately, this is no problem when the effective

action is quantized as will be discussed below.

Finally, note that the effective interaction is a field-theoretical version of Feynman-Wheeler

electrodynamics.10 [25] A further analogy to the work of Feynman can be drawn, since the

effective action is by no means a Field Theory specific approach. In fact, it can already be

used in classical mechanics. The arch example for this approach is provided by a system of

two (otherwise free) particles linearly interacting through a harmonic oscillator. The problem

of deriving an effective action for the particles by eliminating the oscillator degree of free-

dom has been studied by Feynman in his dissertation. [23] Feynman’s results could be easily

reproduced by the method of Green functions (which Feynman does not use in this context).

The effective electromagnetic interaction is ultimately equivalent to this when one identi-

8Here, we disregard of course the fact that the Feynman propagator is general neither retarded nor real-

valued which one would require in classical physics.
9Below, we will rederive the effective action through the Gell-Mann and Low theorem and in that context

it will turn out that the usage of the Feynman propagator is imperative.
10Indeed, Feynman and Wheeler also wanted the “effective action” (they actually did not consider a Field

Theory but charged particles) to be symmetric and therefore chose to take half the sum of the retarded

and the advanced Green function.
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fies the interaction oscillator with the harmonic oscillators of the electromagnetic field modes.

Non-Local Field Theory Within the realm of local Field Theory, the action S is given in

terms of a Lagrangean density L(x) as S =
∫

d4x L(x). The Lagrangean density in turn is

given as a local expression in terms of the fields and its derivatives, i.e. (in the case of only

one field) L(x) is an ordinary function – not a funtional – of the field values ψ(x) and ∂µψ(x):

L(x) = L[ψ, ∂µψ] = L(ψ(x), ∂µψ(x)). The functional derivative δψ(x)S of the action with

respect to the field at x can then be expressed through partial derivatives – not functional

derivatives – of L(x) with respect to ψ(x) (and possibly ∂µψ(x)). The simplest case of a

non-local Field Theory is given by an action

S =

∫
d4xd4y L(x, y) (5.43)

where L(x, y) is a function of ψ, ∂µψ evaluated at x and y. This is still in accord with the

principle of relativity if the non-local contributions are zero as long as x − y is space-like.

Indeed, even local Field Theory can be thought of as being non-local with a Lagrangean

L(y)δ(x− y). Here, the Dirac delta enforces x = y which is a special case of x− y not being

space-like. We now want to express the stationarity condition δψ(x)S = 0 as an equation for

L(y, y′). Explicitly, we have

δψ(x)S = δψ(x)

∫
d4yd4y′ L(y, y′)

= lim
η→0

1

η

∫
d4yd4y′ (L[ψ(y) + ηδ(y − x), ψ(y′) + ηδ(y′ − x)]− L[ψ(y), ψ(y′)])

= lim
η→0

1

η

∫
d4yd4y′ (L[ψ(y) + ηδ(y − x), ψ(y′) + ηδ(y′ − x)]− L[ψ(y) + ηδ(x− y), ψ(y′)]

+L[ψ(y) + ηδ(x− y), ψ(y′)]− L[ψ(y), ψ(y′)])

Here, the functional dependence L[ψ(y), ψ(y′)] is shorthand for L[ψ(y), ∂µψ(y);ψ(y′), ∂νψ(y′)].

Introducing an auxiliary field ϕ(x) such that

L(x, y) = L[ψ(x), ϕ(y)] (5.44)

we can rewrite δψ(x)S as∫
dydy′

(
δψ(x)L[ψ, ϕ]|ψ=ϕ + δψ(x)L[ϕ, ψ]|ψ=ϕ

)
. (5.45)

Precisely as in the case of the Euler-Lagrange equations, this leads to∫
dy′

(
∂L(x, y′)

∂ψ(x)
− ∂µ

∂L(x, y′)

∂ψµ(x)

)
+

∫
dy

(
∂L(y, x)

∂ψ(x)
− ∂µ

∂L(y, x)

∂ψµ(x)

)
= 0. (5.46)
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If L is symmetric, this simplifies further as

δψ(x)S = 2

∫
dy

(
∂L(x, y)

∂ψ(x)
− ∂µ

∂L(x, y)

∂ψµ(x)

)
= 0. (5.47)

We call (5.46) the non-local Euler-Lagrange equations. In the case of an essentially local

functional L(x, y) = L(y)δ(x − y), they reproduce the ordinary Euler-Lagrange equations.

In the following, we will assume that the non-local Lagrangean density is symmetric11 and

has a free part which is local. In other words, L is of the form

L(x, y) =
1

2
(L0(x)δ(x− y) + L0(y)δ(x− y)) + Lint(x, y). (5.48)

Furthermore, we assume that L depends on ∂tψ only through the local part as is indeed

the case for the effective electromagnetic action. This implies that the non-locality does

not alter the definition of the conjugate momentum. In this case, we can pretend to deal

formally with a local Lagrangean with a parametric y-dependence which is integrated out.

Therefore, all results of classical Field Theory automatically carry over. In particular, as in

the case of local Field Theory, the invariance of the action (or equivalently the invariance of

the Lagrangean up to a total divergence) gives rise to a conserved current. In particular, if

the Lagrangean is not explicitly dependent on the space-time, we have an energy-momentum

tensor

T µν(x) =

∫
dy

(
∂L(x, y)

∂ψµ(x)
∂νψ(x)− ηµνL(x, y)

)
(5.49)

and a Hamiltonian density

T 00(x) = H(x) = π(x)ψ̇(x)−
∫

dy L(x, y) (5.50)

with

π(x) =

∫
dy

∂L(x, y)

∂ψ̇(x)
. (5.51)

The field equations of motion can now be written as

∂tψ(x) = {ψ(x), H(t)} =
δH

δπ(x)
(5.52)

∂tπ(x) = {π(x), H(t)} = − δH

δψ(x)
(5.53)

with the Hamiltonian

H(t) =

∫
dx H(xt) (5.54)

11We stress again that this is the case if one uses the Feynman propagator in the effective electron-interaction,

but not if one uses the retarded or advanced propagator.
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and the functional Poisson bracket

{A,B} =

∫
dx

(
δA

δψ(xt)

δB

δπ(xt)
− δB

δψ(xt)

δA

δπ(xt)

)
. (5.55)

Explicitly, we now find

δH(x)

δπ(x)
= ψ̇(x) + π(x)

δψ̇(x)

δπ(x)
− δ

δπ(x)

∫
dy L(x, y)

= ψ̇(x) + π(x)
δψ̇(x)

δπ(x)
−
∫

dy
∂L(x, y)

∂ψ̇(x)

δψ̇(x)

δπ(x)

= ψ̇(x) (5.56)

and

−δH(x)

δψ(x)
= − δπ(x)

δψ(x)
ψ̇(x)− π(x)

δψ̇(x)

δψ(x)
+

δ

δψ(x)

∫
dy L(x, y)

= −0− π(x)
δψ̇(x)

δψ(x)
+

∫
dy

(
∂L(x, y)

∂ψ̇(x)

δψ̇(x)

δψ(x)
+
∂L(x, y)

∂∂iψ(x)

δ∂iψ(x)

δψ(x)
+
∂L(x, y)

∂ψ(x)

)

=

∫
dy

(
∂L(x, y)

∂ψ(x)
− ∂i

∂L(x, y)

∂∂iψ(x)

)
= π̇(x). (5.57)

Here, we have used the fact that in the Hamiltonian formalism, all quantities are to be

considered as functionals of π(x), ∂iψ(x) and ψ(x), i.e. ψ̇(x) is to be eliminated in favor of

π(x). Finally, we read off the important formula

Hint(t) = −
∫

dxdy Lint(xt, y). (5.58)

for the interaction Hamiltonian.

5.2. Effective Hamiltonians for Electronic Structure Theory

5.2.1. Quantized Effective Electronic Field Theory

Introduction The purpose of the following consists in deriving an effective electronic Hamil-

tonian which on the one hand accounts for the full electromagnetic interaction,12 but on the

12The idea of quantizing the full electromagnetic interaction but with an effective Lagrangean has been

put forward apparently for the first time by Hoyle and Narlikar [44] who quantized Feynman-Wheeler

electrodynamics in the path-integral formalism. (see also [18] p.178f and references therein)
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other hand is still an ab-initio Hamiltonian. The road to this goal is clear: we quantize

the classical Field Theory corresponding to the effective action (5.40) where the free term

is given by the free action for the classical Schrödinger field ψ(x) in an external potential

vext(x) as in equation (2.145). Correspondingly, the electromagnetic 4-current is given by13

ρ(x) = eψ∗(x)ψ(x) (5.59)

j(x) =
e~

2mi
(ψ∗(x)∇ψ(x)− (∇ψ)∗(x)ψ(x)). (5.60)

In particular, this implies that the interaction term of the effective action does not contain

time-derivatives and therefore

π(x) =
δS

δ∂tψ(x)
= i~ψ∗(x) (5.61)

still holds in the interacting case and the canonical Poisson brackets are unaltered. We

therefore simply postulate

[ψ̂(xt), ψ̂†(x′t)]+ = δ(x− x′). (5.62)

Consequently, we can quantize naively by replacing ψ(∗)(x) 7→ ψ̂(†)(x) and imposing a suit-

able normal order prescription on the multilinear terms. We are free to do this because on

the classical level, the fields commute and can therefore be brought in whatever order we like.

Interaction Hamiltonian If we use the photon propagator in the Coulomb gauge given by

equation (5.31), then the term involving 1/2
∫

dxdx′ j0D
00j0 simply reproduces the Coulomb

potential.14 Therefore, the free action plus this term produce the standard ab-initio Hamil-

tonian. We now go beyond this level by taking into account the whole propagator. Equation

(5.58) suggests to introduce a current-current interaction term via

Ĥint(t) =
1

2

∫
dxdx′ ĵi(xt)D

ij(x− x′)ĵj(x′) (5.63)

up to a suitable normal-ordering prescription. It therefore seems plausible to introduce the

13As this subsection is heuristic in nature, in the following, we always work with a “naive” current. The

problem of the general expression for the current has been discussed in Chapter 2.
14This is actually the derivation of the Coulomb potential. [40, 63, 52] The identification of the Coulomb

potential as the 00-component of a current-current interaction naturally leads to the question, what is so

special about the Coulomb potential? The answer lies in the fact that A0 is non-dynamical. Therefore, the

00-component of the photon-propagator does not depend on the underlying quantum state. The Coulomb

potential can be fully expressed in terms of the electronic operators. By contrast, Dij depends on the

quantum state of the electromagnetic field. Inter alia, this means that the current-current interaction is

temperature dependent!
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effective ab-initio interaction Hamiltonian Ĥint(t) given by

−e
2~2

8m2

∫
dxdx′ Dij(x− x′)(−∂jψ̂†(x′)ψ̂†(x)∂iψ̂(x)ψ̂(x′) + ψ̂†(x′)ψ̂†(x)∂iψ̂(x)∂jψ̂(x′)

−ψ̂†(x′)∂iψ̂†(x)ψ̂(x)∂jψ̂(x′) + ∂jψ̂
†(x′)∂iψ̂

†(x)ψ̂(x)ψ̂(x′)). (5.64)

This operator is obviously symmetric (hermitean) ifDµν(x−x′) is real-valued. To fully fix this

Hamiltonian we still have to meet two conventions: (i) we have to define the regularization

of the photon propagator, (ii) we have to define the time dependence of the operators in the

interaction term. Interestingly enough, both problems can be solved by taking recourse to

the Gell-Mann and Low theorem:

i~G(xt,x′t′) =
∞∑
n=0

(
− i

~

)n
gn

n!

∫ ∞
−∞

dt1 . . . dtn 〈Φ0|T ĤI(t1) . . . ĤI(tn)ψ̂(xt)ψ̂†(x′t′)|Φ0〉c

Assume now that the we deal with different kinds of degrees of freedom, say with electro-

magnetic and electronic degrees of freedom such that the Hilbert space is given by Hel⊗Hem.

We assume the free Hamiltonian to be of the form

Ĥ0 = 1em ⊗ Ĥel0 + Ĥem0 ⊗ 1el (5.65)

and the ground-state to factorize Φel−em = Φ0 ⊗ |0〉. The interaction Hamiltonian Ĥint is

supposed to be of the form “electromagnetic field times quadratic expression in the electronic

field”, say
∫

d4x Aµjµ. Consider now a generic n-th order contribution(
− i

~

)n
gn

n!

∫ ∞
−∞

dt1 . . . dtn 〈Φel−em|T ĤI(t1) . . . ĤI(tn)ψ̂(xt)ψ̂†(x′t′)|Φel−em〉. (5.66)

The interaction Hamiltonians contribute a factor Âµ(x1) . . . Âν(xn). As the ground-state

factorizes, this contribution can be evaluated explicitly as 〈0|T Âµ1(x1) . . . Âµn(xn)|0〉. The

Wick theorem decomposes this into products of 〈0|T Âµi(xi)Âµj(xj)|0〉. Furthermore, it

follows that the interaction only contributes for even n, i.e. n = 2m. Under the integral, we

therefore get

〈0|T Âµ1(x1) . . . Âµn(xn)|0〉T ĵµ1(x1) . . . ĵµn(xn)

=
∑

pairings

〈0|T Âµσ(1)(xσ(1))Â
µσ(2)(xσ(2))|0〉 · . . . · 〈0|T Âµσ(n−1)(xσ(n−1))Â

µσ(n)(xσ(n))|0〉 ×

T ĵµ1(x1) . . . ĵµn(xn)

=
∑

pairings

〈0|T Âµσ(1)(xσ(1))Â
µσ(2)(xσ(2))|0〉 · . . . · 〈0|T Âµσ(n−1)(xσ(n−1))Â

µσ(n)(xσ(n))|0〉 ×

T ĵµσ(1)
(xσ(1)) . . . ĵµσ(n)

(xσ(n))

= (i~)m
∑

pairings

Dµσ(1)µσ(2)(xσ(1) − xσ(2)) · . . . ·Dµσ(n−1)µσ(n)(xσ(n−1) − xσ(n))×

T ĵµσ(1)
(xσ(1)) . . . ĵµσ(n)

(xσ(n))
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where we used that the current operators in the range of the time-ordering commute.15∑
pairings denotes the sum over all splittings of {1, . . . , n} into pairs with i < j. Under

the integral, all pairings give the same contribution, their total number being n!/2mm!.16

Therefore, we can introduce the effective four-point (or two-particle) interaction17

Ĥeff(t) =
1

2

∫
dxdx′ ĵµ(xt)Dµν(x− x′)ĵν(x′) (5.67)

such that the expression (5.66) equals(
− i

~

)m
(g2)m

m!

∫ ∞
−∞

dt1 . . . dtm 〈Φ0|T Ĥeff(t1) . . . Ĥeff(tm)ψ̂(xt)ψ̂†(x′t′)|Φ0〉. (5.68)

It is astonishing (if not magic) that the Gell-Mann and Low theorem reproduces exactly

the effective action given by the field-theoretical considerations. We conclude that in the

effective Hamiltonian (5.64), the time-dependence of the field operators is given in terms of

Ĥel0 and the electromagnetic Green function is given by the Feynman propagator.18

Static Approximation Within the realm of solid state physics, it is plausible to approxi-

mate the time-dependent interaction by an instantaneous interaction mediated by the prop-

agator

Dij(x− x′) =

∫
dk

(2π)3

eik·x

|k|2

(
δij − kikj

|k|2

)
. (5.69)

The first term in this integral simply reproduces the Coulomb potential. Using19∫
dk

(2π)3
eik·xk

ikj

|k|4
=

1

8π
∂i∂j|x− x′| (5.70)

we get

Dij(x− x′) =

(
δij

8π|x− x′|
+

(x− x′)i(x− x′)j

8π|x− x′|3

)
. (5.71)

15In general, operators in the range of the time-ordering commute or anticommute. The current operators,

in particular, commute because they are bilinear in the field operators.
16The number off all pairings times the of permutations of the pairs (= m!) times the number of permutations

in each pair (= 2m) equals the number of all permutations (= n!).
17An S-matrix version of this fact has been derived apparently for the first time by Akhiezer and Berestetskii

([1] p.299f) who showed by a different method that the expectation value of T exp(−i
∫

dx ĵµ(x)Âµ(x))

in the photonic vacuum equals T exp( i
2

∫
dxdx′ ĵµ(x)Dµν(x− x′)ĵν(x′)) (see their equation (24.26)).

18This solves the aforementioned conundrum of the complex valuedness of the Feynman propagator (or

the resulting non-hermiticity of the effective interaction Hamiltonian). Within the context of quantum

Field Theory, this does not pose any (conceptual) problems because the role of the effective interaction

Hamiltonian consists in the reproduction of the right Green function. Recall in this context that the

self-energy is also not hermitean. With the non-hermitean effective interaction, the Schrödinger equation

has to be interpreted as a quasiparticle equation from the very outset.
19cf. [54], p.765, equation (1.89)
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The corresponding classical interaction energy reads

1

2

∫
dxdx′dt′ jµ(xt)Dµν(x− x′)δ(t− t′)jν(x′t′). (5.72)

In the special case of two charges jµ = jµ1 + jµ2 with

(ρ1(x), j1(x)) = (q1δ(x− x1), q1v1δ(x− x1)) (5.73)

(ρ2(x), j2(x)) = (q2δ(x− x2), q2v2δ(x− x2)) (5.74)

we get disregarding an infinite self-interaction term and reinstalling all constants

1

4πε0

q1q2

|x− x′|
+

1

8πε0

1

c2

(
q1q2

v1 · v2

|x− x′|
+ q1q2

(v1 · (x− x′))(v2 · (x− x′))

|x− x′|3

)
. (5.75)

This form of interaction was first obtained by Darwin in 1920 ([48], p.411).

Gauge Independence In the following we want to derive a first approximation to check

whether the electromagnetic ab-initio Hamiltonian (5.63) gives reasonable results. The corre-

sponding quantum theory can be interpreted as a non-relativistic Breit Hamiltonian. How-

ever, in order to do this, it is not reasonable to start from the complicated Darwin La-

grangean. In the Lorentz gauge, the propagator reads

Dµν(k) = − ηµν
k2 + iη

(5.76)

in the Fourier domain and the effective interaction simply yields (compare e.g. [52], p.258,

equation (8.45))
1

2

∫
dx (ρ(x)v(x, x′)ρ(x′) + jµ(x)v(x, x′)jµ(x′)) (5.77)

in the static limit Dµν(ω) 7→ Dµν(ω = 0). This differs from the Darwin Lagrangean. The

original effective action is of course independent of the gauge. To see this, we consider the

effective action in the Fourier domain where it is given by

1

2

∫
d4k

(2π)4
j∗(k)D(k)j(k). (5.78)

For the spatial part, we find using current conservation in the Fourier domain∫
d4k

(2π)4
j∗i (k)

−1

k2

(
δij − kikj

|k|2

)
jj(k) (5.79)

=

∫
d4k

(2π)4

−1

k2

(
j∗i (k)ji(k)− j∗i (k)kikjjj(k)

|k|2

)
(5.80)

=

∫
d4k

(2π)4

(
−j∗i (k)ji(k)

k2
+
ω2ρ∗(k)ρ(k)

k2|k|2

)
(5.81)

=

∫
d4k

(2π)4

(
−j∗i (k)ji(k)

k2
+ ρ∗(k)ρ(k)

(
− 1

k2
− 1

|k|2

))
. (5.82)
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The last contribution just cancels the instantaneous Coulomb potential and the penultimate

contribution replaces it with a retarded charge-charge interaction. Therefore, the total ef-

fective interaction yields the same result as in the case of the Lorentz gauge. This makes it

plausible to take

Dij(x− x′) =
δij

4πε0|x− x′|
(5.83)

as the instantaneous current-current interaction kernel.

Effective Action in the Four-Point Formalism In order to derive suitable approxi-

mations for the corresponding Green function theory, we incorporate this interaction in the

four-point formalism. That means we plug it into equation (5.64) and rewrite it as

1

2

∫
d(1, 2, 3, 4) D(1, 2, 3, 4)ψ̂†(1)ψ̂†(2)ψ̂(4)ψ̂(3) (5.84)

where the situation is complicated because the current-current interaction contains terms

which involve derivatives of the field operator. These can be pulled back on the level of

the integral kernel D by using derivatives of the Dirac delta. For the sake of simplicity, we

first treat a one-dimensional system (for which δij = δ11 = 1). We introduce the formal

expression δ(1, 2′) meaning that∫
d(1, 2) ϕ∗(1)δ(1, 2′)ϕ(2) = −

∫
d1 ϕ∗(1)ϕ′(1) (5.85)

=

∫
d1 ϕ′∗(1)ϕ(1) (5.86)

!
=

∫
d1 ϕ∗(1)δ(1′, 2)ϕ(2). (5.87)

It follows that δ(1, 2′) = δ(1′, 2) under suitable boundary conditions which we always assume

to be given. In the following, we do not want to have temporal derivatives because the current

operator contains only spatial derivatives of the field operators. We therefore redefine

δ(1, 2′) = δ(t1, t2)δ(x1,x
′
2). (5.88)

Furthermore, the following notation will come in handy

G(1, 2′) = ∂2G(1, 2) (5.89)

G(1, 1′) = lim
2→1

∂2G(1, 2). (5.90)

The integral kernel D can now be written as

D(1, 2, 3, 4) = −e
2~2

4m2
(+v(2, 3)δ(1′, 3)δ(2, 4′) + v(1, 4)δ(1, 3′)δ(2′, 4)

+v(1, 2)δ(1, 3′)δ(2, 4′) + v(3, 4)δ(1′, 3)δ(2′, 4)). (5.91)
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With these conventions, we can plug the electromagnetic interaction into the formalism of

the self-consistent equations.

Hartree-Fock Approximation To find the self-energy in the Hartree-Fock approxima-

tion, we define

−D ·G4 = (i~)−1ΣmagnG (5.92)

with G4(1, 2, 3, 4) = G(1, 3)G(2, 4)−G(1, 4)G(2, 3). Factoring out G in D ·G4 yields after a

somewhat lengthy calculation for ΣHF
magn(1, 2)

=
e2~2

4m2

∫
d3 (v(1, 3)i~(G(3, 3′)−G(3′, 3))δ(1, 2′) + δ(1′, 2)v(3, 2)i~(G(3, 3′)−G(3′, 3)))

+
e2~2

4m2

∫
d3 (v(1, 3)i~G(1′, 3)δ(3, 2′)− δ(1′, 3)v(3, 2)i~G(3, 2′))

+
e2~2

4m2
v(1, 2)i~G(1′, 2′)− e2~2

4m2

∫
d(4, 5) δ(1′, 5)v(5, 4)i~G(5, 4)δ(4, 2′). (5.93)

The equal time limits are to be performed as in the case of Coulomb potential. Indeed, the

magnetic interaction has the same structure with respect to the time-order as the Coulomb

interaction of which we could have kept track be writing it in terms of left and right Dirac

deltas. We did not do this in order not to overload the notation. The 3-dimensional magnetic

self-energy can be restored as follows: every term in the magnetic self-energy contains two

derivatives like G(1′, 2)δ(3′, 4) etc.; these are to be redefined as δij∂1i∂3jG(1, 2)δ(3, 4) etc. It

is interesting to compute the corresponding energy contribution20 1/2
∑

a occ Σ̃a
a in terms

of the Lehmann amplitudes. Using the expression for the current in terms of the Green

function shows the first two terms of the magnetic self-energy yield

1

4πε0

1

c2

∑
a occ

∑
b occ

∫
dx1dx2

−jaa(x1) · jbb(x2) + jab(x1) · jba(x2)

|x1 − x2|
(5.94)

This corresponds to a Hartree-Fock contribution where the density operator has been re-

placed with the current operator (cf. equation (4.199)). Indeed the standard Hartree-Fock

terms and the magnetic Hartree-Fock terms can be summed up in a covariant total Hartree-

Fock contribution of the form ∝ ((jµ)aa(x)(jµ)bb(x
′) − (jµ)ab(x)(jµ)ba(x

′))/|x − x′| because

in the magnetic Hartree-Fock theory, the signs of the Hartree and the Fock term are inter-

achanged. Consequently, the first two terms in the magnetic self-energy could have been

found by educated guessing from the standard Hatree-Fock self-energy whereas the last two

terms go beyond the naive expectation. Note that, usually the total ground-state current

vanishes (Theorem of Bloch about ground-state current). Therefore, only the current ex-

change contributes.

20cf. the Migdal formula (3.24).
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5.2.2. Effective Phonon-Mediated Electron-Electron Interaction

Introduction The purpose of this subsection consists in the derivation of an effective

electron-electron interaction mediated by phonons quite the same way as the effective electro-

magnetic electron-electron interaction is mediated by photons. In other words, the effective

phonon-mediated electron-electron interaction results from the fundamental model through

the elimination of the phononic field.21

Interaction Hamiltonian Fundamentally, the classical electron-nuclei Coulomb interac-

tion22 is given by

ĤI = − Ze2

4πε0

∑
n

∫
dx

n(x)

|xn − x|
(5.95)

where n indexes the nuclear coordinates and ρ(x) = en(x) denotes the charge density of

the electron liquid. In the case of solid state physics, we are entitled to assume the nuclei

to be highly localized around the classical equilibrium positions because otherwise the state

would not be so solid. This suggests a Taylor expansion of the Coulomb potential around

the equilibrium positions the zero order contribution of which corresponds to the external

potential of the nuclei in a crystal lattice. The first order contribution reads

ĤI1(t) =
Ze2

4πε0

∑
n

û(xn0t)·
∫

dx n(xt)
(xn0 − x)

|xn0 − x|3
=: −

∑
n

∫
dx u(xn0t)·F(xn0,x; t) (5.96)

with

F(xn0,x; t) = en(xt)E(xn0,x) = −en(xt)(∇xv)(xn0,x). (5.97)

21Usually, Fröhlich [33] is credited with the original introduction of effective, phonon-mediated electron-

electron interactions (through second-order perturbation theory). Bardeen, Cooper and Schrieffer in

their classical paper on superconductivity [7] refer to Bardeen and Pines [6] for the derivation of the

effective interaction. Their overall result is equivalent to [4] p.518, equation (26.24). This order of events

is also confirmed by [65]. The equivalence of this approach to the Gellmann and Low Theorem approach

as in [15] p.316, equation (17.16) is usually demonstrated by considering the total effective interaction in

an appropriate approximation, typically the RPA (see [15], Chapter 17, in particular equation (17.39)).

Apart from the apparently new derivation itself, the present dissertation goes beyond these results by

emphasising the real space approach to the phonon-propagator which allows for the formulation of the

general connection between the phonon propagator and the nuclear polarizability. This connection will

show that quite generally the inclusion of phononic effects corresponds to the screening of the Coulomb

interaction with the nuclear degrees of freedom. It will also allow for a simple derivation of the Yukawa

potential and a closed formula for its decay length. Furthermore, the concrete expression for the phonon-

mediated interaction as presented in this dissertation turns out to be slightly more general.
22In principle, one could also consider the full electromagnetic interaction of electrons and nuclei.
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This modifies the classical equation of motion for the displacement field u(xn0t) as

M∂2
t u(xn0t) +

∑
m

K(xn0 − xm0)u(xm0t) =

∫
dx F(xn0,x; t) (5.98)

We solve for u(xn0t) through

u(xn0t) =
∑
m

∫
dx′dt′ Dphon(xn0t,xm0t

′)F(xm0,x
′; t′). (5.99)

With this formula, we can eliminate the phononic field in the interaction Hamiltonian (5.96)

which yields a purely electronic interaction given by

Hel−el(t) =
1

2

∑
n,m

∫
dxdx′dt′ F(x,xn0; t)Dphon(xn0t,xm0t

′)F(xm0,x
′; t′) (5.100)

The minus sign comes in because F is an antisymmetric function. The prefactor 1/2 has been

inserted in order to avoid double-counting. (This prefactor is derived rigorously in the next

paragraph.) The formal expression FDphonF is the direct analog of jµDµνj
ν . Replacing now

the electronic charge density by the corresponding operator and imposing a normal order

prescription, we get the interaction Hamiltonian operator Hel−el(t) as

Z2e4

32π2ε2
0

∑
m,n

∫
dxdx′dt′ vi(x− xn0)Dij

phon(xn0t,xm0t
′)vj(xm0 − x′)ψ̂†(xt)ψ̂†(x′t′)ψ̂(x′t′)ψ̂(xt)

(5.101)

where

v(x) = − x

|x|3
. (5.102)

By recourse to the Gell-Mann and Low theorem, we conclude that the time-dependence of

the field operators is given by the free electronic Hamiltonian. In the four-point formalism,

the interaction reads

D̂phon =
1

2

∫
d(1, 2, 3, 4) D(1, 2, 3, 4)ψ̂†(1)ψ̂†(2)ψ̂(4)ψ̂(3) (5.103)

with

D(1, 2, 3, 4) = vphon(1, 4)δ(4, 2+)δ(3, 1+) (5.104)

vphon(xt,x′t′) =
Z2e4

16π2ε2
0

∑
m,n

3∑
i,j=1

vi(x− xn0)Dij
phon(xn0t,xm0t

′)vj(xm0 − x′). (5.105)

In particular, this means that the phonon-mediated interaction is time-dependent. The

discussion of the effective current-current interaction made it clear that the thus obtained
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effective, phonon-mediated interaction reproduces the correct ground-state Green functions

and therefore could also be obtained from the Gell-Mann and Low theorem.23 In particular,

any calculation of a finite number of Feynman diagrams with the effective interaction yields

exactly the same result for the electronic Green function as the corresponding diagrams of

the fundamental theory with electron-phonon interactions included. The advantage of a

purely electronic interaction lies of course in the fact that it can be fed into the standard

approximations of the self-consistent equations.

Effective Action Approach The phononic Lagrangean including the interaction term

with the electrons reads

L(t) = −1

2

∫
dt′
∑
n,m

〈u(xn0, t)|D−1
phon(xn0t,xm0t

′)u(xm0, t
′)〉R3

+
∑
n

∫
dx 〈F(xn0,x; t)|u(xn0t)〉R3 . (5.106)

The total effective Lagrangean (involving exclusively dynamical variables from the electrons)

now follows from eliminating u in terms of Dphon. One sees that – exactly as in the elec-

tromagnetic case – the free term then contributes −1/2 the contribution of the interacting

term. This explains the prefactor 1/2 which in the last paragraph has been introduced ad

hoc. As in the electromagnetic case, the effective action can also be derived by a path in-

tegral approach. As the phonon field is naturally defined on a lattice, this approach now

exactly corresponds to solving a Gaussian integral by means of the master formula (cf. e.g.

[11, 54, 86])
1

(2π)N/2

∫
detD−1dNu e−

1
2
〈u|D−1|u〉+〈F |u〉 = e

1
2
〈F |D|F 〉. (5.107)

Here the scalar product, the determinant etc. correspond to the total linear space of field

configurations (which is R3 ⊗ L2(Γ) in the phononic case). This confirms for the phonon

field that the effective action as defined by the path integral is equivalent to eliminating the

phononic degrees of freedom through the Green function.

Refined Effective Hamiltonian In practice, the dynamical matrix K already contains

electronic effects on the nuclei. A second order expansion of the pure mutual Coulomb

interaction of the nuclei is not possible because such a system does not allow for stable equi-

23This way has indeed been used by Bruus/Flensberg [15] p.313f. who deduced their effective interaction

from the Gell-Mann and Low Theorem but in reciprocal space. Their final result equation (17.16)

essentially agrees with our result although this may not be completely evident because Bruus/Flensberg

use the phononic Green function in reciprocal space and neglect its tensorial nature.
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libria.24 We may therefore think of the dynamical matrix as being a second order expansion

of the internuclear Coulomb interaction and of the nuclear Coulomb interaction with the

external charge density of the electrons. Thereby the latter should be calculated in a suit-

able reference ground-state. This makes it plausible to replace the density operator ρ̂el(x)

in the above formulas starting from equation (5.96) with the density fluctuation operator

δρ̂el(x) = ρ̂el(x)− 〈ρ̂el(x)〉0. In addition to the above interaction, this replacement creates a

Hartree-type potential25

−
∫

dx′ vphon(x,x′;ω = 0)ρ(x′) := −vH
phon(x) (5.108)

where vphon(x,x′;ω = 0) denotes that Fourier transform of vphon with respect to τ = t − t′

evaluated at zero frequency. This implies that the Hartree potential vH
phon(x) correspond-

ing to the effective phonon mediated interaction is time-indepedendent even though the

corresponding interaction depends on time. This is due to ρ(xt) = 〈ρ̂(xt)〉 = ρ(x) for a

non-interacting reference ground-state in which the density is evaluated. One then gets26

vH
phon(xt) =

∫
dx′dt′ vphon(xt,x′t′)ρ(x′t′) (5.109)

=

∫
dx′dt′ vphon(xt,x′t′)ρ(x′) (5.110)

=

∫
dx′dτ vphon(x,x′; τ)ρ(x′) (5.111)

=

∫
dx′ vphon(x,x′;ω = 0)ρ(x′) (5.112)

= vH
phon(x). (5.113)

This will be discussed below in detail. For the time being, note that the Hartree-type terms

are one-particle operators and therefore do not give rise to an effective interaction. Instead,

they can be absorbed in a redefinition of the reference Hamiltonian. The following considera-

tions are indepedendent of this replacement because they concern exclusively the interaction

kernel.

24Suppose it would be possible to arrange classical point charges interacting through the Coulomb potential

in a static equilibrium. Then the external field acting on a given particle exerted by all other particles

would tend to restore the particle to its equilibrium position for arbitrary elongations. This contradicts

∇ ·E = 0 at the equilibrium position.
25Note in this context that V̂Coul = V̂ fluct

Coul + V̂H where V̂ fluct
Coul denotes the operator which results from the

Coulomb operator by replacing the density operators with the density fluctuation operators.
26In fact, one gets two contributions which by virtue of the symmetry in the effective phonon-mediated

interaction coincide. This then cancels the prefactor 1/2 of the effective interaction.
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Interaction Hamiltonian in the Fourier Domain In order to calculate the phonon-

mediated interaction in the Fourier domain we write

vphon(xt,x′t′) = − Z2e4

16π2ε2
0

3∑
i,j=1

∂i∂
′
j

∑
m,n

1

|x− xn0|
Dij

phon(xn0t,xm0t
′)

1

|xm0 − x′|
. (5.114)

Now, from
1

4π

∫
dx

e−ik·x

|x|
=

1

|k|2
(5.115)

it follows that
1

4π

∫
dx

e−ik·x

|x− x0|
=

e−ik·x0

|k|2
. (5.116)

Therefore,

−
∫

dxdx′

16π2
e−i(k·x−k′·x′)

∑
m,n

1

|x− xn0|
Dij

phon(xn0t,xm0t
′)

1

|xm0 − x′|
(5.117)

= − 1

|k|2|k′|2
∑
m,n

e−i(k·xn0−k′·xm0)Dij
phon(xn0t,xm0t

′) (5.118)

= − 1

|k|2|k′|2
∑
m,n

e−i((k0+G)·xn0−(k′0+G)·xm0)Dij
phon(xn0t,xm0t

′) (5.119)

= − 1

|k|2|k′|2
∑
m,n

e−i(k0·xn0−k′0·xm0)Dij
phon(xn0t,xm0t

′) (5.120)

= − 1

|k|2|k′|2
NDij

phon(k0t,k
′
0t
′) (5.121)

= − 1

|k|2|k′|2
NDij

phon(kt,k′t′) (5.122)

where k = k0 + G is the decomposition into a vector in the FBZ and a reciprocal vector.

Using ∂i∂
′
j 7→ iki(−ikj),

27 the phonon-mediated interaction then reads in the Fourier domain

vphon(kt,k′t′) = −NZ
2e4

ε2
0

Dij
phon(kt,k′t′)kik

′
j

|k|2|k′|2
= −NZ

2e4

ε2
0

Dij
phon(k0t,k

′
0t
′)kik

′
j

|k0 + G|2|k′0 + G′|2
. (5.123)

In general, the phonon-mediated interaction does not preserve the momentum but only the

sum of the part of the momenta which lie in the FBZ. This is completely sensible because

ultimately the phonon-mediated interaction corresponds to the interaction of the electrons

with the external field of the nuclei and in an external field there is no momentum conser-

vation.

27The Fourier transform for operator kernels reads
∫

dxdx′ e−ikxD(x, x′)eik′x′ .
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Static, Homogeneous, Isotropic Continuum Approximation We first consider the

crudest approximation to the effective, phonon-mediated interaction which corresponds to a

static, isotropic, homogeneous continuum approximation. This means

1. Dij ∝ δij.

2. Dphon 7→ Dphon(ω = 0).

3.
∑

k∈Γ∗ 7→
V

(2π)3

∫
dk.

The first condition impliesDijkikj 7→ Dk2. The second condition implies the time-dependence

of the phonon-mediated interaction to be instantaneous. The third condition implies that

δkk′ 7→
(2π)3

V
δ(k− k′) (5.124)

which ensures
∑
δkk′ 7→

∫
dk δ(k − k′). The volume is given by Na3 where a denotes the

lattice constant in real space. Putting all this together and using the phonon-propagator in

momentum space yields for the effective interaction the concise expression

vphon(q) = −(2π)3Z2e4

Ma3ε2
0

1

ω2
q|q|2

. (5.125)

Furthermore, for small wave-vectors we may assume a simple dispersion relation ωq = vL|q|
and get

vphon(q) = −(2π)3Z2e4

ma3ε2
0v

2
L

1

|q|4
. (5.126)

This is to be compared with the Coulomb interaction

vCoul(q) =
e2

ε0

1

|q|2
. (5.127)

Effective Phonon-Mediated Interaction and Long-Range Screening of the Coulomb

Interaction The total effective interaction of the electrons is given by

vtot(q) = vCoul(q) + vphon(q) =
e2

ε0

1

|q|2

(
1− (2π)3Z2e2

ma3ε0v2
L

1

|q|2

)
. (5.128)

As the phonon mediated contribution has the opposite sign, it tends to weaken or screen

the Coulomb interaction. Empirically, one often describes this screening of the Coulomb

interaction by a Yukawa potential of the form

vYuk(q) =
e2

ε0

1

|q|2 + µ2
(5.129)

=
e2

ε0

1

|q|2
1

1 + µ2

|q|2
(5.130)

≈ e2

ε0

1

|q|2

(
1− µ2

|q|2

)
. (5.131)
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Identifying equal powers yields

µ2 ≡ 1

r2
0

=
(2π)3Z2e4

ma3ε0v2
L

(5.132)

where r0 is the decay length entering in the real-space Yukawa potential as

vYuk(x) =
e2

4πε0

e−r/r0

r
(5.133)

with r = |x|. This derivation of the decay length may seem somewhat obscure because our

effective phonon-mediated interaction is certainly not of the Yukawa type. This, however, is

due to the approximation ωq = vL|q|. We may therefore ask, which dispersion relation ωq

yields exactly the Yukawa potential? In order to find this, we have to equate

e2

ε0

(
1

|q|2 + µ2
− 1

|q|2

)
!

= −(2π)3Z2e4

Ma3ε2
0

1

ω2
q|q|2

. (5.134)

A short calculation yields

ω2
q =

(2π)3Z2e2

Ma3ε0µ2
(|q|2 + µ2) (5.135)

which corresponds to the dispersion relation of the Klein-Gordon equation. This is nice

because the Yukawa potential is a static solution of the Klein-Gordon equation. The prefactor

of (|q|2 + µ2) has the dimension – and in fact even the meaning – of a squared speed (of

sound). Equating this prefactor to v2
L yields again equation (5.132). Finally, the dispersion

relation (2.164) yields in the continuum limit the expression

ω2
q =

κa2

M
|q|2 +

λ

M
. (5.136)

Comparison with equation (5.135) leads to

κ = (2π)3 Z2e2

a5ε0µ2
(5.137)

λ = (2π)3Z
2e2

a3ε0

. (5.138)

This allows for an estimation of the decay length in terms of the nearest neighbor interac-

tion.28

28The Yukawa potential, if not simply postulated, is mostly derived from an electronic screening of the

Coulomb potential by the Lindhard dielectric function. (cf. e.g. [15] p.251) The paragraph does not say

that the phonon effects in the solid state generally lead to a Yukawa type potential, already not because

the static, isotropic force law is a very crude approximation as compared to the “true” phonon mediated

interaction. Quite to the contrary, the paragraph shows that for a Yukawa potential one needs a very
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General Form of Isotropic, Homogeneous Screening Abandoning the static limit

ω → 0, we are immediately led to the frequency dependent interaction

vphon(q;ω) =
(2π)3Z2e4

Ma3ε2
0

1

|q|2
1

ω2 − ω2
q + iη

. (5.139)

This form of interaction coincides with the one derived by Blatter ([13], p.234, equation

(11.14)) using a different method. The total interaction now reads

vtot(q;ω) =
e2

ε0

1

|q|2

(
1 +

(2π)3Z2e2

Ma3ε0

1

ω2 − ω2
q

)
. (5.140)

Writing this in the form vCoul/εnucl yields for the nuclear dielectric function the expression29

ε−1
nucl(q;ω) = 1 +

(2π)3Z2e2

Ma3ε0

1

ω2 − ω2
q

. (5.141)

This is a very satisfying result because this is a dielectric function of the Lorentz-Drude type

(see appendix A.4) with one oscillator for each q-mode but without damping term (Γ→ 0).30

The last two paragraphs made it clear that there must be a fundamental connection between

effective interactions and screening. This will now be investigated in detail.

special dispersion relation, namely of Klein-Gordon type. Such a dispersion relation is rather unphysical

because it results from a coupling of all atoms to their equilibrium position in the form Hint = λ/2
∑
u2
n.

Such a term in the Hamiltonian will lead to a change of energy even if all atoms are displaced by the

same amount. However, the Klein-Gordon relation is not completely unphysical either because it could

correspond e.g. to a sublattice of atoms. The Klein-Gordon dispersion relation would then describe

approximately an optical branch of the whole phonon spectrum. After all, in the Einstein model the

potential Hamiltonian even reduces to a term Hint = λ/2
∑
u2
n. The solid then consists of N decoupled

harmonic oscillators all having the same frequency.
29The frequency dependence of this effective, phonon-mediated interactions differs from standard expressions

which are of the form ∝ ω2/(ω2−ω2
q) (cf. [15] equation (17.39), [65] equation (1) or [4] equation (26.25)).

This is not due to a failure of the present approach. Instead, the standard expressions are recovered

from our approach by making a transition from the Coulomb potential (as it couples to the phonon

propagator) to a dynamically screened interaction and from the so-called bare phonon frequencies to

“screened frequencies”. This is demonstrated in [13], section 11.1.3. Note that the standard expression

vanishes at zero frequency and therefore do not give rise to an effective, instantaneous interaction.
30Note that there is no clash of prefactors between the above equation and equation (A.67) of appendix A.4:

the mass M in the above equation refers to the mass of an atom or ion whereas in equation (A.67), the

mass m refers to the (“effective”) mass of the oscillator. The oscillators in the above formula are not the

atoms but the wave modes of the lattice oscillations. By constrast, the units of the prefactors of course

coincide. Finally, the absence of the damping term is a necessity because damping is a macroscopic effect.
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5.2.3. Effective Interactions, Mean Fluctuation Theory and Screening

Effective Interaction and Nuclear Polarizability The effective, phonon-mediated in-

teraction can also be seen from a completely different angle. This different point of view

is important in order to elucidate the connection between the phonon-mediated interaction

and the contribution of the nuclei to the polarizability. We start with a classical treatment.

The interaction energy of the induced electronic charge density ρind
el (xt) in an external field

ϕ(x) is given by

Hint(t) =

∫
dx ρind

el (xt)ϕext(xt). (5.142)

Here, “external field” means that the field is external to the electronic degrees of freedom.

This applies in particular if the external field is the induced field of the nuclei ϕind
nucl(x), where

“induced field” now means that the field is induced by a field which is external to the nuclei.

We now have

Hint(t) =

∫
dx ρind

el (xt)ϕind
nucl(xt) (5.143)

=

∫
dxdx′ ρind

el (xt)v(xt, x′)ρind
nucl(x

′). (5.144)

On the other hand, we can think of the induced nuclear density as being induced by the

electrostatic potential of the electrons themselves, i.e.

Hint(t) =

∫
dxdx′ ρind

el (xt)v(xt, x′)ρind
nucl(x

′) (5.145)

=

∫
dxdx′dx′′ ρind

el (xt)v(xt, x′)χnucl(x
′, x′′)ϕind

el (x′′) (5.146)

=

∫
dxdx′dx′′dx′′′ ρind

el (xt)v(xt, x′)χnucl(x
′, x′′)v(x′′, x′′′)ρind

el (x′′′) (5.147)

with the nuclear response function χnucl. Replacing the classical electronic densities31 ρ(x)

with quantum operators ρ̂(x) = ψ̂(x)ψ̂(x) and imposing the usual normal ordering condition

yields (up to Hartree type term) again a two-particle interaction Hamiltonian32

Ĥint =
1

2

∫
d(1, 2, 3, 4) D(1, 2, 3, 4)ψ̂†(1)ψ̂†(2)ψ̂(4)ψ̂(3) (5.148)

D(1, 2, 3, 4) = D(1, 4)δ(4, 2+)δ(3, 1+) (5.149)

31Following the same logic as in the paragraph about the refined effective Hamiltonian, it is also plausible

to work with the density fluctuation operators here instead of the density operators themselves.
32Again, we insert a prefactor 1/2 in front of the effective Hamiltonian in order to avoid double counting.

As before this prefactor can be justified rigorously as will be shown in the next paragraph.
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with the interaction kernel being given by

D(1, 2) =

∫
d(3, 4) v(1, 3)χnucl(3, 4)v(4, 2). (5.150)

This effective electron-electron interaction interaction is indeed identical to the above phonon-

mediated interaction as will be shown in the following. Recall that the nuclear polarizability

can be expressed in terms of the phonon propagator as

χnucl(xt,x
′t′) = Z2e2

∑
n,m

〈(∇δ)(x− xn0)|Dphon(xn0t,xm0t
′)(∇δ)(xm0 − x′)〉R3 . (5.151)

Convoluting this from the and from the right with the Coulomb potential yields precisely

the electron-electron interaction we already found above, i.e. vphon = vχnuclv or

vphon(1, 2) =

∫
d(3, 4) v(1, 3)χnucl(3, 4)v(4, 2). (5.152)

With this formula, we find still another interpretation of the effective interaction. With

the inclusion of the phonon-mediated interaction, the total electron-electron interaction vtot

reads

vtot = v + vphon = v + vχnuclv. (5.153)

As ε−1 = 1 + vχ this implies the total interaction to be given by

vtot = v/εnucl. (5.154)

In other words, the transition from a purely Coulombic interaction to a Coulomb interaction

modified by an interaction mediated by the nuclear degrees of freedom corresponds to the

screening of the original Coulomb interaction with the nuclear permittivity.33

Systematic Treatment of the Decoupling of Nuclear and Electronic Degrees of

Freedom – Effective Interactions and Mean Field Theory The fundamental interac-

tion Hamiltonian between electrons and nuclei reads34

Ĥint(t) =

∫
dxdx′dt′ ρ̂el(xt)v(xt,x′t′)ρ̂nucl(xt

′) (5.155)

33As opposed to the so-called screened interaction W = v/ε in Hedin’s equations, the effective interaction

vtot really describes a screening effect because it enters in a purely electronic model on which the nuclear

degrees of freedom only act through their permittivity. We stress again that Hedin’s W cannot be a

screened interaction of the electrons because it is calculated with the permittivity of that very degrees of

freedom whose interaction it describes. In other words, in that case the electrons would screen their own

interaction. It is, however, possible to interpret W as the screened Coulomb interaction of the nuclei.
34Note in this context that due to the commutativity of nuclear and electronic operators, the normal ordering

prescription is irrelevant here.
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which acts on the Hilbert space Hel ⊗Hnucl of electrons and nuclei. The free Hamiltonians

of electrons and nuclei consist of a kinetic term and an electron-electron or nucleus-nucleus

interaction Hamiltonian respectively. The goal of the decoupling procedure consists in re-

placing the fundamental interaction Hamiltonian with a Hamiltonian which acts exclusively

on the electronic or nuclear degrees of freedom respectively.35 The most obvious way to do

this is the mean field approach which in the case of an electronic Hamiltonian replaces ρ̂nucl

with ρnucl = 〈ρ̂nucl〉 where the evaluation 〈·〉 is performed in a suitable nuclear state.36 In the

context of solid-state physics, it is plausible that

ρ0
nucl(x) = Ze

∑
Γ

δ(x− xn0) (5.156)

roughly holds. The resulting effective electronic Hamiltonian is obviously just the so-called

external potential vext(x) of the nuclei. The standard model of Electronic Structure Theory

therefore corresponds to a mean field approach. Note that this naive mean-field approach

leads to a one-electron operator and therefore, in this approximation, the nuclei do not induce

an effective electron-electron interaction. Instead, effective electron-electron interactions

come into play, when we replace the naive mean-Field Theory by a Mean Fluctuation Field

Theory, i.e. we replace the operator ρ̂nucl with

ρ0
nucl(x) + δρ̂nucl(xt) ≡ ρ0

nucl(x) + ρ̂ind
nucl(xt) (5.157)

where now the first term corresponds to the ordinary Mean Field Theory. It has been

shown in the last paragraph that the second term if treated with Linear Response Theory

(where the electrons provide the external potential) leads to the effective phonon-mediated

electron-electron interaction. The total mean fluctuation field electronic operator therefore

reads ∫
dxdx′dt′ ρ̂el(x)v(x, x′)ρ0

nucl(x
′) +

1

2

∫
dxdx′dx′′dx′′′ δρ̂el(x)v(x, x′)χnucl(x

′, x′′)v(x′′, x′′′)δρ̂el(x
′′′). (5.158)

This decoupling procedure will now be investigated from a more abstract point of view.

35Note that in this context the systems of electrons and nuclei are not decoupled in the sense of partial

differential equations because the Hamiltonian of one subsystem still depends on the state of the other

subsystem. Decoupling in this context only means that the Hamiltonian of the subsystem does not contain

operators acting on the other system. In the same sense, one says that the Hartree approximation

decouples the electrons into effective one-particle systems. The corresponding Hamiltonian of a given

electron of course depends on the other electrons.
36Typically, this will be the ground-state or the thermal ensemble.
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Mean Fluctuation Theory Consider a Hamiltonian of the form

Ĥint = Â⊗ B̂. (5.159)

Mean Field Theory replaces this by the decoupled Hamiltonian

ĤMF
int = ÂB0 + A0B̂ − A0B0. (5.160)

Mean Fluctuation Field Theory goes beyond this. Instead of replacing Â and B̂ with fixed

(time-independent) expectation values, it replaces them by a fixed expectation value plus

fluctuating terms

Â = A0 + δÂ(t) (5.161)

B̂ = B0 + δB̂(t). (5.162)

For the fluctuation operators, mean fluctuation theory then uses a formal Kubo ansatz

δÂ(t) 7→
∫

dt′ χAA(t, t′)δB̂(t′) (5.163)

δB̂(t) 7→
∫

dt′ χBB(t, t′)δÂ(t′). (5.164)

All in all, this leads to the mean fluctuation field Hamiltonian

Ĥint = Â⊗ B̂

= A0B0 + δÂB0 + A0B0 + A0δB̂ − A0B0 +
1

2
δÂδB̂ +

1

2
δÂδB̂

7→ ÂB0 + B̂A0 − A0B0 +
1

2

∫
dt′ δÂ(t)χBB(t, t′)δÂ(t′) +

1

2

∫
dt′ δB̂(t)χAA(t, t′)δB̂(t′) (5.165)

=: ĤMFF
int (t) (5.166)

where the time dependence of the operators is given by a suitable reference Hamiltonian, e.g.

the total, naive mean field Hamiltonian (Ĥ0 + ĤMF
int ). Equation (5.165) is the fundamental

equation of the Mean Fluctuation Field Theory. It also explains the prefactor 1/2 which

cancelled the double-counting: this prefactor results from the partioning of the interaction

Hamiltonian between the subsystems. All in all, this shows that there are 5 equivalent ways

to the effective interaction: (i) the path-integral approach (= integrating out unwanted de-

grees of freedom), (ii) the Gell-Mann and Low approach (= evaluating explicitly the scalar

product of the unwanted operators in the Gell-Mann and Low formula), (iii) the classical

Green function approach (= eliminating the unwanted degrees of freedom in the classical
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Lagrangean or Hamiltonian by means of the classical Green function), (iv) the Mean Fluc-

tuation Field approach (= decomposing the unwanted operator into a fixed mean field and

a fluctuating part which is eliminated by a formal Kubo formula) and (v) the screening

approach (= replacing the fundamental interaction for the total system by an interaction

which is screened by the unwanted degrees of freedom).37

Conceptual Problems The last paragraph underlined again what has been evident as a

problem from the very beginning: in principle, effective Hamiltonians are time-dependent.38

For time-dependent Hamiltonians, the Green function cannot be defined as a ground-state

expectation value. Practically, however, this does not pose any problem because: (i) the

Green function formalism is quasi Lorentz-invariant in that it treats space and time on an

equal footing (time-dependent interaction Hamiltonians do not change the functional form

of the Green function perturbation theory or of the self-consistent set of equations)39 and

(ii) the full, interacting propagator can be defined by the quasiparticle equation which is also

indifferent to a possible time-dependence of the interaction Hamiltonian. The thus defined

propagator gives indeed rise to time-independent “ground-state” expectation values. These

expectation values in principle (i.e. if perturbation theory holds) coincide with the expecta-

tion values of the full interacting ground-state of the coupled Hamiltonian. This is evident

from the discussion of the Gell-mann and Low theorem and its connection to the theory of

effective interactions. For the time being, we may therefore conclude that the Green function

approach is actually more fundamental than the Schrödinger equation – as is indeed the case

in high-energy physics40 – and that the effective Hamiltonians are nothing but a means to

37Indeed, classical texts, as e.g. [4] p.518, start with a Coulomb interaction screened by the nuclear degrees of

freedom and define the difference between this interaction and the bare Coulomb interaction as mediated

by phonons. The resulting expressions for the effective interaction differ of course from the ones given

here. This is due to the fact that the nuclear polarizability is not calculated from the phonon-propagator.

Ashcroft and Mermin state in their footnote 18 on page 518 that they consider their derivation more

as an “indication of plausibility” whereas a “systematic derivation” would require “field theoretic (’Green

function’) methods”. Our approach has made it clear that the “indication of plausibility” as by Ashcroft

and Mermin in fact is a derivation because the Green function approach is equivalent to the screening of

the Coulomb interaction by the nuclear degrees of freedom. In other words, it is not a specialty of the

RPA and some crude guess for the nuclear polarizability that they meet in the same effective interaction.
38A similar problem (with a similar solution) is that the effective interaction Hamiltonian is in general not

self-adjoint (at least not if it is calculated from the Feynman propagator).
39The Green function perturbation theory even has been developed for a time dependent Hamiltonian

(although this time-dependence is the artificial adiabatic switching on).
40In fact, it is one of the basic problems for every beginner in relativistic Quantum Field Theory coming

from the Quantum Mechanics course (at least it has been for the author of this thesis), that usually one

does not calculate state vectors or solve a Schrödinger equation.
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define Green function equations. Nonetheless, the author of this thesis is convinced that

deeper truths wait for their discovery here.

5.2.4. Self-Consistent Green Function Equations for Electrons and

Nuclei

Phononic Hamiltonian and Effective Phonon-Phonon Interaction from Mean

Fluctuation Field Theory The above discussion is completely symmetric in Â and B̂.

For the concrete case of Electronic Structure Theory, we have seen that mean fluctuation

theory replaces the purely electronic Hamiltonian consisting of a kinetic term and an electron-

electron interaction (through the Coulomb potential) with a Hamiltonian consisting of the

original Hamiltonian plus the external potential of the nuclei (corresponding to the mean

field Hamiltonian) and the effective phonon-mediated electron-electron interaction (corre-

sponding to the mean fluctuation field Hamiltonian). By symmetry, the same should apply

to the nuclei. In other words, the corresponding Hamiltonian for the nuclei reads

ĤMFF
nucl (t) = − ~2

2M

N∑
i=1

∆i +
1

2

N∑
i,j=1

v(xi,xj) +

∫
dxdx′ ρ0

el(x
′)v(x′,x)ρ̂nucl(x)

+
1

2

∫
dxdx′dx′′dx′′′ δρ̂nucl(xt)v(x, x′)χel(x

′, x′′)v(x′′, x′′′)δρ̂nucl(x
′′′). (5.167)

Here, χel corresponds to the electronic density response function. The third term of the

Hamiltonian is the external potential of the electrons exerted on the nuclei. The fourth

term is the effective nucleus-nucleus (“phonon-phonon”) interaction mediated by electrons.

We will now show that this Hamiltonian in fact reproduces (or even generalizes) the usual

phononic Hamiltonian. For this purpose, we recall that in Electronic Structure Theory the

phononic Hamiltonian is derived from the second derivatives

∂2E

∂u(xn0)∂u(xm0)
|u=0. (5.168)

The inter-nuclear Coulomb potential and the kinetic energy are present in both approaches

and therefore do not have to be treated. Hence, we restrict our attention to the case where

E is given by the electronic energy in the external potential of the nuclei considered as a

functional of these very nuclear position. In other words, we consider the contribution

E0 = 〈Ψ0|Ĥ|Ψ0〉 (5.169)

with the electronic Hamiltonian

Ĥ = T̂kin + V̂el−el + V̂ext. (5.170)

Thesis, Vienna, July 4, 2012



Ronald Starke: Green Functions and Electronic Structure Theory 247

Now, by the Hellmann-Feynman theorem we have

∂E0

∂u(xn0)
= 〈Ψ0|

∂V̂ext

∂u(xn0)
|Ψ0〉. (5.171)

Hence, with second order perturbation theory, we find

∂2E0

∂u(xn0)∂u(xm0)
= 〈Ψ0|

∂2V̂ext

∂u(xn0)∂u(xm0)
|Ψ0〉+ 2Re

∑
s

〈Ψ0|∂V̂ext

∂xn
|Ψs〉〈Ψs|∂V̂ext

∂xm
|Ψ0〉

E0 − Es
.

The first term simply corresonds to the quadrupole moment δmnQ(x,xn0) integrated against

the electronic ground-state density ρ(x). For the second term, we observe

V̂ext =

∫
dx vext(x)ρ̂(x) (5.172)

=

∫
dxdx′ ρnucl(x

′)v(x′,x)ρ̂(x) (5.173)

=
∑
n

∫
dxdx′ (δ(x′ − xn0)− u(xn0) · (∇δ)(x′ − xn0))v(x′,x)ρ̂(x) (5.174)

and hence

∂V̂ext

∂xm

= −
∫

dxdx′ (∇δ)(x′ − xm0))v(x′,x)ρ̂(x) =

∫
dxdx′ E(xm0,x)ρ̂(x). (5.175)

We then find

2Re
∑
s

〈Ψ0|∂V̂ext

∂xn
|Ψs〉〈Ψs|∂V̂ext

∂xm
|Ψ0〉

E0 − Es
(5.176)

= 2Re

∫
dxdx′ E(xm0,x)

∑
s

〈Ψ0|ρ̂(x)|Ψs〉〈Ψs|ρ̂(x′)|Ψ0〉
E0 − Es

E(xn0,x
′) (5.177)

= −
∫

dxdx′ E(xm0,x)χel(x,x
′;ω = 0)E(x′,xn0). (5.178)

After summation over the nuclear coordinates and multiplication with 1/2u(xn0)u(xm0)

(second order Taylor expansion), this equals

1

2

∫
dxdx′dx′′dx′′′ δρ̂nucl(xt)v(x, x′)χel(x

′, x′′)v(x′′, x′′′)δρ̂nucl(x
′′′)

upon the idenitification δρ̂nucl(xt) = −
∑

n û(xn0) · (∇δ)(x−xn0). Consequently, the second

term of the energy Hessian matrix simply corresponds to the effective phonon-phonon inter-

action but with the electronic density response function evaluated at frequency ω = 0.
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Dyson Equation for Phonon Propagator The last subsection makes it plausible to

identify the dynamical matrix K in the free equation(
M∂2

t + K
)
D0

phon(xn0t,xm0t
′) = δ(t− t′)δnm13×3 (5.179)

with the second order expansion of the internuclear Coulomb potential plus the quadrupole

term δmn

∫
dx ρel(x)Q(x,xn0). The full propagator then fulfills(

M∂2
t + K−P

)
Dphon(xn0t,xm0t

′) = δ(t− t′)δnm13×3 (5.180)

where

P(xn0t,xm0t
′) =

∫
dxdx′ E(xn0,x)χel(xt,x

′t′)E(x′,xm0). (5.181)

Here, P is a 3× 3 matrix and EE is to be understood as the tensor product of the vectors.

An elementary reasoning (cf. e.g. subsection (1.2.2))41 shows that these propagators are

related through

Dphon = D0
phon + D0

phonPDphon. (5.182)

This is the Dyson equation for the phonon propagator.42 P is the phononic self-energy.

Note, however, that as compared to the electronic self-energy, the phononic self-energy is of

a completely different nature because P is not a functional of Dphon while Σ is a functional

of G. Therefore, the Dyson equation for the phonon propagator is actually not a Dyson

equation but a mere resolvent identity.

Green Function Equations for Electrons and Nuclei The decisive insight of the last

paragraph is that the phononic self-energy is not a functional of the phonon propagator.

Therefore, the phononic Green function theory consists of only one equation, namely the

phononic Dyson equation, as opposed to three equations in the case of the electronic Green

function theory. We are now in a position to combine electronic and phononic Green function

theory into a closed, self-consistent set of equations which is the ultimate goal of this thesis.

These equations read

G = G0 − i~G0W · L̃ (5.183)

W = Vtot + i~VtotL̃W (5.184)

L̃ = L0 + i~L0ĨL̃ (5.185)

Vtot = VCoul + Vphon (5.186)

Dphon = D0
phon + D0

phonPDphon. (5.187)

41Even more easier, this equation can be shown by multiplying through with (D0
phon)−1 = M∂2

t + K which

yields directly the equation of motion for the full propagator Dphon.
42The Dyson equation for the phonon propagator has been derived – apparently for the first time – by

Engelsberg and Schrieffer ([19], equation (A.15)) by a completely different method.
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The nature of these equations is clear now: the first three equations simply correspond to

the electronic, self-consistent propagator equations with the Coulomb potential replaced by

the total (electron + phonon-induced) interaction (equation (5.186)). Note in this context

that the self-consistent set of equations is independent of the interaction V as long as it

is of a two-particle type. Equation (5.187) is the aforementioned Dyson equation for the

phonon propagator. These equations have to be supplemented by the following definitions

(in symbolic notation):

Vphon = vχnuclv (5.188)

P = EχelE (5.189)

χnucl = e2(∇δ)Dphon(∇δ) (5.190)

χel = L (5.191)

L = L̃+ L̃V L (5.192)

G0 = (i~∂t − Ĥ0 − vH)−1. (5.193)

The phonon induced interaction has been left out of the reference propagator G0 because –

as has been discussed already – it is plausible that the phonon induced interaction is a pure

fluctuation interaction and does therefore not contribute a Hartree type term.

The self-consistent Green function equations for electrons and phonons are a result of the

interplay between Linear Response Theory, Green function theory and the theory of effective

interactions.
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A. Appendices

A.1. Complex Tensor Calculus

Definitions We consider H = CN with the standard scalar product 〈·|·〉 and a ’coordinate

transformation’, i.e. an invertible, l inear mapping Û : CN → CN . We think of CN as a

discretized Hilbert space and denote the standard basis by ϕi, i.e. 〈ϕi|ϕj〉 = δij. All results

carry over immediately to a separable Hilbert space ' `2. By the Riesz theorem, we identify

the dual Hilbert space with the complex conjugate vector space via the scalar product

ϕi := 〈ϕi|·〉. (A.1)

As opposed to the real tensor calculus, we have to differentiate between 4 different transfor-

mation behaviours.

1. The basis in H transforms with

U i
j = 〈ϕi|Û |ϕj〉, (A.2)

2. Expansion coefficients ai of a vector ϕ ∈ H with respect to the basis ϕi transform with

the contragredient matrix (UT)−1.

3. Expansion coefficients ai of a dual vector transform with the complex conjugate of the

contragredient matrix ((U∗)T)−1.

4. The dual basis transforms with the complex conjugate matrix U∗.

In principle, this necessitates the introduction of four different kinds of indices (as with

the four fundamental representations of the Lorentz group (or rather its covering group

SL(2,C))). In this text, however, we can restrict attention to the transformation properties

of vectors and dual vectors. With these, we associate upper and lower indices transforming

as

bi = U i
ja
j (A.3)

bi = U j
i aj (A.4)
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where a summation convention is understood. Now, if ai are the expansion coefficient of

a vector with respect to a certain basis then the corresponding dual vector has expansion

coefficients ai = (ai)∗. Therefore, under a change of basis with a matrix U i
j,

bi = (bi)∗ = (U i
ja
j)∗

!
= U j

i aj. (A.5)

It follows that indices can be drawn up and down by complex conjugation; in particular

U j
i = (U i

j)
∗. (A.6)

If we further restrict attention to transformations from one complete orthogonal system to

another, then Û is necessarily unitary and the dual basis transforms like the vector coefficients

and the basis like the dual vector coefficients. The general tensor calculus can now easily

be derived by considering multilinear mappings from the various tensor products of H and

its dual to the complex numbers. Furthermore, note that by the above definition in any

basis ϕi the dual basis is given by ϕi = 〈ϕi|·〉. Therefore, in general (i.e. in an arbitrary

basis) ϕi(ϕj) 6= δij. This is in contrast to general relativity where the dual basis of a real

vector space is defined by ei(ej) = δij whereas the dual vector is still defined by yµ = g(yµ, ·)
(abstract index notation [98]). More precisely this means1: If E is a vector space with metric

g : E×E → R and E∗ the dual space, then ∀y ∈ E, g(y, ·) is a dual vector the components of

which with respect to the standard dual basis are given by yν = gνµy
µ where gµν = g(eµ, eν).

The proof reads ∀x ∈ E :

g(y, x) = y(x) = (yνe
ν)(xµeµ) = yνx

µeν(eµ) = yνx
ν = gµνy

µxν . (A.7)

Now, in our case we can consider the scalar product as a sesqui-linear mapping H∗×H → C

given by the matrix δ j
i in the standard basis. Both definitions of the dual basis then coincide

as long as the transformation Û conserves the form of the scalar product. This is just the

case for the unitary transformations for which U∗ is the contragredient matrix.

1In general relativity, this applies to the tangent space TxM where eµ = ∂µ, e
ν = dxν etc.
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A.2. Fourier Transformation

A.2.1. Definitions and Conventions

Definition For Schwartz functions, the Fourier transform and its inverse are defined by

F [ψ](k) ≡ ψ̃(k) =

∫
dx ψ(x) exp(−ikx) (A.8)

ψ(x) = F−1[ψ̃](x) =

∫
dk

(2π)3
ψ̃(k) exp(ikx). (A.9)

Remarks

1. The BLT theorem says: For a bounded linear transformation T from a normed linear

space (V1, ‖ · ‖1) to a complete normed linear space (V2, ‖ · ‖2), there exists an unique

extension T̃ which maps the completion of (V1, ‖ · ‖1) to (V2, ‖ · ‖2). This extension

is again linear and bounded with the same bound: ‖T‖ = ‖T̃‖ where ‖ · ‖ denotes

the operator norm. The importance of the BLT theorem lies in the following: The

existence and isometric character of the Fourier transform for a Schwartz function is

easy to verify. As the Schwartz functions are dense in the Hilbert space of square-

integrable functions, the Fourier transform can be uniquely extended to L2(R3,C).

2. Conventions for Quantum Mechanics: A plane wave is of the form

ψ(xt) = exp(ikx− iωt). (A.10)

This solves the free Schrödinger equation

i~∂tψ(xt) = − ~2

2m
∆ψ(xt) (A.11)

iff ω = ω(k) = ~k2

2m
. The general solution of the free equation then reads:

ψ(t,x) =

∫
dk f(k) exp(ikx− iωt) =

∫
dk f(k, t) exp(ikx). (A.12)

This suggests to define

ψ̂(k, ω) =

∫
dxdt exp (−ikx + iωt)ψ(xt). (A.13)

ψ(xt) =

∫
dkdω

(2π)4
exp (ikx− iωt) ψ̃(k, ω). (A.14)

The important thing to remember about this equation is that in Quantum Mechanics

the Fourier Transform with respect to t corresponds to the inverse Fourier transform.

The equations can be written more concisely by introducing a Minkowski space notation

x = (xt), k = (ω,k) and kx = ωt− kx.
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A.2.2. Discretization

Definition The linear mapping Û : CN → CN defined by the matrix

Uij =
1√
N

exp

(
−i

2π

N
ij

)
. (A.15)

in the standard basis is called discrete Fourier transform.

Lemma A.2.1 Û is a unitary transformation.

Proof The adjoint matrix Û † is given by

(Û †)ij =
1√
N

exp

(
i
2π

N
ji

)
. (A.16)

Hence, we find

N∑
k=1

Uik(U
†)kj =

1

N

N∑
k=1

exp

(
−i

2π

N
(ik − kj)

)

=
1

N

N∑
k=1

exp

(
−i

2π

N
(i− j)k

)

=
1

N

N∑
k=1

(
exp

(
−i

2π

N
(i− j)

))k
=

1

N

exp
(
−i2π

N
(i− j)

)
− exp

(
−i2π

N
(N + 1)(i− j)

)
1− exp

(
−i2π

N
(i− j)

)
This equals 0 for

exp

(
−i

2π

N
(i− j)

)
6= 1. (A.17)

If this condition is not fulfilled, then i = j and
∑N

k=1 exp
(
−i2π

N
(ik − kj)

)
= N . Therefore

N∑
k=1

Uik(U
†)kj = δij. (A.18)

Remark In particular, the discrete Fourier transform conserves the standard scalar product

in CN given by

〈f |g〉 =
N∑
i=1

f ∗i gi. (A.19)

Reinterpetation as a Space of Functions Consider the group

ZN = Z/NZ = {1, 2, . . . , N} (A.20)
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as a finite set. A function f : ZN → C is uniquely defined by its values on each element of

its domain. In other words, such a function is given by a vector (f1, . . . , fN) with complex

entries. This shows that the vector space H of functions f : ZN → C is isomorphic to CN .

We now reinterpret ZN as an equally spaced lattice in [0, L] = R/LZ with L = Na and

lattice points {a, 2a, . . . , Na}. We denote this lattice by Γa,N = aZN . We rewrite

exp

(
−i

2π

N
ij

)
= exp

(
−i

2πj

aN
ai

)
= exp (−ikx) (A.21)

with x = xi = ia ∈ Γa,N and k = kj = 2πj/L. We define a dual lattice Γ∗a,N by

Γ∗a,N =
2π

L
ZN = Γ 2π

L
,N . (A.22)

such that k ∈ Γ∗a,L and L∗ = 2π/a. We define discrete integrations∫
Γa,N

dx f(x) = a
N∑
i=1

f(xi) (A.23)

∫
Γ∗a,N

dk f̃(k) =
2π

L

N∑
i=1

f̃(ki) (A.24)

(A.25)

for functions f : Γa,N → C and f̃ : Γ∗a,N → C. Furthermore, we define the respective scalar

products as

〈f |f〉Γ =

∫
Γa,N

dx f ∗(x)f(x) = a
N∑
i=1

f ∗(xi)f(xi) (A.26)

〈f̃ |f̃〉Γ∗ =

∫
Γ∗a,N

dk f ∗(k)f(k) =
2π

L

N∑
i=1

f̃ ∗(ki)f(ki). (A.27)

We now want to redefine the Fourier transform such that it is unitary with respect to these

scalar products. By inspection we see that we have to rescale with a factor√
L

2πa
=

√
N

2π
(A.28)

leading to matrix elements

Uij =
1√
2π

exp

(
−i

2π

N
ij

)
=

1√
2π

exp (−ikjxi) . (A.29)

The Fourier transforms for lattice functions now read

f̃(k) =
1√
2π

∫
Γ

dx e−ikxf(x) (A.30)

f(x) =
1√
2π

∫
Γ∗

dk eikxf̃(k). (A.31)

(A.32)
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In particular, we find

1

2π

∫
Γ∗

dk eik(x−x′) = a−1δij (A.33)

with x = xi = ia, x′ = xj = ja.

A.3. Laplace Transformation, Hilbert Transformation & All

That

A.3.1. Fourier Transformation and Complex Analysis

Theorem A.3.1 (Residue Theorem) Let f be a meromorphic function: U → C. Let C be

a piece-wise continuous, closed path which lies in the open set U ⊂ C. Let f have the poles

z1, . . . , zm inside the region enclosed by C and no poles on C. Then the following equation

holds:
1

2πi

∫
C

f(z)dz =
m∑
k=1

Resf (zk) (A.34)

where the integration is supposed to go along C in the anticlockwise sense. ([100], p.215)

Theorem A.3.2 (Cauchy integral formula) Let f be holomorphic on U and C a piece-wise

continuous, closed path in U . Then, the following equation holds:

f(z0) =
1

2πi

∫
C

dz
f(z)

z − z0

. (A.35)

In particular, f(z0) is the residue in z0 of the function f(z)
z−z0 .

Application to Fourier Transforms Consider the special case f(t) = exp(− i
~Et) with

the complex energy E ∈ C. The Cauchy integral formula then yields

exp

(
− i

~
E0t

)
=

1

2πi

∫
C

dE
exp

(
− i

~Et
)

E − E0

. (A.36)

where the integration path is supposed to be homotopic to a circle around E0. In the case

of a Fourier transform however, one does not integrate along a closed path but along the

real line. This can be remedied by using an auxiliary path in the upper or lower half plane,

e.g. a half-circle with radius r and shifting the poles by a small amount η ∈ R+. The

integral is then evaluated with the Cauchy formula by choosing a contour in the half-plane

in which the exponential decays. In the limit r →∞, the contribution of the auxiliary path
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vanishes and the integration along the real line recovers the original Fourier transform. For

the exponential, this can be summarized in the master formula∫ ∞
−∞

dE

2π

exp(−iEt/~)

E ∓ (E0 − iη)
= ∓iθ(±t) exp

(
∓ i

~
(E0 − iη)t

)
. (A.37)

The ∓ sign in front is due to the fact that in one case one encloses the poles clockwise whereas

in the other case one encloses the poles anticlockwise. The Heaviside function stems from

the fact that the auxiliary contour has to be chosen such that the respective contribution

vanishes. It then depends on the sign of t whether one closes the contour in the lower or in

the upper half-plane. Only in one case the contour then encloses the poles. In the other case,

the contour encloses no poles and the respective integral vanishes. The converse directions

can be shown even more easily, e.g.

−
∫ ∞
−∞

dt iθ(t) exp

(
i

~
(E − E0 + iη)t

)
= −i

∫ ∞
0

dt exp

(
− i

~
(−E + E0 − iη)t

)
= −~

exp
(
− i

~(−E + E0 − iη)t
)
|∞0

E − E0 + iη

=
~

E − E0 + iη
.

We will now see that we simply redefined a formal ansatz for a Fourier transform as a

boundary value of a Laplace transform.

A.3.2. Laplace Transformation

Standard Definition The Laplace Transform f̂(k) of f(x) and its inverse are defined by

L[f(t)] ≡ f̂(p) =

∫ ∞
0

dt exp(−pt)f(t) (A.38)

L−1[f̂(p)] =
1

2πi

∫ c+i∞

c−i∞
dp exp(pt)f̂(p) (A.39)

where p = c + id ∈ C. For the sake of Quantum Mechanics it is useful to redefine p = −iE

with E ∈ C and

L[f(t)] ≡ f̂(E) =

∫ ∞
0

dt exp(iEt)f(t) (A.40)

L−1[f̂(E)] =
1

2π

∫ ∞+iΓ

−∞+iΓ

dE exp(−iEt)f̂(E). (A.41)
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On the real axis – i.e. in the limit Im(E) = Γ→ 0 – the Laplace Transform then reads

L[f(t)] ≡ f̂(E) =

∫ ∞
−∞

dt θ(t) exp(iEt)f(t) (A.42)

L−1[f̂(E)] =
1

2π

∫ ∞
−∞

dE exp(−iEt)f̂(E) =

 f(t) if t > 0

0 if t < 0
(A.43)

Remarks

1. Disregarding domains of definition, the Fourier transform of a retarded function is the

boundary value of a Laplace Transform with Im(E) → 0. For t > 0 every Fourier

back transform can be interpreted as the boundary value of a Laplace transform with

Im(E) → 0. Conversely, the boundary value of a Laplace Transform does not neces-

sarily yield the Fourier Transform of a function. In general, it will yield a distribution.

2. The Paley-Wiener Theorem says: For each test function with compact support, the

Laplace transform is holomorphic in the complex energy plane and satisfies ∀N ∈ N:

|f̂(E)| ≤ C1
exp(C2|Im(E)|)

(1 + |E|)N
. (A.44)

with appropriate constants C1, C2 and vice-versa.

3. The Schwartz Theorem says: Each compactly supported distribution has a holomorphic

Laplace transform satisfying

|G(E)| ≤ exp(C2|Im(E)|)(1 + |E|)N . (A.45)

for some fixed natural N . Conversely, a holomorphic function satisfying the above

growth condition is the Laplace transform of a compactly supported distribution.

The general connection between the Laplace transform, the Fourier transform and the Hilbert

transform is given by the following theorem which we write in a way that its relation to the

retarded response function should be evident.

Theorem A.3.3 (Titchmarsh Lemma) For a square integrable function χ(ω) the following

is equivalent

1. The Fourier preimage χ(τ) satisfies:

χ(τ) = 0 (τ < 0). (A.46)
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2. χ(ω) is the boundary value for η → 0 of a holomorphic function χ(ω+ iη) in the upper

complex energy plane which is square-integrable along every line parallel to the real axis

in the upper half-plane

3. The real and the imaginary part of χ(ω) are interrelated by a Hilbert transform:

Re(χ)(ω) =
1

π
P
∫ ∞
−∞

dω′
Im(χ)(ω′)

ω′ − ω
(A.47)

Im(χ)(ω) = − 1

π
P
∫ ∞
−∞

dω′
Re(χ)(ω′)

ω′ − ω
. (A.48)

These are called Kramers-Kronig relations.

A.3.3. Pole-Shift Formula

An important integral which we used main text is given by the convolution

f̃(ω) =

∫ ∞
−∞

dω′
1

ω′ − εi + iη

1

ω − ω′ − εj + iη
. (A.49)

This can be solved in at least four different manners: by a brute force approach through

direct integration, by the help of the residue theorem, by the Cauchy formula and and by the

Convolution Theorem. The last one is certainly the most elegant method. By the convolution

theorem, the Fourier transform of f̃(ω) is given by the point-wise product of

g(t) = 2πiθ(t) exp(−iεit) (A.50)

and

h(t) = 2πiθ(t) exp(−iεjt) (A.51)

which yields

f̃(ω) =
2πi

ω − (εi + εj) + iη
. (A.52)

Equally important is the integral

f̃(ω) =

∫ ∞
−∞

dω′
1

ω′ − εi + iη

1

ω + ω′ − εj − iη
. (A.53)

This can be rewritten as

−
∫ ∞
−∞

dω′
1

ω′ − εi + iη

1

−ω − ω′ + εj + iη
. (A.54)

Therefore, we now have

f̃(ω) =
2πi

ω − (εj − εi) + iη
=

2πi

ω − (εj − εi) + iη
. (A.55)

This result will be called pole-shift formula because it shows that the convolution of fractions

of the form 1/(ω−εi) leaves the functional form invariant but shifts the pole to the difference

εi − εj.
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A.4. Classical Harmonic Oscillator and Linear Response

Green Function Approach Consider the classical, one-dimensional, damped harmonic

oscillator

m(ẍ+ Γẋ+ ω2
0x) = 0. (A.56)

How does x(t) change upon external perturbation? To answer this question, one has to

include a perturbative term eδE(t) in the equation of motion

m(ẍ+ Γẋ+ ω2
0x) = eδE(t) (A.57)

corresponding to an interaction Hamiltonian Hint = −ex(t)δE(t). To solve for the perturbed

equation of motion, we use the method of Green functions

m

(
d2

dt2
+ Γ

d

dt
+ ω2

0

)
G(t− t′) = δ(t− t′). (A.58)

In the Fourier domain we then get

m
(
−ω2 − iΓω + ω2

0

)
G(ω) = 1. (A.59)

Hence

G(t− t′) = − 1

m

∫
dω

2π

exp(−iω(t− t′))
ω2 − ω2

0 + iΓω
= θ(t− t′)sin(ω1(t− t′))

mω1

exp

(
−Γ

2
(t− t′)

)
(A.60)

with ω1 =
√
ω2

0 − Γ2/4. The solution to the perturbed system then reads

x(t)− x0(t) ≡ δx(t) =

∫
dt′ G(t− t′)δE(t′). (A.61)

Electromagnetic Properties The “susceptibility” in this case is defined as minus2 the

derivative of the “polarization” ex with respect to the external field E ≡ Eext := D/ε0. In

the Fourier domain, we get

χ(ω) = − δx(ω)

δD(ω)
=

e2

ε0m

1

ω2 − ω2
0 + iΓω

(A.62)

The “conductivity” in turn is defined as the derivative of the “current” j = eẋ with respect

to the external field E.

σ(ω) =
δj(ω)

δE(ω)
=
e2

m

iω

ω2 − ω2
0 + iΓω

(A.63)

2We include the minus sign in order to make the susceptibility the analog of χ = δρind/δϕext as in the

first part of this work. Standard texts often define P = χeE. The thus defined susceptibility is the

macroscopic counterpart of −χ̃ (possibly convoluted with the Coulomb kernel).
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With ε−1 = 1 + χ (see below) these relation imply in particular that

ε−1 = 1− i

ε0ω
σ. (A.64)

This is of course a standard relation which should be fulfilled for any kind of model. We

consider two typical applications.

Lorentz Model of Polarizability Here, one simply considers the medium as being com-

posed of N harmonic oscillators enclosed in the volume V which leads to the susceptibility

χ(ω) = − δP
δD

=
e2N

mε0V

1

ω2
0 − ω2 − iΓω

(A.65)

for the macroscopic polarization P (“dipole moment per unit volume”). We defined as always

ε0Eext = D. This is a standard result. (cf. e.g. [27] p.30f) It implies

D = ε0E + P = ε0E − χD (A.66)

or (1 + χ)D = ε0E. Hence

ε−1(ω) = 1 +
e2N

mε0V

1

ω2 − ω2
0 + iΓω

. (A.67)

Note that Fox [27] p.31 gets the analogous result for ε (instead of ε−1) because he inter-

prets the perturbation as the total field E in D = E + P. Consequently, the presign of the

ω-dependent term is different. This is completely analogous to the microscopic equations

ε−1 = 1 + vχ and ε = 1− vχ̃.

Drude Model of Conductivity Again, we apply the oscillator model to N atoms in

the volume V . For the Drude model, we have to set ω0 = 0 (free valence electrons) and

Γ = 1
τ

leading to

σ(ω) =
δj(ω)

δE(ω)
=

σ0

1− iωτ
(A.68)

where

σ0 =
Ne2τ

V m
(A.69)

is the conductivity of the naive Drude model without damping. Thereby we concede that

the term “oscillator model” is something of a misnomer when the restoring force vanishes.
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