

DISSERTATION

Titel der Dissertation

"A Holistic Multi-Purpose Life Logging Framework"

Verfasser

Mag.rer.soc.oec. Reza Rawassizadeh

angestrebter akademischer Grad

Doktor der Technischen Wissenschaften (Dr. techn.)

Wien, 2012

Studienkennzahl lt. Studienblatt: A 786 880

Dissertationsgebiet lt. Studienblatt: Informatik

Betreuer: O.Univ.Prof. Dipl.-Ing. Dr.techn. A Min Tjoa

ii

Acknowledgement

It is hard to mention all who helped me reaching this milestone of my life. On one
hand I am grateful to God and my family, especially my parents and my spiritual
leader who have all given me ability, motivation and support. Without their support
during my Ph.D. I could not have survived.
On the other hand I am very thankful to Prof. A Min Tjoa who is my Ph.D. advisor.
His intelligence and scientific vision, which are the result of his great experience and
work in many different disciplines, was of very great help to me. For any new subject
he came up with a good ideas, for instance the surprise detection idea. I should also
be thankful to Prof. Wolfgang Klas who is my second advisor and I appreciate his
precision.
Moreover I am thankful to Prof. Abigail Sellen and Dr. Katarzyna Wac who
have read my thesis and gave me helpful feedback on my dissertation. Dr. Martin
Tomitsch is another important person who helped in my research with his great
personality and patience.
Furthermore I appreciate my colleagues Dr. Amin Anjomshoaa, Elaheh Momeni
and Jana Machajdik for their feedback and assistance. Each of them helped me at
different period of time and I have benefited from their knowledge.
I need to be thankful for the IFS staff for their brilliant support and the students
who helped me in developing my prototypes including: Victor Andrei Gugonatu,
Soheil Khosravipour, Michael Kuehberger and Christian Feichtinger. At the end I
am thankful for all institutions who supported me in doing my research which are:
Berlitz (especially Barry Kearnan), ÖFG and research services and the international
relation department of the University of Vienna.
I dedicate this work to all the talented people around the world, who are suffering
from lack of supports, which prevents them from studying and increasing their
knowledge. I am happy that I have had this chance, but there are many more
talented and hard working people around the world who would like to follow this
direction and are not able to.

iii

iv

Abstract

The paradigm of life-logging promises a complimentary assistance to the human
memory by proposing an electronic memory. Life-logs are tools or systems, which
automatically record users’ life events in digital format. In a technical sense, they
are pervasive tools or systems which continuously sense and capture contextual in-
formation from the user’s environment. A dataset will be created from the collected
information and some records of this dataset are worth preserving in the long-term
and enable others, in future generations, to access them. Additionally, some parts
are worth sharing with society e.g. through social networks. Sharing this informa-
tion with society benefits both users and society in many ways, such as augmenting
users’ social interaction, group behavior studies, etc. However, in terms of individual
privacy, life-log information is very sensitive and during the design of such a system
privacy and security should be taken into account.
Currently life-logs are designed for specific purposes such as memory augmentation,
but they are not flexible enough to accept new sensors. This means that they have
been configured to work only with a predefined set of sensors. Sensors are the core
component of life-logs and increasing the number of sensors causes more data to
be available for acquisition. Moreover a composition of multiple sensor data pro-
vides better qualitative and quantitative information about users’ status and their
environment (context). On the other hand, sensor openness benefits both users and
communities by providing appropriate capabilities for multidisciplinary studies. For
instance, users can configure sensors to monitor their health status for a specific
period, after which they can change the system to use it for memory augmentation.
In this dissertation I propose a life-log framework which is open to extension and con-
figuration of its sensors. Openness and extendibility, which makes the framework
holistic and multi-purpose, is supported by a sensor classification and a flexible
model for storing life-log information. The framework enables users to share their
life-log information and supports required features for life logging. These features
include digital forgetting, facilitating information retrieval (through annotation),
long-term digital preservation, security and privacy.

v

vi

Zusammenfassung

Die Paradigm des Life-Loggings verspricht durch den Vorschlag eines elektronis-
ches Gedächtnisses dem menschlichem Gedächtnis eine komplementäre Assistenz.
Life-Logs sind Werkzeuge oder Systeme, die automatisch Ereignisse des Lebens des
Benutzers aufnehmen. Im technischem Sinne sind es Systeme, die den Alltag durch-
dringen und kontinuierlich konzeptuelle Informationen aus der Umgebung des Be-
nutzers erfassen. Teile eines so gesammelten Datensatzes könnten aufbewahrt und
für die nächsten Generationen zugänglich gemacht werden. Einige Teile sind es
wert zusätzlich auch noch mit der Gesellschaft geteilt zu werden, z.B. in sozialen
Netzwerken. Vom Teilen solcher Informationen profitiert sowohl der Benutzer als
auch die Gesellschaft, beispielsweise durch die Verbesserung der sozialen Interak-
tion des Users, das ermöglichen neuer Gruppenverhaltensstudien usw. Anderseits,
im Sinne der individuellen Privatsphäre, sind Life-log Informationen sehr sensibel
und entsprechender Datenschutz sollte schon beim Design solcher Systeme in Betra-
cht gezogen werden.
Momentan sind Life-Logs hauptsächlich für den spezifischen Gebrauch als Gedächtni-
sstützen vorgesehen. Sie sind konfiguriert um nur mit einem vordefinierten Sensorset
zu arbeiten. Das bedeutet sie sind nicht flexibel genug um neue Sensoren zu akzep-
tieren. Sensoren sind Kernkomponenten von Life-Logs und mit steigender Senso-
ranzahl wächst auch die Menge der Daten die für die Erfassung verfügbar sind.
Zusätzlich bietet die Anordnung von mehreren Sensordaten bessere qualitative und
quantitative Informationen über den Status und die Umgebung (Kontext) des Be-
nutzers. Offenheit für Sensoren wirkt sich also sowohl für den User als auch für die
Gemeinschaft positiv aus, indem es Potential für multidisziplinäre Studien bietet.
Zum Beispiel können Benutzer Sensoren konfigurieren um ihren Gesundheitszustand
in einem gewissen Zeitraum zu überwachen und das System danach ändern um es
wieder als Gedächtnisstütze zu verwenden.
In dieser Dissertation stelle ich ein Life-Log Framework vor, das offen für die Er-
weiterung und Konfiguration von Sensoren ist. Die Offenheit und Erweiterbarkeit
des Frameworks wird durch eine Sensorklassifizierung und ein flexibles Model für die
Speicherung der Life-Log Informationen unterstützt. Das Framework erm- öglicht
es den Benützern ihre Life-logs mit anderen zu teilen und unterstützt die notwendi-

vii

gen Merkmale vom Life-Logging. Diese beinhalten Informationssuche (durch Anno-
tation), langfristige digitale Erhaltung, digitales Vergessen, Sicherheit und Daten-
schutz.

viii

Contents

1 Introduction 1

1.1 Research Hypothesis and Questions 1

1.2 Contributions . 2

1.3 Background and History . 4

1.4 Human Memory and Digital Memory 5

1.5 Life-log Usages . 8

1.6 Thesis Organization . 11

2 Related Works 13

2.1 Desktop Metaphors and PIMs . 15

2.2 Context-Aware Systems . 18

3 Framework Features 27

3.1 Sharing . 28

3.1.1 Social Media Overview . 29

3.1.2 Risks and Benefits . 32

3.2 Forgetting . 37

3.2.1 Digital Forgetting . 39

3.3 Openness and Extendability . 43

4 Framework Description 47

4.1 Sensors Classification . 48

4.1.1 Desktop Sensors . 49

ix

4.1.2 Mobile Sensors . 50

4.1.3 Proximity (Environmental) Sensors 51

4.2 Life-Log Data Structure . 52

4.2.1 Annotation and Data Collection 52

4.3 Data Model . 55

4.4 Design Challenges and Requirements 60

4.4.1 Spatio-Temporal Data Objects 60

4.4.2 Controversial History of Life-logs and Security 61

4.4.3 WORN Problem . 61

4.4.4 User Intervention . 62

4.4.5 Long-Term Digital Preservation 62

4.4.6 Performance and Storage . 63

4.5 System Architecture . 65

4.5.1 Server . 66

4.5.2 Data Reader . 73

4.6 Proof of Concept and Applications 80

4.6.1 UbiqLog . 80

4.6.2 A Metaphor for Measuring Room Tidiness 97

4.7 Knowledge Mining Approaches . 110

4.7.1 Detecting Life Events and Routines 110

4.7.2 Surprise Detection . 116

5 Privacy, Security and Trust 121

5.1 Software Architecture Security . 122

5.2 Control Over Personal Information 126

5.3 Ethics for Sharing Life-log Information 136

6 Conclusion and Future Work 141

Appendices 144

x

A Benchmarking Mobile Application Resource Usage 145

A.1 Resource Classification . 146

A.2 Controversies and Restrictions . 147

A.3 Benchmarking Applications via a Utility Function 148

A.3.1 Utility Function . 149

A.3.2 Resource Monitoring Methods 152

A.4 Evaluation and Verification . 153

B Abbreviations 159

C Implementation Resources 161

xi

xii

List of Figures

1.1 Building blocks of the thesis . 12

3.1 A user interface for spatio-temporal forgetting 41

3.2 Access expiration definition for a shareable information object 42

4.1 Continuous-time manner and discrete-time manner 54

4.2 Abstract overview of the framework . 65

4.3 Server Architecture . 67

4.4 Data object process flow on the server 68

4.5 Query interface on the server side . 70

4.6 Data visualization component which has been integrated in Diaspora and
runs as the Social Network component of the Server. 72

4.7 Data Reader Architecture. 74

4.8 Sensing process sequence diagram. 76

4.9 UbiqLog GUI screenshots . 86

4.10 GUI screens navigation flowchart. 87

4.11 Social Interaction visualization . 91

4.12 Life-log file size changes during the time 92

4.13 (1)Location, (2)Application usage, (3)Call visualizations and (4)Movement 94

4.14 Conceptual architecture of the system 104

4.15 Amount of image change . 105

4.16 Daily Life Event Segmentation . 114

4.17 Surprising Object on the Table . 119

xiii

5.1 Security requirements in a generic life-log architecture. 124

5.2 LiDSec Architecture . 129

5.3 Screenshots from the LiDSec GUI . 130

A.1 Resource monitoring tool . 152

A.2 Q-Q Plots for CPUs and VmSizes after removing outliers. 155

A.3 CPU utilization trace. 156

A.4 Average memory usage . 157

xiv

List of Tables

2.1 Mobile phone based context-aware approaches 25

4.1 Default sensor configurations . 88

4.2 Battery utilization based on sensor status 93

4.3 UbiqLog classes and their associated methods 96

4.4 Tidiness status of the target environment 102

A.1 Trace values for use in utility function 158

A.2 Comparison result in utility function 158

xv

xvi

Chapter 1

Introduction

1.1 Research Hypothesis and Questions

We need to adapt our resources such as time, health and energy to our new lifestyles.

New technologies such as life logging could resolve these challenges, because the

paradigm of life logging promises a complimentary digital assistance to hu-

man memory. This can be used to augment users’ memory and assist us in health

monitoring, transportation optimization, energy usage monitoring and time man-

agement. However, available life log tools are designed for separate and unique

purposes and are thus not flexible enough to be configured for different use cases.

Moreover they do not take into account some technical (e.g. annotation) and concep-

tual (e.g. forgetting) requirements of digital memory. Here I propose a lightweight,

holistic multipurpose life logging framework which is flexible enough to enable users

to configure it and use it for different purposes such as those previously described.

In addition this framework tries to simulate some real memory characteristics which

include sharing and forgetting in digital memory.

This dissertation tries to answer following research questions:

• What are the technical challenges of a flexible life logging system that can be

used for different purposes ?

1

2 1.2. Contributions

• In order to create a digital memory that works in synergy with human memory,

what features of human memory should the digital memory support ?

• Since life-logs host very sensitive personal information, how can they be made

secure while respecting users’ privacy ?

1.2 Contributions

This dissertation proposes a generic life-log framework which is open, extendable,

lightweight and considers the requirements of a life-log. Additionally, it enables

users to share their life-log information with society, respecting their privacy, and

enabling them to perform “forgetting” in relation to their shared and private in-

formation. It has been assumed that the process of life logging includes collecting,

aggregating and preserving life-log information, therefore I do not delve deeply into

reflecting on life-log information. However, in order to evaluate the usages of im-

plemented prototypes and tools, I propose some visualizations and two knowledge

mining methods (surprise detection and life routine detection). Following are the

major contributions of the dissertation:

Software Architecture

This contribution focuses on software architecture that can be used as a reference

model for implementing a flexible and extendable life-log framework. Life logging

here has been interpreted as the sensing and recording of users’ contextual informa-

tion. It should sense continuously and should be ubiquitous.

Sensors are core components of a life-log system, and they are used to sense con-

textual information. Since there are many sensors available that can be used for

life logging, and in the future more new sensors could be invented for this purpose,

the framework is designed to be sensor independent. In other words, the framework

allows the addition of new sensors or the configuring of existing sensors. Openness

to accept new sensors is one of the major novelties and advantages of the framework

architecture, which makes the framework flexible and extendable in terms of sensor

INTRODUCTION 3

configuration.

Another challenge of life-log systems can be observed within the area of information

retrieval. In order to facilitate the information retrieval process I will use annota-

tion. The annotation enriches raw sensors data objects by assigning semantics to

them.

The life-log dataset is worth keeping during the users’ life, and it can be inherited

too. Therefore digital preservation of the life-log dataset is important. However,

life-logs rely heavily on pervasive devices such as mobile phones. Pervasive devices

are prone to loss and are unreliable for keeping data in the long-term. A lightweight

digital preservation approach regarding pervasive devices will be described.

Furthermore, mobile life-log applications should run in the background of a pervasive

device 24/7, therefore resource efficiency of the pervasive life-logs will be considered

during the prototype implementation.

Sharing and Forgetting

A major requirement of a human memory is sharing experiences and knowledge.

Some information from the life-log dataset (e-memory) are worth being shared with

society. On one hand sharing life-log information with society, benefits both users

and community in many ways. On the other hand, life-log information are highly

sensitive in terms of users privacy.

To my knowledge, there are few research about sharing life-log information with

respect to the life-log requirements. A major novelty of this framework is sharing

life-log information within a community.

Any shared information in human society should have the chance to get forgotten.

Forgetting is a major requirement of human memory. Life-logs can be interpreted as

electronic memories for their owners and assist them in augmenting their biological

memory. This framework supports users in performing digital forgetting (for both

private and shared information).

Besides other theoretical requirements of sharing life-log with society will be exam-

ined in detail. These requirements include risk and benefit assessment of sharing

life-log information and ethical suggestions for service provider and service consumer.

4 1.3. Background and History

Privacy, Security and Ethics

Since life logging tries to replicate the biological memory in digital format, it should

record all individuals’ life events. This level of recording could be a serious treat

to users’ privacy. Thereby, privacy should be considered during the development

of a life-log system. In order to consider users’ privacy I describe: methods for

securing the process of life logging, a lightweight pseudonymization approach which

enable users to the control their information, ethics for sharing life-log information,

and a light weight datamodel which enforces users to restrict sharing their life-log

information by expiration date-time.

1.3 Background and History

Self monitoring and memory augmentation are two main advantages of life logging

and both have a long-standing history in human life. Many religious and spiritual

statements emphasize that humans should observing their behaviors and review his-

tory. Although self monitoring is not new and does not arise after the digital age,

in the digital age it has been grown rapidly. Because of the digitization, cheap stor-

age, easy retrieval and global reach, remembering become a norm [148] and humans

remember their behavior easily by employing digital devices.

In 1913 Bevans [37, 122] wrote an article which describes how people spend their

money and it leads to the question of how people spend their spare time. It can

be called the first scientific effort toward self monitoring. After World War II these

types of research grows rapidly. In 1945 Vaneevar Bush proposed an imaginary de-

vice called Memex, in his famous article “As we may think” [46]. Memex senses and

records all individuals’ life time data such as communications, books, microfilms,

etc. He described a machine can act as a human memory prothesis and he antici-

pated that Memex will be used to optimize humans’ life:

Presumably man’s spirit should be elevated if he can better review his shady past and

analyze more completely and objectively his present problems.

Bush’s vision in this article has inspired a variety of other research endeavors from

information retrieval to distributed hypertext systems. Memex has been interpreted

INTRODUCTION 5

as the first personalized knowledge base [61] or in a more technical sense it is the

first life-log system [33].

Skinner [207] described that individuals learn behavior by reinforcement and pun-

ishment. The process of getting reinforcement, and producing a new behavior by

reinforcement, is called “Operant Conditioning”. Operant conditioning forms an

association between a behavior and the consequences of this behavior.

In 1962 Engelbart [76] introduced a “Conceptual framework for Augmenting hu-

man’s intellect” which cites some Memex ideas, such as links between data objects.

In 2004 Bell and Gemmel 1 launched a workshop series on Capture, Archival and

Retrieval of Personal Experience (CARPE). This annual workshop held for three

years and after that life-log research grows slowly, but continuously.

1.4 Human Memory and Digital Memory

Memory is the human ability to remember 2 and humans by their very nature try

to remember, preserve knowledge and hold their memories. Numerous devices and

tools have been invented to assist humans in augmenting or preserving their memory.

These devices vary from paper to SD memory cards of Mobile phones and PDAs.

In order to describe electronic memories and their role in augmenting our lives, first

I describe the structure of human memory and the process of remembering. Then I

describe how technology have been employed to augment human memory.

There are three types of memory short-term memory, longterm memory and sensory

memory [27]. Sensory memory acts as a buffer for stimulus received through the

human senses. Information in the sensory memory disappears in a second. Short-

term memory retains a piece of information for less than a minute and is able to

retrieve it during this short time frame. Information goes from the sensory memory

to the short-term memory based on the attention paid to the information in the sen-

sory memory. Long-term memory stores information over a long time. Information

can remain there for a very long time, even for the rest of human life. Long-term

memory itself is composed of two parts: Explicit (declarative) memory and Implicit

1http://replay.waybackmachine.org/20090517023401/http://www.sigmm.org/Members/jgemmell/CARPE
2Remember is similar to recall but it uses when there is an intention not to forget something.

6 1.4. Human Memory and Digital Memory

(non-declarative) memory. Explicit memory contains information that we are aware

of remembering them (conscious recall). In contrast to implicit memory, which is

non-obligatory or facultative, here information will not be recalled by a conscious

recall.

Recent technological advances enable us to easily sense and record where we are,

who we met, what we did, what we say, our vital signs, calls, notes, etc. These

information objects can be indexed, filed and cross-referenced by time and location

via life logging. In particular, life-logs enable us to collect and record our life ex-

periences and events. The result of life logging is a dataset, which contains diverse

array of information about the user activities. This dataset is the digital memory

(e-memory)3 of the user. The e-memory augments users memory plus it can assist

users in self monitoring, time management and other benefits, which will be de-

scribed in the next sections.

Although the process life logging is interpreted as creating an e-memory it does not

support all real memory functions. In addition to that, psychological properties of

a human memory have been ignored by the e-memory designers [202]. Life logs

could benefit more by supporting human memory functions and properties such as

forgetting [195]. Human memory properties and functionalities are not yet identified

completely. Technically, just some of those such as forgetting can be implemented.

Moreover, we cannot claim that e-memories and life-logs are available and opera-

tional. This is due to the numerous issues such as data fragmentation, different data

format for different devices, battery life of the sensing devices, maintenance of pass-

words and personal profiles, etc. Nevertheless it has been proved that life logging

assists users in memory augmentation and reminiscence [201]. Another principle

of human memory [38] is that contextual cues assist individuals in recall and rem-

iniscing and life-logs collect contextual cues. Therefore they facilitate recall and

reminiscence.

In addition to the reminiscence life logging can benefit users in self monitoring and

thus self-insight. We gain experiences from the consequences of our behaviors, self

monitoring enable us to review our past behaviors and thus not repeating a wrong

behavior. Additionally, sharing life experiences and outcome of our behavior, can re-

3Sometimes the term electronic memory (e-memory) is being used instead of digital memory,
but to my knowledge there is no difference in between.

INTRODUCTION 7

move the cost of experiencing the experienced mistakes for others. Not forgetting an

experience is a major challenges in our life, which leads us to make a wrong decision

or perform a wrong behavior. Life-log systems provide a form of self quantification,

which enables us quantifying our behaviors. Through self quantification we will

gain better vision on our behavior outcomes, we can manage our time, monitor our

health and aggregate information from different sources to gain knowledge about

ourselves. For instance, consider a scenario in which users will get informed about

how many hours did they spent watching TV. Time is not the only resource that

an individuals can measure, physical and even psychological health are the other re-

sources which can be monitored by using life-logs. Observing personal life resources

frequently is a way which assists individuals to prevent wasting these resources. For

example, a user can measure her heart-beat rates when she is in a specific location

and have social interaction with a specific individuals there. These data objects can

be aggregated and can be used to infer who or appearance in which locations makes

the user nervous. In another scenario assume a user which she is not satisfied with

her presence in the library, because she should study more. She can use a location

sensor of a life-log tool to monitor her study hours by her presence in the library.

Based on her presence in the library she can specify a goal and the life-log system

reports about her achievement toward the goal.

These examples show that life-logs have high potential to be used as a self moni-

toring tool and tracking users’ behaviors. Analog behavior monitoring approaches

are resource intensive and cost time, but life-logs could remove this burden from

researchers and users. Besides, issuing queries on life-log dataset could produce

stimuli to motivate users evaluating their behavior.

People who are studying e-memories like Bell [33] and Mayer-Schoenberger [148] all

agree that we are moving toward ultimate and immortal memory prothesis in the

digital age. This is because of the amount of digital recording in our daily life, easy

information retrieval methods, cheap storage and wide access to information.

8 1.5. Life-log Usages

1.5 Life-log Usages

In order to realize the importance of using life-logs and their effects on human life,

I list usages of life-logs. Furthermore, detailed risk-benefit assessment of sharing

life-logs with society will be described in the next chapters.

Bell [33] as a pioneer in life logging anticipated that e-memories, which is the result

of life logging, will have a revolutionary impact on our lives:

e-Memories will change the way we work and learn. It will unleash our creativity

and improve our health, it will change our intimate relationships with loved ones

both living an dead. It will, I believe, change what it means to be human.

Sellen and Whittaker [202] identified life-log benefits and they introduced five Rs.

The five Rs are activities which are recollecting, reminiscing, reflecting, retrieving

and remembering. Recollecting enable users to re-live an specific life events and

thinking back in detail (refer to episodic memory). Reminiscing assists users in

remembering past experiences. Retrieving assists users in retrieving digital infor-

mation that they have encountered over the long period of time. Reflecting supports

more abstract representation of personal information. Remembering assists users in

activities which concern remembering such as taking medication (refer to prospec-

tive memory).

In order to be more use-case specific, usage of life-logs has been categorized into

personal and social fields. In this section, only usage in the personal domain will be

described. These usages have been identified based on analyzing existing systems

and theories. It is possible that in the future more usages will be discovered in this

domain, because few experiments have been done with the real operational system.

It is notable that recording human life time data can be interpreted as life logging.

This means that research about personal monitoring or continues sensing can be

interpreted as life-logs. Hence related works in these domains assist me to identify

usages of life-logs. Those works will be cited here, but more explanation about them

is available in the “Related Works” chapter.

The following lists potential advantages of using life-log in personal scope and only

for end users. However the border between the personal and social usage will get

blurred sometimes.

INTRODUCTION 9

• Memory Augmentation: As has been described before life-logs is designed to

record individuals life events. Our life experiences is being kept in the episodic

memory [30]. Time and location of the occurred event are two important fac-

tors that assist users in event retrieval from episodic memory (when and where)

[221]. All pervasive life-logs supports date-time and some supports location

(e.g. GPS receiver). In simple terms all life events will be saved with a times-

tamp and location (if it is possible to sense the location). Life-logs are well

known as being used as memory aids and it has been proved that life-logs aug-

ment the episodic memory [201] of users. Moreover life-logs can provide rich

information about context and contextual information assists the recall pro-

cess in memory [38]. There are several research projects which have employed

life-logs for memory augmentation such as: [201, 21, 228]. Gemmell one of the

“MylifeBits” [91] designers, stated followings about the their life-log project

MyLifeBits:

”Having a surrogate memory create a feeling, uplifting, and secure feeling sim-

ilar to having an assistant with perfect memory”.

• User Modeling, Personalization and Life Patterns Analysis : Individuals past

actions are the best predicator of their future decisions [174]. Most user mod-

eling approaches are based on users past activities e.g. Doppelgänger user

modeling system [164]. Past users activities constitutes the foundation of user

modeling and software personalization. Clrakson [56], an early entrepreneur in

this domain, extracted users life patterns by using a video recorder apparatus,

which was always carried by him. User tracking, which is based on collecting

users’ activities, is the base of online advertising. Therefore life-logs highly

benefit users in those systems such as recommendation systems [111, 222].

• Desktop Metaphors : User interface (UI) and information appearance in desk-

tops can be customized by using desktop activities and contextual cues [90, 68].

Users activities in the desktop build contextual cues. Desktop customization

facilitates information discovery such as optimizing search and browse for spe-

cific information objects. In simple terms, information access will be optimized

by analyzing past activities of users, because the system can learn users’ pref-

erences. LifeStream [78], iMemex [65], SemanticLife [19] are examples of these

10 1.5. Life-log Usages

desktop metaphors.

• Health Monitoring and Medical Studies Recording individuals’ biological infor-

mation continuously and in the long-term, can be interpreted as life logging.

For instance FitBit [3] or Q-Sensor [5] are tools which could be interpreted as

life-logs for users’ health.

Sensing and recording biological information or individuals’ vital signs, were

available before the digital age. Holmes and Rahe gave a credit to Adolph

Meyer for inventing the “life chart” [134, 122], a device for organizing medical

data as dynamic biography showing changes of habitant, births, deaths, etc.

The device which is used for medical data acquisition called Holter devices or

Event Monitors [104].

In the late 1970 Lazarus [122] and his associates discovered that identifying

stress markers was obtained via observing content of the individuals life. An-

other research shows that automatically-created photographs boost Alzheimer

patients short-term memory more effectively than other methods such as keep-

ing meticulous diaries [36]. These facilities can be acquired by using life-logs.

Additionally recording vital signs benefits users in gaining self-insight about

their health status, enriching their health record and assisting them in interac-

tively learn how to affect their biological parameters consciously (biofeedback

exercises). It has been proved that biofeedback exercises improve users’ health

[131, 132]. “Every sign of life” [95] is one of the earliest scientific approaches

which tries to monitor users’ health by continuous recording of their vital signs

such as heart beat, body temperature and galvanic skin responses.

• Sustainability and Environmental Impact Reducing greenhouse gas emissions

and moving toward a low carbon economy is a major challenge of this century.

Monitoring and recording users’ indoor energy usages in a smart home assists

users in analyzing their energy usage patterns and identifying bottlenecks of

their energy utilization systems. Thus it persuades them to consider their

energy use. Furthermore, mobile devices are well suited to sense and provide

feedback about users’ transportation mode and calculate their energy expen-

diture [89, 155]. This is due to the fact that recent advances in sensor network

and computing capabilities of smart phones enable users to sense their envi-

INTRODUCTION 11

ronmental impact.

There are some others advantages that users will gain by life logging such as digital

immortality [35], which are still far from reality. Therefore I did not list them here.

How society or a community can benefit from using life-logs will be explained in the

“Framework Features” chapter.

1.6 Thesis Organization

As has been described before the main contribution of this research is a multipurpose

life-log framework that can handle identified requirements of a life-log system. In

order to explain the framework, this dissertation has been divided into three section

as follows:

The first section describes framework features include sharing life-log information

with society and its requirement. This chapter will be started by performing a risk-

benefit assessment on sharing life-logs with society. Next a conceptual model, which

supports a fine-grained access model will be proposed. This model can be used for

sharing life-log information while considering forgetting (as a major requirement of

e-memory). This model describes the concept of data-entity as a unique data ob-

ject in the spatio-temporal world. The collection of data entities builds the life-log

dataset, which is the e-memory of the user. Afterward impact of openness will be

examined in detail.

The first section describes the technical architecture of the framework and proto-

types which are the implementation instances of architecture. Sensors are the core

component of life-logs. Therefore, a sensor classification will be introduced, which

covers any sensors in a process of life logging. The sensor classification assists life-log

designers in designing an open and extendable life-log framework. The architecture

includes the client(s) and the server. Besides, Life-log requirements such as long term

digital preservation will be identified and they will be taken into account during the

implementation of prototypes. The framework covers the information collection, an-

notation and aggregation stages, which means how raw data is collected, aggregated

from sensors and how does it get augmented through annotation. The architecture

12 1.6. Thesis Organization

is component based and the technical specification of each component will be de-

scribed in detail.

The third section identifies security and privacy related risks in this framework, then

I describe counter methods to resolve them. A platform which handovers the control

of user generated data to users and a method for evaluating a mobile application re-

source utilization, with their associated prototype implementation will be described.

Moreover, ethics for sharing this information on both user level and service provider

level will be proposed. Ethics will be suggested due to the fact that on one hand

life-log information are highly privacy sensitive and on the other hand a real life-log

tool with sharing capabilities has not been implemented yet.

At the end I finish the dissertation with a future work and conclusion. Analyzing the

life-log dataset, information mining and knowledge extraction is out of the scope of

this dissertation. However to evaluate the implemented prototypes, some reflection

and knowledge extraction methods will be explained.

Figure 1.1 shows the building blocking of this dissertation.

Figure 1.1: Building blocks of the thesis

Chapter 2

Related Works

There are scientific efforts focusing on recording personal experiences and life events,

most of those efforts are single purposes such as health monitoring, and a few (e.g.

MylifeBits [93]) are multipurpose.

What is listed here is not necessarily a life logging approach, but there are similari-

ties to life-log systems. Those similarities include: continuous sensing and recording

of contextual information, unobtrusive, automatic sensing, and archiving of personal

information.

First well-known life-log approaches will be listed, then I list desktop metaphors and

PIMs (Personal Information Management), which are used to assist users in remi-

niscence or information retrieval by continuous logging. In this context “information

retrieval” means to browse a user’s past activities, and this research can be inter-

preted as desktop activity based life-logs. Finally, I list context-aware approaches

which are used for life logging or have similarities with ubiquitous life-logs.

MyLifeBits: MyLifeBits is the most famous research done in the field of life-logging.

In 2001 Bell wrote the “A Personal Digital Store” article and introduced CyberAll,

which is a personal ontology in contrast to the library. CyberAll [32] stored per-

sonal infomation and enabled users to do easy retrievals. It had been designed to

store every individual’s life time information, and thus eliminate the paper, which is

necessary for storage and transmission. Bell has introduced golden formats (TXT,

13

14

HTML, JPG, PDF, RTF/DOC and TIF), which are appropriate for being kept long-

term.

MyLifeBits follows the CyberAll metaphor which is a lifetime data store for human

life time information. Bell uses his life [93] as an experimental corpus for MyLifeBits.

This project provides rich support for desktop sensors, and their annotation tools.

Date-time is the implicit link between collected data (as Bush[46] had suggested).

Data objects will be explicitly linked by a typed link such as annotating a person

in a photo [91]. To host the life-log information, a central Microsoft SQL server

Database repository is being used [93]. MyLifeBits has been built based on four

principles [92]: (I) collection and search must replace the hierarchy organization,

(II) different visualization forms should be supported, (III) annotation is critical for

the non-text media and it should be easy to perform, (IV) authoring should be done

by transclusion.

MyLifeBits supports multimedia files preservation within annotation. It replaces

the traditional folder structure, by collections that form a Directed Acyclic Graph

(DAG) [93]. Moreover, standard forms of reporting [93] and different forms of data

visualizations such as detail, thumbnail, timeline and clustered-time views [92] have

been proposed. Furthermore, there is a story telling feature. The story telling com-

ponent is a screen saver, which shows past pictures with audio via “Interactive Story

By Query”(ISBQ).

Reality Mining: This research focuses on studying social behavior of a group of users

by employing mobile phones for life logging. Researchers collect life-log information

of a group of users and a dataset is made. This means that each user in this research

did a life logging via his/her mobile phone and the accumulation of these life-logs

creates a rich dataset. In simple terms, mobile phones have been used as sensors

for social activities of users and measuring social interactions between individuals

[72]. The dataset [69] contains social activities of about 100 users at MIT Univer-

sity, between 2004 - 2005. Different social studies could be done by a reality mining

dataset such as epidemiology, group behavior learning, etc.

Since Bluetooth is an appropriate short range RF network, and most mobile phones

support Bluetooth, the social proximity detection will be done by the Bluetooth

RELATED WORKS 15

transmitter of the user’s mobile phones. A MIDP (Mobile Information Device Pro-

file) application has been developed, it is called “Blueware”, which runs passively

on the Nokia series S60 phones and records BTIDs encountered in a proximity log.

Then logs will be sent to a server called “Serendipity server” [71, 72]. Bludar is a

Bluetooth beacon which is coupled with a WiFi bridge and it scans for Bluetooth de-

vices. It then transmits the BTID of the detected devices to the Serendipity server.

Reality mining proposes a social matching component [71] too. Observing the so-

cial interactions by measuring person-to-person proximity and recording location

changes could assist researchers in modeling human networks and group behavior.

Those modeling could be used to predict individuals behavior and activities of social

groups [167, 73].

2.1 Desktop Metaphors and PIMs

The following approaches are used to record users’ activities on desktop. Recorded

activities can be used to optimize information access, learning users’ behavior, as-

sisting users in browsing and searching their personal information, and assisting

them in reminiscence.

LifeStream has been designed to manage and organize desktop information [78]. It

uses a time ordered stream of documents to replace files and directories structures.

Information is monitored, organized, located and summarized by stream filters and

software agents. Moreover it provides search and browsing capabilities. Lifestream

could be used as an electronic dairy of users desktop activities.

Haystack [17] was designed to personalize and augment the desktop search by record-

ing the user’s desktop activities. The Haystack paradigm indicates that “Personal

Repository” reflects the knowledge of the owner, therefore personal knowledge re-

sources such as the personal bookshelf a valuable resource to get information. In

other words, information retrieval should be like getting a book from a personal

16 2.1. Desktop Metaphors and PIMs

library, and other information retrieval approaches (at that time) are like getting a

book from a public library.

Haystack follows a three steps process. The first step is gathering and recording

all desktop information that users have encountered, including their metadata. The

second step is gathering information about users and analyzing the information by

including direct human input. The third step is modifying the retrieval process

based on user interactions. Moreover, this research contains a specific data model

which is generated to store different data types and links between them.

Stuff I’ve Seen (SIS) [68] is a precursor to MSN Desktop Search. It is a Windows

based desktop optimization, which tries to facilitate information reuse. It contains

five components. “Gatherer” that provides an interface for different content sources

such as files and HTTP. “Filter” is responsible for decoding individual file formats

for further processing. “Tokenizer” breaks the stream of characters into the ’words’

and performs additional linguistic processing. “Indexer” builds a standard inverted

index structure in order to support quick information retrieval. “Retriever” is the

query layer and it is being used for accessing the stored information. Additionally,

this approach uses meta-data annotations, landmarks and time line visualization for

improving user interface and thus improving the information retrieval process.

SemanticLIFE [19] is a desktop based system, which is designed to store, manage

and retrieve users’ life-time data. It is a PIM that performs life logging for desk-

top information. This approach monitors and stores email messages, browsed web

pages, phone calls, images and contacts in RDF format. Meta-data annotation and

ontologies will be used to retrieve information from the SemanticLife dataset. As

other systems it targets single users and social networking features are not available.

iMemex [63] tries to resolve the problem of managing or querying personal data

objects, which have different data formats and are distributed among different loca-

tions, such as personal computers and network shared drives. It has been designed

to be integrated into the existing operating systems by residing on the file system

and exposing its functionality via a WebDAV interface [65].

RELATED WORKS 17

Binary file formats can only be processed by a small number of the associated appli-

cations, and DBMS systems store files in a binary format. iMemex tackles this issue

by introducing PDSMS (Personal Data Space Management), which uses Data Space

[85] definition as a repository for the personal data. Furthermore it introduces a

data model which is called iDM [64]. iDM separates the logical data structure from

the underlying subsystem.

In simple terms, in addition to activity logging, iMemex proposes some features

which are missing in file systems. These features include automatic back-ups, data

exchange among applications, joining desktop information and improving query

methods.

SLife [6] is an open source attempt that records users activities on their desktop, in

order to assist them in better time management, by defining goals. Users can create

categories, such as ’Reading news’ or ’Doing research’, and designate applications

and documents as part of these categories.

Wakoopa [9] tracks users activities by recording what websites are visited, which

software applications are used and what ads are seen. Users can share their acitivi-

ties with other users. The main purpose of this approach is to enable entrepreneurs

to analyze and study user behavior on their desktops.

Zeitgeist [11] is a service which logs users desktop activities and events. It is com-

posed out of four main components: Engine, Extensions, API and Data providers.

It establishes relationships between logged items, based on similarity and usage pat-

terns. The main motivation of Zeitgeist is to bring human context awareness to

computer systems.

Pensive [166] focuses on augmenting human memory toward better reminiscence by

using email and facebook to send memory triggers to users. Triggers will be drawn

from people’s activity in social media sites in an attempt to provide reminders with

personal significance, while generic triggers encourage reminiscing across the entire

lifespan. They result of pensive study shows that users value spontaneous reminders

18 2.2. Context-Aware Systems

to reminisce as well as the ability to write about their reminiscing.

YouPivot [100] is an extension for Google Chrome browsers. It facilitates search

based on contextual cues to find semantically unrelated items in users’ desktop ac-

tivity history. Contextual information assist human memory for better information

recall, and YouPivot employs this principle of human memory to enhance search

of digital information. In simple terms YouPivot assists users associate informa-

tion,objects and activities during the recall tasks.

2.2 Context-Aware Systems

In the following section, efforts which continuously sense contextual information, or

use contextual information to augment users memory, are briefly described. Con-

textual information provides a powerful cue to recall the past information. The

following efforts are not listed as life-logs, but they are similar to life-logs for they

continuous sensing or augmenting user’s memory. As a result ubiquitous and contin-

uous sensing life-logs could be interpreted as subset of context-aware systems. Most

of the new approaches sense and record contextual information via mobile phones.

Mobile phones are always carried by the user, therefore they are appropriate for

hosting a life-log application.

Forget-me-not Forget-me-not [124] is the first pervasive effort towards recording

users contextual information. The main goal of this research is to record users activi-

ties in their workplace via a wearable device which is called “ParcTab” [67]. ParcTab

devices communicate with transceiver devices by infrared, and those transceivers

provide information about the context in the workplace. Forget-me-not has been

designed to be a memory aid and helping users to solve their every day episodic

memory problems.

Context has been used as a key to index information automatically. ParcTab senses

and records automatically the personal location and encounters with other users,

workstation activities e.g. emails, telephone calls, file exchange and users printing

RELATED WORKS 19

activities.

ParcTab has an interface which enables users to search and display recorded infor-

mation by using an iconic language (to represent actions). It also shows locations

and individuals who are involved in the communication.

Remembrance Agent [188] was one of the earlier attempts that uses the pervasive

approach for memory augmentation. In this research a wearable device will be used,

and this device reminds users with potential information. The process of reminding

will be done based on their physical and virtual context.

Rhodes introduces characteristics and a design philosophy of the wearable comput-

ers in his article “The wearable Remembrance Agent: A System for Augmented

memory” [188]. According to his definition these devices have sensors and inter-

face(s) for user input. They are always running, pro-actively conveying information

to users, provide hands-free use and are portable while operational.

The “Remembrance Agent” prototype is composed of two parts: a desktop applica-

tion, which runs in the background of the user’s computer, and a wearable device.

The desktop application observes what is typed or read in the word processor. Then

it suggests old emails and other text documents which are relevant to the current

typed/read text. Another part is the wearable device, which is a pervasive version

of the Remembrance Agent and has the same characteristics as the desktop version.

The wearable version contains a video recorder sensor and an infrared receiver that

communicates with location beacons, which are placed around the Lab.

Nokia’s Life Blog [4] was a mobile application for the Nokia S60 series. Nokia called

it a “multimedia dairy” and it was recording user interactions with their Nokia

phones including: captured photos and videos, sound records, multimedia messages

and text messages. All of those information objects were stored with date and time.

Nokia life blog enabled users to upload their recorded information to social media

web sites or their blog. However, this application has been excluded from the recent

versions of Nokia phones.

I Sensed [56] focuses on learning human’s life patterns by examining and analyzing

20 2.2. Context-Aware Systems

collected data from wearable sensors. In order to sense and collect data, a wearable

microphone and a video recording apparatus are used. The recorded data from au-

dio and video sensors is examined by machine learning methods and a user model

is created which can assist researchers in life pattern learning.

Every Sign of Life [95] tries to encourage users considering their health via bio-

feedback exercises. Biosensors are mounted on wearable accessories, such as batting

belt and helmet, and they continuously sense and record the biological information.

Target group of this approach are healthy individuals who would like to prevent

health problems.

This approach records biosensor information continuously, instead of periodically,

which is unusual for biosensors. Moreover, bio-analytical and bio-feedback games

have been proposed to improve users health.

iRemember (What was I Thinking) [226] collects, indexes and organizes a users’ ev-

eryday audio conversations via a wearable audio sensor and a desktop application.

It has been described [227] that the new generation of the personal memory aids are

portable computers. It tries to address blocking memory problems by providing a

tool to find memory triggers that remedy these problems [229]. In a more technical

sense, a microphone records the daily communication of users and keeps them tem-

porarily in the hosting PDA, then these audio files are sent to the user’s personal

computer. Afterwards, they are converted to text by an automatic speech recogni-

tion (ASR) tool. These text based information objects enable users to browse and

search them. Moreover, this framework uses local weather and news services [228]

to augment the quality of data by providing landmarks for memory recall.

Pensive [21] is another approach which tries to augment the episodic memory of

users. The microphone and camera (for taking pictures) of mobile-phones are em-

ployed sensors of the research. Users can decide to capture which experiences and

manually to do so. Pensive uses date-time and geographical location, to organize the

collected data. It provides some social features, e.g. it enables users to blog or upload

their captured photos to a website. These features can assist users in sharing their

RELATED WORKS 21

information with others and benefit from social annotation facilities such as tagging.

ContextPhone [173] is a software platform that is composed of a set of open source

C++ libraries. It has been designed to sense contextual information and it con-

tains four modules: “Sensor”, “Communication”, “Customizable application” and

“System Services”. The sensor module senses and reads contextual cues, The com-

munication module connects to external services via Internet, the customizable ap-

plications are a set of components such as context logger, context media, etc. and

the system Services are responsible to automatically launch background services,

error logging, etc. This platform has been used as a sensing tool in Reality mining

projects for context sensing.

MyExperience [88] is another open-source platform for mobile sensing. It enables

users to record their phone usage and data from connected sensors. Specifically, it

passively logs device usage, user context and environmental sensor data. MyExperi-

ence has been designed to collect quantitative and qualitative data. The architecture

is based on a sensor-trigger-action and the event model is asynchronous and unidi-

rectional. In order to invoke actions, triggers combine a stream of sensor data with

conditional logic. Actions are code snips that are triggered to execute, based on

sensor events.

The MyExperience implementation is based on an object oriented approach in C#,

and it can be used as a stand-alone application or as a library within other applica-

tions.

Experience Explorer [31] is the most recent life-log approach, which uses the mobile

phone to senses and capture contextual information. Those context information ob-

jects include: Bluetooth proximity, WiFi signal, cellular location, GPS coordinate

and date-time. It provides an open interface to communicate with third parties,

such as the Flickr photo service 1, to enable users to share media content. It has

been designed for life logging and not just continuous sensing, therefore it provides

metadata annotation, user interface for browsing information and etc.

1http://flickr.com

22 2.2. Context-Aware Systems

Affective Dairy [212] is not named as life log, but it employ the life logging style

to collect users’ emotion and physical experiences. They have used GSR sensor

for users’ emotion arousal, mobile phone SMS and Bluetooth proximity (social ac-

tivities) and accelerometer for bodily experiences. It provides users a visualization,

designed for tablet PCs, which used to reflect users about their past activities. More-

over they have studied users’ behaviors and patterns after reflecting them with their

emotions and body experiences.

Jigsaw [138] stated that long-term continuous sensing on mobile phones is a chal-

lenge, because of the lack of resources. Jigsaw contains a design and an implementa-

tion of a continuous sensing application which balances the performance needs of the

application and the resource demand of the continuous sensing on the phone. This

is done by resilient data processing, smart admission control and adaptive sensor

stream processing (judiciously trigger power to a sensor pipeline). Jigsaw has been

implemented for GPS, Accelerometer and Microphone sensors. The Jigsaw itself is

an engine which runs in the background of mobile devices. Two applications have

been built based on Jigsaw: JigMe which provides a log of the user’s daily activity

(a simple life-log), and GreenSaw which provides carbon footprints and caloric ex-

penditure information.

Mobile Lifelogger [54] is designed to provide a digital memory assistance to users

via life logging. It collects accelerometer and GPS sensor data and tackles the issue

of a large life-log dataset by indexing those data objects using an activity language.

The indexing approach supports easy retrieval of life-log segments representing past

similar activities and automatic life-log segmentation. In general this framework is

composed of three parts: “Mobile Client”, “Application Server” and “Web Inter-

face”. The Mobile Client installed as a mobile application on the user’s phone and

do the sensing. The Application Server is responsible for storing, pre-processing,

modeling recorded data as an activity language and finally retrieving similar activi-

ties of the user. The Web Interface is a web application that enables users to browse

and access their life-log information.

RELATED WORKS 23

CenceMe [151] is a Symbian based platform implemented on N95 Nokia Mobile

phones. It is designed to infer a user’s sensing presence (e.g. dancing at a party

with friends) and share this presence through a social network site such as Facebook.

As sensor, it employs GPS, microphone, captured picture, accelerometer and Blue-

tooth. CenceMe contains a mobile application and a backend infrastructure on a

server machine. The mobile application performs sensing, classifies raw sensor data

in order to produce meaningful data and finally presents the user’s presence directly

on the phone and uploads it to the backend server. CenceMe challenges the resource

limitation of mobile devices by defining an idle interval between sensing cycles and

thus reducing the amount of battery usage, besides handing over resource-intensive

tasks to the server.

In the next chapters a tool will be introduced that use mobile phones as a life-log

platform. Therefore a comparison between the architecture of recent context-aware

systems might be useful and table 2.1 lists recent context-aware approaches that use

mobile phones for context sensing. They are capable of being used for life logging,

but none of them supports long-term digital preservation and they did not provide

any facilities for forgetting.

24 2.2. Context-Aware Systems

Extendable Information

Retrieval

Security and

Privacy

Sharing

ContextPhone n.a. sensors data used

to annotate media

status display

keep users aware

of whether they

are revealing

information

users can

notify other

users and

share their

data on the

server

MyExperience sensors can

be added

via the

plug-ins

combination of

self-report and

sensor data enrich

the sensor data

n.a. n.a.

Experience

Explorer

throght 3rd

party Inter-

net services

visualization and

aggregating con-

text with content

secure API au-

thentication for

3rd party services

automatically

created

multimedia

content

from sensor

information

is shareable

JigSaw n.a. it is used as

sensing engine for

other applications

since the JigSaw

is an engine and

the application

which use it

should consider

them it is not

relevant

JigMe is

built by

based on

JigSaw

and shares

contextual

information

in social

network

continued on next page

RELATED WORKS 25

continued from previous page

Mobile

Lifelogger

n.a. indexing data by

activity language,

annotation, infor-

mation browse in-

terface

n.a. n.a.

CenceMe n.a. through cus-

tomized tags,

and using sensor

classifiers

privacy settings

GUI, which con-

trols sensors and

sharing policy

automatically

created

content will

be shared

in social

network

Table 2.1: Mobile phone based context-aware approaches

There are other context sensing systems which are being used for a specific purpose

and unlike the described approaches they are not frameworks. Those systems in-

clude ViTo [157], UbiFit [58], UbiGreen [89] and PEIR [155] which employ mobile

phones or PDAs to continuously sense and record contextual information. ViTo

uses a PDA as a home entertainment remote control device which records usage

duration of TV, music player, etc. It assists users to alter their behavior by embed-

ding behavior change strategies into normal interaction with the device. UbiFit is

another ubiquitous based approach, which uses the mobile phone to record physical

activities of users. It provides an aesthetic representation of the physical activities

to encourage users to perform physical activities. PEIR (Personal Environment Im-

pact Factor), which uses GPS of mobile phones to collect users location changes,

and by using an accelerometer sensor data and HMM-based activity classification,

determines users transportation mode. UbiGreen proposes a personal ambient dis-

play on mobile phones to give feedback about transportation behaviors. This causes

personal awareness about transportation activity and reinforces user commitment

to ecofriendly behaviour. UbiGreen uses the MyExperience [88] for sensing and

learning users transportation behavior.

26 2.2. Context-Aware Systems

Chapter 3

Framework Features

This chapter introduces the main features of the framework. First it introduces

conceptual features of the framework, which are “Sharing” and “Forgetting”. Then

I describe a main technical feature of the framework, which is “Openness and Ex-

tendability”. Technical features are not limited to Openness and Extendability, but

this is a most salient one. Here I describe its advantages and in the next chapter I

go deep into its implementation details. In contrary to the Openness and Extend-

ability Sharing and Forgetting are non technical features of the framework, which

have been inspired by our memory functions.

To my knowledge there is no life-log platform which enables users to share their

information [177] and sharing life-log information or similar data streams require a

specific data model, visualization, etc. The similar scenario is also applicable for

forgetting. There is no life-log system (or in general PIM) which exists that enables

users to implement forgetting. Here I just describe them in abstract and in the next

chapter some minor technical features of the framework in terms of software design

and how these features were implemented will be described.

I start by describing the sharing of life-log information with society then risks and

benefits of sharing will be described. Afterwards an introduction about forgetting

in human memory will be described and then the framework’s approach for imple-

menting forgetting in life-logs will be described. At the end, a brief description of

advantages of Openness and Extendability will be given.

Features which are related to security and privacy are not explained in this chapter.

27

28 3.1. Sharing

They will be explained in the “Security, Privacy and Trust” chapter.

3.1 Sharing

For the majority of us the Internet is a necessity in our daily life. Lots of our per-

sonal information is available online and is easily accessible to other users via the

social oriented technologies such as social networking sites (SNSs) or online commu-

nities. Sharing information is a fundamental behavioral mechanism of humankind.

Users benefit from using features of these society-aware technologies by sharing their

personal information with other users. For instance a user can share content, find

new friends based on the shared content (common interest) and stay in contact with

old friends, etc. These technologies allow users to enrich content via different mech-

anisms such as ranking, tagging, commenting, etc. In simple terms, content will get

enriched by sharing. Most famous content sharing platforms such as Youtube and

Flickr offer social network functionality to use crowd annotation and enriching their

content.

Soley [209] stated there should be an specifications that individuals’ e-memories

could be used and shared by other consumers. Furthermore Berslin and Decker [43]

predicted that social networking will go beyond ego surfing in the future. They

introduced a social networking stack to let users share information beyond the SNSs

domain, e.g. desktop environment. Based on their prediction we can conclude that

all users’ digital objects and documents can be shared with society, with enough

consideration to the access control limitation. On the other hand, exposing per-

sonal information outside private space increases the risk of misuse by criminals,

governmental institutions, businesses institutions, and any other third parties. So-

cial computing environments lack governance by their nature [165] and potentially

these environments are very prone to misuse. There is always a compromise be-

tween sharing information and considering the privacy of the users. There is also

less research done on privacy in social communities [159].

User and society can both benefit in many ways by sharing life-log datasets with

society such as story telling, historical studies, crowd health monitoring and group

behavioral studies [73]. These potential advantages will lead to more business and

FRAMEWORK FEATURES 29

scientific attention in the near future. There are some art projects [66] which have

exposed life-log information to the public, but to our knowledge there are fewer

scientific efforts being made in this area. Reality mining [72] is one of the pioneer

projects which has this feature. As has been stated before, it focuses on studying

social behaviors of individuals in a group. Reality mining uses a life log frame work

[123] to learn the social interactions between users via their phone [71]. Eagle (a

researcher in Reality mining project) [70] stated following in “Behavioral Inference

Across Cultures: Using Telephones as a Cultural Lens” article:

By continuously recording behavior over an extended period of time, it will become

possible to quantify peoples reactions to unanticipated events such as an election or

an earthquake.

Here first I describe an overview about social media and why they are not a life

logging platform. Subsequently I list potential risks and benefits of sharing life-logs

information with society. Then sharing life-log information in social network pro-

totype will be explained in the next chapter. A data model which supports a fine

grained access limitation and enables users to share their life-log information with

society will be introduced (in the next chapter).

3.1.1 Social Media Overview

A Life-log dataset is a collection of the one’s life event information. Information is

a composition of data in a meaningful way. Furthermore a life-log’s data structure

must deal with the social networking systems (SNS). In order to be able to define a

data model that enable users sharing their life-log information we need to identifies

roles in a social community. Also it is important to note that available SNS such

as Facebook are not life logging tool, but they provide a rich data source that can

feed into a life-log dataset. Here I describe why they are not capable of hosting

life-log data. However the current SNSs architecture and data model has inspired

my work. More about implementation detail and data model will be described in

next chapters.

30 3.1. Sharing

Roles in a Social Community

In order to be able to define a model for sharing information, we need to identify

roles in the context of a social community. Here roles have been identified based on

existing operational SNSs, in a very abstract form. As a result I did not consider the

business process of developing a tool during the role identification. In a technical

sense, unlike Collins et al. [57] model I did not consider software buyers, software

developers, etc. Here three roles in a social community has been identified: end

user, community owner and third party. The end user is the person who benefits

from the system in return for exposing his personal information to the community.

The community owners are people who own and manage the social community and

benefit from having users and in all likelihood use their information. Increasing the

number of users raises the community value. Community owners are responsible for

the service that they provide to users. I assumed that the service will be created,

implemented, administered, owned and managed by community owners and will be

used by end users. The third parties are groups or individuals who benefit from

communities by using a community environment to advertise, perform research on

the community, study users’ behavior, monitor community member activities, etc.;

they are able to access user’s information in the community with or without the

end users’ awareness; they could vary from marketing businesses, security agencies

to hackers. In order to use the user’s information, third parties must come to

an agreement with community owners. Community owners should inform users

about this in their ‘Terms and Conditions’ section of the community’s membership

agreement criteria.

End users share their information with firms and other community members based

on trust [160]. From users’ point of view third parties have the least credibility in

the community; they observe users’ activities in the community and benefit from

it. They can also be the business focus of the community owners. In other words,

community owners benefit from providing community information to third parties.

FRAMEWORK FEATURES 31

Social Media and Life-logs

Schneier [199] identified five classes of shared information in SNSs. These classes

are: service data, disclosed data, entrusted data, incidental data and behavioral

data. He discovered that disclosed and entrusted information is being created by

users. Incidental data will be created by other users about the user. Service data

are information that users give to the SNSs during the registration, and behavioral

data are information that is being collected by the service provider about users’

activities. Although there are some similarities between SNS and life-logs, this cat-

egorization is not applicable for a life-log social network. A life-log social network

similar to other social networks includes service data and behavioral data but the

sharing mechanism of life-log SNSs could not be similar to traditional SNSs.

Social media services such as Twitter, Facebook and Friendfeed are designed to en-

able users to share their online activities and personal information. Although they

enable users to share information we cannot consider them as life-log tools since

they have major differences with life-logs. I list their differences in the following.

The main use of life-log tools is in the private domain and not in the social domain.

SNS, by their very nature, only provide social networking features and they do not

provide enough functionality to host private information. In other words, whatever

we give them as an input is not private. However they could be interpreted as an

output channel of life-log data.

Despite the existence of automatic sharing capabilities, users share information via

social media services manually. Their design is based on manual user interaction

with the system and users’ data are not streamed automatically. Life-logs sense

contextual information of the user automatically and it is not possible to rely on

manual user inputs. It is notable that the content provided by users to SNSs might

be assumed as a life-log sensor.

Their information visualization or reflection style is another salient difference, which

makes them different to life-logs since, based on their design criteria, they should

host a restricted amount of information in comparison to a life-log. They might be

used as an output channel for a few life-log sensors, but they cannot host life-log

data. A life-log with sharing facilities will have similarities with SNSs. They can

both share some information with the public and some with a list of users based on

32 3.1. Sharing

the owners’ preferences. Users use them to perform self-reflection and share infor-

mation about themselves with society. The proposed data model is inspired by the

available SNSs, but is designed for life-logs. Therefore, we will introduce a private

scope, use timestamp as a fix factor and define a 4-tuple data entity. These factors

guarantee the granularity of the data in the life-log dataset.

Moreover available social media does not support forgetting, and a shared informa-

tion object should be removed from shared status by the user manually. A platform

for sharing life-log information with forgetting feature will be explained in more

detail, at the end of this section.

3.1.2 Risks and Benefits

In order to be able to analyze the cost of sharing the life-log information, Risks

and benefits have been classified separately. Risks and benefits mostly have been

identified based on theory. This means it is possible that in the future more risks or

benefits will be introduced in this domain, because few experiments have been done

with the real operational system and life-logs are in the introductory phase. Collins

et al. [57] proposed a rather similar strategy based on John Rawls theory of Justice

[186] toward assessing the quality of software products. First they identified roles in

creating and using a software application and then they performed risk assessment

for each role. Later, ethical considerations for each social role in their scenario

were proposed. My approach is similar to theirs, but here the intention is focused

on a specific type of application (life-logs). Here risk-benefit assessment has been

performed based on the study of available research and similar systems such as SNSs

[24, 29, 217]. Baloi and Price [29] noted that many different classifications of risks

have been developed such as legal, natural, logistic, social, etc., which are based on

source criteria. Tah et al. [217] suggested risks can be classified as dynamic/static,

corporate/individual, internal/external, positive/negative, acceptable/unacceptable

and insurable/non-insurable. I do not suggest any classification here because it

might be possible that over time more risks will be identified which will not fit in

any of the defined categories of life-log risks and thus the classification may become

outdated.

FRAMEWORK FEATURES 33

Benefits

In the previous chapter benefits of sharing life-log information have been described,

disregard sharing. Here I describe advantages of sharing life-log information with

society which could benefit individuals in educational, business, health cares and

social relations. Some of the identified potential advantages of sharing life-log data

to society have been listed as follows.

• Software Personalization: Software applications can be personalized based on

interests of the group (social interest). Software personalization could facili-

tate search and information retrieval. Studying and mining group preferences

can be done based on the past activities (life-log dataset) of the group. For

instance, when a user searches for “ant” in a software development environ-

ment, it means “Apache ANT” 1 and not the insect ant. In simple terms,

applications can be personalized based on the groups characteristic and group

characteristic is identified by studying life-log datasets of group members.

• Learning Social Patterns and Behavior : Life-log data can be used to learn the

social behavior of a group. For instance in the case of earth quakes, location

changes of the individuals can be logged by the location sensor of their mobile

phones [70], to assist scientists studying how they can reduce the damage.

• Match Making : The first requirement to start a new social relationship is to

have a common interest. Common interests between users can be extracted

from their life-log dataset. Again Reality mining [71] performs matchmaking

based on the user profiles and behavioral data of the user. There are more

potential commonalities, which can be used to suggest a match, such as the

user’s habits (e.g. eating habits of the subject can be extracted from locations

of visited restaurants).

• Recommendation Systems : A recommendation system can study and extract

knowledge from the life-log dataset of the users. For instance place ’A’ has

been visited more often than the place ’B’. A recommendation system can

suggest that the place ’A’ is worth visiting more often than the place ’B’.

1http://ant.apache.org

34 3.1. Sharing

• Health and Medical Studies : Biological sensors can be used on a subject’s body

to sense and record biological data such as body temperature, skin conduc-

tance, body heat, etc. This data can be recorded and used as the life-log

information. The health status of society can be monitored via provisioning

and monitoring life-log information of the individuals. Sharing personal health

information with society can assist prevention or determination of an epidemic

[163] or it augments the monitoring of epidemic distribution.

• Historical Studies : Memory augmentation is the main goal of life-logs. When

life-log data is shared, it can assist individuals in sharing their life events.

History composed from the life events of individuals. Maintaining a life-log

dataset in the long term is a valuable source which might be used for historical

studies [49].

• Sousveillance: This terminology is different than surveillance. Surveillance

means recording the individuals activities by technologies on behalf of an or-

ganization. Surveillance systems are not hazardous by default, they support

safety, welfare, health, efficiency, speed and co-ordination. A life-log could

be interpreted as a form of personal sousveillance [146, 163] which is bidirec-

tional, not like surveillance unidirectional (government monitor individuals).

Sousveillance can democratize the process of surveillance via supporting the

monitoring of the authorities (surveillant).

Risks

As has been described in the introduction, sharing personal information has risks

and benefits; Losing privacy is the most important risk of sharing personal informa-

tion. Unfortunately life-logs have a controversial history, such as a DARPA’s lifelog

project [203] which was canceled in 2004 because of criticism of the system’s privacy

implications. The Life-log dataset contains sensitive personal information such as

the user’s location, which requires more privacy concerns, because sharing personal

information with this level of detail can be hazardous. Anita L. Allen [24] identi-

fied two important potential hazards of life-logs: pernicious memory and pernicious

surveillance. In order to be able to provide a data model and identify ethics that

FRAMEWORK FEATURES 35

reduce the potential hazards, I describe them here in a different classification and I

try to identify more risks. As with benefits, I can not argue that all potential risks

have been listed. More risks may be identified, when a life-log tool is used in a real

operational environment and for business purposes.

• Surveillance: Sharing life-log information with society might be interpreted as

a form of surveillance. The surveillance, which limits our behaviors without

our desire, is not acceptable. Surveillance has some potential disadvantages

such as increasing the number of suspects who are not guilty [140]. Security

agencies, governmental organizations, business organizations, criminals and

other types of organizations or industries which are benefit from social control

can misuse surveillance data. For instance a recruitment company can check

a candidate’s psychological and physical health and his life style during the

recruitment process, in order to find out that if the candidate is suitable for

the offered job or not. If the candidate performs extreme sport, the chance of

having time off for medical purposes will be high [238]. Existing laws and poli-

cies do not provide an appropriate limitation on the unwanted use of personal

information. In the U.S. CAELA (Communications Assistance for Law En-

forcement) enforces communication technologies to allow government access

and surveillance [12]. Also, in March 2006, the European Union adopted a

Directive, which mandates that the content of electronic communications ser-

vices will not be deleted (remain for not less than six month and not more than

two years). They can be used for marketing and provisioning proposes [13].

Observing users in a community with out their awareness is the worst form of

surveillance. This form is longstanding. First time Jeremy Bentham (1838)

defined it as Panopticon, then Michel Foucault [83] compared Bentham’s ideas

with modern society.

• Memory Hazards : It has been proved that life-log tools can assist human

memory [201]. Life-logs can record all life events, disregarding the content. It

means a life-log can prevent individuals from forgetting their errors [66]. Indi-

viduals naturally try to distance themselves from their errors and misfortunes

because, psychologically, they need to forget their misfortunes. Life-logs could

be harmful in this case and they can also cause pathological rumination for

36 3.1. Sharing

unipolar and bipolar depression [18, 24]. Exposure of personal mistakes to so-

ciety might be more harmful than keeping them private. For instance children

by their nature are weaker at bearing misfortunes, they can go through their

parents’ life-log and remember a misfortune which happened in their family.

Another problem can occur by exposing the mental problems of individuals,

which could have a negative impact on group mentality in a team or a group of

individuals sharing a common interest. To handle the memory hazards of life-

logs, Dodge and Kitchen [66] suggested that the life-log should forget like real

memory, based on the Scharter’s forms of forgetting [195]. I believe fading life

log memory will distance it from its main goal as an ultimate memory aid be-

cause we will lose the reliability and persistence of digital memory. Therefore

I propose forgetting based on the users’ demand in the next section.

• Long-term availability of personal information: The ideology and personality

of an individual can change over time. Besides, an individual’s lifestyle may

change over time. Sharing life-log information with society can be a permanent

record of our mistakes. For instance, imagine a group of teenagers gathered at

a party and posing for a photograph in an embarrassing way. These pictures go

online and everybody can see them. At that time there is no problem. Thirty

years later one of those teenagers is now going to participate in an important

political campaign, these pictures could harm his career. These problems are

not only relevant to life-log systems; other online traces have these problems

too. Taking another example, consider a writer who has changed his mind

over time and disagrees with his past opinions. In the era of the Internet

the chance of removing his old ideas from public view is very low. Miller

[150] identified three methods which have been used by third parties to gather

individuals’ personal information from the Internet. The first method is direct

inquiry, such as the registration information of the individual on a website.

The second method is by aggregating information about the individual from

different sources such as an Internet search of his name. The third way is

by observing individuals’ activities, e.g. cookies which reside in the user’s

browsers to track his web page navigation. Based on the second method, long-

term availability of the user’s information could be harmful. How should we

FRAMEWORK FEATURES 37

deal with long-term availability of the personal information on the Internet?

Is there any chance of manipulating our online traces? How can we protect

our social traces on the Internet? These are some of the open questions in this

subject.

• Stealing life-log information: Sharing life-log information increases the chance

of loss or theft. This risk can be very harmful for the person (victim). Strahile-

vitz [214] claimed that most private information consists of sensitive personal

matters such as sexual encounters and bodily functions, sensitive medical in-

formation, knowledge of the owner’s fundamental weaknesses, etc. The life-log

can sense and record this information, therefore a life-log dataset is a very sen-

sitive object from a privacy point of view.

The described risks indicate that life-logs could be harmful as well as being useful.

With the exception of memory hazards all other risks are related to the sphere of

privacy. Therefore, any associated data models for life-log tools must carefully man-

age privacy related issues.

3.2 Forgetting

Humans by their nature try to remember and preserve knowledge, therefore they

have created many devices and mechanisms to assist them in challenging forgetting.

Forgetting is a loss of information objects that are already in long-term memory.

A major form of forgetting is decay, which means that when an information object

is not retrieved for an extended period of time it fades away. In fact the forgotten

information object is not removed from our memory, just the direct link to that in-

formation object will be removed. Moreover it is important to note that forgetting

is not a weakness of memory and it is a necessary feature, because by forgetting we

gain the ability and freedom to generalize, conceptualize and act. Anderson et al.

[25] stated that memory performs an optimal adaption to the environment through

forgetting. This means that the brain constantly reconfigures the memory based

on the present preferences and needs. Besides there is a trade-off between reducing

38 3.2. Forgetting

access to an unused information object and the annoyance of costs of forgetting.

Sigmund Freud [86] is wellknown for his theories about the mechanism of repression

(unconscious form of forgetting) and unconscious mind. Hermann Ebbinghaus [75]

is one of the first scientists who studied the mechanism of forgetting by using him-

self as a subject for his experiment. He designed a forgetting curve which illustrates

the decline of memory retention in time, and he found that forgetting occurs in a

systematic manner and his premises are even true today.

A recent theory for remembering and forgetting has been proposed by Schacter

[195] in his book “How the Mind Forgets and Remembers - The Seven Sins of

Memory”. He identified and classified memory errors in a framework, which concep-

tualizes causes and consequences of memory’s imperfection. Schacter stated that

these errors are necessary for human memory and he classified memory errors to

“transience”, “absent-mindedness”, “blocking”, “misattribution”, “suggestibility”,

“bias” and “persistence”. Transience, absent-mindness and blocking are the out-

come of omission. Transiences means weakening or loss of memory over time, e.g.

we do not remember what we have for dinner six months ago. Absent-mindness is

the cause of breaking interface between attention and memory, e.g. misplacing keys

or forgetting and appointment. Blocking is a result of unsuccessful try to retrieve

an information from memory e.g. we can not retrieve a name of a familiar face.

In contrast to these three malfunctions misattribution, suggestibility, bias and per-

sistence are all outcome of commission. In particular some form of memory is present

but it is either incorrect or unwanted. Misattribution is assigning a memory to the

wrong source, or in other words mixing fantasy and reality. Misattribution is very

sensible malfunctions and has a profound implication in legal settings. Suggestibil-

ity refers to memories that call events which might have happened but they are not

happened in reality. Bias reflects the powerful influences of our current knowledge

and beliefs on how we remember the past. In other words we often edit or rewrite

what we now believe or know. Persistence refers to repeated call of disturbing events

which we prefer to vanish from our minds. In some extreme cases persistence can be

life-threatening and causes depression or traumatic experiences. However remem-

bering disturbing events assist us in avoiding the re-occurness in future.

In order to implement forgetting for life-logs, I use the well known classification of

forgetting, which is used in self-knowledge literatures [236]: unconscious forgetting

FRAMEWORK FEATURES 39

or repression and conscious forgetting or suppression. The goal of this dissertation

is to challenge unconscious forgetting by life logging, and enable users performing

suppression which allow them to remove unwanted information from their life-log

dataset. In simple term life-log tools should hinder unwanted forgetting (e.g. mis-

attribution, suggestibility, bias) and assists users in the forgetting, which is based

on user desire.

3.2.1 Digital Forgetting

Mayer-Schoenberger [148] in his book “Delete: The Virtue of Forgetting in the Dig-

ital Age”, provides a profound clarification about the need for digital forgetting

and its necessity. He traces the importance role of forgetting in human history and

described that digital technology and global network override humans’ ability to for-

get. According to his definition durability, accessibility, comprehensiveness are three

factors in the digital era that disable individuals from forgetting. In the analogue

age noise acted as a barrier against mass copying and this could be interpreted as

slow but acceptable form of forgetting. Digital forgetting is a major issue of our age,

especially after the Web 2.0 evolution which converts the traditional role of Internet

from information access tool to a tool for access and share information.

What we are reading or hearing from news constitute the foundation of society’s

shared common memory (public news become the foundation of our society mem-

ory) and remembering does not just apply to personal memory, it even applies to

corporate memory. He warns that:

“By recalling forever each of our errors and transgressions, digital memory reject

our human capacity to learn from them, to grow and to evolve.”

Sharing an information costs the information owners to lose their control on the

shared information, because information spread quickly in the digital environment

and number of individuals who access those information could be very large. Fur-

thermore the digital copy of an information mostly is a perfect replica of original

information object. And in the digital age preventing copy is somehow impossible.

On one hand, as has been described before, sharing memory 2 is not just harmful

2Here by “shared memory” I mean sharing personal memory with society and by “community
memory” I mean a collection of shared memories such as twitter posts in a city.

40 3.2. Forgetting

and different parties can benefit from shared memory. For instance it can change

industries and enterprises behavior, which in the end results in more accurate de-

cisions by decision makers e.g. politicians keep their promises. On the other hand,

according to Mayer-Schoenberger, an e-memory with no forgetting supports may

(1) undermine users’ ability for reasoning, (2) exacerbate the difficulty of putting

users’ past life events in proper temporal sequences, (3) confronting them with too

much information about their past and thus remove their ability to decide and act

in time and (4) users may lose trust in their memory when their human memory is

in confront to their digital memory.

The result of life logging creates a personal digital memory, and in terms of forgetting

they have two major differences [148] with human memory. First digital memory is

not more trustable than human memory, this due to the fact that digital memories

are malleable and alterable but the human memory can not be altered as easy as

digital memories and this feature makes them not trustable. For instance somebody

can hack and get access to the digital memory and manipulate its content. Second,

when the brain refers to a past event it reconstructs the event, but e-memory recall

the past event as exactly it was stored in its underlying dataset. Since e-memory

operates based on recall and it can not exclude random piece of events, reminiscing

by using combination of e-memory and human memory can confuse users with con-

flicting memories, and thus affect their judgement.

This framework defines two type of forgetting: Personal Forgetting and Social

Forgetting [182]. Forgetting for the shared information (social forgetting) will be

achieved by defining information expiration timestamp and for the personal infor-

mation will be achieved by annotation. All life-log information objects which will

be shared (based on users demand) should contain expiration timestamp. Other in-

formation objects which remain private do not need expiration timestamp and they

could be annotated for forgetting manually by users. In a more technical sense users

can decide what to forget based on location and/or date-time of the information ob-

ject as shown in figure 3.1, the interface has been inspired from our spatio-temporal

life, more on spatio-temporal life will be explained in the next chapter.

Users can select a specific area on the map or/and specific date-time (figure 3.1)

to forget the shared or the private information object(s). After the user selects an

area on the map or a date-time period, she can click on the forget button and infor-

FRAMEWORK FEATURES 41

Figure 3.1: Spatio-temporal based forgetting. User can specify location and date period,
then based on these two factors, all information can be marked as forgotten in the dataset.

mation objects from the selected location or date-time period will not appear in the

query result anymore. When users mark an information object to share, they should

define the expiration date-time for the shared information object. This means that

any shared information object will be removed from the target community when the

expiration date-time reached.

Figure 1 shows forgetting for shared information, it shows that User A created a

data object at time t0, then shares this data object at time t1 with User B and a

group of Users (User Group C). User B’s access to data object A will be expired at

time t3 and Users in Group C cannot access to this object after time t5.

When users query or search their dataset, through their query interface, the query

engine will check the annotation file and bypass forgotten records. In simple terms

the forgotten information objects are still in the dataset, but annotate as forgotten.

42 3.2. Forgetting

Figure 3.2: Access expiration definition for a shareable information object. However the
implementation must consider limiting the digital copy too, because a digital copy create
an exact replication of the digital object without any owner control on it.

Although forgetting is necessary, a major role of life-logging is to preserve memory

and move against unconscious forgetting. Bell and Gemmel [35] defined the term

digital immorality. They predicted that in the future, digital memory of an indi-

vidual could be inherited to heirs and they can communicate with an avatar of the

digital memory owner. The avatar has similar visual and behavioral properties as

the digital memory owner and simulate his or her presence.

FRAMEWORK FEATURES 43

3.3 Openness and Extendability

Life-logs sense and store users’ contextual information from their environment through

sensors, which are core components of life-logs.

To date there are only few life-log tools with very restricted features available on

the market. This restriction is because of their software architecture. A major tech-

nical feature of this dissertation is to provide an open and extendable framework.

openness and extendibility will be achieved through providing flexible (in terms of

adding new sensors or removing existing sensors) and configurable sensors.

This means users can add/remove (extendability) or disable/enable (intelligibility)

sensors or change settings of available sensors. The architecture of the framework

will support openness and extendability, which results in a holistic framework that

can be used for different purposes (multipurpose).

In terms of software design, openness and extendability from sensor perspective

which gives us the following advantages:

• Memory Augmentation: It has been proved [201] that life logging assists

humans in memory augmentation. Furthermore similar approaches [124, 226,

21] have been used to augment human memory or in particular reminiscing.

The process of memory recall refers to the contextual information which has

been stored within the event [38].

Moreover, landmarks [135, 189] assists the retrieval of information from mem-

ory. Contextual cues could be stored as landmarks and therefore they lead to

better retrieval or recall from the dataset. For instance consider a scenario in

which a user does not remember what she had for lunch the last three weeks

on tuesday, but she checks her dataset and she realizes that at that time the

weather was very cold and then she remembers she was in an asian restaurant

when the weather was cold. In simple terms increasing the number of sensors

(cold weather in this example) in the life-log dataset increases the chance of

recall and retrieval and even less memorable events can be recalled with more

memorable landmarks. Gemmell et al. stated following in their well known

article entitled “MylifeBits: A personal database for everything” [91]:

The more system logs, the better the chance of having the “memory hook” that

44 3.3. Openness and Extendability

will help you find what you seek.

• Multipurpose Life log Framework : As has been stated before the result of this

dissertation is a multipurpose life-log framework which can be used for different

purposes. For instance one one hand it can be configured to record health

related information and monitoring users’ health and on the other hand it can

be configured to monitor individuals location changes and working patterns in

a firm. This will be achieved by adding or removing sensors such as biosensors

or location sensor (GPS).

• Wide Usage via Extension: Empirical studies show that platforms which are

extendable and capable to accept new components have been converted to

de-facto standards in their domain. For instance Eclipse IDE 3 is now widely

used as programing IDE, Mozilla FireFox browser is the first browser that

enables developers to extend it through its Add-ons. Openenss in terms of

sensor configuration might benefit this framework in this aspect.

• User Modeling Enhancement : In life logging scenarios the quality of the data

will be increased by increasing the quantity of data resources (sensors). This

is due to the fact that increasing the number of contextual resources results in

gaining better perception about the environment [90, 53]. User modeling and

other related fields which rely on analyzing users’ behavior and past activities

benefit more through having more information about users.

• Self-Insight : Life-logs assist users in answering “what”, “where”, “who” and

“when” questions about their past activities. Since we are living in Spatio-

Temporal world sensors’ data can be linked based on location and timestamp.

A combination of sensors’ data provides more precise information than single

sensor data about users [55]. To my knowledge there is little research about

querying a life-log dataset based on combination of sensors. For instance

Beat Story [161] combined pictures from a head mounted camera with the

heartbeat rate of the user. Or combining a location sensor with a health

monitoring sensor assists care givers in finding individuals with a matching

blood group [225]. These examples rely on fix number and type of sensors, it

3www.eclipse.org

FRAMEWORK FEATURES 45

might be possible that we discover novel information about users’ emotional

state and behavior by increasing the number of sensors. For instance consider

a scenario in which a user employs location, social proximity and biosensors

and she decides to measure her emotional state with her bio sensors. She can

realize that appearances in a specific location (location) or visiting specific

individuals (social proximity) have a significant impact on her emotional state

(bio sensor). Moreover sensors data might assist her in better self-awareness,

for instance what is the effect of weather changes on her emotions ? As a result

I can claim that a combination of different sensors can lead to correlation and

multi-dimensional behavioral pattern identification.

How the implementation instances of the framework support this features will be

explained in the next chapter.

46 3.3. Openness and Extendability

Chapter 4

Framework Description

This chapter describes the framework architecture in detail and based on the pro-

posed architecture different implementation of the framework within their evaluation

will be described. First I start by defining requirements of the framework and then I

will describe the technical architecture and related evaluations. In order to describe

requirements of the framework I start with defining a sensor classification, then I

describe life-log data structure and afterward the data model. Moreover I describe

design challenges and considerations which will be handled during the system de-

sign. Next I describe the system, which has a client-server architecture. Each client

and the server has their own component and these components will be explained in

detail.

In order to prove the framework tools and prototypes based on this framework

architecture will be described and evaluated. In general two prototypes will be

introduced. Each represents an implemented instance of a sensor class from the

framework sensor classification. However I do not propose any prototype for desk-

top sensors, because there are many tools available which support life logging for

desktops.

At the end of this chapter I describe two knowledge detection approaches. This can

benefit a life-log system in annotation, prove the usability of the system and can be

used in altering users’ behavior.

47

48 4.1. Sensors Classification

4.1 Sensors Classification

In order to achieve a flexible and configureable life-log framework, the flexibility

of sensors should be a major consideration. I use the term sensor to refer to an

autonomous tool, device, application, etc. which senses or reads data from its

surrounding context. Sensors should not be embedded in the framework and they

could be distributed in environments which users participate in.

It is not possible to describe precisely which sensors can be used for life logging.

This is due to the fact that there are many sensors available that can be used for

this purpose and in the future more new sensors will be introduced to this domain.

Therefore I provide a sensor classification which is based on the physical proximity

of sensors. The sensor classification does cover functionally of the sensor and does

not consider the type of sensing such as direct or indirect sensing [90].

Here life-log sensors have been categorized in the three classes: Desktop sensors,

Proximity (Environmental) sensors and Mobile sensors. It should be considered

that there is no specific border between the categories and one sensor could be used

in more than one category. Usually a sensor belongs only to one category, but it is

possible that the sensor information will be acquired from more than one category.

For instance a weather sensor could be a web-service (desktop sensor) which provides

weather information of the target environment or it could be a temperature sensor

which is wall mounted (proximity sensor) or integrated into the user’s watch (mobile

sensor). As another example it might be a location sensor which can be identified

from the WiFi signal strength (Proximity sensor), desktop application (desktop

sensor) or users’ GPS device (mobile sensor) [108]. As a result the framework is

flexible enough to accept and manage any kind of sensor.

Mobile sensors of life-logs can be interpreted as a subset of context-aware sensors,

therefore life-log sensor classification has some similarities with context-aware sensor

classification. Indulska and Sutton[108] classified context-aware sensors as Physical,

Virtual and Logical. Physical sensors are ubiquitous sensors which are hardware

e.g. GPS and virtual sensors are equivalent as desktop sensors here. Logical sensors

are sensors which get their information from physical and virtual sensors to infer

information such as location. This framework is capable of aggregating sensors’

FRAMEWORK DESCRIPTION 49

information together and extract new information objects, but this will be done

on the server and not on the Data Reader side, this is due to the computational

overhead of sensor data aggregation. As another example of life-log sensors I can

refer to OH́ara et al. [163] who identify information sources that are worth to feeding

into a life-log system. They did not provide any sensor categorization and they refer

only to specific sensors.

In the following each sensor class will be described in more detail with examples.

4.1.1 Desktop Sensors

A significant amount of time of many individuals is spent in front of their computers,

this means personal computers involve many daily activities of users. It might be

argued that term sensor is not appropriate to be used for the desktop sensors, but

as I have stated before that sensors here refers to any component or application that

reads and records data. Likewise that component or application can be plugged or

unplugged into/from the life-log framework. In particular any software service or

application which monitors and records users’ activities such as application usage

(e.g. Wakoopa[9] and SLife [6]), file exploration, chat content and timestamp, users’

online activities such as their Facebook activities, blog posts [99, 21] and users’ com-

ments, etc. on their personal computer could be a desktop sensor.

PIM (Personal Information Management) applications rely heavily on desktop sen-

sors. They employ desktop sensors to monitor and track user activities such as

working with documents, pictures and the calendar. Information retrieval in desk-

top is a major challenge for desktop optimization and many PIM tools target this

challenge such as iMemex [65], SEMEX [48], Haystack [17], Life stream [78] and

Stuff I’ve seen [68].

There are plenty of tools available which can be used as desktop sensors, and I have

introduced them in “Related Works”. Therefore I did not implement any desktop

application for feeding into a life-log dataset. However some information such as

calendar appointments will be used to annotate the dataset in the prototype imple-

mentation.

50 4.1. Sensors Classification

4.1.2 Mobile Sensors

These are sensors which are always carried by the user. For instance body or watch

mounted sensors and mobile phone sensors. Weiser [235], who is known as the father

of ubiquitous computing, stated that humans live outside desktop computers and

most of their life events happen outside computers. Since ubiquitous devices are al-

ways carried by the user and they are not restricted to users’ desktop activity, they

provide very rich information about users’ lives such as location changes, biological

information, etc. These sensors collect contextual information. According to Dey

and Abowd [62]: Context is any information that can be used to characterize the

situation of an entity. Rhodes [187] described the importance of wearable computers

or recently called ubiquitous and pervasive devices as follows:

“Unlike desktop computers, wearable computers have the potential to “see” as the

user sees, “hear” as the user hears, and experience the life of the user in a “first-

person” sense. They can sense the user’s physical environment much more com-

pletely than previously possible, and in many more situations.”

Mobile sensors which can be fed into the life-log dataset could be: Mobile phone in-

formation which includes Call log and content, SMSs, consumed Media, application

usage, location sensors (could be extracted from GPS, CellID, Location badge e.g.

Bluetooth, and WiFi), Audio, Picture and Video.

All of our life events happened at specific location, hence location is a very impor-

tant information resource. However it is not always possible to read location and

there is research which uses a combination of different sensors and approaches to

identify a precise location such as Placelab [197].

Biosensors are other examples of mobile sensors such as skin conductance, heart-

beat, body temperature, blood pressure and accelerometer (motion detection). Ac-

celerometers can be used to identify users’ physical position such as walking, sitting,

standing [115, 20].

Life-logs are well known for using video, picture and audio. Recording users’ com-

munication through an audio recording sensor assists users in memory augmen-

tation such as iRemeber[226] and Pensiv[21] approach. Video and pictures pro-

vide rich contextual information for life-logs. Startlecam[102], SenseCam[103] and

eyetap[145, 144] are examples of using a body mounted mobile sensor to capture

FRAMEWORK DESCRIPTION 51

daily life events by recording video or taking pictures. The data will be captured

frequently and automatically, but manually stopping or starting the recording pro-

cess should be possible [103]. Although these sensors provide rich information about

users’ context, they create large amounts of data. Therefore storage and retrieval

of this type of data is a major challenge in life-logs [20] and there is much research

focused on challenging this issue such as [99].

Perhaps video, picture and audio sensors could be placed in the biosensor category

too, as it has been described before there is no precise border between sensor classes.

Another important sensor in this category is a social proximity sensor, which senses

proximity of other individuals near the user. Low frequency radio and low coverage

domain sensors such as Bluetooth, ZigBee and RFID [219, 169, 191, 129] can be

used as the social proximity sensor. Since Bluetooth has been widely used in mobile

phones, nowadays most social proximity sensors rely on Bluetooth.

Further in this chapter I describe UbiqLog, a tool which employs smart phone sensors

for life logging. Implementation of UbiqLog is a proof of concept for this framework.

4.1.3 Proximity (Environmental) Sensors

Proximity sensors are distributed in the users’ environment. In other words, similar

to other sensors, they are located in the context of users. Kim et al. [117] introduce

gadgets that are located in the environment near the user and attach smart sensors

to the daily supplies such as cup, chair, etc. Here proximity (Environmental) sensors

use similar terminology. In particular these sensors will be used for life logging but

not from the the user point of view, they are distributed in users’ environment. For

instance a still camera which is used to point at the user, and not pointed by the

user [66] or an external hardware or a software component which records radio and

T.V. usage of users from their home media server.

More about proximity sensor will be described further in this section. A metaphor

will be introduced which performs life logging on a proximity sensor (wall mounted

camera).

52 4.2. Life-Log Data Structure

4.2 Life-Log Data Structure

Life-log tools are used to capture users’ daily life events. Life-log information can

be interpreted as a subset of personal information. A life-log contains a dataset of

a subject’s life events. Each life event of the subject is a record in this dataset. In

the proposed data model, each life event (life-log record) has an access scope and

each shared object has expiration timestamp. The expiration timestamp is used to

implement forgetting for a shared information, private information can be annotated

to get forgotten manually by users. Life-logs use sensors to read and capture contex-

tual information. In particular, they acquire data from reading sensors. Information

flows to the life-log from multiple sources (sensors) in a continuous manner. There

is no guarantee for the sequence of received data and the sequence varies over time.

Additionally, life-log dataset size is unbound. All these properties indicate that a

life-log dataset is a kind of data stream [26].

We are living in a spatio-temporal world. This means that all of our life events ex-

cept dreams happen in a specific location and at a specific date-time. Based on the

currently available technology it is not always possible to sense the location, because

location sensors such as GPS do not function in every environment. For instance

GPS cannot work indoors. There are other approaches such as A-GPS (Assisted

GPS) to solve this problem, but they are not always able to sense location and they

are imprecise. On the other hand, most operating systems have date-time which is

accessible as long as the target device has not been turned off. This means most

devices with computing capabilities can provide timestamps. As a result date-time

is a necessary field for any lifelog record and all life-log information objects will be

stored with a timestamp.

4.2.1 Annotation and Data Collection

Life-log datasets host large amounts of contextual information about owners and

their activities. In addition, dataset size increases continuously and information re-

trieval is a major challenge (WORN problem). Since the data comes to the life-log

FRAMEWORK DESCRIPTION 53

dataset from heterogeneous sensors, basic issues that are being solved in RDBMS

are critical challenges in the context of PIM and also life-log systems [112].

In this framework sensors’ data interpreted as the contextual data and annotation

(users’ input) as the content. Usually raw sensor data does not contain semantic and

therefore annotation used to semantically enrich it. Annotation is attaching extra

information to a piece of information [106]. Annotation can be done either manually

or automatically. Due to the fact that life-log dataset structure is always growing in

size, manual annotation is not feasible and cumbersome. According to Hunter [106]

annotation can be stored embedded in the information objects or separated from

the target information objects.

Annotation can be used for different purposes such as indexing, bookmarking, as-

signing meta-data, etc. Here by annotation I mean tagging and thus metadata

creation which is data about the data. Metadata information objects could be ex-

tracted from other resources and they will be linked to the sensor information based

on date-time and - if possible - location. Location and timestamp are two links that

bind different information objects together.

Wheeler and Reis [122] stated that collecting data about life events and experi-

ence could be performed in three ways: 1) Interval-Continent recording: Subjects

record their life events in regular predetermined interval. 2) Signal-continent record-

ing: Subjects record their life events whenever signaled by researchers. 3) Event-

continent recording: In this method events will be recorded every time an specific

event happened (with predefined conditions). Most life-log systems support combi-

nation of these three recording style. For instance Sensecam [103] is taking picture

in interval-continent style and it supports event-continent by enabling users to click

a button and take a picture. Usually annotation (content) which requires user inter-

vention are event-continent recording, and they used to augment the quality of raw

sensor data (context). Annotation is not necessarily coming from event-continent

recording or in simple term manually, it could also be done automatically e.g. sex

and number of speakers can get extracted from the recorded audio data [117].

Life-log data types vary based on the sensor output. Data can be a text or a binary

object such as a movie or a picture. Here all records of a life-log dataset should be

stored with a date-time without considering the data type of the record. They can

be recorded in a continuous-time manner or a discrete-time manner. Audio files and

54 4.2. Life-Log Data Structure

video files are examples of continuous data. In simple terms if there is a start and

end time for an event, then it is a continuous-time event but when there is a unique

time, it is then a discrete-time event e.g. location, picture, blog entry. The proposed

data model has no dependency on the type of life event (discrete or continuous).

Continuous-time data can also be called time series data too [96]. Figure 4.1 shows

continues and discrete sensors data collection based on the time.

Another important fact to consider is that all sensors in the implementation should

Figure 4.1: Video sensor is sampling in the continuous-time manner and other sensors
are sampling in the discrete-time manner

be able to record data without or with less user intervention. This is due to the fact

that life-log dataset structure is always growing in size, therefore manual annotation

is not feasible. In some special occasions persuasive approaches such as games could

be used to motivate users annotating their life-log information, but this is beyond

this research research. Nevertheless manual annotation is possible in this frame-

work, because tags associated with a particular data object represents how users’

associate their knowledge to that data object [239].

According to Gustaven [28], context-aware data is either external or internal, sensors

data is external data and annotation data called an internal data.

FRAMEWORK DESCRIPTION 55

Some sensors such as smart objects [130] should be able to record and annotate data

based on users’ demand or in a more technical sense users’ signal. For instance a

user is able to record special program on the T.V. and she would like to manually

annotates it.

4.3 Data Model

In this framework Data entity is the unit of data. Each life event could be a set

of data entities. For instance eating a lunch in a resturant is a life event with data

entities that represents location, start and end date-time of eating, etc. A data

entity is a data object which can be identified by date-time and sensor ID. A data

entity has four main components: annotation, social scope, timestamp and sensor

data.

In order to reduce risks of sharing life-log information, this model provide appro-

priate access limitation to user’s life-log information. It defines privacy and access

scope for the smallest information object. Smallest information object here means

atomic information block such as an email address, location at the specific times-

tamp, etc.

An access scope should be defined for each data entity. As previously described,

each data entity is a record in a life-log dataset. Atomicity is the main property of

a data entity. The dataset is composed from a set of infinite data entities, which

come from heterogeneous sensors. The dataset size is infinite because the user’s life

is ongoing and during his life the dataset size increases. In addition, there are a wide

variety of sensors that can be used by the life-log which provide different data types

with different structures. As has been noted before this dataset is a data stream.

The proposed model should not have any dependency on a sensor’s data type or

data structure. In other words, there should not be any boundaries between the

access scope definition and the sensor structure.

This conceptual definition of the data model enables users to share their life-log

information. It is not dependent on technology and a life-log dataset can be in any

56 4.3. Data Model

data format such as XML, JSON 1 or RDBMS 2.

Life-log data are date-time (timestamp) dependent. Therefore, I use timestamp data

as a mandatory field for each data entity record. It is notable that in the life-log

domain nobody other than the owner of the dataset is able to manipulate the data

and the only access right is ‘read’, nor any other data manipulation rights.

Each life event is a set of data entities or records in the dataset. The life-log dataset

of a person P represented via L(P) and L(P) = {E1, E2, ...En}, n→ +∞. n is going

to infinity because the human life is ongoing and since the user is alive the boundary

is not specified. The life-log data entity E is a 4-tuple < D, T, S,An >, where T is

the timestamp, which can be continuous or discrete; if continuous, it has the start

timestamp and the end timestamp. D is a 2-tuple < Do, ID >, which Do is the

data object and ID is the sensor identification. Do can be binary data, e.g. image,

audio or textual data, e.g. GPS location, microblog content, etc. An is the annota-

tion which can be stored inline with the data object in each record, or it could be

a link to an external data object which is the annotation for this data object (Do)

. S is a 2-tuple < A,Ei >, where A is the access scope and E is the access expi-

ration timestamp. I defined three access scopes, private, public and friend. Gross

et al. [98] also identified these three scopes and named them private, semi-public

and open-ended. Private means that the data entity is not shared and nobody other

than the owner can access this information object and Ei is null. Public means that

everybody in this social domain can access this information object and no access

limitation has been defined for it but Ei cannot be null and there an expiration

timestamp should be defined for that data object. Expiration time stamp is used

to simulate forgetting in a life-log system. Friend defines users who can access this

information object. The user can define which user(s) or group of users from the

social domain can access this object and Ei must be defined for access expiration

date. In this case A = {P1, P2, ..., Pn}, which is a finite set of users or group of users

who can access this information object.

A social relation description model such as FOAF 3 can be used to extract the list

of users who can see this data entity, or it can be specified manually by the user.

1Java Script Object Notation
2Relational Database Management Systems
3http://www.foaf-project.org

FRAMEWORK DESCRIPTION 57

How to extract the user list is not in the scope of this research. Developers or end

users can define it based on their interpretations of the system. The public and

friend scopes are also inspired by social media such as Facebook or Twitter, but as

has been explained before SNSs have only two sharing scopes, either friend or public

and there is no private scope.

Please note that only one access right is granted to users which is the ‘read’ right.

Unlike other access control systems I do not have other permissions such as delete,

update, etc. It is the authorization process and not the authentication process, be-

cause only ‘read’ can be granted to the user. It is tedious for the user to specify the

scope for each data object, therefore in the implementation model he can grant ac-

cess to a user or a group of users for a group of objects, based on time. For instance

all videos from the beginning of March up to the end of April can be marked to be

shared within a family scope, which is a group of users.

In order to maintain the granularity of the model, the timestamp cannot be the

unique identifier for defining the share scope, it should be used with the data ob-

ject. For instance consider Figure 4.1, which shows that three sensors have been

used. The user intends to share his video between the time t3 and t4, and not his

heartbeat rate. Thus a share scope must be defined based on the timestamp and

the data object and not the timestamp alone. This assumption leads us to make

each data entity record a 4-tuple.

Elements arrival order to the L(P) dataset are based on the timestamp, but there is

no guarantee. As an example that shows elements arrival are not based on a specific

order, consider a buffering mechanism that can be used for reading a sensor. This

buffering mechanism is used to reduce the processing cost. It will gather sensor

data and when the buffer size reaches a specified size then the data are sent to the

dataset.

This model is a conceptual approach to enable users share their life-log information

with society. It is designed to be independent of implementation technologies and it

is flexible enough to allow developers to manipulate data entities, but I think these

fields are necessary components for each data entity.

In addition to access control, other security aspects of the system must be taken into

account during implementation. For instance, communication and data transfer are

very sensitive from a security point of view and sharing information with society

58 4.3. Data Model

requires communication. This demonstrates that during the communication, data

should be transfer encrypted. More about securing the process of life logging will be

described in the “Privacy, Security and Trust” chapter. Following shows examples

of data entities in XML format.

Listing 4.1: This example shows a phones’ Bluetooth data which is used as a social

proximity sensor. The user shares this information with her family user group and

SaraH, with one week expiration timestamp for both.

<entity type=’discrete ’ stored=’local ’ date_time=’Friday

March 7,2009 11:33’ id=’mobileBluetooth ’>

<sensor name=’social ’ scope=’friend ’ class=’mobile ’>

<friendslist >

<friendID exp_dateTime=’Friday March 14 ,2009 11

:33’>’family ’</friend >

<friendID exp_dateTime=’Friday March 14 ,2009 11

:33’>’SaraH’</friend >

</friendslist >

<data> <friendID=’JohnBTMobile ’ bondstatus=’10’

address=’00 :1E:45:1B:71:37 ’/> </data>

<metadata > <name>’John Smith’</name> </metadata >

</sensor >

</entity >

Listing 4.2: A video recording example from a home media server, which has been

marked private. The recorded data has not been uploaded on the server and only

the link has been sent to the sever.

<entity type=’continuous ’ stored=’remote ’

start_date_time=’Wednesday July 13 ,2011

14:27’

end_date_time=’Wednesday July 13 ,2011 16

:00’ id=’homeMedia ’>

<sensor name=’video ’ scope=’private ’ class=’proximity

’>

<data>

FRAMEWORK DESCRIPTION 59

<link source=’file: ///192.168.0.1/ records/videos

/13 jul20111427.mpg’>

<data/>

</metadata >

</sensor >

</entity >

Listing 4.3: A weather web service, which has been read from a desktop computer

and shared with all users in the target social network. An annotation component

annotates it with the city and country name.

<entity type=’discrete ’ stored=’local ’ date_time=’Friday

March 7,2009 11:37’ id=’weatherWebservice ’>

<sensor name=’weather ’ scope=’public ’ exp_dateTime=’

Friday March 28 ,2009 05:00’ class=’desktop ’>

<data>

<wheater source=’http:// foobarweather.com’>

<temprature value=’20’ type=’C’/>

<pressure=’29.18 in’/>

<humidity=’59%’/>

</wheater >

<data/>

<metadata ><city>’Vienna ’</city><country >’

Austria ’</country ></metadata >

</sensor >

</entity >

60 4.4. Design Challenges and Requirements

4.4 Design Challenges and Requirements

The result of life logging is a personal digital memory. Kröner et al. [120] cate-

gorized electronic memories into: object memory, community memory, application

memory and personal memory. Therefore the following design considerations and

theories have been targeted for a personal digital memory only.

Bell et al. [34] introduced some challenges of personal archives which we call life-

log dataset in this research. These challenges include controlling the access to the

information and personal security, browsing and searching the archive, and the re-

quirement that the archive should support long-term preservation of information.

Since life-logs are worth keeping at least until the end of owner’s life, log-term preser-

vation is an important requirement, .

Briefly, the design requirements of a life-log system are: seamless integration into

daily life, resource efficiency, security, long-term digital preservation, and informa-

tion retrieval from the life-log dataset.

On one hand the framework should be an open and extendable platform for life

logging with sharing capabilities, and on the other hand life-logs are highly privacy

sensitive. To resolve these issues I identified and list the followings approaches and

design considerations:

4.4.1 Spatio-Temporal Data Objects

As has been described in the data model, all of our life events except dreams happen

in a specific timestamp and specific location. Based on the currently available tech-

nologies it is not always possible to sense the location, because location sensors such

as GPS are not functional in every environment. However, most of the operating

systems have a timestamp, which is accessible until the device is turned off. This

means that timestamp is a necessary field for any life-log record and all digital infor-

mation objects should be stored with a timestamp. This fact leads to the conclusion

that indicates, first the timestamp, and second the location are two links between

different information objects, which came from different and heterogeneous sensors.

FRAMEWORK DESCRIPTION 61

4.4.2 Controversial History of Life-logs and Security

Since life logging promises the recording every individuals’ activity, life-logs are very

privacy sensitive tools. They have a controversial history, e.g. the DARPA lifelog

project [203] which was canceled in 2004 because of the criticism of the privacy

implications of the system. Allen [24] identified two important potential hazards of

life-logs: pernicious memory and pernicious surveillance. In the previous section I

proposed another classification of the risks of sharing life-logs.

However, life-logs could be a complimentary assistance to our biological memory

and they are highly capable of augmenting our life. Therefore, these risks should

not hinder technological development and they can be reduced by considering users’

security and privacy in the implementation of a life-log system [183]. This framework

tries to reduce these issues by securing the sensing and collecting processes, handing

the control to users over their information, etc. More about dealing with security

and users’ privacy will be described in more detail later in the “Privacy, Security

and Trust” chapter.

4.4.3 WORN Problem

According to Bell and Gemmell [33] a major challenge of life logging is collecting too

much data and never be able to retrieve information from the dataset. This called

the “Write Once Read Never” (WORN) problem. Non-digital diary writing is based

on users demand and thus there is a filter for users on what they would like to store.

This filter facilitates the information retrieval. Sellen [202] suggested: Rather than

try to capture everything, system design should focus on the psychological basis of

human memory.

Moreover reflection methods should consider trimming information for users in a way

that facilitates information retrieval such as using visualization. This framework

challenges WORN effect by (1)introducing annotation which can be done either

automatically or manually and (2)simple visualization methods which assist users

in gaining an overview of their logged data. Moreover, a surprise detection and life

event detection approach will be introduced that can challenge the WORN effect.

These methods will be described at the end of this chapter.

62 4.4. Design Challenges and Requirements

4.4.4 User Intervention

Life-logs operate continuously and passively [94], in other words sensors continu-

ously sense and collect contextual information and a service is always running in

the background. Ideally a life-log application runs in the background of a device

24/7, hence user administration or user intervention should be reduced as much as

possible. Therefore any interruption and resumption should be addressed [16].

Furthermore users should have appropriate understanding and enough control over

the application. While users should be able to configure sensors, but sensing and

logging (recording) processes should not be dependent on any user intervention.

According to the expectancy theory [230], performing administration tasks has a

negative impact on the user experience. The desired life-log system should not re-

quire any user intervention or supervision during the sensing and recording phases,

which is assumed to improve usability. Only administration tasks, such as config-

uring sensors or managing temporary disk spaces, could require user intervention.

Users should have sufficient control on managing their life-log tool, but it should

not interrupt them and should be unobtrusive.

In essence, there is no restriction on capturing data only automatically, some sen-

sors could also capture data manually and ask for user input or start capturing

data based on user demand. For instance a daily self survey could be performed

a couple of times per day and it could asks about the users’ mood. This can be

assumed to be a sensor which collects data about users’ status by manual user input.

4.4.5 Long-Term Digital Preservation

Digital preservation is maintaining information, in a correct and independently un-

derstandable form, over the long term [59]. Likewise it can be interpreted as method

to preserve the content in an understandable form in the long term, therefore digi-

tal preservation prevents data format obsolescence. As has been described, life-log

information is worth keeping during the owner’s life.

A digital preservation process composed of different processes such as migration,

evaluation, emulation and etc. [234]. Migration is a process of changing the format

FRAMEWORK DESCRIPTION 63

of a digital object to a another format which is long term archiveable [15]. Migra-

tion eliminates the need to retain the original application for opening binary files.

Bell [32] named long term preservable data formats “Golden” data formats. For in-

stance, TIFF is a golden data format for long term preservation of image files. Text

files such as XML are golden data format. Life-log files are either in text format or

binary format. Binary files format needs to be checked and if it is not long term

preservable it should be changed to a long term preservable format.

Bell et al. [34] noted that this problem is one of the major challenges of using life-log

tools. There are two challenges with long term archival of digital data, hardware and

software. The hardware problem is not in the scope of this research but following

solution used to tackle the software in this framework:

In order to consider a long-term preservation of the digital objects for pervasive

devices. The file conversion can be handed to an external Web-Service, because file

conversion is a resource intensive process. Then binary objects which are not long-

term preservable will be converted to a preservable format. Therefore users do not

need to have any interaction with the system and file conversion can be done in the

background. How this framework will handle digital preservation will be explained

in more detail later in this chapter.

4.4.6 Performance and Storage

Battery, storage and network bandwidth are resources that are used during the pro-

cess of life logging. Life-logs are always running and collecting contextual data, but

pervasive devices which are being used for collecting contextual data are suffering

from resource weaknesses e.g. battery weakness [194], and they are not reliable

storages that can host life-log data. Therefore there should be a reliable storages

media (RSM) that host life-log data for the long term. Here RSM is the server,

which guarantees reliable data storage. Later in this chapter I will prove that the

implementation of the Data Reader (UbiqLog) is resource efficient and how I send

Data Reader data to an RSM.

Another major consideration is the location of information storage. This is due to

the fact that some life-log sensors produce large sections of binary data such as video

64 4.4. Design Challenges and Requirements

and audio and uploading these data objects to the RSM costs network bandwidth.

Here I propose uploading links to the server and large data remain on the local

storage. For instance consider a home media server which records all T.V. programs

that users watch. It is not feasible to upload them all to a remote server, but they

can be recorded on the users’ local storage and a link to retrieve them within their

metadata can be uploaded to the server. This removes the burden of large data up-

load to the server which costs significant network bandwidth. However there should

be a mechanism to frequently check that data objects are available in the correct

path in their local storage.

FRAMEWORK DESCRIPTION 65

4.5 System Architecture

This section focuses on describing the technical architecture of the framework in

terms of software engineering. The previous section described the design considera-

tions which constitute the foundation of this framework. Now I describe the software

architecture of the system. The framework architecture will be explained later in

more detail. Afterwards two implementations (applications) of the system will be

described as a proof of concept. One application has been done for mobile sensors

and the other application has done for proximity sensors.

The framework architecture [176] is similar to the well known client-server archi-

Figure 4.2: Abstract overview of the framework

tecture, but here I use the term Data Readers instead of clients. Data Readers

reside near sensors and they are responsible for collecting sensors’ information and

sending it to the server. Server is a reliable storage media and hosts heterogenous

information which comes from different sensors. It receives sensor data from Data

66 4.5. System Architecture

Readers and it could be hosted in a single machine or in a cloud.

Both client and server design has been inspired from blackboard architecture [237].

This means that multiple component are running independently from each other and

thus failure of a single component should not harm other components. For instance

if the annotation component is not working it does not affect the Long-term digital

preservation component.

Figure 4.2 shows an abstract overview of the framework and the information flow. In

simple terms, Data Readers reside near sensors and collect their information, then

they send them to the server which hosts data. The server is a reliable storage me-

dia for maintaining data in the long-term and provides required features for life-logs

(e.g. annotation).

4.5.1 Server

The Server functions as the main repository for life-log information. The Server is

used for two main purposes: 1) A reliable storage media which hosts life-log infor-

mation 2) Processes which are not possible or hard to perform on Data Readers will

be done on the Server. For instance a format conversion of a binary document such

as video is a resource intensive process and Data Readers are not capable of hosting

such a process, therefore the server will perform these processes.

The Server could be hosted on a single machine with no Internet connection, but

if the sharing features of the framework is intended to be used, which means users

should be connected, then the sever should be accessible via the Internet.

As it has been shown in Figure 4.3 the server is composed of eight main components:

Data Repository, Long-Term Preservation, Metadata extraction and Annotation, So-

cial Network, Network, Query Interface, Data Management and the Settings and

Configurations component. Figure 4.4 shows the data object process flow when the

server acquires the object from “Data Readers” and writes it to the “Data Reposi-

tory”.

Settings and Configurations stores information about users settings and some gen-

eral information about the framework such as external service information, etc.

Life-log data will be hosted in the Data Repository. Data Readers are temporary

data repositories and the main repository for data is the Server. Furthermore data

FRAMEWORK DESCRIPTION 67

Figure 4.3: Server Architecture

will be stored on the server to support social networking features and therefore a

central node should be accessible to users.

Because of the flexibility, performance [213], portability and long-term digital preser-

vation, RDBMS has not been used and all life-log information will be stored on the

server in plain JSON files. JSON has been chosen because it supports structural

data elements and it consumes less disk-space in comparison to XML which is sim-

ilar to JSON from a features perspective.

The implementation instances create a JSON file every day which contains users’

activities (sensor information) with timestamp. Information about binary data will

68 4.5. System Architecture

Figure 4.4: Data object process flow on the server

also be stored in the JSON file. Information objects which will be stored in the

JSON file about the binary data are: meta-data and annotation, timestamp ,local

path of the binary data, a flag that indicates that the binary data should be up-

loaded to the Server or it should be maintained locally.

The Long-term Preservation component is responsible for converting data objects’

data format in a preservable form and evaluate the result of conversion. Most digital

Preservation related tasks such as format conversion will be done on the server side

because these tasks are resource intensive and pervasive devices which are used as

Data Readers are not capable hosting large processes.

The Data Management component has two responsibilities: First it maintains and

administers the life-log dataset on the server, second it hosts and updates links for

remote storages. As has been explained before it is not feasible to upload some large

information objects on a server. Since the life-log data is always created during the

users’ life they consume large amount of space. For instance Gordon Bell’s life-log

which includes pictures, letters, financial statements, purchase orders, manuals, etc.

consumes about sixteen gigabytes from 1998-2001 [33]. The data objects which are

not stored directly on the server could be large or they could be privacy sensitive.

Therefore it might be better to keep them local and private and not upload them on

FRAMEWORK DESCRIPTION 69

the server. Data management checks the availability of data objects in the remote

storage and if they are not available or the link is broken, it notifies users. The idea

of storing links to remote data inspired from the term “Data Space” [85]. Franklin

et al. introduced this term, which provides central supports and query interface for

distributed data. Here the “Link” has been used in order to support distributed

storage. Metadata and the links to original data objects will be uploaded to the

server instead of the whole data object. A Link can be a simple file system path,

e.g. file:///C:/MyHomeMedia/2009-10-11/watched/DigitalLife.avi.

In addition to these features the Data Management component administers life-log

dataset, which includes archiving old data, creating index for data objects based on

users demand to retrieve them, etc. An index optimizes the query performance and

assists users in better information retrieval.

Metadata Extraction and Annotation component is responsible for annotating in-

coming sensor information. Simple annotations could be done on the Data Reader

side and more complicated annotation could be done on the server side. This com-

ponent performs the annotation which will be done on the server side. Usually this

type of annotation requires more resources and thus Data Readers are not capable

of performing them. As has been stated before here annotation can be done man-

ually or automatically. For instance I have implemented an automatic annotation

approach which gets information from users’ google calendar and annotates dataset

records based on the timestamp with Google calendar events.

Query Interface reads users input through the GUI and assists users’ to browse or

perform queries against their life-log dataset as has been shown in Figure 4.5. The

query interface has been implemented with Apache SOLR 4. SOLR is a open source

text search platform from the Apache Lucent Project.

The Network acts as a network layer and it is responsible to receive data object

from Data Readers or sends information (e.g. annotation) to Data Readers. The

transmission of data objects to and from the server with Data Readers will be done

via HTTP connection.

The Social network component is used to enable users to share their life-log infor-

mation with others. The social network layer is using Diaspora 5, which is an open

4http://lucene.apache.org/solr
5https://joindiaspora.com

70 4.5. System Architecture

Figure 4.5: Query interface on the server side

FRAMEWORK DESCRIPTION 71

source social networking tool developed with Ruby and its development is still in

progress. The social networking features of Diaspora have been employed to pro-

vide usual SNS features, but layers and components, which can handle and manage

life-log information, have been added to it. Figure 4.5 depicts how users access and

browse their uploaded life-log information from their Data Readers. Then users

can select data objects, which they intend to see more detail about, by clicking on

the blue dot (Figure 4.6). They can also share with other users in their social net-

work. When users intend to share they should chose an expiration timestamp for

any shared object, otherwise default expiration timestamp which is ten days after

they share will be chosen by the system. Furthermore in the implemented prototype

users are enable to specify which information objects could be shared. For instance

a user can choose to share her SMS with another user (in friend list of the social

network) for a week.

The sharing style in the implementation is based on push, which means users chose

what to share. However as a future work sharing with pull will be supported. In

this context pull means that other users can ask a user to share and she can decide

to share with them or not.

72 4.5. System Architecture

Figure 4.6: Data visualization component which has been integrated in Diaspora and
runs as the Social Network component of the Server.

FRAMEWORK DESCRIPTION 73

4.5.2 Data Reader

As has been stated before the term client is not applicable here, because the main

function of this component is to collect raw sensor data and send it to a reliable

storage media, which is the server in this framework. Usually one Data Reader will

be used to read and collect multiple sensors’ data. A Data Reader and sensors could

be hosted on the same device such as a smart phone, which is a Data Reader and

hosts many sensors. It could be a hardware device or it could be an application

which is running on a device.

Life-log systems have many similarities to context-aware systems, but it is notable

that a life-log tool is different from a context-aware tool in several aspects e.g. life-

log tools should archive data for long-term access and consider the annotation of

datasets. Context-aware systems are typically not designed to maintain information

for long-term access, annotation and privacy are less important concerns for them

and unlike life-log systems, do not need to always run in the background of the

device eliminating the issue of resource usage.

In order to achieve a versatile and flexible architecture on the Data Reader side, a

layered architecture model [231] has been used. Components were designed to be

abstract and thus it is possible to add new components or remove an existing com-

ponent. One of the main design requirements is to create a flexible and extendable

system, which enables users to integrate new sensors or configure current sensors.

This sensor extendibility feature is called versatility in context-aware approaches

[139]. Figure 4.7 shows the architecture of a generic Data Reader.

Application Log is being used to log errors and messages of the application in order

to assist developers in debugging. Extension Interface is used as an interface for

adding new sensors to the framework. An external sensor might be an application

or it might be a hardware component such as a device with a Bluetooth connectivity

feature. How to add a new sensor to the framework will be described in more detail

in the implementation section.

Similar to other context-aware approaches the Data Reader contains two major op-

erations: sensing and recording. Chen and Kotz suggested [53] to decouple the

context sensing part from other parts of the application in order to maintain a flex-

ible environment for sensors configuration. The Data Reader has been designed

74 4.5. System Architecture

Figure 4.7: Data Reader Architecture.

based on their suggestion.

Mostly context sensing tools are composed of two types of hardware: a data ac-

quisition device and sensors. Sensors are responsible for sensing the environment

and reading the contextual data in a raw format. The data format varies based on

the sensor. The raw data of each sensor should be aggregated in a format that is

appropriate to gather all readings in one dataset. Therefore the data acquisition

device is required, which is responsible to gather and aggregate raw data from the

sensors. Aggregation here means converting raw data into a data format, which the

Data Reader is able to parse. Sensing and recording are assumed to be two different

phases of the life-logging data collection process. Following is the detail explanation

about these two processes.

FRAMEWORK DESCRIPTION 75

Sensing

Context data acquisition methods predefine the architectural style of the system.

There are different approaches to read contextual data, in this framework sensor

data will be read directly via a sensor connector and no middleware will be used.

The sensing process is composed of three component: Sensors, Sensor Connectors

and Data Acquisitor. “Sensors” are used to sense and read contextual information.

They can reside in the Data Reader as an application or hardware component. They

can also reside physically outside the Data Reader, such as an external GPS device

connected to the smart phone (Data Reader) via Bluetooth, or a Web service, which

provides temperature based on current location of the user.

The “Sensor Connector” establishes a connection between the Data Reader and the

sensor. The Connection depends on the sensor, e.g. a sensor can send data via

a Web service or a sensor can write data in the file only. A security component

might also be used by the sensor connector, especially when the sensor is physically

located outside the Data Reader. A network connection will be established between

the sensor and the Data Reader, hence an authentication or an authorization process

might be necessary. In simple terms, the sensor connector encapsulates the sensor

structure and reads data from the sensor. I suggest having a sensor connector for

each sensor, as a sensor failure would otherwise affect other functionalities of the

framework.

Information about sensors, their configuration and their connection status will be

kept in the Sensor Catalogue. The sensor connector connects to the sensor and reads

information based on the configurations, which reside in the sensor catalogue. Fig-

ure 4.8 shows the sensing process sequence diagram of this framework. The “Data

Acquisitor” is a stream, which acts as a temporary queue to hold the read data from

sensors. It contains raw sensor data and is located between the data aggregator and

sensor connectors. It encapsulates data that has been read from sensors in order

to make it available for the data aggregator. This layer exists because it is not

possible to send raw data from the sensor connector to the data aggregator directly,

while there is no guarantee for reading sensor data synchronously in the real time,

therefore this component is required. For instance, an authentication process might

take time, which means a data from that sensor cannot be read in real time. In

76 4.5. System Architecture

Figure 4.8: Sensing process sequence diagram.

addition data aggregation processing cannot be done in real time. Thus, the data

acquisitor will be used as a temporary sensor data holder (data buffer). This leads

us to conclude that the acquired data from sensors will be logged passively and not

actively.

It is notable that Data Reader architecture does not comply with any sensor classi-

fication and it can support any of three aforementioned sensors classes, unlike other

context-aware efforts. For instance, Raento et al. [173] has classified smart phone’s

sensors as location, user interaction, communication behavior and physical environ-

ment sensors. Froehlich et al. [88] categorizes phone’s sensor as hardware sensors

and software sensors such as application usage. Schmidt et al. classified sensors as

logical and physical [198].

Sensors data should be read in parallel, which means when a sensor is not available

FRAMEWORK DESCRIPTION 77

or is not working it should not raise any errors and it should not affect other reading

processes. Sensors and the Data Reader are connected mostly in a unidirectional

way. If an authentication or authorization mechanism is required connection can be

bidirectional between the mobile phone and the sensor.

Refining and Recording Data

The refining and recording part consists of five components: Data Aggregator, Meta-

data Extraction, Data Management, Local Data Storage and Network Transmitter.

This phase considers scalability, manageability and reliability of a life-log informa-

tion.

Raw data from different sensors needs to comply with a consistent data format.

Furthermore, the data needs to get annotated in order to facilitate browsing, search

and further data retrieval. The “Data Aggregator” receives raw data from “Data

Acquisitor” and transforms data to a consistent structure, which is readable for the

framework. In particular, Data Aggregator is a middle layer, which enriches sensor

data via annotation and convert its format. Most other context-aware approaches

[28] use XML for their data format. In the implementation of this framework I

convert data into the JSON6 format, because a JSON document consumes less disk

space in comparison to similar XML documents while being as flexible as XML.

The following shows two examples of the aggregated data, one from the SMS sensor

and the other one from the Application sensor:

"APPLICATION ":

{" ProcessName ":" com.android.browser",

"Time ":"Oct 15, 2009 6:21:40 AM"}

6http://www.json.org

78 4.5. System Architecture

"SMS":

{" Address ":"4444444" , "Type ":" send",

"Time ":"Dec 24, 2009 11:23:01 PM",

"Body ":" test message" }

These JSON data entities comply with the described data model, because each en-
tity has a date-time, a data object and an annotation. Binary data has the same
structure but instead of text they hold the location of that binary data entity. For
instance a picture data entity is as follows:

"CAMERA ":{

"picturename ":"2009 -12 -29 20.42.05. jpg",

"localPath ":"/ sdcard/dcim", "storage ":" server",

"Time ":"Dec 29, 2009 8:42:07 PM"}

Converting a raw data to the desired data format, will use the information from the
sensor catalogue, e.g. find and use the related annotation class. Metadata Extrac-
tion component in the proposed architecture (figure 4.7) will be used to annotate
data in order to make them searchable and browsable. Annotation here is adding a
textual data to the JSON record. For instance an annotated data entity from the
call sensor might be as follows:

"CALL ":{" Number ":"11111111" ,

"Duration ":"13" , "Time ":"Dec 24, 2009 9:23:04 PM",

"Type ":" outgoing",

"metadata ":{" name ":" John Smith "}} }

The “metadata” element of the above JSON record represents the annotation. The

Data Aggregator uses the “Metadata Extraction” component to annotate data of

the sensors. The annotation process is not only restricted to be done during the

data aggregation phase, it can also be done during the data acquisition phase.

After the data getting annotated and converted to the data entity format, the result-

ing information object will be stored locally on the data reader (First data will be

stored locally, then users can transfer them to a reliable storage). These information

objects will be written to the “Local Data Storage” by the Data Aggregator. The

write process will be done passively and not actively or real time, because raw data

FRAMEWORK DESCRIPTION 79

must be converted to a readable data format. Furthermore, the data aggregation

process cannot be done in a realtime e.g. an annotation could be done via an exter-

nal web-service call, which costs time. The reason that first data is stored locally is

the network connection, which is not always available and previous research efforts

[55] show that transferring data automatically to anther storage, increases the risk

of packet loss and requires data compression. Pervasive device storage has limited

capacity, therefore a feature has been provided which allow users to manually upload

the data to a reliable storage media (RSM) or even automatically. The RSM is the

server, which is capable of hosting life-log information. Uploading data to the RSM

will be done by the “Network Transmitter” layer.

The life-log dataset consists of files, which are either binary files (pictures, videos,

calls, etc) or text files. Manual upload to the RSM requires user intervention, which

is not desirable. Therefore, “Data Management” will be used. Data Manager is

responsible to check if the specified maximum size is reached or not, if it reaches the

maximum size a secure network connection will be established by the “Network”

and it uploads data-set files to the RSM. After a successful file receive, RSM ac-

knowledges the framework. If files are successfully uploaded to the RSM then Data

Manager removes files from the local storage. Moreover, Data Manager is respon-

sible to compress the content of text files. For instance, Data Manager can check

the log file and remove redundant records or compressing files if there is lack of disk

space on the local storage.

80 4.6. Proof of Concept and Applications

4.6 Proof of Concept and Applications

The framework architecture and data model have been explained previously. In order

to evaluate the proposed data model and the architecture I describe two implemen-

tations in this section. Each of these implementations focuses on a sensor class, one

implementation (UbiqLog) is for the mobile sensors and one is for the proximity

sensors. I do not provide any implementation for desktop sensors, because there are

many comprehensive implementations available. UbiqLog is a lightweight, config-

urable and extendable life logging framework that uses mobile phones as a device for

life logging. Another implementation proves proximity sensors and it is a metaphor

that motivates users considering their target environment tidiness status.

These two implementations is a proof that this framework is holistic and multipur-

pose. This is due to the fact that they have been designed for two different use cases

and they have a very similar architecture.

At the end I will explain two methods that assist users in extracting knowledge from

the dataset, one is surprise detection the other is life routine detection.

4.6.1 UbiqLog

Smart phones are conquering the mobile phone market; they are not just phones

they also act as media players, gaming consoles, personal calendars, storage, etc.

They are portable computers with fewer computing capabilities than personal com-

puters. However unlike personal computers users can carry their smartphone with

them at all times. The ubiquity of mobile phones and their computing capabilities

provide an opportunity of using them as a life logging device. The proposed applica-

tion is the implementation of a Data Reader which extends previous research in this

field and investigated mobile phones as life-log tool through continuous sensing. Its

openness in terms of sensor configuration allows developers to create flexible, mul-

tipurpose life-log tools. In addition to that this mobile based Data Reader can be

used as reference model for further life-log development, including its extension to

other devices, such as ebook readers, T.V.s, etc. In the past most life-log tools were

FRAMEWORK DESCRIPTION 81

custom-built devices or applications using external hardware as sensors (e.g. [192],

[55]). With the advent of smart phones, the mobile phone has become a feature-rich

mobile device, creating an opportunity to use it as platform for life logging. It is

not easy to convince users to carry something other than their usual digital devices

such as mobile phones or watches to perform a novel activity which in this case is

recording their daily activities. Smart phones are small computers with computing

capabilities, but more importantly they are equipped with sensors and networking

technologies, such as Bluetooth, which can sense and communicate with the user’s

environment. Their networking capabilities enable these devices to be connected to

a larger computing or storage media, becoming a hub for personal or body area net-

works [190]. Further, smart phones can provide useful information about our daily

activities such as received and dialed calls, text messages, application usage, phone

camera pictures, etc. A disadvantage of dedicated life-log devices is that, users need

to carry yet another device with them just for the purpose of recording their daily

activities. Based on smart phone capabilities and features we believe that they rep-

resent a promising platform for life logging. Therefore the focus of this study was to

create a data reader, which resides in the user’s smart phone and does not require

any additional hardware (except that hardware is a new external sensor). However

smart phones are not designed to be used as life-log tools, leading to a number of

challenges when using them for this purpose. For example the performance of the

phone could be affected by the amount of resources required by a life-log application

running on the phone.

Since UbiqLog is the implementation of a Data Reader the focus is on the collection

stage of life-logging and therefore this research does not delve deep into reflection

methods. Although, for the purpose of demonstration, we [185] provide visualiza-

tion features, which will be examined in the evaluation section. Additionally, the

prototype features a search facility to enable users manage their life-log dataset and

remove undesired information from their dataset directly on their mobile device.

This is an important requirement due to the fact that users are the owners of their

life-log dataset and thus they should have full control on their personal information

[180].

The proposed application allows users to configure the sensors they want to use

for recording their life-logs by disabling or enabling a sensor, or changing a sensor

82 4.6. Proof of Concept and Applications

settings. Additionally users can add a new sensor to the application or remove an

existing sensor from the application. Flexibility to this extent requires a specific

data model and architecture, which we propose as a part of this research. Based on

the proposed data model and architecture, we implemented a prototype of a life-log

tool running on the Android 2.x platform for Android phones. The prototype is

flexible enough to be used for other platforms just by changing sensors according to

the target platform. So far Android has been used for mobile phones and tablet com-

puters, but it could be used on other things such as T.V.s 7, and vehicles. Although

the implementation have been done on the Android platform, the architecture and

data-model is not Android dependent and can be used on other platforms as well.

In simple word this work provides a novel approach to life logging by enabling

users to configure sesnors and add new sensors. Other efforts, which employ mobile

phones for life logging, provide a closed architecture, making it difficult or impos-

sible to customize the life-log tool. Related projects that use an open architecture

such as MyExperience [88] are not designed for life logging. Their focus is on other

research aspects such as context sensing, and to my knowledge there is no other

open architecture for a life-log framework available.

Since life-log systems are similar to context-aware systems, it is notable that a

life-log tool is different from a context-aware tool in several aspects. For example,

life-log tools should archive data for long-term access, consider the annotation of

datasets, and so on. Context-aware systems are typically not designed to maintain

information for long-term access, making annotation and privacy are less important

concerns in most cases. Moreover context-aware systems, unlike life-log systems,

do not need to always run in the background of the device eliminating the issue of

resource usage.

As related work for UbiqLog I can refer to Context-Aware approaches which has

been described in the “Related Work” chapter.

7http://www.google.com/tv

FRAMEWORK DESCRIPTION 83

Design Principals

Mobile phones (or in general pervasive devices) by their very nature are not designed

to host large computing applications. There are some restrictions such as resource

limitation, user interface, etc. in comparison to personal computers. Life-log tools

are very privacy sensitive and this research proposes to bring this tool on mobile

phones, which are prone to loss or damage [194]. It is therefore important to take

some design principals into account when implementing a life-log application for

mobile phones. Most of design principals have been previously explained in the

“Design Challenges and Considerations” section of this chapter such as storage,

performance, etc. However followings are design principals which are not described

yet and they belongs to the specific type of implementation for a mobile based Data

Reader or life-log in this framework. I did not list them in previous section because

they are UbiqLog or in a more technical sense implementation specific.

• Sensor Extendability : A major shortcoming of smart phone sensors are their

limited precision and weakness compared to external sensors. For instance an

external GPS device is more powerful than the phone’s built-in GPS or the

quality of a photo from a digital camera is better than the quality of a photo

taken with the phone’s camera. On the other hand, mobile phones are increas-

ingly equipped with more capabilities and features. It can be anticipated that

in the future, new sensors will get integrated into mobile phones. Therefore,

it is a crucial requirement to provide an open interface that allows adding new

sensors. In order to deal with this problem we propose an integration interface

to enable developers integrate external sensors into UbiqLog. For instance, an

external GPS can be connected to the phone via bluetooth.

• Support for Multiple Use-cases : As described earlier the information recorded

by life-logs can be used in many different domains. The focus is to provide

a generic data reader, which is capable to be configured based on the users’

requirements. Users can add/remove (extendability) or disable/enable (flexi-

bility) sensors and change settings of available sensors. This capability makes

the framework flexible enough to be used for different purposes. For instance,

once it can be used as health monitoring device and in another use case it

84 4.6. Proof of Concept and Applications

can be used to study a group behavior such as employees’ geographical lo-

cation changes in a firm. Li et al. [133] stated that an individual’s life has

different facets and available systems are mostly uni-faceted. However, I claim

that UbiqLog is a multi-faceted system, because it is capable to be used for

different use-cases.

Data Enrichment Features

In addition to the sensor extendibility and openness, UbiqLog supports annotation

and checking for long-term digital preservation in order to enrich the raw data that

has been collected from sensors.

Annotation: A possible approach for assigning semantics and enriching life-log

datasets based on described requirements is the use of annotation. Here by anno-

tation we mean tagging and thus metadata creation which is data about the data.

Metadata information objects will be extracted from other resources and they will

be collected based on date-time and (if possible) location.

We embed some annotations within the data entities in the “metadata” tag, as

shown in the above examples. Some annotations will be stored separately from the

life-log dataset, but those files have similar structure. Annotations that are not

embedded in the data entities, will be done by calling external web services. Those

services collect textual annotation from other information resources e.g. personal

calendar and online news media. In the implementation, we use a service to call

Google calendar and it collects calendar events in a text file. Although this feature

is available, we suggest to perform this type of annotation on Server and not on

the Data Reader, because establishing a connection to an external service consumes

bandwidth.

Moreover, to consider the readability and flexibility of the framework we suggest to

perform the annotation during the data aggregation phase and not during the data

acquisition phase.

Digital Preservation: Tomitsch and I [184, 179] proposed a framework to con-

sider the long-term preservation of the digital objects for pervasive devices. There

we suggested to handle the file conversion to an external Web-service, because file

conversion is a resource intensive process. We converted binary objects which are

FRAMEWORK DESCRIPTION 85

not long-term preservable to a preservable format. Therefore users do not need to

have any interaction with the system and file conversion is being done in the back-

ground.

In the UbiqLog framework we intend not to bound ourselves to any external tool

such as Web services, which require external service call. Thus users can choose

how to handle their binary objects. Either they can use the described method or a

second method, which is lighter. The second method is a simple evaluation mecha-

nism based on the data format. If the file format is not preservable (not in a golden

format category) an entry for the metadata information of that file will be created.

All binary files in the framework have a record in a textual file, which contains infor-

mation about the files. This textual file will be sent to the RSM with the associated

binary files. File format conversion can then be handled on the RSM side and the

results can be automatically evaluated by another component. In simple terms, in

the second method only the file format will be checked on the mobile device. If it

is not long term preservable an entry will be written in the text file. We suggest to

use the second method, because it consumes less resources such as bandwidth and

CPU and there is no guarantee that external services are always available for the

file format conversion.

Implementation and Evaluation

The UbiqLog has been implemneted on the Android 2.x platforms. The purpose of

this implementation was to evaluate and improve the feasibility of the Data Reader.

Then as a longitudinal evaluation a nine month usage of this tool on user’s mobile

phone will be analyzed. Since the life-log tool needs to be constantly running in the

background of the device, it is important to evaluate the battery efficiency during

use the implementation. Finally, a usability evaluation of the application based on

Nielsen’s heuristics [158] approaches will be described.

We have developed an implementation of the proposed architecture on the Android

2.0, 2.1, 2.2 and 2.3 platforms. The implemented application was used and tested

on a Motorola Milestone (Droid), HTC Legend, Samsung Nexus S, Samsung Galaxy

S, ZTE Blade, Samsung Galaxy Mini, HTC Desire and HTC Desire HD. This ap-

86 4.6. Proof of Concept and Applications

plication fully complies with the described architecture.

Figure 4.9 shows the GUI of the application. A major consideration during the

Figure 4.9: GUI screenshots. Frame 1 shows the first screen that appears when the
user opens the application. The feature shown in Frame 2 enables the user to exclude
applications that she do not intend to log. Frame 3 shows the list of default sensors, which
were implemented in the application. Clicking on one of the sensors from this list takes the
user to the configuration screen, shown in Frame 4. Frame 5 shows the data management
setting screen. Frame 6 shows the screen for configuring network settings. Frame 7 shows
the setting options. Frame 8 shows the search facility.

GUI design was to provide sufficient functionality to enable users to easily configure

sensors without any knowledge about the lower layer of the application. When users

click on any sensor in the sensor list, as shown in Figure 4.9, Frame 3, they will be

shown the configuration screen for each sensor such as Frame 4.

FRAMEWORK DESCRIPTION 87

The user navigation flows between the different screens of the application is shown

in Figure 4.10. Each box represents a screen in the application. Each Sensor Reader

Figure 4.10: GUI screens navigation flowchart.

has been implemented as a separate Android Service. Since Android services run

in the background, no GUI is required to run these services. For each sensor there

should be an associated sensor reader class. In order to add a new sensor into the

application a developer must implement the “SensorConnector” java interface in the

“com.ubiqlog.sensor” package. If developers intend to add the associated annota-

tion class they should create a class in the “com.ubiqlog.annotation” package and

this class has to implement the “Annotation” java interface. Currently, in the im-

plemented application we annotate incoming and outgoing calls and text messages

(SMS) with the recipient’s or sender’s names which are read from the contact list.

After the developer creates the annotation class they need to rebuild the framework

and installs the new apk file on the target device. This apk file contains newly

added sensor. There is no possibility to add new sensors dynamically or during the

run time to the framework, which means endusers can not do them. They can only

configure existing sensors and enable/disable them.

Android provides listener classes for some sensors, when the sensor senses a new

88 4.6. Proof of Concept and Applications

Sensor Configuration Values
Application Enable = yes, Record Interval in m.s. = 10000
Telephone Enable = yes, Record Communication = no
SMS Enable = yes
Location Enable = yes, Update Rate in m.s. = 10000
Accelerometer Enable = no, Rate = Delay Game, Force Threshold = 900
Picture Enable = no, Capture interval in m.s.= 1000
Temperature Enable = no, Measurement Unit = Celsius
Compass Enable = no
Bluetooth Enable = yes, Scan Interval in m.s. = 60000
Orientation Enable = no

Table 4.1: Default sensor configurations

data, the listener will be notified e.g. calls information can be read via using “Phon-

eStateListener” Listener. We use these listeners to log sensors’ data, but for some

sensors such as application usage there is no such a listener. Those sensors will

be checked frequently based on a specified time interval via their associated sensor

readers.

As stated before the Sensor Catalogue contains information about sensors. A ta-

ble in the SQLLite database of the Android platform has been used for the Sensor

Catalogue implementation. This table contains sensor names, sensor reader class,

sensor annotation class and a list of configuration data for that sensor.

Table 4.1 shows default installed sensors and their configuration values in the imple-

mented application of the UbiqLog framework on the Android smart phones. Users

can list sensors from the application GUI as shown in Figure 4.9 Frame 3. the Ac-

celerometer and picture sensors are disabled by default, because they consume high

amount of resources and thus drains the battery. Other sensors are disabled, based

on the result of our user survey, in which users stated which sensors have higher

priority (enabled sensors).

In order to implement the Data Acquisitor, which is a temporary data buffer, a

static Java Collection object (ArrayList) was used. The sensor connectors write

their data directly to this object.

Data Aggregator runs as an Android service, it reads data from the Data Acquisitor

and it performs the annotation.

Life-log data is stored as a set of text files on the SD card of the phone in a folder

FRAMEWORK DESCRIPTION 89

called “ubiqlog”, binary files such as photos can be stored in same folder but in a

subfolder called “binary”. Location and metadata about each binary file is stored

in a the same file, which will be created for every day the application is being used.

Users can use the “Search” menu and access their life-log data. They can also ma-

nipulate the search result (modify or remove an entire record).

Life-log files will be uploaded to the RSM by the HttpClient package of the Android.

Password and server address are required, as shown in Figure 4.9 Frame 6, to allow

the application connecting to the Server (RSM) and uploading files. On the RSM

side we have designed a simple Java Servlet which reads files and stores them locally

on the user’s personal computer. After a successful file receive, the RSM acknowl-

edges the application in the Http response (HTTP Status Code is 200) that the files

have been successfully uploaded to the RSM. Afterwardss the Data Manager remove

the files from the SD card of the device. Users can specify the maximum size for

the Ubiqlog folder as shown in Figure 4.9 Frame 5. The Data Manager can check

if the threshold has been exceeded or not and if the threshold has been exceeded,

it will upload life-log files automatically to the RSM. The Data Manager has been

implemented as an Android service, which continuously runs in the background,

with the sensor readers and other services.

“Archiving Evaluation” is another Android service, which checks whether binary

files are in a long-term archive-able format. As described above this service can

be used in two ways, either to call an external Web service to convert file format

or mark the binary files that they are not in the long-term archive-able format by

adding a corresponding meta-data for this file in the associated record.

In order to check the long-term archive-ablitiy of life-log dataset binary files, users

can manually generate the report by using the “Generate Report” button on the

“Setting” Frame as shown in Figure 4.9 Frame 7. Calling an external Web service

to change the format of the file is another method which we described it in another

research [184].

90 4.6. Proof of Concept and Applications

Longitudinal Evalutation

UbiqLog was used by six users over a period of one to fourteen months. Three users

immediately installed the application after they purchased the new phone. This

means that they used the application from the first day of using their phone. Every

day a text file was created containing sensor information. It contains location of the

binary objects and their meta-data. Figure 4.12 shows the size of log files for about

three months. Those logs are generated by using a Motorola Milestone phone. The

reason why the file size was larger in the beginning of the study period was since

the user described that he is keen in using a new phone and discovering the device

features or surfing the market for new applications. This behavior is repeated by

two other users with new phones. Therefore we conclude this is the reason of having

a large log files in the first days of usage. Besides when users have lots of location

changes file sizes increases. Figure 4.12 shows two days in this period with zero

file size. On those days UbiqLog was not running, therefore no file was created.

The visualization shown in Figure 4.11 demonstrates how the data recorded with

the UbiqLog tool can be used to visualize the user’s social interaction based on

sending and receiving calls. This visualization approach was inspired by Song et al.

[211]. Individuals’ names have been pseudonymized in respect to the users’ privacy,

therefore phone numbers are shown with Person and a number. The longer the call

duration, the closer the person is to the center of the circle.

Resource Usage Evaluation

Jain [110] described that the application performance is composed of five factors:

usability, throughput, resource usage, response time and reliability. Evaluating the

performance of an application is necessary for evaluating the implementation of the

framework. Since the UbiqLog application will always run in the background (and

therefore always consume resources). As mentioned above resource consumption is

one of the major challenges of mobile computing [193], which is especially relevant

for life-log application, since they typically need to constantly run in the background.

Thus the performance of the application can influence the general functionality of

the device, which is not designed for this type of application usage. Therefore re-

FRAMEWORK DESCRIPTION 91

Figure 4.11: Social Interactions of the user based on the duration of received and dialed
calls.

source usage monitoring is an important factor that developers need to consider

while designing such applications.

The application was tested directly on the device at the end of the implementation

cycle to eliminate any data redundancy and sensor reader malfunction.

In appendix I have described that mobile resources are: battery usage, CPU usage,

memory usage, disk activity and network activity [175]. To measure mobile phone

resource utilization I used a resource monitoring tool [178] which will be described

in “Appendix A” in more detail. I specifically measured battery, CPU and memory

usage of our application. Network activity and disk I/O of the life-log were not

measured, since the application did not have heavy network or disk activity. Disk

write happens infrequently because we buffer data and then write them in the file.

When all sensors were active, result of the CPU utilization monitoring, showed that

our application consumes less than 3% of CPU in average, when administration

activities are performed and the GUI is active, it consumed about 10% of CPU

in average. Average VmRSS (Virtual Memory Resident Set Size) was 15728 Kb

92 4.6. Proof of Concept and Applications

Figure 4.12: File sizes of the life-log dataset. The unsteady part represents that user is
playing with his new phone features(the area is marked with red). Other days when the
file size is big mostly is because of using GPS outdoor and many location log entries have
been generated.

and VMSize is 127268 Kb. It is notable that disabling some sensors (i.e. reducing

the number of sensors) did not affect the CPU or memory utilization. This result

shows that the implementation of the UbiqLog consumes fair amount of the CPU

and the memory. Battery utilization cannot be measured per process. The GPS

sensor reads the user’s current location and the Bluetooth sensor scans the envi-

ronment for discovered devices, based on a configurable time interval. The default

Bluetooth scan interval is six minutes and the default GPS location read interval

is ten seconds. Both Bluetooth and GPS are highly battery consuming, but they

produce important information for the life-log dataset. Therefore we needed to in-

vestigate whether the implementation of the framework had any significant impact

on battery consumption. In order to perform this study, we investigated battery

utilization under different conditions, where different sensors were activated. Each

test was started at a set time in the morning with a fully charged battery. Tests

were run until the battery level reached a level of the 20%. Device usage condition

have been kept constant during the entire test period. This means that the device

was still used to answer phone calls or SMS, but not for any unusual purposes, such

FRAMEWORK DESCRIPTION 93

Battery Discharge Duration UbiqLog Application WiFi GPS Bluetooth
21:00 Hours deactive on off off
20:00 Hours active on off off
7:30 Hours active on on off
6:30 Hours active on on on
7:00 Hours deactive on on on
14:30 Hours active on off on

Table 4.2: Approximate time it took for the phone to reach a battery level of 20%
(starting from 100%) in different scenarios. When WiFi and Bluetooth are on, they
were idle and not active.

as playing games. However there is no guarantee that the device usage is exactly

the same for all tests, because the user can not control incoming calls or etc.

Table 4.2 shows the approximate time it took for the phone to reach a battery level

of 20% in different scenarios. It is notable that Wi-Fi, which consumes high amount

of battery, was always on in all scenarios. Furthermore to preserve more battery

network connection of the phone was set to 2G (not 3G).

The intention of this study was not to evaluate battery usage of different hardware

settings. Instead I intend to prove that the implementation of the proposed UbiqLog

framework does not have a large impact on battery utilization. As shown in Table

4.2 there is about one hour difference between using the application and not using

it while Bluetooth and GPS are disabled. With Bluetooth and GPS both enabled

the application decreased the battery time for half an hour. This might be due to

I/O operation increase (writing GPS and Bluetooth log on SD Card)

Usability Evaluation

This framework and its implemented prototype targets life-log system developers,

but it can benefit end users by providing self-insight. In order to enable end users

benefit from the framework we propose following visualizations Figure 4.13 which

assist users in better self-awareness and self monitoring about their device usages. In

order to evaluate the usability of the framework implementation we have employed

Nielsen’s usability heuristics [158]. The implementation that users evaluate contains

those visualizations under the “visualization” option of the “tools”. The usability of

the implementation has been evaluated by six users (2 female, 4 male) between 25

94 4.6. Proof of Concept and Applications

Figure 4.13: (1)Location, (2)Application usage, (3)Call visualizations and (4)Movement

and 37 years of age. Four of the participants stated having strong computer knowl-

edge; and other two stated having basic computer knowledge. All participants use

computers and mobile phones in their daily life. Participants owned HTC Desire,

Motorola Droid (MileStone), Samsung Galaxy S, Samsung Galaxy Mini, HTC Leg-

end and HTC Desire HD. We installed the application on the participants’ phones

and asked them to use the application for a period of four weeks to one year. After

this period we conducted interviews and asked them to fill out a survey. The sur-

vey included Nielsen’s principles for user interface design [158]. We adapted those

principles in form of questions and asked participants to rank the application ac-

cordingly. The result of the evaluation shows Help and Documentation received the

lowest score (2 from 5), but other heuristic factors received satisfactory scores (4 or

5 from 5).

API Extension

UbiqLog is a platform which enables users to sense and collect mobile phone data

and contextual information. On one hand this information can benefit users in many

aspects such as behavior learning [152], studying community influence on a behavior

[168], etc. On the other hand these facilities can assist developers and researchers

FRAMEWORK DESCRIPTION 95

to use this platform for further development e.g. pervasive games. Since we have

argued this tool is flexible, extendable and it can be used for different purposes,

an API has been provided. The API enables developers and researchers to use the

UbiqLog as a sensing and collecting tool, without delving deep into the UbiqLog

architecture. Table 4.3 shows UbiqLog functions and their associated classes. The

Engine class is used to start or stop UbiqLog and searching the content of log

files. The Sensor class is used to activated or deactivate and configure the sensors.

DataManager represents the “Data Management” component of the Data Reader.

Network represents the “Network” component and Annotation represent “Metadata

Extraction” component of the Data Reader architecture.

Class Name Method

Engine

void startRecording()

void stopRecording()

String[] searchContent(String text)

String[] searchContent(String text, String[] senorNames)

String[] searchContent(String text, String[] senorNames,

String starDate, String endDate)

Sensor

boolean initSensor(String sensorName,boolean status, string

params)

boolean isSensorActive(String sensorName)

void activateSensor(String sensorName, string params)

void deActivateSensor(String sensorName)

void setSensorParams(String SensorName, String params)

void setSensorParams(String SensorName, String[] params)

String getSensorParams(String sensorName)

String[] getSensorParamsArray(String sensorName)

DataManager

boolean removeFiles(String path)

void setThreshold(int size, string unit)

void archiveCheck(String reportLocation, String dataPath)

void excludeApp(String appName)

Annotation

void annotate(String sensorName, String metadata, boolean

inline, String timestamp)

void annotate(String sensorName, String metadata, boolean

inline)

continued on next page

96 4.6. Proof of Concept and Applications

continued from previous page

void annotate(String metadata, boolean inline, String

startTimestamp, String endTimestamp)

Network
boolean auth(String username, String passWord, URL

networkAddress)

void upload(URL networkAddress, String username)

Table 4.3: UbiqLog classes and their associated methods

FRAMEWORK DESCRIPTION 97

4.6.2 A Metaphor for Measuring Room Tidiness

Nowadays, we benefit from using computers in many ways such as information pro-

cessing, entertainment, social communication, information retrieval, etc. Behavioral

psychology (behaviorism) describes behavior as anything a human can do such as

feeling, acting, etc. The tidiness of an environment can provide important infor-

mation about individuals who are involved in the target environment, such as their

behavior, health and mental condition.

In order to prove the definition and usage of “Proximity sensor”, we provide a

metaphor [181] which uses a wall mounted camera (proximity sensor) to measure

a tidiness status of a target object and persuading users toward changing their

behavior and being obliged to tidiness. The data from the metaphor feed to the

server and treated as a sensor for the life-log dataset.

According to the behaviorism philosopher, Skinner [207] individuals learn behav-

ior by reinforcement and punishment. The process of getting reinforcement, and

producing a new behavior by reinforcement, is called “Operant Conditioning”. In

simple terms, operant conditioning forms an association between the behavior and

the consequences of this behavior. Operant conditioning constitutes the foundation

of this work. Here an application will be employed to continuously record a personal

behavior and control consequences of this behavior by encouraging users to change

their behavior and become more obliged to tidiness.

Unlike children, mature individuals are clean and tidy their indoor environmental

objects such as desks or rooms as a personal preference and no or little external

input can affect their behavior. However, tidying an indoor environment has high

potential for procrastination. Self-monitoring which causes self-awareness reduces

procrastination [162]. Moreover, Fogg [82] described that self-monitoring is a type

of persuasion because it can help users to become self aware, which assists them in

behavior modification. He described three things that can prevent a behavior to be

changed [81]: lack of motivation, lack of ability and lack of a well-timed trigger to

perform a behavior.

Here we assume that the target users are individuals who are motivated towards

tidiness. They should be physically and mentally able to change their indoor en-

vironment or there should be an ability to perform this task, but they need extra

98 4.6. Proof of Concept and Applications

motivation and willingness to change this behavior. Lack of motivation and lack

of a well-trigger to perform the behavior are assumed to be reasons that prevent

individuals from considering their tidiness status or in particular changing this be-

havior. Fogg proposed a terminology [80] that indicates that persuasive technologies

and methods can employ computers to assist individuals in altering their behaviors.

He described the use of computers as persuasive media having many advantages

over other media such as interactivity, being more persistent than human beings in

interacting with humans, etc.

As has been stated before we employ a still camera to capture pictures from the

target environment daily and continuously. The camera is supposed to capture

pictures from the indoor environments of users and not the outdoor environment.

Then a method that can measure the target environment tidiness will be described.

The measurement process is based on comparing the recent picture with a picture

that has been taken when the target environment was ideally ordered.

Persuasive based Related Work

Related works can be analyzed from two perspectives. First approaches that record

an activity or a set of users’ activities in the long-term will be described. These

systems give feedback to users based on their past activities. In a more technical

sense, they are persuasive approaches which record information continuously, and

the persuasion process is done based on past records. Second, approaches which

have been used for image comparison will be described.

• Persuasive Behavior Modification:

ViTo [157], UbiFit [58] are ubiquitous based approach, which uses the mobile

phone and PDAs to record users’ activity as has been explained in the “Related

Work” chapter.

show-me metaphor [113] employs a simple ambient display to show how much

water users use when they take a shower. The ambient display shows in the

form of LEDs on a stick. This display is used to encourage users to use less

water.

FRAMEWORK DESCRIPTION 99

Nakajima et al. [156] propose two persuasive approaches, “Viral Aquarium”

and “Mona Lisa Bookshelf”. Viral Aquarium is composed of an ambient dis-

play and toothbrushes with an accelerometer sensor. It is designed to motivate

users to consider their toothbrushing pattern. If users brush their teeth ac-

cording to a specific pattern, fishes in the aquarium multiply otherwise they

die. Mona Lisa Bookshelf uses a still camera, video camera, distance sensor

and a flat display to monitor the book shelf and record changes on the book

shelf. It tries to encourage users to keep books on the bookshelf organized and

return missing books.

• Vision-Based Change Detection:

Different type of applications are relying on image change detections, especially

remote sensing and video surveillance [172]. Our approach is very simple,

because the background of images do not change and due to a fix camera

position no geometric adjustment is needed. Here we refer to research which

uses either a video camera or a still camera to record and extract information

from image series or videos.

VIOLAS [107] proposed vision-based sensing for object location in sentient

buildings. It employs different types of cameras to extract contextual infor-

mation from objects in a target environment. It provides a model to support

facility management and indoor-environmental controls.

Kidsrooms [39] is an interactive play space which focuses on kids entertainment

in a room. A room similar to a child’s room was built in the Lab and developers

proposed some interaction scenarios to study construction of complex spaces.

This project employed video cameras for tracking children and detecting their

motions.

Design Principles

As a principle of design, the sensing and persuasion process should easily integrate

into individuals’ daily life. Besides, ethical issues must be taken into account which

will be described in the next chapter. The following are other design considerations

which constitute the foundation of this work.

100 4.6. Proof of Concept and Applications

• Low cognitive load: Clutter of an object can be perceived immediately by

users. Unlike other measurements which are based on persuasive approaches,

here there is no need to provide visualization. Similar ubiquitous approaches

[113, 156, 215] employed ambient displays to provide perceivable information to

users. These types of information presentation are used when the information

is not easily perceivable by the user and it contains a high cognitive load.

Our approach has a low cognitive load because the target object status is

easily perceivable by a psychologically healthy user. In particular, the target

environment tidiness can map to a numerical range, therefore there is no need

to reduce the cognitive load.

• Sharing Influence: According to Zimbardo’s Social Influence theory [242],

sharing information (in our case tidiness status) will have better effects on

motivating individuals than not sharing. Besides, Zajonc proposed Social Fa-

cility theory [241], which describes that individuals perform better when other

individuals observe them or participate in performing the same task. These

theories lead us to conclude that sharing the output of the system in a social

community motivates users to alter their behavior more. In the implementa-

tion of the prototype, users are able to send their target object tidiness status

to their social network (The Server, Twitter or Facebook). We performed a

small survey to establish if sharing this information in a social community

increases users’ motivation to consider their tidiness more or not. This will be

described more in the “Evaluation” section.

• User Intervention: A persuasive approach which requires self-survey or any

form of user intervention burdens the user unless it encourages the user to per-

form the required task. According to the Valence Instrumentality Expectancy

theory [230], humans by nature are not keen to perform tasks which do not

entertain or engage them. With this system we tried to prevent such a burden.

Therefore we need a mechanism to continuously notify users. This mechanism

should require no or little user intervention. In the implemented prototype

there is no need for user intervention, after the initial setup of the system.

FRAMEWORK DESCRIPTION 101

• Notification Policy: As has been described, indoor tidiness status is some-

thing that can be easily identified by the user and unlike electricity or water

consumption it does not require any additional effort to make the target infor-

mation perceivable. Here the intention is to notify users about something of

which they are already aware. Hence there is no need to give additional infor-

mation to users. According to the Operant Conditioning theory, individuals

change their behavior based on reinforcement and punishment. Here, as a per-

sonal motivator, we use an interrupting mechanism, which can be interpreted

as a punishment. In the implemented prototype if users’ target environment

is untidy they will get an email on a daily basis, which notifies them to order

their target environment. An additional email in the inbox or an SMS on

the mobile phone might cause a little discomfort to users. Since this level of

discomfort is not coercive and causes persuasion, it is appropriate motivation

for users to consider their target environment tidiness. In addition, based on

the operant conditioning theory, using a stimulus repeatedly might cause sa-

tiation. Satiation means users have less motivation to change their behavior

and the former motivation approach does not encourage them to change their

behavior. Hence we believe a light form of obtrusion such as sending an email

is an appropriate form of obtrusion and prevents satiation. In other words,

creating a strong emotional response or implying force might cause psycholog-

ical reactance and prevent users to change their behavior [42]. However our

approach is a small trigger (stimulus) to assist users in altering their behavior.

• Output Channels: To our knowledge, this information object is not listed as

privacy-sensitive information [210]. However in order to abide by ethical issues

and respect users’ privacy, sharing this information in a social community is

not enabled by default and during the prototype installation users can decide to

use which output channel they would like e.g. email, Facebook, etc. Moreover

studies [114, 218] revealed that users are skeptical to use new tools or systems

for their home computing. Therefore, no new communication channel will

be introduced in this research and we will use users’ available communication

channels. Nonetheless the architecture is flexible enough to accept new output

channels or configure existing output channels. Output channels could be

102 4.6. Proof of Concept and Applications

Date Tidiness Status
12-5-2010 Perfect
13-5-2010 Perfect
14-5-2010 Good
15-5-2010 Good
16-5-2010 Good
17-5-2010 Good
18-5-2010 Good
19-5-2010 Bad
20-5-2010 Bad
21-5-2010 Bad
22-5-2010 Jungle
23-5-2010 Perfect

Table 4.4: Tidiness status of the target environment

software applications or external hardware devices.

• Maintaining Data: Captured images are stored in temporary on the file sys-

tem and will be uploaded to the server. Keeping a history about the target

environments status might be more persuasive to users and provide them with

better self-insight. For instance, in the implemented prototype an email will

be sent to the user which contains a report as shown in Table 4.4. This table

shows the tidiness status of a user’s target environment during this time.

Implementation and Evaluation

Pictures will be taken based on specific time intervals (the default is one picture

per day). In order to establish the tidiness status of the target environment images

will be analyzed, and if the target environment is messy, the system will encourage

users to tidy it. The process of encouragement will be done by sending a message

to users’ predefined output channels.

This system tries to reflect the long-term consequences of the behavior, therefore

feedback is created based on the channel type and usage. For instance an email

will be sent once a day, and a Facebook status, which contains the tidiness status,

will be created once every three days. We hypothesize that this frequency of status

update on Facebook, motivates friends to comment on users’ status. However these

FRAMEWORK DESCRIPTION 103

are default system settings and users can configure feedback creation frequency as

well as output channels.

Figure 4.14 shows the conceptual architecture of the system. The architecture is

inspired by the Data Reader architecture, but we have changed the names to enable

users using this metaphor independent from the life-log framework. The “Change

Detection” component is used to detect changes based on the target environment

(desk or room). Settings and configuration of the system such as location of im-

ages, etc. will be kept in “Application Configuration”. “Application Configuration”

has the role of both “Sensor Catalouge” and “Data Management”. “Tidiness Cal-

culation” is responsible for converting the result of image comparison to a human

readable number (it could be interpreted as “Meta-Data Extraction” in the Data

Reader). The “Feedback Generator” component is used to create a message and

the “Output Channel Manager” streams the message to the related output channels

or sends the data to the server. Output Channel Manager could be mapped to the

“Data Transmitter” of the Data Reader.

In the implemented prototype the camera position is supposed to be fixed. This

means that the camera should be mounted at a fixed location, such as a wall, to

take a picture of the target environment. Therefore we do not need to perform

the image registration, which means no geometric adjustments are required. Image

registration is the process of aligning several images into the same coordinate frame

[172]. Additionally, our method handles intensity adjustment, but we suggest to

users to capture images with a fixed amount of light (e.g. in the night when the

light comes from lamps).

The ideal picture is a one that has been captured from the target environment when

it is tidied perfectly. Users should manually select the ideal picture. We suggest

tiding the target environment as much as possible and then to start using the system.

All other pictures will be compared to the ideal picture and the number of changes

indicates the clutter status of the target environment.

This metaphor could be interpreted as a sentient artefact [114], because it is an

actuator for tidiness and it provides information about the state of the target envi-

ronment. It provides information about a part of users’ personality which is based

on the clutter status of their target environment. Furthermore, these pictures are a

valuable information source for a life-log dataset, especially when they are annotated

104 4.6. Proof of Concept and Applications

and combined with other information. The result of the combination might enable

researchers to extract novel information about users’ life styles. To implement the

Figure 4.14: Conceptual architecture of the system

prototype, we employ the A4Tech and LogiTech C260 webcams. The Image pro-

cessing and change analysis is done by MATLAB Image Processing Toolbox 8.

As has been described, the camera location is assumed to be fixed and thus no geo-

metric adjustment is needed. Additionally the camera is connected to the personal

computer and the implemented prototype takes pictures automatically with no user

intervention (when the picture is being taken, the hosting system should be turned

on). In order to ensure a fix amount of light pictures will be taken at specific time

intervals. The system has light adjustment capabilities, but a fix amount of light

could improve the change detection quality. It is possible to use any webcam or

even a still camera which can be connected to the computer and is able to capture

pictures by using the command line.

8http://www.mathworks.com/products/image

FRAMEWORK DESCRIPTION 105

The system will take a picture every day, based on the predefined time. Pictures will

be compared to the ideal picture and clutter status will be calculated and streamed

to output channels. Figure 4.15 shows two images from a desk, the result for which

returns as “Bad”.

Figure 4.15: The image on the left is an ideal image from the desk (based on user’s choice)
and the image on the right is the same desk when it is unordered with more than 90%
changes (based on comparison with the ideal image).

We employ users’ Facebook and email as output channels in the prototype. Facebook

account is disabled by default, but users should provide their email addresses to the

system. It is possible to extend the output channels and to add a new medium e.g.

an application for a home media player.

The prototype sends email notification which contain (1) a table 4.4 that shows the

tidiness status of last month and (2) the following message: “Your room has had the

status Bad for THREE days. Take a short break to tidy up.”. The content of the

message which will be streamed to the social output channel could be: “My desk has

had jungle status for TWO days”. We use low-controlling and concrete messages

because high controlling language and long messages could increase reactance and

diminish persuasion [149, 171].

It is notable that the architecture is flexible enough to allow developers to add new

output channels. We assume that email is a useful channel in comparison with

others, because users are keen to check them and keep them in order. Output

106 4.6. Proof of Concept and Applications

channels depend on the target group who use this system, e.g. if they are children,

the output might change from email to another such as a software application with

visual features.

Measuring Tidiness

In order to measure the tidiness of a target environment, differences between the

ideal image and the recent image will be calculated. The calculation will be done

based on two methods; one is for the desk and one is for other environments such as

the whole room. In particular, we measure color intensity differences between two

images [232], in percentage. First this method converts the image to a gray scale,

then it compares two pictures pixel by pixel. The intensity difference is calculated

between pixels of the same coordinate. Then we calculate the arithmetic mean of

intensity differences of all pixels. Nonetheless the change percentage is not shown to

users and instead some adjectives will be used. If the result is more than 50%, the

term “jungle” will be used. Between 50% and 40%, “Bad” between 40% and 20%,

“Good” less than 20%, “Perfect”. These thresholds have been identified through a

formative evaluation [200] on three users who had been involved in the evaluation.

This approach is our general approach, but because of the importance of desk tidi-

ness, we develop a specific method to calculate the tidiness status of users’ desks.

The desk tidiness calculation will be done by detecting changes of objects in two

images using SIFT algorithm [136], which can detect objects on the desk. First we

threshold the image, then objects on the target desk are identified by detecting their

edges and stored in a repository. This process will be continued for all objects that

are located on the desk. Afterwards, objects in the ideal image will be compared

with objects in the current image by using SIFT algorithm. The tidiness status of

the target environment is measured by calculating the percentage of object changes

between images.

To realize the desk scenario let N(i) be the number of objects, which were on the

ideally ordered desk and let N(c) be the number of objects, which are currently

on the desk. N(s) is the number of objects, which are in both ideal and current

situation images and N(n) is the number of objects, which are only in the current

FRAMEWORK DESCRIPTION 107

situation. The tidiness status of a desk (T) will be defined as follow:

T = N(s)/N(i)−N(n)/N(c) (4.1)

T is a real number between -1.0 and +1.0. We assume that the desk has one of the

following statuses:

1. Perfect: 1.0 ≥ T ≥ 0.66

2. Good: 0.66 > T ≥ 0.33

3. Bad: 0.33>T ≥0

4. Jungle: 0 >T ≥-1.0

In order to evaluate the system, five users installed and used the prototype for one

month. They are between 24 and 31 years of age, and active in using social network

sites. They have good or average computer skills. Three of them were women and

two were men. Two of them installed the prototype on their desk, one of them in the

room, and one for both. The system was tested for one month without changing the

predefined settings. It sent an email a day (if the result was not Perfect or Good)

and a Facebook status update once every three days.

After using the system for one month, we conducted a small survey to evaluate the

system and asked them to answer some questions about (1) prototype quality and

(2) persuasive effect. Four users ranked the prototype quality good or very good

and one ranked it below average. In another question we asked them to describe the

prototype usability and problems. Two users argued that keeping the lights turned

on at a specific time is a cumbersome task.

In another question we asked them to describe the influence of this system on their

environment status. Three of them described that sharing the status in their social

network was interesting and they would like to continue using the system. They

described that other users’ comments and feedback motivated them to change their

behavior. One user decided not to share anything on the Facebook and she argued

that sharing was a threat to her privacy. Another user claimed the system was

not useful at all, but she shared her information. Although we can not generalize

108 4.6. Proof of Concept and Applications

the results of this small user group evaluation, the results show that sharing this

information could have better persuasive effects than not sharing it at all.

Assigning a number to the tidiness status is not easy, because individuals interpret

tidiness differently. Therefore we asked users about the quality of the prototype for

tidiness calculation. Four users stated that they were satisfied with the result and

it was acceptable for them.

Restrictions and Controversies

Although the framework and its functionality satisfies most users (four out of five),

we have identified the following challenges and shortcomings. They have been iden-

tified based on users feedback after using the prototype for one month.

• Evaluating tidiness is superficial: It might be argued that employing tech-

nology and additional hardware devices to monitor and persuade users to be

tidier is a superficial approach. But the tidiness status provides interesting

information about a user’s personality [206]. Moreover, this information in

combination with other user’s information could provide details about the

user’s mental state [142]. For instance it can assist psychologists in studying

patient health or combining this information with other longitudinal detail of

the user, enabling researchers to extract knowledge about the user’s life e.g.

room tidiness could have direct relation to the amount of time the user spends

away from the target environment.

• Environment decoration changes: Changing the decoration of the target en-

vironment and moving objects could affect the tidiness calculation, so users

should take a new ideal picture to restart the calculation process e.g. adding

a new couch to the room requires creating a new ideal image.

• Different objects with similar visual properties: Another problem which has

been identified is objects of similar color, size and shape. For instance, if the

user puts a black doll on a black keyboard this may not be registered as a

change in the picture.

FRAMEWORK DESCRIPTION 109

• Nuisance changes of the target environment: This approach supports only

rigid objects. Non-rigid objects such as fruits and flowers in the room are not

covered by this research, because over time the visual appearance changes and

this affects the tidiness calculation. It is usual that rooms or desks contain

nonrigid objects.

110 4.7. Knowledge Mining Approaches

4.7 Knowledge Mining Approaches

In previous sections two sensing tools, a mobile phone and an indoor wall mounted

camera, have been described. In order to prove the usability of the collected informa-

tion, here two knowledge mining methods will be introduced: life routine detection

and surprise detection. First I describe a method to detect life events from the mobile

phone life-log dataset, then I explain the surprise detection methods. The surprise

detection section suggests two approaches (general and custom), which enables the

system to detect surprising events from the life-log dataset automatically.

4.7.1 Detecting Life Events and Routines

The life-log dataset, which here is created by the mobile sensing tool and a wall

mounted camera, can be used for learning different aspects of a user’s life such

as social interactions [74], transportation, environmental monitoring [125], etc. In

general it could be used to create a user model which includes the user’s behavioral

data. In order to create such a model it is important to learn users’ daily life routine.

Identifying life events is a necessary step to detect life routines. The life-log dataset

contains many raw or semi-raw sensor data and there should be a method that can

enrich this raw or semi-raw sensor data semantically. Labeling and annotating raw

sensor information within life events can be an appropriate semantic enrichment

mechanism.

In a more technical sense, I describe a method for detecting life events by using

location sensors (GPS) and a timestamp. Existing research has focused on detecting

life events from visual sensors [47, 128], accelerometer sensors [138] or audio sensors

[137].

The event detection approach will be a two step process, first recognizing events

then clustering similar events. The result of clustering can be used to detect life

routines.

FRAMEWORK DESCRIPTION 111

Spatial Event Identification

In previous chapters a life event has been described as a set of data entities in a

specific period of time. Data entities can be represented as Ei. A life event which is

set of data entities can be presented as
∑
i

Ei , which is a collection of data entities.

Spatio-Temporal dimensions of our life constitute the foundation of this event de-

tection method. When the user is in outdoors, there is a GPS signal available and

when the user is indoors there is no GPS signal available. These location changes

are assumed to be borders between life events. As the first step, this method ana-

lyzes log files based on location log start and finish time. The result of analyzing

files identifies life events start and end time. For a better clarification consider the

following pseudo log file, this method can extract four life events from bottom log:

The first event occurs before time t2. The second event occurs from t2 to t4, which

the location signal appears (the user is moving in outdoors). The third event occurs

after t4 to tj (the user is in an indoor environment). tj is the time that location data

is available, therefore it means the user is moving. Fourth event begins after tj+2.

...

{" Application ":{" Time ":"t1"}}

{" Location ":{" time ":"t2"}}

{" Location ":{" time ":"t3"}}

{" Location ":{" time ":"t4"}}

{"Call ":{" Time ":"ti"}}

...

{" Application ":{" Time ":"ti+n"}}

{" Location ":{" time ":"tj"}}

{" Location ":{" time ":"tj +1"}}

{" Location ":{" time ":"tj +2"}}

{" Application ":{" ProcessName ":"..." ," Time ":"tj +3"}}

The second step is to cluster similar events. Clustering similar events is necessary,

because our life conforms to some routines and many of our life events such as going

to work or university are takes place frequently. Therefore a method should be

available that can identify these events and distinguish them from events which do

not take place frequently, e.g. going to a hospital. Moreover the result of clustering

could assist in semantic enrichment i.e. labeling and annotation. Once the user can

112 4.7. Knowledge Mining Approaches

annotate an event then the similar annotation can be used for all events in that

cluster.

This method is highly location sensor dependent. The GPS sensor of some smart

phones is very weak and it might be hard to receive the signal when the user is

always outdoor. Moreover GPS sensor needs a few seconds to get the location and

this method can not take into account the delay. However the location changes are

good candidates to identify events and a combination of sensor data with GPS can

be used to detect life events, e.g. bluetooth and GPS. The appearance of a specific

Bluetooth signal can be interpreted as a life event, for instance whenever the user

goes to her office a bluetooth signal will be detected from her personal computer

there.

Another challenge is the definition of life events. Getting married and studying

for a Ph.D. are both life events too. Life events could be weaved together or they

could be hierarchical. For instance studying for a Ph.D. is a life event which takes

several years and has many sub-events. This method has been designed for very

simple daily life events because our cognition is restricted to available sensors. We

can augment our cognition with a combination of sensors, but now the focus is on

location (GPS) sensor only.

Temporal Clustering

After recognizing events based on location logs, we get a set of time intervals, for ex-

ample a set as follows: {8:50-11:50, 9:00-12:30, 9:00-13:00, 14:00-18:00, 12:00-14:30,

13:30-19:00}. The first challenge is how to collect similar or same time intervals in

smaller groups e.g. {8:50-11:50, 9:00-12:30, 9:00-13:00}, {12:00-14:30}, {14:00-18:00,

13:30-19:00}.
In unsupervised learning we use clustering method to identify patterns that collects

similar data together. Therefore a clustering method is required and these data

objects are in raw format. This means that they don’t have any label or annotation.

Han et al. [101] classified clustering method into five major classes: partitioning

methods, hierarchical methods, density based methods, grid-based methods and

model-based methods. Since we have a set of time intervals and we should partition

them in a way that a similar start-time and finish-time stays in the same cluster,

FRAMEWORK DESCRIPTION 113

we need a partitioning method.

A custom graph clustering approach can be used to cluster these time intervals.

Graph clustering refers to the task of grouping vertices of a graph into clusters

[196]. It is notable that graph clustering is different to clustering a set of graph

with a similar structure. Here only one weighted graph is created. The graph is

represented as G(E, V), in which E are edges and V are vertices. Vertices of the

graph have been assumed to be the time intervals (previously given). The weight

of edges have been assumed to be the differences between each two vertex, which is

calculated as a sum of absolute differences between start times and finish times of

each time interval. Each vertex (time interval) denoted as (x, y) in which x is the

start-time and y is the finish-time, then the edge weight between time interval i, j

will be calculated as follows:

w(vi, vj) =| xi − xj | + | yi − yj | (4.2)

In order to calculate the differences for all time intervals, all edges should been

connected together. Therefore we have a symmetric graph, in which the degree of

matrix is equal to V − 1. The clusters will be calculated in two steps: first by

comparing the weight between two edges and check if weight between two vertices

(w(vi, vj)) is less or equal to the predefined threshold then they will stay in the

same cluster (the threshold is denoted as λ and how can we identify the threshold

will be explained later in this section). Otherwise if w(vi, vj) is larger than λ, then

those edges will not stay in the same cluster. The following shows the formulation of

cluster creation. Let C(vi, vj) be the function that checks if vertices (time interval)

vi and vj are in the same cluster or not.

C(vi, vj) =

{
1 w(vi, vj) ≤ λ

0 w(vi, vj) > λ
(4.3)

Figure 4.16 shows that a daily life of a users is composed of a set of segments,

each segment represent a life events. It shows that each temporal segment (life

event) in a four day study passes to a cluster except segment x. At day three user

remained home and does not have any location changes. How to highlight this kind

of events (surprise detection) will be described in the next section of this chapter.

114 4.7. Knowledge Mining Approaches

Figure 4.16: Day 3 is one segment and it has been named segment X to highlight
that it does not fit into any of the existing clusters. Other days contain segments
which fit into a cluster.

In order to calculate the threshold first we create another set W = (w1, w2, ...wn)

which contains all weights between vertices. For instance, for the given time interval

dataset example we have something similar to the following set:

{00:30, 00:50, 1:20, 10:20, 5:30, 10:30, 2:30, 6:30, 7:20, 1:30, 11:40, ...}. Then k-mean

clustering [143] will be used to cluster weights. The result is something as follows:

{00:30, 00:50, 1:20, 1:30, 2:30}, {5:30,6:30,7:20, ...}, {11:40, 10:20,..}.
The k-mean clustering algorithm clusters x1, x2, x3, ...xn data objects into k disjoint

subset Si contain j data objects:

FRAMEWORK DESCRIPTION 115

k∑
i=1

∑
xj∈Si

| xj − µi |2 (4.4)

µi is mean of cluster Si.

The cluster which has the smallest set (in the above example the first one) will be

chosen. The maximum value there (which is 2:30) plus an error (which I assumed

half an hour) will be the threshold. In summary the threshold will be calculated as

the maximum value from the cluster of minimum weights, plus the error. As shown

in the equation 4.5. m is the number of clusters and respectively Km denotes the

cluster that contains minimum weights. n is the member of subset Sj which has the

maximum value, in our example n is “2:30”. Therefore the lambda in this example

is 2:30 + 0:30, (0:30 is error). Kn represents nth variables in a cluster with m size

and
∑m

1 represents all variables in that cluster.

λ = arg max
n⊂Sj

(arg min
K

m∑
1

Kn) + ∆ (4.5)

As has been described before the main motivation for life event identification is

to provide semantic enrichment to raw and semi-raw sensor data. For instance

annotation, which facilitates searching and browsing the life-log information. It is

not feasible that everyday the user annotates and labels all of her life events. This

method, which can cluster similar events into a group, enables users to annotate

once an event in a cluster, then the next time the same annotation can be applied

to similar events. Annotation is not the only benefit of clustering, we can learn

and summarize users routines too. This feature can be used in many use-cases such

as context-aware personalization or contextual based recommendation systems. For

instance we can create a behavior profile for a user as follows:

Usually, during the week, the user leaves home between 7:00 - 8:00 AM, it takes

about half an hour to get to work, about 12:00AM - 1:00 PM she has lunch for an

hour. Then she leaves her office between 4:00 to 5:00 PM, it takes about one hour to

get back home. On sundays between 9:00 to 11:00 the user starts an outdoor activity

and finishes it between 13:00 to 13:30.

This behavior profile can be converted into an RDF [126], and a SPARQL query can

be used to predict user’s context. For instance the following SPARQL code predicts

116 4.7. Knowledge Mining Approaches

the user’s location at 10:30:

SELECT ?location ?x

WHERE {

?x rdf:type ontology:UserProfle .

?x onto:time "10:30"^^ xsd:string

?x onto:location ?location .

}

4.7.2 Surprise Detection

Eric Horwitz [105] stated that combining massive quantities of data, insights into

human psychology, and machine learning can help manage surprising events as fol-

lows:

Surprise aimed at developing and fielding sensing and reasoning systems that have

the ability to detect and to alert users when current or future events will likely

surprise them.

Surprise detection could be interpreted as a specific type of anomaly or outlier

detection in a dataset, which users do not expect and it trigger users’ attention. It

is notable that surprise is something subjective and depends on users’ preferences.

Therefore two approaches has been introduced here, a general surprise detection

approach and a customized approach.

The general approach uses an existing method [109] for surprise detection and I

describe how this method can be applied to the life-log dataset. In other words this

method has been used for visual information but here it is used for textual time

series information.

General Approach

Most surprise detection methods are based on statistical analysis. Frank [84] intro-

duced the surprise value (Überraschungswert) based on the concept of entropy, He

defines the anomaly of a data object on the total entropy of a system. From the

information theory perspective information entropy [204] is the measure of uncer-

tainty of a random value, which quantifies the expected value of the information

FRAMEWORK DESCRIPTION 117

contained in a message. Equation 4.6 shows the Entropy function, where p(xi), is

the probability mass function of outcome xi, n is the number of possible values.

Entropy(x) = −
n∑
i=1

P (xi) log2 P (xi) (4.6)

Frank described that the surprise value is being used to get the attention of subjects,

for instance it can highlight the size of an area which is different from other parts

of the picture and gets the viewer’s attention. Chakarabatri et al. [50] proposed

the notion of surprise through multivariate time series analyze of the target dataset.

They extract departure from the base model by characterizing the surprise based

on the number of bits. Itti and Baldi [109] described a formal Bayesian definition

of surprise. The Bayesian network requires knowledge of many probabilities and

this can be estimated by previously available data [153]. The Bayes theorem is as

follows:

∀hεH, P (h | D) =
P (D | h)P (h)

P (D)
(4.7)

They have evaluated their theory by checking users gaze at surprising items while

watching television and video games. Their surprise theory is applicable across dif-

ferent spatio-temporal scales, and it is based on the difference between the posterior

and prior distributions of beliefs of a user over the available class of models or hy-

potheses about the world. In simple terms, the new data observation contains no

surprise if the posterior observation is identical to prior observation. This theory

can be used for life-log datasets too. The background observation defined as prior

probability distribution {P (h)}hεH , h is the hypothesis and H is the model space.

The new data observation D is to change the prior distribution into the posterior

distribution {P (h | D)}hεH . Relative entropy (or Kullback–Leibler divergence) [121]

is the result of dividing the entropy by the maximum entropy, as shown in the

equation 4.8. It has a value of 0 when two probability distributions are the same.

DKL(p || q) =
∑
xεX

p(x) log
p(x)

q(x)
(4.8)

118 4.7. Knowledge Mining Approaches

By employing the bayesian theory and using it for the calculation of relative entropy

the surprise value will be calculated as equation 4.9.

S(D | H) = DKL(P (h | D) || P (h)) =

∫
H

P (h | D) log
P (h | D)

P (h)
dh (4.9)

According to equation 4.9 a surprise unit can be defined for a single model h as

the amount of surprise which is corresponding to a variation between P (h | D)

and P (h). In a more technical sense, surprise quantifies the differences between the

posterior and prior distribution.

This approach can be used to detect events in life-log datasets, which involves more

users attention. For instance we can calculate surprise to realize the abnormal social

communication, through analyzing the dataset if there are significant calls or SMSs

which have been made to a specific person in a short period of time.

Customized Approach

Another approach for detecting surprising events is the customized approach, which

is based on individuals settings. Here individuals means either end users or system

administrators. We have extended the room tidiness metaphor to detect unusual

objects on the desk and mark them as a surprising event. For instance a shoe on

the table is a salient anomaly on the desk and if the camera is able to detect it, then

the system can annotates that specific record (picture with timestamp and tidiness

status) as surprise. This means that on that specific date-time a surprising event

has happened.

To implement the surprise detection algorithm on the table we extend the tidiness

metaphor to have another database which keeps the recognized objects in it. If

(1) an object appears on the table which have different visual characteristic than

existing objects in the database and (2) the object disappears after a specific time

(in this case one day), then this object represents a surprising object. As has been

described before the visual characteristics of objects on the table will be recognized

by SIFT[136] algorithm. Figure 4.17 shows objects which have been identified on the

table (green border) and they exists in the database. There is another object, a shoe

(red border), which is not previously existed in the database and has disappeared

FRAMEWORK DESCRIPTION 119

Figure 4.17: Objects with green borders have been identified and exist in the database
of table objects, but the shoe, which has a red border, has not been identified before and
does not exist in the database. Since the computer monitor position is fixed, it has been
assumed to be part of the table.

in a day. Therefore it has been marked as a surprise evidence and the associated

record will get the surprise annotation.

Even information from both prototypes can be linked together through time stamp

and a surprise event can get extracted. For instance the status of a target tidiness

in combination with location changes of a user, can be used to calculate significant

behavior changes (surprise) in users.

Moreover, the surprise calculation can automatically annotate and highlight specific

life events in the dataset, and this feature can resolve the WORN effect.

120 4.7. Knowledge Mining Approaches

Chapter 5

Privacy, Security and Trust

It could be argued that the most important challenge of life-logs is users’ privacy,

which reveals the importance of security. In particular life-log information requires

higher security considerations since it may contain very privacy sensitive information

about the user such as biological information, location, communication logs, etc.

Mitchell [152] stated the following about new technologies which sense and record

human behavior (life logging):

Perhaps even more important than technical approaches will be public discussion

about how to rewrite the rules of data collection, ownership, and privacy to deal with

this sea change in how much of our lives can be observed, and by whom.

Previously I have described the controversial history of life-logs and why risks of

using life-logs should not hinder technological development in this area. Moreover I

have explained a fine-grained access limitation model, but it is not enough to reduce

risks. Ethical considerations, securing the process of life logging and enabling users

to have control over their information, should be considered for users’ privacy too.

These solutions could increase trust between the user as the service consumer and

the service provider. A basic level of trust will be required to motivate individuals

using these services. Collins et al. [57] proposed a rather similar strategy based

on John Rawls’ Theory of Justice [186] towards assessing the quality of software

products. First they identified roles in creating and using a software application

and then they performed risk assessment for each role. Later, ethical considerations

for each social role in their scenario were proposed. This approach is similar to

121

122 5.1. Software Architecture Security

theirs, but here the intention is focused on a specific type of software application

(life-logs).

The remainder of this chapter is organized as follows: First I start by describing

how to secure the process of life logging. Then I describe how users’ can benefit

from their personal information. Then I propose a prototype which enables users

to manipulate (anonymization and pseudonymization) their personal information

based on their own preferences, for third party usage. Afterwards I finalize this

section by describing ethics for using life-log tools and sharing the information.

5.1 Software Architecture Security

Securing the process of life logging is an important issue, which should be taken

into account during the implementation of a life-log. Vermuri and Bender [227]

who developed one of the earliest effort in life logging, through employing pervasive

devices, stated that: Recording everything is easy part. The interesting challenge is

turning vast repositories of personal recordings into a useful resource while respecting

the social, legal and ethical ramifications of pervasive recording. Here the focus is

on general requirement for securing the life logging process [183], and how this

requirement has been implemented in the implemented prototypes. In order to

provide a general security approach the usual life logging steps will be defined. It

has been suggested that developers should address these security issues during the

design phase of a life-log system. In the following I describe which parts is supported

by the implemented prototypes.

Usually, a life logging process has three stages and each stage requires specific se-

curity considerations. The first stage is sensing the information from the user en-

vironment with sensors; the second stage is collecting the sensed information; and

the third stage enables users to browse and retrieve information from their life-log

dataset. Figure 5.1 shows the generic life-log component architecture. There I have

highlighted the parts of a life-log system that need to be secure.

As has been described in implementations, users should be able to define what

information object they intend to collect. Users might need to configure sensors in

order to set their configuration parameters such as sensing interval, etc. The first

PRIVACY, SECURITY AND TRUST 123

stage connects the life-log system to sensors and reads sensor data. At this stage

two things might need to be secure. First some sensors could require authentication,

second if the sensor data contains sensitive information data transmission from the

sensor to the life-log tool should be secure too e.g. encrypted data. I suggest

providing dynamic security modules for the sensing stage since sensors might be

added or removed dynamically to the life-log tool, therefore a non-centric dynamic

security module for each sensor increases the flexibility and scalability of the life-

log tool. In the recent UbiqLog implementation there is no sensor that require

authentication, and all available sensors are configureable. The data transmit from

sensor to data reader does not require security, because sensors are connected directly

to data readers.

The second stage is to collect the sensed information in the life-log device. This stage

creates a dataset of the life-log information. The dataset contains a set of life-log

records. Data that comes from the sensors is mostly raw data and in order to enable

users to browse and access them, some changes have to be made to the raw data.

Changes might include annotation, aggregating sensors’ data, migrating data from

one format to another format, etc. During the collection phase developers should

consider the third party tools that they are using to change data. For instance a

security threat might be the use of an annotation engine from a third party which

sends users’ information to that third party. The implemented prototypes did not

use any third party libraries at this stage.

The third stage is storing the life-log data. Storages (storing devices) which host

life-log information should be secure. It has been suggested to maintain data in

encrypted format if are intended to be stored as files, or if they will be stored in

a database, designers should consider to define appropriate access rights on the

database. The implemented server stores information in plain text which is not

secure, but it is a prototype and in real business case they will be not stored as a

plain text.

Life-log devices are pervasive devices, hence they are not capable of hosting personal

information. Therefore, life-logs should maintain their data on reliable storage me-

dia or server. If a life-log tool does not use a pervasive device then there is no

need to have a local storage and data can be stored directly on a reliable storage

media. But life-logs usually contain at least a pervasive device. Transferring data

124 5.1. Software Architecture Security

from a pervasive device to a reliable storage media might not be a standard stage

for a life-logging process, but it is normally required. Communications and data

transfers are very sensitive from a security point of view and sharing information

in a social community requires communication. This demonstrates that during the

communication, data should be transfer encrypted. Securing the connection can

be done by the transport layer security (TLS). However additional to TLS, using a

digital signature has been suggested as an additional way to secure data transfer.

The implemented prototypes use TLS connection for all communications between

Data Readers and the server.

Figure 5.1: Security requirements in a generic life-log architecture.

Current SNSs (social network sites) are based on client-server architecture and,

because they own servers, they have access to users’ information and they probably

own the users information. Although the implemented server is not completely

decentralized, life-log information could be shared via a peer-to-peer (P2P) SNS such

PRIVACY, SECURITY AND TRUST 125

as a PeerSoN [44]. The P2P social networks have a major advantage over traditional

social networks. In a traditional SNS users upload their personal information on the

service provider site, but in a P2P SNS users keep their information local. Hence,

the chance of misusing users information is reduced and there will be less privacy

risks.

A P2P SNS requires the provision of secure access to the shared life-log information.

Here secure means to perform the authentication and authorization on the users

who intend to access to a life-log information. On the other hand communication

between nodes in a P2P SNS should be secure. As it has been explained before,

communication and data transfer are very sensitive. Here we used Diaspora social

network and thus we rely on Diaspora security.

During the design phase of secure modules, other design considerations should be

taken into account e.g. designers should consider that, unlike desktop applications,

pervasive applications authentication and authorization processes should not to be

intrusive [22, 60]. Using the standard RBAC (Role Based Access Control) model

for accessing the information is an appropriate method of limiting unwanted access,

because a user can chose a user or group of users and grant them the appropriate

access. Each access will be granted with an expiration timestamp as it has been

explained in the “Data Model and Sharing Policy” section of this research.

126 5.2. Control Over Personal Information

5.2 Control Over Personal Information

Nowadays our personal information are distributed among large and ubiquitous

databases that we can not manipulate or review our information there. Moreover

it is impossible to know if our information have been held securely and reliably.

This means that Personal information distributed asymmetrically (service provider

has more information about service consumer than service consumer about service

provider). The availability of personal information online, whets the appetite of

businesses that try to profit from this, e.g. for marketing purposes. A new branch

of industry focuses on the collection of personal information including visited web

sites, movie preferences, and purchases over the Internet, using tracking cookies or

the like to create individual profiles that are sold to third parties [14]. Fried [87]

defines privacy as control over knowledge about oneself’, according to his definition

privacy is one of the base factors in establishing new social contacts. Laudon [127]

suggests that there should be an infrastructure available which enable individuals

to sell or benefit from their personal information. Now users subscribing for a using

a service and the service provider benefits by accessing users’ personal information.

The status of personal information market is based on the notion that the gathering

institution is owns the personal information and that individuals have at best an

interest in -not owenrship- of information about themselves [127, 224].

Technological advances, the increasing commercial profit of user profiling, and grow-

ing amounts of shared personal and sensitive information - either wanted or un-

wanted - will likely intensify this problem even more. To counter the privacy prob-

lem, several legal acts were introduced such as the Health Insurance Portability and

Accountability Act (HIPAA) [223] that regulate the use and distribution of sensitive

information to prevent fraud and data abuse. At the European level, the processing

and movement of personal data is legally regulated by Directive 95/46/EC [77]. But

often legal regulations are not that effective as they should be: Service providers

that deal with personal information claim to preserve the user’s privacy, but try to

circumvent restrictive regulations by using difficult-to read terms and conditions.

Social network sites hide privacy improving functions deep in the user interface such

that they are easily overlooked [40]. Even if the service providers are reasonably

PRIVACY, SECURITY AND TRUST 127

trustworthy in protecting the individual’s privacy, there remains the issue with in-

sider attackers. Thus, the point of the matter is to let the user control with whom to

share information and to what extend, resulting in the requirement of user-centered

and user-controlled privacy solutions. If users’ are in control of their life-log infor-

mation, rather than traditional style which service provider are in control of users’

information, then users’ can be able to implement forgetting on their personal in-

formation too.

In order to implement the above described requirement we propose LiDSec (Light

Weight Data Security) [180]. LiDSec is a novel lightweight approach for privacy-

preserving data sharing relying on pseudonymization, a technique which effectively

hides the association between personal information and the data owner [52] and

also reduces trust expectancies when sharing personal data with a community [141].

The main idea is to strictly control the information flow to information recipients

instead of trusting these parties not to abuse sensitive information. This approach

is owner-centered, i.e., the data owner specifically decides on which information to

disclose by creating document-specific rules that are processed to create non-critical

datasets. The proposed tool is sufficiently flexible to handle and process any type

of text based information. 1

Design Principals

To achieve our goal of ensuring privacy-preserving data sharing, we have identified

the following requirements:

User Control : The most important requirement is to ensure user control, or more

specifically, data owner control, i.e., let the data owner decide on the “amount” of

privacy of published datasets. Unlike with typical privacy settings of, e.g., social

networks, this also includes that the owner enforces her privacy demands in order to

reduce the trust required in data consumers. A considerable threat is the existence

of potential inside attackers, such as malicious administrators with extensive access

rights that are able to circumvent user privacy settings.

1We focus on structured text-based data that can be processed and consumed automatically
(e.g. web services). Information represented in binary form (e.g. images) is outside the scope of
LiDSec.

128 5.2. Control Over Personal Information

Efficiency : The straightforward (reversible) approach of preserving data confiden-

tiality and privacy is to encrypt the sensitive elements. However, encryption requires

dedicated key management and key protection strategies and thus is always asso-

ciated with a certain amount of overhead. While the execution of cryptographic

operations is usually unproblematic on current conventional hardware, the limited

calculation power of pervasive devices such as mobile phones or tablet computers

still poses a considerable obstacle for efficient use of key-based cryptography.

Adaptability : Existing privacy-preserving solutions are usually aimed at specific

application domains and designed to handle certain types of information with a

predefined data structure. Regarding the diversity of text-based data representa-

tion methodologies, an effective privacy-preserving solution is required to be highly

adaptable to different data structures.

High Level of Automatization: Considering the large amounts of information that

are involved in data sharing these days, manually identifying and processing privacy-

sensitive elements is usually quite tedious. Therefore, automatizing as many tasks

as possible to reduce the manual work needed by users is a major requirement in

developing a viable privacy preservation solution.

LiDSec Architecture and Implementation

The LiDSec (Lightweight Data Security) system was designed based on the following

considerations:

• Apply (selective) pseudonymization before publishing personal information.

• Let the data owner (in the following simply denoted as user) decide on which

elements to pseudonymize by creating privacy rules depending on the docu-

ment type.

• Then let the tool automatically screen for privacy-compromising elements

within the documents to reduce manual pseudonymization work to a mini-

mum.

The architecture (Figure 5.2) is composed of five distinctive components: Data

Adapter, Rule Settings, Converter Engine, Validator, and Reporting Module.

PRIVACY, SECURITY AND TRUST 129

Figure 5.2: LiDSec Architecture

The Data Adapter is responsible for connecting to the source dataset and for ex-

tracting the data’s structure in an attribute-value style. Attribute-value pairs are

denoted as information objects. Depending on the actual data source, e.g., relational

databases such as MySQL or simple JSON-encoded files, individual Data Adapters

are required to be implemented by the framework users to manage data acquisition

and loading. These adapters are then integrated with the pseudonymization frame-

work to support multiple data sources at once. Our current implementation of LiD-

Sec uses a GUI wizard as shown in Figure 5.3, although the actual pseudonymization

can also be consumed as a service.

After loading the intended dataset (screenshot 1 in Figure 5.3), the process of data

structure identification is initiated. This process parses and recognizes entities and

their sub-elements of the target dataset, based on the dataset’s format. As shown in

Figure 5.3 (screenshot 3), the identified fields are presented to the user via the GUI in

a structured way. Data structure identification is executed on in a semi-automated

way: First, the logic automatically goes through the dataset and searches for and

extracts known information objects. Un-identified entities that are missed by the

130 5.2. Control Over Personal Information

logic can then be added manually Afterwards.

Figure 5.3: Screenshots from the LiDSec GUI

After the dataset’s structure has been identified, the user needs to create pseudonymiza-

tion rules that define how to handle each entity (Figure 5.3, screenshot 3). Basically

there are four options:

• Keep the information object as it is.

• Remove or generalize the value of a particular information object, i.e., anonymize.

• Remove the complete entity, i.e., suppress the information object.

• Change or substitute the particular information object with a pseudonymized

one.

PRIVACY, SECURITY AND TRUST 131

Anonymization usually alters the overall semantics and accuracy of the original data

and thus should be applied only when necessary. Similarly, suppressing entire in-

formation objects may be necessary on highly sensitive information objects where

their plain existence may result in a privacy compromise. In general, pseudonymiza-

tion is the better choice for preserving data expressiveness, but it still lies in the

user’s hands to find an acceptable trade-off between usability of the pseudonymized

dataset for the data consumer and the user’s own privacy requirements.

Creating these rules is a simple process which is supported by the GUI: The user

is presented with a view of all identified entities and can select the appropriate

option for each of these entities (or for groups of entities). The choices are then

converted and collected in the Rule Settings component of LiDSec which stores

these choices as pseudonymization policies and applies them to the dataset during

the pseudonymization process. In our current implementation of LiDSec, we store

these policies in an external configuration file. These policies can be easily replicated

for different applications and forwarded or modified to fit the needs of both the user

and the data consumer.

After the pseudonymization policies have been clarified and persisted in the con-

figuration file, the Converter Engine initiates the actual pseudonymization process,

scans the dataset for the information objects stated in the pseudonymization poli-

cies, and converts or removes information objects according to the rules to produce a

sanitize dataset. All replaced values, i.e., the mapping between original information

and pseudonyms (e.g., “John Smith” converted to “Person12”), are maintained in a

map file. This map file can be reused for different datasets if the user chooses to (as

shown in Figure 4.9, screenshot 2) resulting in the same pseudonyms for the same

values in these datasets. Alternatively, the user may choose to create a new file with

new pseudonyms to semantically unlink the current pseudonymized dataset from

any previous ones containing the same values. Thereby, the user is able to care-

fully control the information flow concerning the linkage between multiple datasets

by creating multiple virtual identities (using different pseudonyms) with individual

sets of information.

Following the pseudonymization process, the outcome’s quality is checked by the

Validator. We designed this Validator module to be easily extensible by external

plug-ins to make use of existing re-identification approaches. In this context, we de-

132 5.2. Control Over Personal Information

fine re-identification as the process of successfully identifying the particular dataset’s

individual by analyzing the pseudonymized dataset and residual personal informa-

tion that should have been removed by de-personalization or de-identification [216].

The Reporting Module is responsible for presenting the results to the user.

Our LiDSec prototype has been implemented in Java 6 with an optional GUI layer

to assist users in working with the provided services; it can be used as application

with the GUI wizard or as a service. The prototype has been tested on a Mac Book

Pro (MacOS 10.6) with a 2.4GHz CPU and 2GB memory, as well as on a Lenovo

Thinkpad (Windows 7) with a 2.5GHz CPU and 4GB memory. No platform-specific

library is required for the execution of the prototype. Configuration and map files

are both encoded as JSON files which need to be kept safe by the user to prevent

information leakage [79, 170].
Following shows an example of a record (log) to be pseudonymized, containing a
particular text message (SMS).

{"SMS ":{" Address ":"06802368296" ,

"type ":"1" , "datetime ":"Jan 14 2010 3:39:21 PM",

"Body ":"plz call me to schedule the plan",

"metadata ":{" name ":" John "}}}

In this example, the user intends to publish this information to a data consumer
who utilizes the data to analyze the frequency of SMS sent by the user. The user
considers the phone number and content as privacy sensitive and thus creates a
pseudonymization policy that hides those entries. Furthermore, the metadata entry
needs to be generalized (anonymized). The resulting record is produced as follows:

{"SMS ":{" Address ":" address7",

"type ":"1" , "datetime ":"Jan 14 2010 3:39:21 PM",

"Body ":" body38","metadata ":{" name ":" _name "}}}

The address and body values are replaced with individual pseudonyms, while the

metadata name’s value is generalized to the fixed value of “name”; the time stamp

and provider entries are left as they were.

PRIVACY, SECURITY AND TRUST 133

Evaluation

We evaluated LiDSec from three different perspectives: pseudonymization effective-

ness and quality, usability, and validity. Effectiveness is proven by testing the tool

with real world data, while usability is evaluated by a user survey based on Nielsen’s

usability heuristics [158]. Finally, validity is proven by revisiting the basic require-

ments stated before.

As our test case, we pseudonymized the UbiqLog dataset, which composed of all

activities a user performs with her mobile phone. The dataset consists of a set of

log files - one log file per each day - encoded in JSON format. To evaluate the

quality of the pseudonymized dataset, a simple re-identifier has been implemented

as Validator component. Having access to the map file, this re-identifier scans the

resulting pseudonymized dataset for any values stored in the map file, i.e., it checks

whether a particular value of a specific attribute being pseudonymized according to a

pseudonymization rule is still present within another non-pseudonymized attribute.

Figure 5.3 (screenshot 4) shows a report where three re-identification symptoms are

detected, all of them appearing in the text message content. In this example, the user

pseudonymized the sender and receiver names, but not the (complete) text message

content. Therefore, the user still needs to alter the pseudonymization policies and/or

manually modify the record and remove these symptoms. In an iterative process,

the policies are refined until no symptoms are identified any more.

The user interface’s usability is evaluated by five users of (relatively) similar age

(between 23 and 31 years of age), but different gender (two women, three men)

and computer expertise (four stated having above average computer knowledge and

one having only basic knowledge). The representative task was to pseudonymize

a single life-log dataset due to its simplicity and expressiveness containing human

readable data. All participants received an introduction about the tool’s purpose,

but no hints on how to actually use the tool. The results of the survey based on

Nielsen’s usability heuristics indicated the highest score (5 of 5) in “visibility of the

system status”, and the lowest score (2 of 5) in “help and documentation” as well

as “recognition rather than recall”. Other heuristic factors received above average

scores.

Finally, LiDSec meets the requirements of privacy-preserving data sharing as follows:

134 5.2. Control Over Personal Information

User Control : Our approach revolves around the user to specify an individual

pseudonymization policy set that can be either derived from a default set or created

from scratch. This ensures the development of fine-grained and document type-

specific privacy policies, including the option of replacing certain values with selected

pseudonyms, removing these values, or even removing complete information objects

to limit unwanted information leakage when publishing privacy-sensitive data.

Efficiency : We developed a lightweight solution with the aim of being highly effi-

cient. As it completely forgoes computationally-expensive cryptographic algorithms

or other complex operations, it is suitable to be deployed on devices with limited

computational capabilities (e.g., mobile devices). Our approach does not rely on

specific third party solutions and is thus largely independent from software technolo-

gies. The actual pseudonymization process requires only simple string replacement

operations and thus can be executed within a very small amount of time.

Adaptability : The introduction of document type-specific data adapters allows to

adapt our solution to a whole range of document domains and potential data sources.

Without a specific application area in mind, LiDSec is able to handle any text-based

documents, as long as its structure is known. Potential data sources include simple

text files, relational databases, or other data-providing services (e.g., web services).

The prototype can be used as standalone tool with the GUI wizard as well as its

functionality consumed as an intermediate pseudonymization service.

High Level of Automatization: Data structure identification is handled in a semi-

automated way, i.e., the document type and the involved entities are automatically

determined by analyzing the document content; manual work is only necessary when

unknown entities are detected. Pseudonymization policies need to be created once by

the data owner and are then re-used for all entities matching the rule sets, reducing

the required human workload for privacy-enabled data sharing.

While our solution is in general highly adaptable to any text-based information,

we identified some limitations due to our design decisions. First, as the targeted

use is to publish machine-processable documents in a privacy-preserving manner,

we focus on structured data elements only; free-text documents is not supported

by LiDSec. Therefore, the approach is more suited to “tokenized” data such as

dates, addresses, names, basically any number or short descriptive term that can be

easily replaced. The pseudonymization of records including longer content (e.g., blog

PRIVACY, SECURITY AND TRUST 135

entries) usually comes with a considerable loss of expressiveness (when removed) or a

higher risk of re-identification (when left untouched). Second, this solution is aimed

at pseudonymizing information upon sharing with other persons, thus requires a

trusted local storage to keep the original datasets2. Another issue may be with

using the same pseudonyms for the same value occurrences in multiple datasets,

which may be beneficial for the data consumer but also increases the chances of

successful statistical and inference attacks. But this can be easily controlled by the

data provider by simply using different pseudonyms. In general, the data provider

needs to find a balance between personal privacy and data usability.

In summary this approach 1) increases the data owners’ awareness of what informa-

tion they are sharing, thus rendering data publishing is going to be more transparent,

2) gives owners the ability to control the access over their information.

2While pseudonymization of information objects is reversible via the map file, reversing
anonymization and suppression of attributes requires the original datasets

136 5.3. Ethics for Sharing Life-log Information

5.3 Ethics for Sharing Life-log Information

Since 1960 democratic countries developed privacy laws to protect individuals, but

development of privacy laws is not consistent with technological development. Amer-

ican and european privacy legislation is based on a regulatory regime called Fair In-

formation Practices (FIPs) [224] and FIPs doctrine recognized individuals interest

in their personal information even though these information are created by third

parties.

Life logging and sharing life-log information is a new approach in social computing

and computer sciences. Moor [154] described that developing technologies suffer

from a policy vacuum and thus ethical problems. He noted that because of the lim-

ited human cognitive system our ethical understanding of a developing technology

will never be complete and the number of ethical problems will increase as techno-

logical development progresses. Meaning that ethical considerations that I list in

the following might not be complete and it is possible that some points are missing

from this list and during real system usage in a business environment more ethical

considerations will be discovered.

I use operational SNSs and scientific efforts in order to identify obligations and

rights such as what Collins et al.[57] proposed. In other words, I try to explicitly

define rights, responsibilities and obligations for service providers and users based

on the available sharing models and identified ethics. Service providers and service

consumers (users) both need to apply ethical considerations while dealing with these

features. Allen [24] realized that existing privacy laws are not sufficient to prevent

unwanted usage of life-log data. Based on her notes and our interpretation, I identify

ethics [177], which are related to the life-log data, and list them here explicitly. Here

the ethical considerations focus only on the life-log data related ethics, thus I do

not describe general ethics such as service quality and legal issues. User’s rights,

responsibilities and obligations regarding the life-log data could be listed as follows:

• The user is not mandated to keep his life-log data; he should be able to delete,

edit or add content to his life-log dataset. In other words, the user should be

able to change his data any time he likes without any requirement to provide

a reason to the service provider.

PRIVACY, SECURITY AND TRUST 137

• In the case of the misuse of a third party’s information, which has been ex-

tracted from the user’s dataset, the user is also legally responsible.

• Any illegal misuse of information by the user is the responsibility of the user

and not the service provider.

• The user must be aware of any data manipulation policy. For instance the

service provider must clarify whether the deleted data will remain in the server

backups or not if the user deletes his data.

• The user should be able to enable or disable a sensor. It means that the

service provider must provide enough features to let users configure easily

sensors based on their preferences. For instance, the user decides to log his

location and not his video on day A. The next day (day B), he decides to log

both.

Based on the identified risks and studying a similar approach, It has been recom-

mended that service providers should have the following obligations:

• Life-log data are the property of the person who creates it. It means the user

is one of the owners of these data and service providers, which are bound

by ethical issues, should give users the right to manipulate and manage their

data. Additionally ownership of each user’s data component must be clarified.

Either the user is the sole owner of the data or the service provider and user

both are owners. The data component can be an information block such as

the user’s email address or it can be sensitive information about the user such

as the user’s biological information.

• The user’s data cannot be manipulated by the service provider without the

user’s consent. Except in the case where the user intends to commit fraud,

misconduct or any other activities which break the agreement between the

user and the service provider.

• The service provider should clarify its rights in using the user’s data, and

the user can accept or reject them during the service registration process. I

suggest that the service provider should not be allowed to copy or transfer

138 5.3. Ethics for Sharing Life-log Information

the user’s private data to a third party without the user’s permission. If

the service provider intends to keep the right to give users’ data to third

parties, I suggest that the service provider informs the user during the service

registration process.

• The service provider must provide counter technologies such as encrypting

user’s information, providing authorization and authentication, etc. to block

unauthorized surveillance of the user. Collins et al. [57] suggested that the

service provider should perform Publicity Tests which are tests designed to re-

duce the risks and check the desired functionality of the system before releasing

it to the public.

• The service provider must define its responsibilities in the case of data corrup-

tion, eavesdropping or any form of data loss or data misuse.

• It would be better if the service provider informed users about third parties

who intend to use their data such as scientific institutions, security agencies,

advertising firms, etc. User awareness is not required in every case, e.g. ob-

serving visitors in a street, since it does not intrude on any individual’s privacy,

is not a problem. Furthermore the service provider should clarify which infor-

mation class is intended to be shared with third parties, e.g. raw information

from users’ life-logs, the analysis result of users’ life-logs, users’ registration

information etc.

• The service provider should clarify whether or not, after the user’s death, his

information can be inherited or not. If yes, by whom? If not, what is the

service provider’s policy on the user data?

Kietzmann and Angell [116] described the panopticon in our society and from the

first generation we are moving toward the second generation panopticon. First gen-

eration include surveillance camera, speed cameras, etc. which focused on related set

of data and precise tasks. However second generation panopticons include computer

supported surveillance technologies which are weaved into our daily lives. Applying

these ethics or similar ethics might assist users in not realizing these digital services

as panopticon.

PRIVACY, SECURITY AND TRUST 139

In social communities some issues are not clear, such as data ownership after the

user’s death. To my knowledge Legacy Locker 3, FaceBook’s If I Die 4 and DocuBank
5 are efforts to manage the problem of online data after the death of the owner. Some

social networking systems have a solution for the deceased user, e.g. Facebook

follows a family’s wishes to take down a deceased user’s profile or keep it in a

memorial state’ [7]. Another example to consider is a user who shares information

objects that include the appearance of others (Scheiner named this information

incidental data’ in SNS), e.g. a photo or video of a social event. The question is: Are

the others who appear in that information object owners of that information object

or not? What is the service provider’s policy regarding these objects? Facebook lets

others remove their annotation in a photo. This means that the annotation belongs

to the owner of the photo and those who appear in a photo. But the photo belongs

to the owner, which sounds reasonable but it is still controversial. How harmful

would a stolen life-log dataset be for the user ? What is the impact of a life-log on a

society? These are some open questions which will be answered when a commercial

system is available and operational.

3http://legacylocker.com
4http://www.facebook.com/IFiDieApp
5http://www.docubank.com

140 5.3. Ethics for Sharing Life-log Information

Chapter 6

Conclusion and Future Work

Recording personal or community experiences has a longstanding history in hu-

mankind. Our ancestors tried to increase their memory capacity by employing

external storage devices and recording their experiences. For instance the use of

external storage began with painting on stones, then writing was developed, next

paper, and now we are in the digital era. In particular using these external devices

assists humans in 1) preserving knowledge and 2) sharing knowledge, which is the

most important requirement of human development.

The paradigm of life-logs employs external digital devices to assist humans in aug-

menting their memory. The memory augmentation will be achieved through sensing

and recording users’ contextual information continuously, which creates an elec-

tronic memory. Furthermore, as has been described before, sharing memory has

many advantages for both user and society.

This dissertation introduced a novel, holistic and multipurpose framework for life

logging. Terms holistic and multipurpose have been used to emphasize that the

design was not based on specific use cases e.g. health monitoring. The focus is

on the software engineering aspects of life logging and methods of tackling security

and privacy related issues. Moreover this framework tries to resolve two necessary

characteristics of our memory (sharing and forgetting) in digital memory.

The framework contains a conceptual definition and a technical definition. The

conceptual definition includes a sensor classification, a flexible data model which

supports sharing and forgetting and defines a fine-grained access limitation on each

141

142

data object. Technical architecture starts by defining design challenges and consid-

erations during the implementation of such a life-log. These design challenges should

be considered in any life-log system regardless of their use. Next the client-server

architecture has been defined and each of their components have been explained in

detail. At the end I have proposed two implemented prototypes which are based

on the proposed framework and they were used as a “proof of concept” for the

framework.

Since life-logs are very sensitive from a privacy perspective, I have tried to resolve

the privacy and security issues by 1) considering the security during the software

architecture design, 2) enabling users to have control over their private information

and 3) proposing ethics for life-log service providers and users as service consumers.

Three different approaches are worth further investigation and they can be assumed

as future work for this research. I list them as follows:

• Sharing Personal Data Streams:

As has been described before a life-log dataset is a data stream. Its structure

is different from a usual database and unlike those databases their records are

not static [97]. Timestamp plays an important role in data streams and their

records usually contain a timestamp field or a date related field. However as

has been described before available SNSs are not capable hosting data streams.

To my knowledge there is no research for a generic and holistic model for

sharing data streams and existing sharing models are designed for specific

types of data e.g. patchube 1, which is designed to share sensor network data

and focus on the “Internet of Things”. Some of our personal information could

be interpreted as data streams such biological information and there are many

tools available on the market that enable users to quantify those information

objects such as FitBit and Zeo 2. However there is no generic platform that

enables users to share and combine their information from different sources.

There is a potential research topic to investigate and identify requirements and

challenges of such a system. This system hosts data streams from different

information sources and enables users to share information. It is notable that

1https://pachube.com
2http://www.myzeo.com

CONCLUSION AND FUTURE WORK 143

such a system should not be restricted to personal information and it should

be capable of hosting any data stream.

Such a system is a significant step toward open data, with respect to privacy,

and more personal information will be shared than before. Furthermore it

could benefit users and society in sustainability and health related issues. For

example in order to augment users transportation, a system could analyze

users’ location changes and their daily commute. The result of the analy-

sis could reduce transportation overheads (sustainability). Another example

might be tracking and analyzing users’ biological information, and thus iden-

tifying patterns of epidemic distribution.

• Behavior Identification Through Mobile Sensing:

The result of this research is a set of life-log tools (a context sensing tool and

a server for hosting information). Another research potential is to concentrate

on studying reflection methods on the life-log dataset. As has been stated

before pervasive devices e.g. mobile phone are capable of collecting valuable

information about users’ surrounding context. There are several initial efforts

that concentrate on behavior learning [147] or mobile health [10, 1] by using

life logging and mobile sensing.

A rule engine can be designed to enable users to define simple rules and notify

or report them about their activities and behaviors. Combining the rule engine

and encouragement methods could persuade users to change their behavior.

For instance a game, based on a life-log, could be designed to monitor users

sporting activities and motivate them to compete in a team (in a social net-

work). The more a user exercises, the more she gains rewards in the system.

Another example might be a game, which is based on the rule engine, and can

be used to persuade users to attend the library more and go to the pub less

(via location sensor).

Another interesting research area is using life-logs for recommendation systems

and employing life-log data for online marketing. As has been described before,

the concept of online marketing is based on analyzing past user activities and

providing them with related advertisements. Recent online marketing has been

based on desktop activities and online traces of users. However life-logs can

144

extend this feature to contextual information and daily life information. As a

result a more precise advertisements could be delivered to users.

Moreover new behavioral patterns can be identified through spatial or tempo-

ral analysis of the life-log data. For instance the system can check if visiting

specific places or persons has any influence on users’ heart beat rate or not.

• Implementation of Real Memory Functions in Electronic Memory:

The paradigm of life logging promises an electronic memory which works in

synergy with human memory and assists us. Our memory operates based on

some principles such as forgetting, generalizing, emotions, etc. Ideally an elec-

tronic memory should be able to support real memory functions. For instance

the Gestalt theory [118] states that “the whole is greater than some of the

parts” and human visual perception can be described with Gestalt principles.

It is possible to employ such theories for resolving life-log challenges. In this

scenario Gestalt can be used to challenge sensor data loss. In a more technical

sense, in some situations sensors may not be available and can not read the

context. Then we can use gestalt patterns to estimate the lost information

object and add it to the dataset.

For instance consider a scenario in which a user forgets to turn on her location

sensor. Then she realizes that information has been lost and she would like

to have this information back. The system can use a combination of Bayesian

network [220] and Gestalt to examine the users’ dataset and based on her

previous activities estimate the lost information object. Or when a user enters

in an indoor environment there is no GPS signal until she comes out from that

location, then the GPS signal will be available again. During that time when

there is no GPS signal, the system can estimate that the user is in the nearest

indoor location and log that indoor location (with a flag that indicates it is

not the original data from the sensor).

Appendix A

Benchmarking Mobile Application

Resource Usage

As has been described in the proof of concept of the “Framework Description” chap-

ter, we have developed a tool which is designed for benchmarking mobile application

resource usage [175, 178]. It is not part of the framework and thus in this appendix

I will explain it in detail.

According to studies, done by Compass Intelligence, companies in United States

will have spent $11.6 billion on mobile applications by 2012 [45]. This indicates a

significant increase in the number of mobile applications from both quantity and

quality point of view. Many duplicate applications with similar functionalities and

features end up on the market.

Mobile phones are subsets of pervasive devices and like other pervasive devices, they

have finite energy sources [193]. Pervasive devices also suffer from client thickness

[194]. This means that there will always be the challenge of willingness to increase

the quality of an application while dealing with the shortage of available resources.

Developers and researchers try to handle resource shortages of the pervasive devices

in different ways, such as studying the context and adapting the device to the current

context [23], optimizing energy usages with a CPU scheduler [240] and so forth.

This information shows that the resource usage of an application is an important

factor for mobile devices which could affect the application’s quality. Resource

utilization is one of the performance metrics. Among other performance metrics

145

146 A.1. Resource Classification

include application response time, throughput, reliability and availability [110].

For example consider a scenario where a user intends to purchase an audio player

for his smart phone. There are many different choices on the market, “Music player

X” is an audio player which plays user desired audio format like MP3 and gets

some information about the current music track from the Internet. “Music player

Y” is another audio player, which does not only play the desired audio format and

gets the information from the Internet but also sends the audio track name to the

micro-blog account (e.g. twitter) of the user. These features might be attractive for

some users, but wireless network bandwidth is currently limited and expensive. A

quality operator can study which application requires less network connection as a

capability fact and decides upon choosing the appropriate application. Large scale

industrial mobile device producers, who are interested in purchasing applications

from third parties and embed them into their devices, can benefit from studying

resource usage of the applications. In this scale, small amounts of disk space or

memory allocation play an important role.

Here we focus on measuring resource usage of applications via a monitoring tool,

and the benchmarking capability of the target application from the resource con-

sumption point of view. Qualitative features like user interface design or application

features are not within the scope of this research. We provide a monitoring tool that

tracks resource usages of the device when the target application is running. It gen-

erates a trace from the resource usage. This trace can be used to study capabilities

of the application or can be used for studying QoS issues. Our monitoring approach

does not require any information about the target application. It resides on the

same mobile device and monitors resources during the execution of the target ap-

plication. In order to be flexible and scalable, we designed an approach that has no

dependencies to the target application.

A.1 Resource Classification

As a first step, the resources of the mobile devices which are worth measuring and

affect the capability of the application, must be identified. Each mobile application

consumes CPU, memory, battery and may perform disk and network activities.

BENCHMARKING MOBILE APPLICATION RESOURCE USAGE 147

These are the base resources that should be measured.

It is notable that these resources can influence each other, for example CPU utiliza-

tion affects battery consumption, but we intend to study them separately regardless

of their interdependencies. Currently there is no standard model to prioritize mobile

resources. According to [119] battery, which is responsible for the device power, is

known as the most important resource for mobile phones.

A.2 Controversies and Restrictions

Monitoring can be used to dynamically manage QoS [51]. We made a resource uti-

lization monitoring prototype to track the resource usage of mobile applications. A

quality operator or application evaluator can set weights for prioritizing the impor-

tance of the measured resources, and subsequently evaluates application resource

utilization via a utility function. A utility function enables them to compare dif-

ferent applications with the same functionality via profiling the resource usages for

each application. We provide a utility function which helps quality operators to

find out how different mobile applications with similar functionalities differ in their

resource usages. This will be explained in detail in the next section.

Evaluating end user quality facts like usability or the execution time of the appli-

cation is not in the scope of this research. Only application resource consumption

as an important performance metric is measured here. Despite the fact that they

are worth to be considered, this will not be supported by our monitoring approach

because our tool resides separately from the application and will not have any in-

teraction with the target application. Separation of the monitoring tool from the

target application behavior or architecture makes our approach flexible and scalable

but it also puts a restriction on measuring end user quality factors of the target

application. Most end user quality metrics require quality evaluators to delve deep

into the usage or the architecture of the target application.

We profile application resource usage via tracking the usage of resources of the target

application or for the whole device. It could be argued that overall resource usage of

the device should be considered during the target application monitoring, otherwise

target application resource consumption is calculated with an overhead, which comes

148 A.3. Benchmarking Applications via a Utility Function

from two sources, one for the general device resource usage overhead, and one for the

monitoring application overhead, which introduces a systematic measurement error

∆i for resource i. If the user intends to measure precisely the resource utilization

of the target application A without this error, she can execute the monitoring tool

without starting the target application, then record the consumption of resource

i and compute an estimate for ∆i, then execute both monitoring tool and target

application and derive the total consumption Ri(A) under the same condition. The

true resource consumption Rtrue
i (A) of the application can then be estimated by

Rtrue
i (A) = Ri(A)−∆i. (A.1)

It is important to note that there is no guarantee that the returned numbers describe

precisely the resource utilization in that condition. In each of our experiments, num-

bers have slightly changed, hence in any calculation a percentage of error must be

considered. Running the experiments for a couple of times and taking averages is

thus mandatory. A special problem is given by the fact that due to random fluctua-

tions, for a resource that is not used at all by some applications, Rtrue
i (A) could ac-

tually be smaller than zero. We take care of this problem by using max {Rtrue
i (A), 0}

instead of Rtrue
i (A).

A.3 Benchmarking Applications via a Utility Func-

tion

In this work resource consumption is described by metric data and not categorical

data. Furthermore, we ignore the relation between performance indicators, for ex-

ample network activity is not related to the disk activity. To be able to calculate

capabilities of applications based on the resource utilization, we need to analyze

them together and make sure that both of these data have the same format. In

order to fulfill this requirement, our benchmarking approach calculates the sum of

the scores for each of the resources. When users intend to compare two applications,

the conditions of the experiments should always be the same. The conditions are

composed of different components like device state, experiment duration in time,

BENCHMARKING MOBILE APPLICATION RESOURCE USAGE 149

number of inputs issued to the target application etc.

A.3.1 Utility Function

According to Walsh et al. [233], utility functions allow indicating the degree of

desirability of a service, therefore we chose a utility function to represent the outcome

of our benchmark. A utility function maps the resource usage of the application to

a numerical degree of satisfaction. This utility function provides a multidimensional

mapping from consumption measurements from n resources [208] to one single utility

value. In this mapping, the importance of resource i is represented by a weighting

factor Wi. We propose to set Wi to 0 in case the resource is not important. When the

resource is considered low priority, Wi can be set to 1, and when it has high priority,

it can be set to 2. A real example of using the utility function execution will be

described in next sections. Other factors like “execution time of an operation” could

also be considered using this utility function, but they are currently not supported

by our monitoring tool. In the following, 0 ≤ Ui(A) ≤ 1 defines the normalized

utility of resource (UR) i under condition c, with systematic error removed due to

(A.1). Then the utility U(A) of application A under condition c is defined by

U(A) =

n∑
i=1

Wi × Ui(A)

n∑
i=1

Wi

, 0 ≤ U(A) ≤ 1. (A.2)

The utility function thus results in a value between 0 and 1. The higher the value,

the higher is the utility of the application.

Utility of a Resource

One problem we face is to make the consumption of different resource types com-

parable with each other, in order to use them in one formula. Therefore, we seek

a 0 ≤ Ui(A) ≤ 1, i.e., the normalized utility of resource i for application A, which

should be a function of the respective consumption of resource i. We start by map-

ping the resource consumptions onto the interval [0, 1]. The resources battery and

150 A.3. Benchmarking Applications via a Utility Function

CPU consumptions are represented via percentages. These can be mapped to the

interval [0, 1] in a natural way. The size of memory is always limited. For example

Android emulator SDK 1.1 shows about 94572 KB total memory, with out running

the target application it uses about 61296 KB of memory. Normalizing the usage of

memory is thus done by dividing the memory used by the application by the total

amount of memory that could be used by the application which is about 23296 KB.

This value will use as total amount of available memory in our calculation as shown

in Table A.2 . Note that this is the total amount of memory minus the amount of

memory used by the operating system, running system tasks, and the monitoring

tool. For instance we assume that during the benchmark run, resource i is sampled

K times for application A, resulting in the values 0 ≤ Rij(A) ≤ 1, 1 ≤ j ≤ K, and

the respective arithmetic mean R̄i(A). Furthermore let ∆i be an estimate for the

systematic error as described in (A.1), also being mapped to the interval [0, 1]. The

normalized utility Ui(A) of resource i for the battery is then defined by:

Ui(A) = 1−max
{
R̄i(A)−∆i, 0

}
. (A.3)

Resource usage of CPU and Memory can be measured disregard to the monitoring

tool overhead. It means ∆ is zero for CPU and memory.

On the other hand, the number of disk and network activities potentially could be

very high and are only limited by the total network and internal bus bandwidth, and

the bandwidth and access times of the disk. In practice, most applications will use

only a small fraction of the possible maxima. In order to derive a mapping into the

interval [0, 1] we specify, that the highest utility, i.e., the value 1, should be achieved

in case the resource is not used at all. Likewise, the higher the observed numbers

are, the smaller the utility should be. For deriving a stable utility of application A

and resource i (including disk and network), we thus propose to run the application

several times, and observe the measurement values Rij(A) for each run j, with

arithmetic mean R̄i(A). Again, let ∆i denote the systematic error, this time in the

original value range (not normalized). Then the utility for resource i is defined by

Ui(A) =
(
max

{
R̄i(A)−∆i, 0

}
+ 1
)−αi . (A.4)

BENCHMARKING MOBILE APPLICATION RESOURCE USAGE 151

This definition depends on constants αi reflecting how fast the utility approaches

zero for resource i, and is influenced by the possible value range of observations.

For instance, it reflects whether the networking activity is reported in bytes, KB,

MB etc. This way, the benchmarking results of the applications are normalized,

combine scores from different normalized resources, but on the other hand, the

utility of one application does not depend on the measurement results of another

application. What should be kept fixed, though, when comparing applications with

each other, is the device that is used for measuring. One possible problem is given

by the fact that (A.3) is a linear function, while (A.4) decreases with geometric

speed. However, we think that if a resource is used in such a high degree that it

is almost fully utilized, the resulting utility should be near zero anyway, which is

achieved by both functions. The influence of this highly utilized resource then in

(A.2) disappears, and (A.2) more or less reflects the utility of the other resources

only.

Weights

Applications vary from their resource usages based on their functionality. For exam-

ple a music player does not require a network connection or it has minimal network

activity but it consumes a significant amount of battery usage. The reason is that lis-

tening to music generally runs significantly longer than for instance checking emails.

On the other hand a social-networking application requires heavy network activities

but consumes less battery than the music player. These applications are totally

different from their resource usage perspective. Assigning priority or weight to the

resources can define the level of importance in a numerical value, e.g., in the case

of music player, battery gets high priority and network activity gets zero or low

priority, while weights must be assigned by the user (quality operator) based on the

application functionality, for example in a music player application battery has more

weight than the network or in a social-networking client’s battery is not important

while network bandwidth usage is considered important. Users must classify ap-

plications based on their type (music player, social-networking, games, etc.) and

assign to a weight.

152 A.3. Benchmarking Applications via a Utility Function

A.3.2 Resource Monitoring Methods

Android has been chosen as the implementation platform. It is an open source

mobile operating system, which is based on the Linux kernel. We have developed a

resource-monitoring tool which tracks and logs the resource consumption of a given

process. This monitoring tool will run in the background parallel to the target

application via using Android services, It uses a GUI to let the user start and stop

monitoring processes (shown in Figure A.1). A user can also select which resource(s)

to track.

Figure A.1: Resource monitoring tool

The user can set sampling interval via the Settings button. The sampling interval

can be set for the battery, the CPU and the memory. Network and disk activities

are sampled only twice, once at the start, while the start button is pressed and

another time when the stop button is pressed. Unlike the CPU and the memory,

they are not measured per process. Battery usage is mainly the hidden resource

and it is difficult to be measured. Fortunately in Android it is possible to measure

battery by creating a broadcast receiver and call it via an intent, which contains

BENCHMARKING MOBILE APPLICATION RESOURCE USAGE 153

ACTION BATTERY CHANGED as the action. Other resources have been measured

via reading /proc subfolders.

Sampling is done based on the predefined intervals. The sampling interval depends

on the resource type, e.g. sampling interval for battery will be done each 10 min-

utes but CPU utilization could be sampled each second. As it has been explained

before, monitoring an application itself consumes resources. This indicates that the

sampling result is a mixture of monitoring application and the target application.

To increase quality of the monitoring result, the user can monitor the target appli-

cation with same condition more than once and calculate the arithmetic mean of

the observations.

The monitoring tool runs in the background as a set of services (Android services).

Each service is responsible to log one resource. The result of the monitoring is a

trace file and below is an example of it:
[29 Mar 2009 16:17:30 GMT][GUI] START LOGGING RESOURCES

[29 Mar 2009 16:17:30 GMT][NET][Receive :487, Send :405]

[29 Mar 2009 16:17:30 GMT][DSK][Read issued:9, Write Completed :1]

[29 Mar 2009 16:17:33 GMT][CPU][PID:217, CPU:1%, #Thread :6]

[29 Mar 2009 16:17:33 GMT][MEM][PID:217, VmSize: 115084kB, VmRSS :22760 kB]

[29 Mar 2009 16:17:37 GMT][CPU][PID:217, CPU:2 %, #Thread :6]

[29 Mar 2009 16:17:37 GMT][MEM][PID:217, VmSize: 115124kB, VmRSS :22852 kB]

[29 Mar 2009 16:24:15 GMT][MEM][PID:217, VmSize: 118696kB, VmRSS :24992 kB]

[29 Mar 2009 16:24:18 GMT][BATT][The phone ’s battery is charging , %50]

[29 Mar 2009 16:24:22 GMT][CPU][PID:217, CPU:25 %, #Thread :9]

[29 Mar 2009 16:27:34 GMT][MEM][PID:217, VmSize: 117360kB, VmRSS :25172 kB]

[29 Mar 2009 16:27:36 GMT][NET][Receive :25088 , Send :21161]

[29 Mar 2009 16:27:36 GMT][DSK][Read issued :10, Write Completed :86]

[29 Mar 2009 16:27:36 GMT][GUI] LOGGING RESOURCES HAVE BEEN STOPED

A.4 Evaluation and Verification

To evaluate this model, we monitored resource utilization in the same condition for

two Sudoku games 1 via the proposed monitoring tool. Our test environment is an

Apple Mac Book Pro with 2.4 GHz CPU which contains Android emulator SDK

1.1. We repeated the test four times. At the end we chose the largest dataset for

the analysis. The arithmetic means of the measurements in each observation do not

1two freeware Suduko games have been downloaded from the Internet

154 A.4. Evaluation and Verification

show significant differences. We pruned the dataset to remove near zero CPU and

memory usages from before and after Monkey user simulation start. Monkey [8]

is a user simulator feature of the Android platform, that generates pseudo-random

streams of the user events like click, tap the screen, etc.

To evaluate if we have enough samples, we found and removed outliers. Afterwards

we test the normality of data with Quantile-Quantile plot [41] from each dataset

as shown in Figure A.2. Shapiro-Wilk test [205] used to test the normality of

data. These datasets passed the Shapiro-Wilk test for CPU and not for memory.

The statistical error level for both the CPU and the memory of both applications

had been calculated for 95% confidence interval and they were acceptable. As a

stop criteria we used an estimate for the standard error of the mean. The result

shows that the magnitude of standard errors is much smaller than the mean. The

arithmetic mean for CPU and total memory allocated for application (vmsize) have

been used to calculate the utility function (Table A.1).

The monitoring tool created an application trace from the CPU and memory usage.

Both applications had been tested via the Monkey. We named these Sudoku games

“Application A” and “Application B”. As it has been noted before, testing appli-

cation in the same condition (same test duration, same device state, etc.) is very

important. In order to adhere to the same condition for each test, we used the new

android emulator instance with an empty 1 Gigabyte SD card for each experiment

and the same experiment duration. First the Monkey simulator had been started.

The result will be used by the utility function to evaluate these two applications

and compare them. Figure A.3 shows the CPU usage for approximately the same

number of samples (about 80) collected from the CPU traces of these applications.

In this experiment CPU sampling has been done based on three seconds intervals.

There are some zero or near zero CPU usages, at the beginning and at the end of

the monitoring dataset. This is because the Monkey user simulator had been called

after the monitoring process has been started and after the Monkey application has

been stopped the monitoring application is still running.

To measure memory utilization, the monitoring tool logs “total memory size allo-

cated for the target application” (vmsize) and the “resident set size” (vmrss) in a

three second interval for each application. Vmrss and vmsize for each application

have shown in Figure A.4. We use only vmsize for the utility function.

BENCHMARKING MOBILE APPLICATION RESOURCE USAGE 155

-3 -2 -1 0 1 2 3

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

CPU A, Normal Q-Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

-3 -2 -1 0 1 2 3

0
.5

0
.6

0
.7

0
.8

0
.9

CPU B, Normal Q-Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

-3 -2 -1 0 1 2 3

0
.8
6
8

0
.8
7
0

0
.8
7
2

0
.8
7
4

0
.8
7
6

Vmsize A, Normal Q-Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

-3 -2 -1 0 1 2 3

0
.8
8
4

0
.8
8
6

0
.8
8
8

0
.8
9
0

0
.8
9
2

Vmsize B, Normal Q-Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

Figure A.2: Q-Q Plots for CPUs and VmSizes after removing outliers.

Table A.1 shows Utility of Resources, weights and their associated values. Table A.2

shows the result of the calculation and the utility function result for each application.

Result of the utility function calculation like the result is shown in Figure A.3 and

Figure A.4.

Results indicate that Application B consumes less CPU and memory than Applica-

tion A. Application state could also affect utility function’s error. In the Android

platform components of the application have different states which these states rep-

resent application’s life cycle [2]. For example if an application is visible to the user

and it has the focus (start state), then more CPU could be assigned to it, or when

another Android activity is resumed (pause state), then less CPU is assigned. The

156 A.4. Evaluation and Verification

0 20 40 60 80 100

0
20

40
60

80
10
0

Time

P
er
ce
nt
ag
e

0
20

40
60

80
10
0

Application A
Application B

Figure A.3: CPU utilization trace.

same approach could be also done for the battery, the memory, the disk and the

network. For example, if the application is visible to the user, then battery con-

sumption will increase, if the application is suspended and another application get

the GUI focus (pause), then battery consumption will decrease.

Results show that Application A uses more resources than Application B. To sum-

marize this research a software monitoring approach to measure mobile resources

and profile application’s resource utilization has been proposed. It is a light soft-

ware monitoring approach, which consumes few resources. It supports flexibility

and modularity by separating resource monitoring from the target application. Im-

plementation of a monitoring tool had been done on the Android platform. We have

BENCHMARKING MOBILE APPLICATION RESOURCE USAGE 157

M
em

ro
y

in
 K

b
0

50
00

10
00
0

15
00
0

20
00
0

25
00
0

Application A Application B

VmSIZE
VmRSS

Figure A.4: Average memory usage

chosen Android because it provides access to the lower layers of operating systems

such as battery usage (in easy manner) or “proc” sub folders of the Linux which can

assist users to access current state of the Linux kernel.

To benchmark applications from their resource usage perspective, a utility function

has been proposed. Its activity is based on the weight of the resource and average

resource usage consumption. Resources data is a heterogeneous data and in order

to be able to use them together, they have to be converted into a numerical data

by average resource consumption and weight. Weight represents the level of the

importance of each resource and will be set by the quality operator based on the

application type. The UR is a normalized arithmetic mean of resource usage during

the simulation.

158 A.4. Evaluation and Verification

Resource Weight Values for application A Value for application B
CPU 2 62% 37%

Memory 1 vmSize=11919, vmRSS=25991 vmSize=10563, vmRSS=17657
Disk 0 - -

Network 0 - -
Battery 0 - -

Table A.1: Trace values for use in utility function

Application A Application B
Weight 2(CPU) 1(Memory) 2(CPU) 1(Memory)
Utility of Resource 62% => 1- 62/100 vmsize=11919 => 37% => 1- 37/100 vmsize=10563 =>

1-(11919/23296) 1-(10563/23296)
Utility Function (2×0.38)+(1×0.4884)

2+1
(2×0.63)+(1×0.5466)

2+1

Result 0.4161 0.6022

Table A.2: Utility function (as described before 23296 is the available amount of
memory)

Appendix B

Abbreviations

A-GPS Assisted GPS

API Application Programming Interface

CAELA Communications Assistance for Law Enforcement

DAG Directed Acyclic Graph

e-Memory Electronic Memory

FIPs Fair Information Practices

FOAF Friend of a Friend (http://www.foaf-project.org)

GPS Global Positioning Service

GUI Graphical User Interface

HIPAA Health Insurance Portability and Accountability Act

IDE Integrated Development Environment

JSON Java Script Object Notation

LiDSec Light Weight Data Security

Memex Memory Extender

159

160

P2P peer-to-peer

PIM Personal Information Management

QoS Quality of Service

RDBMS Relational Database Management Systems

RDF Resource Description Framework

RSM Reliable Storage Media

SD Card Secure Digital Memory Card

SIFT Scale-invariant feature transform

SNS Social Networking Sites

SPARQL Protocol And RDF Query Language

UbiqLog Ubiquitous Logging

UR Utility of a Resource

vmSize Virtual Memory Size

vmRSS Virtual Memory Resident Set Size

WORN Write Once Read Never

Appendix C

Implementation Resources

A CD-ROM has been enclosed, which includes implementations of the framework

components. The content of the CD-ROM is as follows:

• Server codes reside in the “/Server/UbiqShare” folder. The Server codes

were written in Ruby 1.8 and Java scripts (JQuery). these codes should be

executed in a Diaspora instance.

• UbiqLog codes reside in the “/DataReader/UbiqLog” folder. UbiqLog codes

are written in Java for the Android 2 platform.

• Codes for the room tidiness metaphor reside in the “/DataReader/RoomTidiness”

folder. Its codes were written by MATLAB Image Processing Toolbox release

2010b.

• Codes for the LiDSec reside in the “/Security” folder. All codes for LiDSec

have been written with Java 6.

• Benchmarking Mobile Application codes reside in the “/Benchmark” folder.

These codes were written in Java for Android 1,2 platform. The “/R” folder

hosts files and commands for statistical analysis in R.

In order to execute the codes each Android applications has their associated .apk files
and the Java project has its JAR file. The MATLAB execution has been described in
its “readme.txt” file. The server codes should be deployed in a Diaspora instance.

161

162

Bibliography

[1] Cell Phone Intervention Trial for Young Adults (CITY). http://www.ccs.neu.
edu/home/intille/positions/city.html. [Access 10 Feb 2012].

[2] Component Lifecycles, Application Fundamentals, Android Developer Guide.
http://dev.android.com/guide/topics/fundamentals.html. [Access 15 April 2010].

[3] Fitbit. http://www.fitbit.com. [Accessed 30 Feb 2011].

[4] Nokia lifeblog. http://wayback.archive.org/web/*/http://www.nokia.com/
lifeblog. [Accessed 10-July-2011].

[5] Q-sensor. http://www.affectiva.com/q-sensor. [Accessed 30 Feb 2011].

[6] Slife. http://www.slifeweb.com. [Accessed 25 Aug 2011].

[7] Tools for Managing Your Online Life After Death. http://www.time.com/time/
specials/packages/completelist/0,29569,1920156,00.html. [Accessed 1-Aug-
2011].

[8] UI/Application Exerciser Monkey, Android Developer Guide”.
http://dev.android.com/guide/developing/tools/monkey.html. [Access 25 April
2010].

[9] wakoopa. http://wakoopa.com. [Accessed 25 Aug 2011].

[10] Wockets project. http://www.ccs.neu.edu/home/intille/positions/wockets.
html. [Access 10 Feb 2012].

[11] Zeitgeist. http://zeitgeist-project.com. [Accessed 25 Aug 2011].

[12] CALEA. http://www.fcc.gov/calea, 2005. [Accessed 1 June 2011].

[13] Directive 2006/24/EC of the European Parliament and of the Council. Official
Journal of European Union, March 2006.

[14] The Web’s New Gold Mine: Your Secrets. http://online.wsj.com/article/
SB10001424052748703940904575395073512989404.html, 2010. [Access 30 July
2010].

163

http://www.ccs.neu.edu/home/intille/positions/city.html
http://www.ccs.neu.edu/home/intille/positions/city.html
http://www.fitbit.com
http://wayback.archive.org/web/*/http://www.nokia.com/lifeblog
http://wayback.archive.org/web/*/http://www.nokia.com/lifeblog
http://www.affectiva.com/q-sensor
http://www.slifeweb.com
http://www.time.com/time/specials/packages/completelist/0,29569,1920156,00.html
http://www.time.com/time/specials/packages/completelist/0,29569,1920156,00.html
http://wakoopa.com
http://www.ccs.neu.edu/home/intille/positions/wockets.html
http://www.ccs.neu.edu/home/intille/positions/wockets.html
http://zeitgeist-project.com
http://www.fcc.gov/calea
http://online.wsj.com/article/SB10001424052748703940904575395073512989404.html
http://online.wsj.com/article/SB10001424052748703940904575395073512989404.html

164 BIBLIOGRAPHY

[15] The Commission on Preservation and Access and the Research Libraries Group,
Washington D.C. . Preserving Digital Information. Report of the Task Force on
Archiving of Digital Information. 1996.

[16] Gregory D. Abowd and Elizabeth D. Mynatt. Charting Past, Present, and Fu-
ture Research in Ubiquitous Computing. ACM Transactions on Computer-Human
Interaction (TOCHI), 7(1):29–58, 2000.

[17] Eytan Adar, David Karger, and Lynn Andrea Stein. Haystack:Per-User Information
Environments. In Proceedings of the Eighth International Conference on Information
and Knowledge Management (CIKM 1999), pages 413–422, 1999.

[18] Michael E. Addis and Kelly M. Carpenter. Why, why, why?: Reason-giving and Ru-
mination as Predictors of Response to Activation- and Insight-Oriented Treatment
Rationales. Journal of Clinical Psychology, 55(7):881–894, 1999.

[19] Mansoor Ahmed, Hanh Huu Hoang, Muhammad Shuaib Karim, Shah Khusro,
Monika Lanzenberger, Khalid Latif, Elke Michlmayr, Khabib Mustofa, Tho Manh
Nguyen, Andreas Rauber, and A Min Tjoa. Semanticlife:A Framework for Man-
aging Information of a Human Lifetime. In the 6th International Conference on
Information Integration and Web-based Applications and Services, 2004.

[20] Kiyoharu Aizawa. Digitizing Personal Experiences: Capture and Retrieval of Life
Log. In Proceedings of the 11th International Multi-Media Modelling Conference
(MMM 2005), pages 10–15, 2005.

[21] Neta Aizenbud-Reshef, Eran Belinsky, Michal Jacovi, David Laufer, and Vladimir
Soroka. Pensieve: Augmenting human memory. In Extended Abstracts in Proceedings
of the 26th International Conference on Human Factors in Computing Systems (CHI
2008), pages 3231–3236, 2008.

[22] Jalal Al-Muhtadi, Anand Ranganathan, Roy Campbell, and M. Dennis Mickunas.
Cerberus: A Context-Aware Security Scheme for Smart Spaces. In Pervasive Com-
puting and Communications, IEEE International Conference on, pages 489–496,
2003.

[23] Mourad Alia, Viktor S. Wold Eide, Nearchos Paspallis, Frank Eliassen, Svein O.
Hallsteinsen, and George A. Papadopoulos. A Utility-Based Adaptivity Model for
Mobile Applications. International Conference on Advanced Information Networking
and Applications Workshops, 2:556–563, 2007.

[24] Anita L. Allen. Dredging up the Past: Lifelogging, Memory, and Surveillance. The
University of Chicago Law Review, 75(1):47–74, 2007.

[25] Michael C. Anderson and Barbara A. Spellman. On the Status of Inhibitory Mech-
anisms in Cognition: Memory Retrieval as a Model Case. Psychological Review,
102(1):68–100, 1995.

BIBLIOGRAPHY 165

[26] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jeniffer Widom.
Models and Issues in Data Stream Systems. In Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems (PODS
2002), pages 1–16, 2002.

[27] Alan D. Baddeley. Human Memory: Theory and Practice. Psychology Press Ltd,
1997.

[28] Mathias Baldauf, Schahram Dustdar, and Florian Rosenberg. A Survey on Context-
Aware Systems. International Journal of Ad Hoc and Ubiquitous Computing,
2(4):263–277, 2007.

[29] Daniel Baloi and Andrew D.F. Price. Modelling Global Risk Factors Affecting
Construction Cost Performance. International Journal of Project Management,
21(4):261–269, 2003.

[30] Barsalou, Lawrence W. The Content and Organization of Autobiographical Memory.
Theoretical Issues in Conceptual Information Processing, May 1985.

[31] Petros Belimpasakis, Kimmo Roimela, and Yu You. Experience Explorer: A Life-
Logging Platform Based on Mobile Context Collection. In 3rd International Confer-
ence on Next Generation Mobile Applications, Services and Technologies (NGMAST
2009), pages 77–82, 2009.

[32] Gordon Bell. A Personal Digital Store. Communication of the ACM, 44(1):86–91,
2001.

[33] Gordon Bell and Jim Gemmell. Total recall: How the E-memory Revolution will
Change Everything. Dutton, 2009.

[34] Gordon Bell, Jim Gemmell, and Roger Lueder. Challenges in Using Lifetime Personal
Information Stores. In Proceedings of the 27th annual international ACM conference
on Research and development in information retrieval (SIGIR 2004), pages 1–1,
2004.

[35] Gordon Bell and Jim Gray. Digital Immorality. Technical Report MSR-TR-2000-
101, Microsoft Research, October 2000.

[36] Emma Berry, Narinder Kapur, Lyndsay Williams, Steve Hodges, Peter Watson,
Gavin Smyth, James Srinivasan, Reg Smith, Barbara Wilson, and Ken Wood. The
use of a wearable camera, SenseCam, as a pictorial diary to improve autobiographical
memory in a patient with limbic encephalitis: A preliminary report. Neuropsycho-
logical Rehabilitation, 17(4-5):582–601, August 2007.

[37] George Esdras Bevans. How Working Men Spend Their Spare Times. New York:
Columbia University Press, 1913.

166 BIBLIOGRAPHY

[38] Robert A. Bjork and Alan Richardson-Klavehn. On the puzzling relationship be-
tween environmental context and human memory. Experimental Psychology, 41(3),
1989.

[39] Aron F. Bobick, Stephen S. Intille, James W. Davis, Freedom Baird, Claudio S.
Pinhanez, Lee W. Campbell, Yuri A. Ivanov, Arjan Schütte, and Anrew Wilson. The
KidsRoom: A Perceptually-based Interactive and Immersive Story Environment.
Presence, 8(4):369–393, 1999.

[40] Joseph Bonneau and Sren Preibusch. The Privacy Jungle: On the Market for Data
Protection in Social Networks. In Economics of Information Security and Privacy,
pages 121–167. 2010.

[41] Sarah Boslaugh and Paul Watters. Statistics in a Nutshell: A Desktop Quick Ref-
erence, pages 118–119. O’Reilly Media, Inc., 2008.

[42] Jack W. Brehm. A Theory of Psychological Reactance. Academic Press New York,
1966.

[43] John Breslin and Stefan Decker. The Future of Social Networks on the Internet: the
Need for Semantics. IEEE Internet Computing, 11(6):86–90, 2007.

[44] Sonja Buchegger, Doris Schöberg, Le-Hung Vu, and Anwitaman Datta. PeerSoN:
P2P Social Networking: Early Experiences and Insights. In Proceedings of the Second
ACM Workshop on Social Network Systems Social Network Systems 2009, co-located
with Eurosys 2009, pages 46–52, 2009.

[45] Kneko Burney. New Year’s Bustle? Vertical Market Expectations for 2009 ICT
Spending in the US- From Crisis to Slow, Long-term Recovery. Compass Intelligence,
January 2009.

[46] Vannevar Bush. As We May Think. The Atlantic, 1945.

[47] Daragh Byrne, Barry Lavelle, Aiden R. Doherty, Gareth J.F. Jones, and Alan F.
Smeaton. Using Bluetooth and GPS Metadata to Measure Event Similarity in Sense-
cam Images. In World Scientific Publishing, 2007.

[48] Yuhan Cai, Xin Luna Dong, Alon Halevy, Jing Michelle Liu, and Jayant Madhavan.
Personal information management with SEMEX. In Proceedings of the 2005 ACM
SIGMOD international conference on Management of data (SIGMOD 2005), pages
921–923, 2005.

[49] Scott Carlson. On the Record, All the Time. Chronicle of Higher Education,
53(23):1, 2007.

[50] Soumen Chakrabarti, Sunita Sarawagi, and Byron Dom. Mining Surprising Patterns
Using Temporal Description Length. In Proceedings of the International Conference
on Very Large Data Bases (VLDB), pages 606–617, 1998.

BIBLIOGRAPHY 167

[51] Daniel Chalmers and Morris Sloman. A Survey of Quality of Service in Mobile
Computing Environments. IEEE Communications Surveys, 2(2), March 1999.

[52] David Chaum. Security Without Identification: Transaction Systems to Make Big
Brother Obsolete. Communications of the ACM, 28(10):1030–1044, 1985.

[53] Guanling Chen and David Kotz. A Survey of Context-Aware Mobile Computing
Research. Technical report, 2000.

[54] Snehal Chennuru, Peng-Wen Chen, Jiang Zhu, and Ying Zhang. Mobile Lifelogger
- recording, indexing, and understanding a mobile user’s life. In Proceedings of The
Second International Conference on Mobile Computing, Applications, and Services
(MobiCASE 2010), 2010.

[55] Tanzeem Choudhury, Gaetano Borriello, Sunny Consolvo, Dirk Haehnel, Beverly
Harrison, Bruce Hemingway, Jeffrey Hightower, Predrag Klasnja, Karl Koscher,
Anthony LaMarca, James A. Landay, Louis LeGrand, Jonathan Lester, Ali Rahimi,
Adam Rea, and Danny Wyatt. The Mobile Sensing Platform: An Embedded Ac-
tivity Recognition System. IEEE Pervasive Computing, 7(2):32–41, 2008.

[56] Brain Patrick Clarkson. Life Patterns: Structures of wearable sensors. PhD thesis,
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Com-
puter Science, 2002.

[57] W. Robert Collins, Keith W. Miller, Bethany J. Spielman, and Phillipe Wherry.
How Good is Good Enough?: an Ethical Analysis of Software Construction and
Use. Communications of the ACM, 37(1):81–91, 1994.

[58] Sunny Consolvo, David W. McDonald, Tammy Toscos, Mike Y. Chen, Jon Froehlich,
Beverly L. Harrison, Predrag V. Klasnja, Anthony LaMarca, Louis LeGrand, Ryan
Libby, Ian E. Smith, and James A. Landay. Activity Sensing in the Wild: a Field
Trial of Ubifit Garden. In Proceeding of the 26th annual SIGCHI conference on
Human factors in computing systems (CHI 2008), pages 1797–1806, 2008.

[59] Consultative Committee for Space Data Systems. CCSDS 650.0-B-1. Recommen-
dation for Space Data System Standards. Reference Model for an Open Archival
Information System (OAIS). Technical report, 2001.

[60] Michael J. Covington, Prahlad Fogla, Zhiyuan Zhan, and Mustaque Ahamad. A
Context-Aware Security Architecture for Emerging Applications. In Proceedings of
the 18th Annual Computer Security Applications Conference (ACSAC 2002), pages
249–260, 2002.

[61] Stephan Davies. Still Building the Memex. Communications of the ACM, 54(2):80–
88, 2011.

[62] Anind K. Dey and Gregory D. Abowd. Towards a Better Understanding of Context
and Context-Awareness. In In proceedings of international conference on Human

168 BIBLIOGRAPHY

factors in computing systems. Workshop on The What, Who, Where, When, and
How of Context-Awareness (CHI 2000), volume 4, pages 1–6, 2000.

[63] Jens-Peter Dittrich. imemex: A platform for personal dataspace management. In SI-
GIR PIM 2nd Invitational Workshop for Personal Information Management, 2006.

[64] Jens-Peter Dittrich and Marcos Antonio Vaz Salles. idm: a unified and versatile data
model for personal dataspace management. In Proceedings of the 32nd International
Conference on Very Large Data Bases (VLDB 2006), pages 367–378, 2006.

[65] Jens-Peter Dittrich, Marcos Antonio Vaz Salles, Donald Kossmann, and Lukas Blun-
schi. iMeMex: Escapes from the Personal Information Jungle. In Proceedings of the
31st International Conference on Very Large Data Bases (VLDB 2005), pages 1306–
1309, 2005.

[66] Martin Dodge and Rob Kitchin. ’Outlines of a world coming into existence’: Perva-
sive computing and the ethics of forgetting. Environment and Planning B: Planning
and Design,, 34(3):431–445, 2007.

[67] Susan Dumais, Edward Cutrell, JJ Cadiz, Gavin Jancke, Raman Sarin, and
Daniel C. Robbins. The PARCTAB mobile computing system. In Fourth Work-
shop on Workstation Operating Systems, pages 34–39, 1993.

[68] Susan Dumais, Edward Cutrell, JJ Cadiz, Gavin Jancke, Raman Sarin, and
Daniel C. Robbins. Stuff I’ve Seen: A System for Personal Information Retrieval
and Re-use. In Proceedings of the 26th Annual International Conference on Research
and Development in Information Retrieval (SIGIR 2003), pages 72–79, 2003.

[69] Nathan Eagle. Machine Perception and Learning Complex Social Systems. PhD
thesis, Massachusetts Institute of Technology, 2005.

[70] Nathan Eagle. Behavioral Inference across Cultures: Using Telephones as a Cultural
Lens. IEEE Intelligent Systems, 23(4):62–64, 2008.

[71] Nathan Eagle and Alex Pentland. Social Serendipity: Mobilizing Social Software.
IEEE Pervasive Computing, 4(2):28–34, 2005.

[72] Nathan Eagle and Alex(Sandy) Pentland. Reality mining: sensing complex social
systems. Personal and Ubiquitous Computing, 10(4):255–268, 2006.

[73] Nathan Eagle and Alex(Sandy) Pentland. Eigenbehaviors: Identifying Structure in
Routine. Behavioral Ecology and Sociobiology, 63(7):1057–1066, 2009.

[74] Nathan Eagle, Alex(Sandy) Pentland, and David Lazer. Inferring Friendship Net-
work Structure by Using Mobile Phone Data. Proceedings of the National Academy
of Sciences, 106(36):15274–15278, 2009.

[75] Hermann Ebbinghaus. Memory: A Contribution to Experimental Psychology. Teach-
ers college, Columbia university, 1913.

BIBLIOGRAPHY 169

[76] Douglas C. Engelbart. AUGMENTING HUMAN INTELLECT: A Conceptual
Framework. Technical report, Stanford Research Institute, 1962.

[77] European Union. Directive 95/46/EC of the European Parliament and of the Council
of 24 October 1995 on the Protection of Individuals with regard to the Processing
of Personal Data and on the Free Movement of such Data. Official Journal of the
European Communities, L 281:31–50, 1995.

[78] Scott Fertig, Eric Freeman, and David Gelernter. Lifestreams: An Alternative to
the Desktop Metaphor. In Conference on Human Factors in Computing Systems
Conference Companion (CHI 1996), pages 410–411, 1996.

[79] Ulrich Flegel. Pseudonymizing Unix log files. In International Conference on In-
frastructure Security (InfraSec 2002), pages 162–179, 2002.

[80] Brain J. Fogg. Persuasive Technology: Using Computers to Change what we Think
and Do. Ubiquity, 3(44), 2002.

[81] Brain J. Fogg. Creating Persuasive Technologies: An Eight-Step Design Process. In
Proceedings of the 4th International Conference on Persuasive Technology (Persua-
sive 2009). ACM New York, NY, USA, 2009.

[82] Brian J. Fogg. Persuasive Technology: Using Computers to Change What We Think
and Do., page 32. Morgan Kaufmann, 2003.

[83] Michel Foucault. Discipline and Punish: The Birth of the Prison. Penguin Books
New York, 1991.

[84] Helmar G. Frank. Überraschungswert und Auffälligkeit. Progress in Brain Research,
17:179–208, 1951.

[85] Michael Franklin, Alon Halevy, and David Maier. From Databases to Dataspaces: A
New Abstraction for Information Management. ACM SIGMOD Record, 34(4):27–33,
2005.

[86] Sigmund Freud. Repression. Standard Edition of the Complete Psychological Works
of Sigmund Freud, 14:143–158, 1915.

[87] Charles Fried. Privacy: A Moral Analysis. Yale Law Journal, 77, 1968.

[88] Jon Froehlich, Mike Y. Chen, Sunny Consolvo, Beverly Harrison, and James A. Lan-
day. MyExperience: A System for In situ Tracing and Capturing of User Feedback
on Mobile Phones. In Proceedings of the 5th International Conference on Mobile
Systems, Applications, and Services (MobiSys 2007), pages 57–70, 2007.

[89] Jon. Froehlich, Tawanna Dillahunt, Predrag Klasnja, Jeniffer Mankoff, Sunny Con-
solvo, Beverly Harrison, and James A. Landay. UbiGreen: Investigating a Mobile
Tool for Tracking and Supporting Green Transportation Habits. In Proceedings of

170 BIBLIOGRAPHY

the 27th International Conference on Human Factors in Computing Systems (CHI
2009), pages 1043–1052, 2009.

[90] Hans W. Gellersen, Albercht Schmidt, and Michael Beigl. Multi-Sensor Context-
Awareness in Mobile Devices and Smart Artifacts. Mobile Networks and Applica-
tions, 7(5):341–351, 2002.

[91] Jim Gemmell, Gordon Bell, and Roger Lueder. MyLifeBits: A Personal Database
for Everything. Communication of ACM, 49(1):88–95, 2006.

[92] Jim Gemmell, Gordon Bell, Roger Lueder, Steven Drucker, and Curtis Wong.
MyLifeBits: fulfilling the Memex vision. In Proceedings of the tenth ACM inter-
national conference on Multimedia (MULTIMEDIA 2002), pages 235–238, 2002.

[93] Jim Gemmell, Roger Lueder, and Gordon Bell. The mylifebits lifetime store. In
Proceedings of the ACM SIGMM workshop on Experiential telepresence (ETP 2003),
pages 80–83, 2003.

[94] Jim Gemmell, Lyndsay Williams, Ken Wood, Roger Lueder, and Gordon Bell. Pas-
sive Capture and Ensuing Issues for a Personal Lifetime Store. In Proceedings of the
the 1st ACM workshop on Continuous archival and retrieval of personal experiences
(CARPE 2004), pages 48–55, 2004.

[95] Vadim Gerasimov. EVERY SIGN OF LIFE. PhD thesis, Massachusetts Institute
of Technology, 2003.

[96] Simon Gibbs, Christian Breiteneder, and Dennis Tsichritzis. Data modeling of time-
based media. In Proceedings of the 1994 ACM international conference on Manage-
ment of data (SIGMOD 1994), volume 23, pages 91–102, 1994.

[97] Lukasz Golab and Tamer M. ’́Ozsu. Issues in Data Stream Management. ACM
Special Interest Group on Management of Data (SIGMOD) Record, 32:5–14, 2003.

[98] Ralph Gross and Alessandro Acquisti. Information Revelation and Privacy in Online
Social Networks. In Proceedings of the 2005 ACM workshop on Privacy in the
electronic society, pages 71–80, 2005.

[99] Cathal Gurrin, Alan F. Smeaton, Daragh Byrne, Neil O’Hare, Gareth J.F. Jones,
and Noel E. O’Connor. An Examination of a Large Visual Lifelog. In Proceedings
of the 4th Asia information retrieval conference on Information retrieval technology
(AIRS 2008), pages 537–542, 2008.

[100] Joshua Hailpern, Nicholas Jitkoff, Andrew Warr, Karrie Karahalios, Robert Sesek,
and Nikita Shkrob. YouPivot: Improving Recall with Contextual Search. In Proceed-
ings of the 2011 annual conference on Human factors in computing systems (CHI
2011), pages 1521–1530, 2011.

[101] Jiawei Han, Michelene Kamber, and Jian Pei. Data mining: concepts and techniques.
Morgan Kaufmann, 2001.

BIBLIOGRAPHY 171

[102] Jeniffer Healey and Rosalind W. Picard. StartleCam: a Cybernetic Wearable Cam-
era. In Second International Symposium on Wearable Computers, pages 42–49, 1998.

[103] Steve Hodges, Lyndsay Williams, Emma Berry, Shahram Izadi, James Srinivasan,
Alex Butler, Gavin Smyth, Narinder Kapur, and Ken Wood. SenseCam: A Retro-
spective Memory Aid. In Proceedings of the 8th International Conference of Ubiq-
uitous Computing (UbiComp 2006), pages 177–193, 2006.

[104] Norman J. Holter and J.A. Generelli. Remote Recording of Physiological Data by
Radio. Rocky Mountain Medical Journal, 46(9):747, 1949.

[105] Eric Horvitz. Machine Learning, Reasoning, and Intelligence in Daily Life: Direc-
tions and Challenges. In Proceedings of the Workshop on AI Techniques for Ambient
Intelligence (AITAmI), 2007.

[106] Jane Hunter. Collaborative Semantic Tagging and Annotation Systems. Annual
Review of Information Science and Technology, American Society for Information
Science, 43(1):187–239, 2009.

[107] Oguz İçoğlu and Ardeshir Mahdavi. VIOLAS: A Vision-based Sensing System for
Sentient Building Models. Automation in Construction, 16(5):685–712, 2007.

[108] Jadwiga Indulska and Peter Sutton. Location Management in Pervasive Systems.
In ACSW Frontiers, pages 143–151, 2003.

[109] Laurent Itti and Pierre Baldi. Bayesian Surprise Attracts Human Attention. Ad-
vances in Neural Information Processing Systems, 18:547–554, 2006.

[110] Raj K. Jain. The Art of Computer System Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation and Modeling. John Wiley & Sons,
1991.

[111] Anthony Jameson, Michael Schneider, Carolin Plate, Alexander Kröner, Vania Dim-
itrova, Nathalie Basselin, and Stephan Baldes. Recomindation: New Functions for
Augmented Memories. In Fourth International Conference on Adaptive Hypermedia
and Adaptive Web-Based Systems, pages 141–150, 2006.

[112] William Jones. Personal Information Management. Annual Review of Information
Science and Technology, 41(1):110–111, 2007.

[113] Karin Kappel and Thomas Grechenig. ”show-me”: Water Consumption at a glance
to promote Water Conservation in the Shower. In Proceedings of the 4th Interna-
tional Conference on Persuasive Technology (Persuasive 2009), 2009.

[114] Fahim Kawsar, Kaori Fujinami, and Tatsuo Nakajima. Augmenting Everyday Life
with Sentient Artefacts. In Proceedings of the 2005 joint conference on Smart Objects
and Ambient Intelligence (sOc-EUSAI 2005), pages 141–146, 2005.

172 BIBLIOGRAPHY

[115] Nicky Kern, Bernt Schiele, Holger Junker, Paul Lukowicz, Gerhard Tröster, and
Albrecht Schmidt. Context Annotation for a Live Life Recording. In Workshop on
Memory and Sharing of Experiences(Pervasive 2004), 2004.

[116] Jan Kietzmann and Ian Angell. Panopticon Revisited. Communications of the ACM,
53(6):135–138, 2010.

[117] Ig-Jae Kim, Sang Chul Ahn, and Hyoung-Gon Kim. Personalized Life Log Me-
dia System in Ubiquitous Environment. In Proceedings of the first International
Conference Ubiquitous Convergence Technology (ICUCT 2006), pages 20–29, 2006.

[118] Kurt Koffka. Principles of Gestalt Psychology. 1935.

[119] Robin Kravets and P. Krishnan. Power Management Techniques for Mobile Com-
munication. In Proceedings of the 4th annual ACM/IEEE international conference
on Mobile computing and networking (MobiCom 1998), pages 157–168, 1998.

[120] Alexander Kröner, Michael Schneider, and Junichiro Mori. A framework for ubiq-
uitous content sharing. IEEE Pervasive Computing, 8(4):58–65, 2009.

[121] Solomon Kullback and Richard A. Leibler. On Information and Sufficiency. The
Annals of Mathematical Statistics, 22(1):79–86, 1951.

[122] Wheeler Ladd and Harry T. Reis. Self-Recording of Everyday Life Events: Origins,
Types, and Uses. Journal of Personality, pages 339–354, 1991.

[123] Michael Lambert. Visualizing and Analyzing Human-centered Data Streams. Mas-
ter’s thesis, Massachusetts Institute of Technology. Department of Electrical Engi-
neering and Computer Science, 2005.

[124] Mik Lamming and Mike Flynn. Forget-me-not: intimate computing in support
of human memory. In Proceedings of FRIEND21 Symposium on Next Generation
Human Interfaces, 1994.

[125] Nicolas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem Choudhury,
and Andrew T. Campbell. A survey of mobile phone sensing. Communications
Magazine, IEEE, 48(9):140–150, 2010.

[126] Ora Lassila and Ralph R. Swick. Resource Description Framework (RDF) Model
and Syntax. World Wide Web Consortium, http://www.w3.org/TR/PR-rdf-syntax,
1999.

[127] Kenneth C. Laudon. Markets and Privacy. Communication of ACM, 39:92–104,
1996.

[128] Hyowon Lee, Alan F. Smeaton, Noel E. OConnor, Gareth Jones, Michael Blighe,
David Byrne, Aiden Doherty, and Cathal Gurrin. Constructing a SenseCam Visual
Diary as a Media Process. Multimedia Systems, 14(6):341–349, 2008.

BIBLIOGRAPHY 173

[129] KwangHee Lee, KyoungJu Noh, and Changseok Bae. Personal Life Logger and Be-
longing Monitor Using Reliable ZigBee Networks. In Human-Computer Interaction.
HCI Applications and Services, pages 961–970. 2007.

[130] Seunghwan Lee, Geehyuk Lee, and Hojin Kim. Ubigraphy: A third-person viewpoint
life log. In extended abstracts in Proceeding of the 26th annual SIGCHI conference
on Human factors in computing systems (CHI 2008), pages 3531–3536, 2008.

[131] Paul Lehrer, Evgeny Vaschillo, and Bronya Vaschillo. Resonant Frequency Biofeed-
back Training to Increase Cardiac Variability: Rationale and Manual for Training.
Applied Psychophysiology and Biofeedback, pages 177–191, 2000.

[132] Paul Lehrer, Evgeny Vaschillo, Bronya Vaschillo, Shou-En Lu, Anthony Scardella,
Mahmood Siddique, and Robert H. Habib. Biofeedback as a treatment for asthma.
Chest, 126(2):352–361, 2004.

[133] Ian Li, Anind Dey, and Judith Forlizzi. A Stage-Based Model of Personal Informatics
Systems. In ACM 28th International Conference on Human Factors in Computing
Systems (CHI 2010), pages 557–566, 2010.

[134] Alfred Lief. The Commonsense Psychiatry of Dr. Adolf Meyer. McGraw-Hill, 1948.

[135] Elizabeth F. Loftus and Wesley Marburger. Since the eruption of Mt. St. Helens,
has anyone beaten you up? Improving the accuracy of retrospective reports with
landmark events. Memory & Cognition, pages 114–120, 1983.

[136] David G. Lowe. Object Recognition from Local Scale-Invariant Features. In IEEE
International Conference on Computer Vision, pages 1150–1159, 1999.

[137] Hong Lu, Wei Pan, Nicholas D. Lane, Tanzeem Choudhury, and Andrew T. Camp-
bell. SoundSense: Scalable Sound Sensing for People-Centric Applications on Mobile
Phones. In Proceedings of the 7th international Conference on Mobile Systems, Ap-
plications, and Services, pages 165–178, 2009.

[138] Hong Lu, Jun Yang, Zhigang Liu, Nicholas D. Lane, Tanzeem Choudhury, and
Andrew T. Campbell. The Jigsaw Continuous Sensing Engine for Mobile Phone
Applications. In Proceedings of the 8th ACM Conference on Embedded Networked
Sensor Systems (SensSys 2010), pages 71–84, 2010.

[139] Artur Lugmayr, Teemu Saarinen, and Jean-Philippe Tournut. The Digital Aura -
Ambient Mobile Computer Systems. In 14th Euromicro International Conference
on Parallel, Distributed, and Network-Based Processing (PDP 2006), pages 348–354,
2006.

[140] David Lyon. Surveillance after September 11. Polity Press, 2003.

[141] Anna Lysyanskaya, Ronald Rivest, Amit Sahai, and Stefan Wolf. Pseudonym Sys-
tems. In Selected Areas in Cryptography, pages 184–199, 2000.

174 BIBLIOGRAPHY

[142] Carolyn MacCann, Angela L. Duckworth, and Richard D. Roberts. Empirical Iden-
tification of the Major Facets of Conscientiousness. Learning and Individual Differ-
ences, 19(4):451–458, 2009.

[143] James B. MacQueen. Some Methods for Classification and Analysis of Multivari-
ate Observations. In Proceedings of the fifth Berkeley Symposium on Mathematical
Statistics and Probability, volume 1, page 14, 1967.

[144] Steve Mann. Continuous Lifelong Capture of Personal Experience with EyeTap. In
Proceedings of the the 1st ACM workshop on Continuous archival and retrieval of
personal experiences, (CARPE’04), pages 1–21, 2004.

[145] Steve Mann, James Fung, Chris Aimone, Anurag Sehgal, and Anurag Sehgal. De-
signing EyeTap Digital Eyeglasses for Continuous Lifelong Capture and Sharing of
Personal Experiences. In Proceedings of the 23th international conference extended
abstracts on Human factors in computing systems, (CHI 2005), pages 2–7, 2005.

[146] Steve Mann, Jason Nolan, and Barry Wellman. Sousveillance: Inventing and Us-
ing Wearable Computing Devices for Data Collection in Surveillance Environments.
Surveillance and Society, 1(3):331–355, 2003.

[147] M. Mantyla. The OtaSizzle Project: Large-Scale Service Experimentation Testbed.
In Eighth International Workshop on Applications and Services in Wireless Net-
works, (ASWN’08), pages 8–8, 2008.

[148] Victor Mayer-Schoenberger. delete: The Virtue of Forgetting in the Digital Age.
Princeton University Press Princeton, 2009.

[149] Claude H. Miller, Lindsay T. Lane, Leslie M. Deatrick, Alice M. Young, and Kim-
berly A. Potts. Psychological Reactance and Promotional Health Messages: The
Effects of Controlling Language, Lexical Concreteness, and the Restoration of Free-
dom. Human Communication Research, 33(2):219–240, 2007.

[150] Jim Miller. Who Are You? The Trade-Off between Information Utility and Privacy.
IEEE Internet Computing, 12(4):93–96, 2008.

[151] Emiliano Miluzzo, Nicholas D. Lane, Kristóf Fodor, Ronald Peterson, Hong Lu,
Mirco Musolesi, Shane B. Eisenman, Xiao Zheng, and Andrew T. Campbell. Sensing
Meets Mobile Social Networks: The Design, Implementation and Evaluation of the
CenceMe Application. In Proceedings of the 6th ACM Conference on Embedded
Network Sensor Systems (SenSys’08), pages 337–350, 2008.

[152] Tom M. Mitchell. Mining our Reality. Science, 326(5960):1644–1645, 2009.

[153] Tom Michael Mitchell. Machine Learning. WCB/McGraw-Hill, 1997.

[154] James H. Moor. What is computer ethics ? Metaphilosophy, 16(4):266–275, 1985.

BIBLIOGRAPHY 175

[155] Min Mun, Sasank Reddy, Katie Shilton, Nathan Yau, Jeff Burke, Deborah Estrin,
Mark Hansen, Eric Howard, Ruth West, and Péter Boda. Peir, the Personal Environ-
mental Impact Report, as a Platform for Participatory Sensing Systems Research.
In Proceedings of the 7th international conference on Mobile systems, applications,
and services (MobiSys 2009), pages 55–68, 2009.

[156] Tatsu Nakajima, Vili Lehdonvirta, Eiji Tokunaga, and Hiroaki Kimura. Reflecting
human behavior to motivate desirable lifestyle. In Proceedings of the 7th ACM
conference on Designing interactive systems, pages 405–414, 2008.

[157] Jason Nawyn, Stephen S. Intille, and Kent Larson. Embedding Behavior Modifi-
cation Strategies into a Consumer Electronic Device: A Case Study. In 8th In-
ternational Conference on Ubiquitous Computing (UbiComp 2006), pages 297–314,
2006.

[158] Jakob Nielsen. Ten Usability Heuristics. http://www.useit.com/papers/
heuristic/heuristic_list.html, 1990.

[159] Oded Nov and Sunil Wattal. Social computing privacy concerns: Antecedents and
effects. In Proceedings of the 27th international conference on Human factors in
computing systems, pages 333–336. ACM, 2009.

[160] Oded Nov and Sunil Wattal. Social Computing Privacy Concerns: Antecedents and
Effects. In Proceedings of the 27th international conference on Human factors in
computing systems (CHI 2009), pages 333–336, 2009.

[161] Hiroko Nozawa, Takuji Narumi, Kunihiro Nishimura, and Michitaka Hirose. Beat
story: life-log system of subjective time using heart beat rate. In the 35th Interna-
tional Conference on Exhibition on Computer Graphics and Interactive Techniques,
posters (SIGGRAPH 2008), pages 1–1, 2008.

[162] Ted O‘Donoghue and Matthew Rabin. Self-Awareness and Self-Control. Time and
Decision: Economic and Psychological Perspectives on Intertemporal Choice, pages
217–243, 2003.

[163] Kieron O’Hara, Mischa Tuffield, and Nigel Shadbolt. Lifelogging: Privacy and Em-
powerment with Memories for Life. Identity in the Information Society, 1(2), 2009.

[164] Jon Orwant. Heterogeneous Learning in the Doppelgänger User Modeling System.
User Modeling and User-Adapted Interaction, pages 107–130, 1994.

[165] Manoj Parameswaran and Andrew B. Whinston. Social Computing: An Overview.
Communications of the Association for Information Systems, 19(1):762–780, 2007.

[166] S.Tejaswi Peesapati, Victoria Schwanda, Johnathon Schultz, Matt Lepage, So-yae
Jeong, and Dan Cosley. Pensieve: Supporting Everyday Reminiscence. In Proceed-
ings of the 28th International Conference on Human Factors in Computing Systems,
pages 2027–2036, 2010.

http://www.useit.com/papers/heuristic/heuristic_list.html
http://www.useit.com/papers/heuristic/heuristic_list.html

176 BIBLIOGRAPHY

[167] Alex (Sandy) Pentland. Automatic mapping and modeling of human networks.
Physica A: Statistical Mechanics and its Applications, 378(1):59–67, 2007.

[168] Alex (Sandy) Pentland. Honest Signals: How They Shape Our World. The MIT
Press, 2008.

[169] Per Persson and Younghee Jung. Nokia Sensor: from Research to Product. In
Proceedings of the 2005 conference on Designing for User eXperience (DUX 2005),
pages 53–75, 2005.

[170] Klaus Pommerening. Medical Requirements for Data Protection. In Proceedings of
IFIP Congress, volume 2, pages 533–540, 1994.

[171] Brian L. Quick and Jeniffer R. Considine. Examining the Use of Forceful Language
When Designing Exercise Persuasive Messages for Adults: A Test of Conceptualizing
Reactance Arousal as a Two-Step Process. Health Communication, 23(5):483–491,
2008.

[172] Richard J. Radke, Srinivas Andra, Omar Al-Kofahi, and Badrinath Roysam. Im-
age Change Detection Algorithms: a Systematic Survey. Image Processing, IEEE
Transactions on, 14(3):294–307, 2005.

[173] Mika Raento, Antti Oulasvirta, Renaud Petit, and Hannu Toivonen. ContextPhone:
A Prototyping Platform for Context-Aware Mobile Applications. IEEE Pervasive
Computing, 4(2):51–59, 2005.

[174] Aza Raskin. Your Life Experiences, Brought to You by Budweiser. IEEE Security
& Privacy, pages 86–88, 2011.

[175] Reza Rawassizadeh. Mobile Application Benchmarking based on the Resource Usage
Monitoring. International Journal of Mobile Computing and Multimedia Communi-
cations, 1:64–75, 2009.

[176] Reza Rawassizadeh. A Holistic Multipurpose Life-log Framework. In Proceedings of
the 12th ACM International Conference on Ubiquitous Computing. Doctoral Collo-
quium (UbiComp 2010), pages 481–484, 2010.

[177] Reza Rawassizadeh. Toward Sharing Life-log Information with Society. Behaviour
and Information Technology (to appear), 2012. http://www.tandfonline.com/
doi/abs/10.1080/0144929X.2010.510208.

[178] Reza Rawassizadeh, Amin Anjomshoaa, and A Min Tjoa. A Qualitative Resource
Utilization Benchmarking for Mobile Applications. In Innovations in Mobile Mul-
timedia Communications and Applications: New Technologies, pages 149–160. IGI
Global, 2011.

[179] Reza Rawassizadeh, Amin Anjomshoaa, and Martin Tomitsch. A Framework for
Long-Term Archiving of Pervasive Device Information. In The 9th International

http://www.tandfonline.com/doi/abs/10.1080/0144929X.2010.510208
http://www.tandfonline.com/doi/abs/10.1080/0144929X.2010.510208

BIBLIOGRAPHY 177

Conference on Advances in Mobile Computing & Multimedia (MoMM-2011)., pages
244–247, 2011.

[180] Reza Rawassizadeh, Johannes Heurix, Soheil Khosravipour, and A Min Tjoa. LiD-
Sec: A Lightweight Pseudonymization Approach for Privacy-Preserving Publishing
of Textual Personal Information. In Sixth International Conference on Availability,
Reliability and Security (ARES 2011). In proceedings of First International Work-
shop on Privacy by Design (PBD 2011), 2011.

[181] Reza Rawassizadeh, Soheil Khosravipour, and A Min Tjoa. A Persuasive Approach
for Indoor Environment Tidiness. In 6th International Conference on Persuasive
Technology (Persuasive 2011), 2011.

[182] Reza Rawassizadeh, Elaheh Momeni, Katarzyna Wac, and Martin Tomitsch. Sup-
porting Forgetting and Semantic Enrichment of e-Memories through Annotation.
In ACM 29th International Conference on Human Factors in Computing Systems,
In workshop on Bridging Practices, Theories, and Technologies to Support Reminis-
cence (CHI 2011), 2011.

[183] Reza Rawassizadeh and A Min Tjoa. Securing Shareable Life-logs. In The Second
IEEE International Conference on Social Computing/IEEE International Confer-
ence on Privacy, Security, Risk and Trust (PASAAT 2010). In proceedings of First
Workshop on Privacy Aspects of Social Web and Cloud Computing (PASWeb 2010),
pages 1105–1110, 2010.

[184] Reza Rawassizadeh and Martin Tomitsch. Toward Preserving Pervasive Device In-
formation. In ACM 28th International Conference on Human Factors in Computing
Systems, In workshop on Know Thyself: Monitoring and Reflecting on Facets of
One’s Life (CHI 2010), 2010.

[185] Reza Rawassizadeh, Martin Tomitsch, Katarzyna Wac, and A Min Tjoa. UbiqLog:
A Generic Mobile Phone based Life-Log Framework. Personal and Ubiquitous Com-
puting (to appear), 2012.

[186] John Rawls. A Theory of Justice. Harvard University Press, 1971.

[187] Bradley J. Rhodes. Context-Aware Computing (or, why context needs wearables
and wearables need context) . http://www.media.mit.edu/wearables/lizzy/
context.html.

[188] Bradley J. Rhodes. The Wearable Remembrance Agent: A System for Augmented
Memory. In Proceedings of The First International Conference on The Practical
Application Of Intelligent Agents and Multi Agent Technology (PAAM 1996), pages
487–495, 1996.

[189] Meredith Ringel, Edward Cutrell, Susan Dumais, and Eric Horvitz. Milestones
in time: The value of landmarks in retrieving information from personal stores.

http://www.media.mit.edu/wearables/lizzy/context.html
http://www.media.mit.edu/wearables/lizzy/context.html

178 BIBLIOGRAPHY

In IFIP TC13 International Conference on Human-Computer Interaction (INTER-
ACT 2003), pages 184–191, 2003.

[190] George Roussos, Marsh Andy J., and Stavroula Maglavera. Enabling Pervasive
Computing with Smart Phones. IEEE Pervasive Computing, 4(2):20–27, 2005.

[191] Åsa Rudström, Martin Svensson, Rickard Cöster, and Kristina Höök. Mobitip:
Using Bluetooth as a Mediator of Social Context. In Proceedings of the 6th ACM
International Conference on Ubiquitous Computing, Adjunct Proceedings (Ubicomp
2004), 2004.

[192] Dong-Wan Ryoo and Changseok Bae. Design of The Wearable Gadgets for Life-Log
Services based on UTC. IEEE Transactions on Consumer Electronics, 53(4):1–6,
2007.

[193] Mahadev Satyanarayanan. Fundamental challenges in mobile computing. In Pro-
ceedings of the 15th annual ACM symposium on Principles of distributed computing
(PODC 1996), pages 1–7, 1996.

[194] Mahadev Satyanarayanan. Pervasive Computing: Vision and challenges. IEEE
Personal Communications, 8(4):10–17, 2001.

[195] Daniel L. Schacter. The Seven Sins of Memory. American Psychologist, 54(3):182–
203, 1999.

[196] Satu Elisa Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.

[197] Bill N. Schilit, Anthony LaMarca, Gaetano Borriello, William G. Griswold, David
McDonald, Edward Lazowska, Anand Balachandran, Jason Hong, and Vaughn Iver-
son. Challenge: Ubiquitous Location-Aware Computing and the ”Place Lab” Ini-
tiative. In Proceedings of the 1st ACM international workshop on Wireless mobile
applications and services on WLAN hotspots (WMASH 2003), pages 29–35, 2003.

[198] Albrecht Schmidt, Kofi Asante Aidoo, Antti Takaluoma, Urpo Tuomela, Kristof
Van Laerhoven, and Walter Van de Velde. Advanced Interaction in Context. In
First International Symposium on Handheld and Ubiquitous Computing, pages 89–
101, 1999.

[199] Bruce Schneier. Taxonomy of Social Networking and Privacy. http://cyberlaw.
stanford.edu/node/6381.

[200] Michael Scriven. Beyond Formative and Summative Evaluation. Evaluation and
Education at Quarter Century, pages 19–64, 1991.

[201] Abigail J. Sellen, Andrew Fogg, Mike Aitken, Steve Hodges, Carsten Rother, and
Ken Wood. Do Life-Logging Technologies Support Memory for the Past? An Ex-
perimental Study Using SenseCam. In Proceedings of the 25th conference on Human
Factors in Computing Systems (CHI 2007), pages 81–90, 2007.

http://cyberlaw.stanford.edu/node/6381
http://cyberlaw.stanford.edu/node/6381

BIBLIOGRAPHY 179

[202] Abigail J. Sellen and Steve Whittaker. Beyond Total Capture: A Constructive
Critique of Lifelogging. Communications of the ACM, 53(5):70–77, 2010.

[203] Noah Shachtman. A Spy Machine of DARPAs Dreams. http://www.wired.com/
print/techbiz/media/news/2003/05/58909, 2003.

[204] Claude E. Shannon. Prediction and Entropy. Bell Systems Technical Journal, 30:50–
64, 1951.

[205] S.S. Shapiro, M.B. Wilk, and H.J. Chen. A Comparative Study of Various Tests for
Normality. American Statistical Association, 63(324):134–137, 1968.

[206] Sarah Sitton. The Messy Desk Effect: How Tidiness Affects the Perception of Others.
Journal of Psychology: Interdisciplinary and Applied, 117(2):263–267, 1984.

[207] Burrhus F. Skinner. Are Theories of Learning Necessary?, 1950.

[208] James E. Smith. Characterizing Computer Performance with a Single Number.
Communication of ACM, 31(10):1202–1206, 1988.

[209] Richard M. Soley. Memex is not Enough. In Third International Conference on
Fundamental Approaches to Software Engineering (FASE 2000), 2000.

[210] Daniel J. Solove. Conceptualizing Privacy. California Law Review, 90:1087–1155,
2002.

[211] Meesun Song, Wonkyu Lee, and Kim Junghwan. Extraction and Visualization of
Implicit Social Relations on Social Networking Services. In Twenty-Fourth AAAI
Conference on Artificial Intelligence (AAAI 2010), pages 1425–1430, 2010.

[212] Anna St̊ahl, Kristina H’́ó’ok, Martin Svensson, Alex S. Taylor, and Marco Combetto.
Experiencing the Affective Diary. Personal and Ubiquitous Computing, 13(5):365–
378, 2009.

[213] Michael Stonebraker. SQL databases v. NoSQL databases. Communications of the
ACM, 53(4):10–11, 2010.

[214] Lior J. Strahilevitz. A Social Networks Theory of Privacy. The University of Chicago
Law Review, (72):919–988, 2005.

[215] Mark Stringer, Geraldine Fitzpatrick, Dan Chalmers, Eric Harris, Renan Krishna,
and Markus Haarlander. Kuckuck–Exploring Ways of Sensing and Displaying En-
ergy Consumption Information in the Home. In Proceedings of the 9th ACM Interna-
tional Conference on Ubiquitous Computing, Workshop on Ubiquitous Sustainability:
Technologies for Green Values (UbiComp 2007), 2007.

[216] Latanya Sweeney. k-anonymity: A Model for Protecting Privacy. International Jour-
nal of Uncertainty Fuzziness and Knowledge Based Systems, 10(5):557–570, 2002.

http://www.wired.com/print/techbiz/media/news/2003/05/58909
http://www.wired.com/print/techbiz/media/news/2003/05/58909

180 BIBLIOGRAPHY

[217] Josef H.M. Tah, Anthony Thorpe, and Ronald McCaffer. Contractor Project Risks
Contingency Allocation Using Linguistic Approximation. Computing Systems in
Engineering, 4(2-3):281–293, 1993.

[218] Emmanuel Munguia Tapia, Stephan S. Intille, and Kent Larson. Activity Recog-
nition in the Home Using Simple and Ubiquitous Sensors. Pervasive Computing,
pages 158–175, 2004.

[219] Michael Terry, Elizabeth D. Mynatt, Kathy Ryall, and Darren Leigh. Social Net: Us-
ing Patterns of Physical Proximity over Time to Infer Shared Interests. In Extended
Abstracts in 20th international conference extended abstracts on Human factors in
computing systems (CHI 2002), pages 816–817, 2002.

[220] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[221] Endel Tulving. Elements of Episodic Memory. Oxford University Press, 1983.

[222] Yuya Uesugi, Tasuku Yamamoto, Jun Sawamoto, Norihisa Segawa, Eiji Sugino,
Takuto Goto, and Hiroshi Yajima. A Proposal of an Application of Life Log to
Remote Consultation. In Fifth International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing, pages 315–319, 2011.

[223] U.S. Congress. Health Insurance Portability and Accountability Act of 1996. 104th
Congress, 1996.

[224] U.S. Department of Health, Education & Welfare. Records, Computers and the
Rights of Citizens. Technical report, 1973.

[225] Upkar Varshney. Pervasive Healthcare and Wireless Health Monitoring. Mobile
Networks and Applications, 12(2-3):113–127, 2007.

[226] Sunil Vemuri. Personal Long-term Memory Aids. PhD thesis, Massachusetts Insti-
tute of Technology, 2004.

[227] Sunil Vemuri and Walter Bender. Next-Generation Personal Memory Aids. BT
Technology Journal, 22(4):125–138, 2004.

[228] Sunil Vemuri, Chris Schmandt, and Walter Bender. iremember: a personal, long-
term memory prosthesis. In the 3rd ACM workshop on Continuous Archival and
Retrieval of Personal Experiences (CARPE 2006), pages 65–74, 2006.

[229] Sunil Vemuri, Chris Schmandt, Walter Bender, Stefanie Tellex, and Brad Lassey.
An Audio-Based Personal Memory Aid. In Proceedings of the 6th International
Conference of Ubiquitous Computing (Ubicomp 2004), pages 400–417, 2004.

[230] Victor H. Vroom and Kenneth R. MacCrimmon. Toward a Stochastic Model of
Managerial Careers. Administrative Science Quarterly, 13(1):26–46, 1968.

BIBLIOGRAPHY 181

[231] Katarzyna Wac, Pravin Pawar, Tom Broens, Bert-Jan van Beijnum, and Aart van
Halteren. Using SOC in Development of Context-Aware Systems: Domain-Model
Approach. In Enabling Context-Aware Web Services: Methods, Architectures, and
Technologies, pages 171–210. Chapman and Hall/CRC, 2010.

[232] James S. Walker. A Primer on Wavelets and Their Scientific Applications, pages
141–144. CRC press, 2008.

[233] William E. Walsh, Gerald Tesauro, Jeffrey O. Kephart, and Rajarshi Das. Util-
ity Functions in Autonomic Systems. In International Conference on Autonomic
Computing, 2004., pages 70–77, May 2004.

[234] Waugh, Andrew and Wilkinson, Ross and Hills, Brendan and Dell’oro, Jon. Pre-
serving Digital Information Forever. In Fifth ACM conference on Digital Libraries
(DL 2000), pages 175–184, 2000.

[235] Mark Weiser. The World is not a Desktop. Interactions, 1(1):7–8, 1994.

[236] Timothy D. Wilson and Elizabeth W. Dunn. Self-knowledge: Its Limits, Value, and.
Potential for Improvement. Annual Review Psychology, 55:493–518, 2004.

[237] Terry Winograd. Architecture for Context. Human Computer Interaction,
16(2):401–419, 2001.

[238] David Murakami Wood and Kirstie Ball. A Report on the Surveillance Society.
Information Commissioner Office, 2006.

[239] Jude Yew, Faison Gibson, and Stephanie Teasley. Learning by Tagging: Group
knowledge formation in a self-organizing learning community. In Proceedings of the
7th International Conference on Learning Sciences (ICLS 2006), pages 1010–1011,
2006.

[240] Wanghong Yuan and Klara Nahrstedt. Energy-Efficient Soft Real-Time CPU
Scheduling for Mobile Multimedia Systems. In Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles (SOSP 2003), pages 149–163, 2003.

[241] Robert B. Zajonc. Social Facilitation. Science, 149(3681):269–274, 1965.

[242] Philip G. Zimbardo and Michael R. Leippe. The Psychology of Attitude Change and
Social Influence. McGraw-Hill New York, 1991.

	Introduction
	Research Hypothesis and Questions
	Contributions
	Background and History
	Human Memory and Digital Memory
	Life-log Usages
	Thesis Organization

	Related Works
	Desktop Metaphors and PIMs
	Context-Aware Systems

	Framework Features
	Sharing
	Social Media Overview
	Risks and Benefits

	Forgetting
	Digital Forgetting

	Openness and Extendability

	Framework Description
	Sensors Classification
	Desktop Sensors
	Mobile Sensors
	Proximity (Environmental) Sensors

	Life-Log Data Structure
	Annotation and Data Collection

	Data Model
	Design Challenges and Requirements
	Spatio-Temporal Data Objects
	Controversial History of Life-logs and Security
	WORN Problem
	User Intervention
	Long-Term Digital Preservation
	Performance and Storage

	System Architecture
	Server
	Data Reader

	Proof of Concept and Applications
	UbiqLog
	A Metaphor for Measuring Room Tidiness

	Knowledge Mining Approaches
	Detecting Life Events and Routines
	Surprise Detection

	Privacy, Security and Trust
	Software Architecture Security
	Control Over Personal Information
	Ethics for Sharing Life-log Information

	Conclusion and Future Work
	Appendices
	Benchmarking Mobile Application Resource Usage
	Resource Classification
	Controversies and Restrictions
	Benchmarking Applications via a Utility Function
	Utility Function
	Resource Monitoring Methods

	Evaluation and Verification

	Abbreviations
	Implementation Resources

