
High Performance Associative Memory and Weight
Dilution

N.Davey, R.G.Adams, S.P.Hunt

Department of Computer Science,

University of Hertfordshire,

College Lane, Hatfield, AL10 9AB. United Kingdom

N.Davey@herts.ac.uk, R.G.Adams@herts.ac.uk, S.P.Hunt@herts.ac.uk

Abstract The consequences of diluting the

weights of the standard Hopfield architecture

associative memory model, trained using perceptron

like learning rules, is examined. A proportion of the

weights of the network are removed; this can be

done in a symmetric and asymmetric way and both

methods are investigated. This paper reports

experimental investigations into the consequences of

dilution in terms of: capacity, training times and size

of basins of attraction. It is concluded that these

networks maintain a reasonable performance at

fairly high dilution rates.

Key-Words Associative Memory, Hopfield

Networks, Weight Dilution, Capacity, Basins of

Attraction, Perceptron Learning.

1 Introduction

Neural networks designed to function as

associative memories are usually based around the

standard Hopfield architecture. It has been known

for some time [1] that a variety of local learning

rules can produce models with much better

performance than the original Hebbian learning,

proposed by Hopfield. These learning rules either

find an approximation to the projection weight

matrix or employ perceptron style learning.

Diluted networks are versions of their fully

connected progenitors, but differ in that only a

fraction of the neural connections are maintained.

Of course the human brain represents such a style of

connectivity: each neuron is connected to roughly

10,000 other neurons, but the total number of

neurons is of the order of 10 million times greater.

Networks may be diluted by post training pruning, in

which it is hoped that the most efficacious

connections are kept [2,3]; it has even been

suggested that a network with random fixed weights

can be trained by the systematic removal of a

fraction of the weights [10]. Alternatively a

proportion of the weights may be randomly removed

before training, and this is the approach taken here.

For one shot learning schemes, such as simple

Hebbian learning, the two approaches are equivalent

and it is known [11] that capacity drops linearly with

the fraction of synapses removed. In this paper we

examine the effect of pre-training synapse removal

on associative memory networks, trained using

perceptron style local learning.

2 Models Examined

In each experiment we take a network of N units

which we train with a set of N–ary, bipolar (+1/-1)

training vectors, {
p
}. The N by N weight matrix is

denoted by W, and the state (output) of the i’th unit

is denoted by Si

All the high capacity models studied here are

modifications to the standard Hopfield network. The

net input, or local field, of a unit, is given by:

hi = wijS j
j ≠i
∑

where wij is the weight on the connection from

unit j to unit i. The next state of a unit is derived

from its local field and its current state:

′ S i =
1 if hi > i

−1 if hi < i

Si if hi = i

where the threshold, i , is normally taken as zero.

Unit states may be updated synchronously or

asynchronously. Here we use asynchronous, random

order updates. These network dynamics and a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/1642608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

symmetric weight matrix guarantee simple point

attractors in the network’s state space.

A training vector, , will be a stable state of the

network if the aligned local fields, hi i are non-

negative for all i (assuming all i are zero). Each

training vector that is a stable state is known as a

fundamental memory of the trained network. The

capacity of a network is the maximum number of

fundamental memories it can store. The loading, α,

on a network is calculated by dividing the number of

vectors in the training set by the number of units in

the network, N.

2.1 Learning Rules

In the late 1980s it was demonstrated that

perceptron like learning could be used in associative

memory networks to produce much higher capacity

than the basic model. In fact, as Gardner [9]

showed, a Hopfield type network of N units may

store up to 2N uncorrelated patterns (a loading, α, of

2), with this figure increasing for correlated patterns.

Learning rules of this type are designed to drive the

aligned local fields of patterns in the training set

over a threshold value, T.

The training patterns will be stable if T is non-

negative (see section 2) and, for ease of training, a

value of 1 (or even 0) may be taken. However, by

raising T we may improve the attractor performance

of the network [1]. Some care must be taken though.

Consider a network in which all training patterns are

stable (hi i ≥ T for all patterns and units): any

uniform, upward scaling of the weight matrix will

increase the aligned local fields, but will obviously

not improve the attractor performance. Optimal

attractor performance is achieved when the threshold

is maximised with respect to the size of the weights,

so the relevant characterization is the normalised

stability measure, defined as:

 i =
hi i

Wi

where Wi is the incoming weight vector to unit i.

The minimum of all the i therefore gives a measure

of the likely attractor performance and we take

= min
p,i

(i
p) .

1.1.1 Local Learning (LL)

Diederich and Opper’s [8] local learning rule is an

iterative learning rule in which the local fields for

each training pattern are driven to the correct side of

+T or –T as appropriate. This is equivalent to the

condition that:

∀i, p •hi
p

i
p ≥ T

So the learning rule is given by:

Begin with a zero weight matrix

Repeat until all local fields are correct

 Set the state of network to one of the p

 For each unit, i, in turn

 Calculate hi
p

i
p .

 If this is less than T then change the weights

 on connections into unit i according to:

∆wij = i
p

j
p

N

This is the perceptron learning rule with a fixed

margin of T and a learning rate of 1
N . The process

will converge on a suitable weight matrix if one

exists [7], at which point the trained patterns are

guaranteed to be stable. We refer to this as the LL

(local learning) rule.

As shown by Abbott [1], this rule leads to a

network in which

≥
T

2T +1 max ,

where max is the optimal value of . From this

it is apparent that increasing T will in turn increase

the lower bound of , and this may give better

attractor performance.

1.1.2 Symmetric Local Learning

The Hopfield network has a symmetric weight

matrix. Such weight matrices have the desirable

property of implying point attractors with

asynchronous updating and cycles of length at most

2 with synchronous updates. As the symmetry is

broken, more complex dynamics become

progressively more likely. On the other hand Krauth,

Nadal and Mezard [9] showed that, under certain

circumstances, decreasing the symmetry of the

weight matrix should improve attractor performance.

Gardner [8] pointed out that an iterative perceptron

like training rule could be made to produce

symmetric weights by simply updating both wij and

w ji when either changes. Gardner also showed that

such algorithms would find a symmetric weight

matrix, if one existed, for a particular training set.

The SLL (symmetric local learning) rule is given by:

Begin with a zero weight matrix

Repeat until all local fields are correct

 Set the state of network to one of the p

 For each unit, i, in turn

 Calculate hi
p

i
p

 If this is less than T then change the weights on

 connections into and out of unit i according to:

∆wij = ∆w ji = i
p

j
p

N

1.2 Dilution

In the scheme adopted here a fraction of the

weights of the network are set to a constant value of

zero (effectively removed from playing any part in

the network dynamics). This may be done in such a

fashion that the symmetry of the connection matrix is

maintained, that is if wij is removed then so is w ji ,

or alternatively in a completely random way. We

use both approaches. If symmetry is maintained in

dilution, subsequent training uses symmetric local

learning, otherwise normal perceptron style learning

is used. The dilution rate, d, is the proportion of

weights that are removed prior to training.

3 Analysing Performance

For an associative memory model to be effective,

the training patterns should not only be stable states

of the network, but should also act as attractors in the

network’s state space.

As stated above, the perceptron type learning

rules will store a set of training vectors in the

network when the aligned local fields of those

vectors have all been driven to be non-negative.

Moreover, the larger these aligned local fields

become, the better the attractor performance should

be. Therefore we examine the performance of our

networks by varying both the loading, α, and the

training threshold, T.

We also consider the effect of correlations in the

training patterns. An uncorrelated training set is one

in which the patterns are completely random.

Correlation can be increased by varying the

probability that a given bit in a training pattern is +1

(or –1). We refer to the probability of any bit being

+1 in each the training vector as the bias, b, on the

training set. So: ∀i,p • prob (i
p = +1) = b, Thus, a

bias of 0.5 corresponds to an uncorrelated training

set and a bias of 1 corresponds to a completely

correlated one, as does a bias of 0.

To measure the capacity of diluted networks

trained using repeated Hebbian learning is not

straightforward. The approach taken here is to

perform an incremental search, with gradually

increasing α. At each increment in α, 10 random

sets of training vectors, each containing αN patterns,

are formed and the network is required to separately

learn all ten training sets. We define the capacity as

the largest value of αΝ for which this is achieved.

We use, R, the normalized mean radius of the

basins of attraction [5], as a measure of attractor

performance. It is defined as

R =
1− m0

1 − m1

where m0 is the minimum overlap an initial state

must have with a fundamental memory for the

network to converge on that fundamental memory,

and m1 is the largest overlap of the initial state with

the rest of the fundamental memories. The angled

braces denote an average over sets of training

patterns. Details of the algorithm used can be found

in [5].

The training time of the local learning rules is

reported as the number of epochs (complete

presentations of the training set) required for

convergence.

Finally, it is interesting to look at the degree of

symmetry in the weight matrices produced by the

asymmetric versions of the learning rules. To this

end the symmetry measure of Krauth, Nadal and

Mezard [9] was applied to the resulting weight

matrices. It is defined as:

=
w ij

i ,j
∑ w ji

wij
2

i, j
∑

For a symmetric matrix this takes the value +1.

For an anti-symmetric matrix it takes the value –1

and for a random set of weights it will be roughly

zero.

4 Results

4.1 Capacity

As described in the previous section, to find the

capacity of the diluted networks we search for the

point at which the learning rule fails to converge,

when presented with ten sets of patterns at the given

loading. We investigate 100 unit networks with

dilution rates varying from 0 to 0.9 in increments of

0.1. The symmetric learning rule, SLL, is used here,

with T=1. All training sets are unbiased (b = 0.5).

The results (Figure 1) show a similar pattern to

that reported for one-shot Hebbian learning [11]: a

roughly linear decrease in capacity with increasing

dilution. Interestingly the capacity of this form of

network with 80% of the connections removed is

roughly equivalent to a fully connected standard

Hopfield network. Note also that for all dilutions up

to 0.6, at least 30 patterns are learnable by the

network.

0

20

40

60

80

100

120

140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Dilution

Number of
Stored

Patterns

Figure 1: Capacity of diluted networks (N = 100)

trained with the SLL rule.

In the next two sections we examine the

performance of diluted networks in more detail. In

each experiment 100 unit networks are trained with

30 random patterns. Each training run is repeated 50

times with a different training set each time and the

results are averages over these 50 runs.

4.2 Effect of Varying Training Threshold

In this section we present the results of varying

the learning threshold, T, for networks trained using

both the LL and SLL rules. In all cases dilution of

0.4 is considered, since networks with this many

connections have a capacity well in excess of the 30

patterns we wish to store, as shown in Figure 1.

4.2.1 Attractor Performance

Table 1 shows how the attractor performance

changes for the network with d = 0.4, as the learning

threshold is increased. As a base case the undiluted

version of the network is also given. Consider first

the results for the non-symmetric networks (LL). It

is immediately apparent that the effect of dilution is

to lower the κ value and correspondingly lower the R

values. Increasing the learning threshold from 1 to

10 does improve the R value slightly, but the R value

does not approach that of the undiluted network.

Increasing the learning threshold further (from 10 to

100) does not appear to bring benefit.

The symmetric networks (SLL) show a similar

pattern. However their performance is inferior to the

non-symmetric versions.

Network T R

LL (d = 0) 1 0.83 0.56

LL (d = 0.4) 1 0.55 0.23

LL (d = 0.4) 10 0.68 0.26

LL (d = 0.4) 100 0.67 0.23

SLL (d = 0) 1 0.80 0.55

SLL (d = 0.4) 1 0.53 0.10

SLL (d = 0.4) 10 0.62 0.11

SLL (d = 0.4) 100 0.63 0.11

Table 1: Attractor performance of diluted networks,

under a loading of 0.3 (N = 100). Training sets are

unbiased (b = 0.5) and results are averages over 50

runs.

4.2.2 Training Times

Table 2 shows how the training time varies as T is

increased. Again the undiluted networks are shown

for comparison. The symmetric and non-symmetric

versions take a similar number of epochs to train.

With the threshold, T, at 1, the effect of dilution is to

significantly increase the training time, when

compared with the undiluted networks. Moreover,

as T is increased the training time increases in a

roughly linear way. This pattern is also seen in

undiluted networks [4].

Network T Epochs

LL 1 10.32

LL (d = 0.4) 1 27.63

LL (d = 0.4) 10 184.47

LL (d = 0.4) 100 1941.84

SLL 1 8.26

SLL (d = 0.4) 1 27.11

SLL (d = 0.4) 10 195.53

SLL (d = 0.4) 100 1881.84

Table 2: Training times for diluted networks under a

loading of 0.3 (N = 100). Training sets are unbiased

and results are averages over 50 runs.

4.2.3 Symmetry

Finally the symmetry of the asymmetric networks

is examined. If a network is randomly diluted at a

rate of d = 0.4, but the remaining weights are

symmetric, we would expect σ (our measure of

symmetry) to be roughly 0.6. As can be seen from

Table 3, the weight matrix for the undiluted network

is very nearly symmetric, but σ is significantly less

than 0.6 for each of the diluted networks. The

inference we draw from this is that the learning rule

is introducing greater asymmetry to the weight

matrix in order to cope with the asymmetric dilution.

This degree of asymmetry is likely to be a problem

for these types of networks, as symmetry is

necessary for prohibiting non-point attractors. So

when the heavily diluted LL networks are run they

often reach multi-point orbits, which are difficult to

identify.

Dilution T

0.4 1 0.49

0.4 10 0.49

0.4 100 0.48

0.0 1 0.96

Table 3: Symmetry of weight matrices in networks

trained with LL. Averages over 50 runs.

4.3 Effect of Varying Dilution and Bias

In this section we examine how the attractor

performance and training times change as the

dilution rate is varied. The SLL rule is used here due

to the difficulty of measuring R for highly diluted

networks trained with the LL rule, in which the

dynamics are increasingly complicated (see above).

Training sets which are unbiased (b = 0.5) and

correlated (b = 0.7) are used.

4.3.1 Attractor Performance

It can be seen that the R values decrease with

increasing dilution and that the networks perform

better with correlated patterns, regardless of the

amount of dilution. Once again, this also holds for

undiluted networks [5].

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6
Dilution

R

b = 0.5

b = 0.7

Figure 2: Attractor performance of networks trained

using SLL, under a loading of 0.3 (N = 100) and

varying dilution. Patterns are either unbiased (b =

0.5) or correlated (b = 0.7). Results are averages

over 50 runs.

4.3.2 Training Times

Finally the effect of increasing dilution on training

times is given. Increasing dilution increases the

training time, the bias of the training patterns does

not have a significant effect.

0

50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5 0.6

Dilution

Epochsb = 0.5

b = 0.7

Figure 3: Training times for networks trained using

SLL, under a loading of 0.3 (N = 100) and varying

dilution. Patterns are either unbiased (b = 0.5) or

correlated (b = 0.7). Results are averages over 50

runs.

5 Conclusions

Dilution of the weights in a high capacity

associative neural network is interesting from both

the neurophysiological perspective and from an

engineering point of view, in which the number of

connections can be viewed as a resource to be

minimised. There are at least two ways in which pre

training dilution can be undertaken in such networks,

either maintaining symmetry or not. In the latter

case the asymmetry of the remaining weights causes

problems with the network dynamics, as discussed

in section 4.2.3.

The capacity of the SLL networks is shown to

decrease linearily with the rate of dilution, a similar

pattern to that of networks trained with one-shot

Hebbian learning. However the SLL network

maintains a relatively high capacity for diltution

rates up to 80%. The attractor performance of the

diluted networks is poorer than the undiluted

counterparts, and although increasing the learning

threshold does improve performance it is not

possible to recover to the level attained by fully

connected networks, and training times are

significantly increased.

The presence of correlated training patterns is not

a problem for these networks, indeed the attractor

performance is actually better for biased patterns, as

shown in section 4.3.1.

An interesting question that it has not been

possible to explore here is whether a symmetric

dilution policy together with the asymmetric learning

rule would bring benefit. The low symmetry of the

LL networks suggests that this is a possibility worthy

of exploration.

References:

[1] Abbott,L.F. (1990). Learning in Neural

Network Memories. Network: Comp. Neural

Sys. 1:105-122

[2] Barbato,D.M.L. and O.Kinouchi, (2000)

Optimal pruning in neural networks, Physical

Review E 62(6), 8387-8394

[3] Chechik,G., I.Meilijson and E.Ruppin (1998)

Synaptic Pruning in Development: A

Computational Account, Neural Computation

10, 1759-1777

[4] Davey,N. and R. Adams (2001). High

Performance Associative Memory Models and

Sign Constraints Proceedings of Neural

Networks and Applications (NNA 2001), 416-

420, 2001

[5] Davey,N. and S.P.Hunt (2000). A Comparative

Analysis of High Performance Associative

Memory Models. Proceedings of 2nd

International ICSC Symposium on Neural

Computation (NC 2000) 55-61

[6] Diederich,S. and M.Opper (1987). Learning of

Correlated Patterns in Spin-Glass Networks by

Local Learning Rules. Physical Review Letters

58, 949-952

[7] Gardner,E. (1988). The space of interactions in

neural network models, J. Phys. A 21, 257-270;

[8] Gardner,E., H.Gutfreund and I.Yekutieli

(1989). The Phase Space of Interactions in

Neural Networks with definite Symmetry,

J.Phys. A 22,

[9] Krauth, W., J.-P. Nadal and M. Mezard (1988),

The role of stability and symmetry in the

dynamics of neural networks, J.Phys. A21,

2995-3011.

[10] López,B. and W. Kinzel (1997) Learning by

dilution in a neural network, J.Phys. A 30 7753-

7764

[11] Sompolinsky,H. (1986), Neural Networks with

nonlinear synapses and a static noise, Physics

Review A 34, L519-L523.

