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Abstract

Building on the work of Von Neumann, Langton, and
Sayama among others, we introduce the first examples
of evolution in populations of self-reproducing config-
urations in asynchronous cellular automata. Reliance
on a global synchronous update signal has been a lim-
itation of all solutions since the problem of achieving
self-production in cellular automata was first attacked
by Von Neumann half a century ago. Results of the
author obviate the need for this restriction.

We review our simple constructive mechanism to trans-
form any cellular automata network with synchronous
update into one with essentially the same behavior
but whose cells may be updated randomly and asyn-
chronously. The generality of this mechanism is guaran-
teed by a general mathematical theorem that any syn-
chronous cellular automata configuration and rule can
be realized asynchronously in such a way that the be-
havior of the original synchronous cellular automata can
be completely recovered from that of the correspond-
ing asynchronous cellular automaton, in which temporal
synchronization locally stays within small tolerances.

It follows that most results on self-reproduction, uni-
versal computation and construction, and evolution in
populations of self-reproducing configurations in cellular
automata that have been obtained in the past carry over
to the asynchronous domain using the method described
here.

Here we discuss requirements for evolutionary systems in
cellular automata and describe implemented examples
of our procedure applied to a variety of self-reproducing
systems (Byl, Reggia et al., Langton, Sayama).

In particular, we have implemented Sayama’s evo-loop
system asynchronously, giving the first example of evo-
lution in asynchronous cellular automata.

Introduction

From the beginnings of the study of self-reproduction
in artificial systems initiated by John Von Neumann in
1948, the primary formal model has been synchronous
cellular automata in which configurations develop that
eventually may include an unbounded number of copies
of the original. The models constructed by Von Neum-
man and his successors have amply demonstrated that

self-reproduction is indeed possible in artificial sys-
tems. Furthermore, Von Neumann’s work on his au-
tomata models even anticipated the important transcrip-
tion (“blind copying”) and translation (“executability”)
properties of genetic material later found for DNA.

Naturally, the different possible mechanisms for
achieving self-reproduction have implications for our un-
derstanding of the origin of life, the nature of organic life
and evolution, and for the possibilities of life as it may
exist elsewhere in the universe. Szathméry (1999) has
proposed a classification of replicators that is applica-
ble to natural and artificial systems, but this has by no
means settled the controversies and questions regarding
what types of self-replication are, in principle, possible,
or regarding what modes of self-replication are necessary
or minimal for evolvability. Thus, further study of repli-
cation and possible bases for heritability are called for,
as self-reproduction is an indispensible prerequisite for
any independent evolutionary process. Moreover, self-
reproduction and self-repair (or self-maintenance) are
often closely related in biology, and an understanding
of self-reproduction can thus contribute to our ability
to create self-repairing, self-maintaining hardware and
software. Sending information, instructions on how to
build copies of desired structures using local materi-
als, into an environment rather than sending all nec-
essary materials into that environment represents more
economical methods of space exploration and coloniza-
tion. A NASA report edited by Freitas and Gilbreath
(1980) discusses further potential examples and applica-
tions of self-reproduction to space science, e.g. proposed
self-replicating and self-maintaining lunar factories.

Cellular automata models of self-reproduction have al-
ways relied on global synchronous updates. However, the
need for an assumption of synchronous update in these
spaces may be questioned. In building an artificial self-
reproducing entity is it really necessary to have a sin-
gle global synchronization signal that reaches all parts
of the entity simultaneously (or at least within a well-
defined tolerance)? If local parts of the configuration are
ready to change their state, is it realistic and practical
to assume that they must wait until all other parts of
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the cellular space are also ready to update their states?
Will our assumption of synchronous update unnecessar-
ily constrain and limit the types of self-reproducing sys-
tems we are able to build?

In (Nehaniv, 2002), we presented a method to free all
cellular automata models of self-reproduction (as well as
all cellular automata models of evolution, universal com-
putation, and universal construction) from the need for
synchronous update. This is accomplished by an elegant
simple mechanism that allows one to construct an asyn-
chronous cellular automaton that is capable of emulating
the behavior of a given synchronous cellular automaton.
State updates in the asynchronous model may be pro-
duced by any asynchronous update mechanism whatso-
ever (e.g. updates may be random, sequential, locally
Poisson-distributed, partially simultaneous, etc., or even
synchronous). This result for cellular automata is a spe-
cial case of a more general mathematical theorem, due
to the author (Nehaniv, 2002 (accepted)), for automata
networks with inputs. Nehaniv (2002) also gave the
first implemented examples of self-reproduction in asyn-
chronous cellular automata by applying this method to
Langton’s example of synchronous self-reproduction in
cellular automata (Langton 1984).

In this paper, we first review the concepts of cellular
automata and our construction for making any cellular
automata computation asynchronously realizable. In the
companion paper (Nehaniv 2002) appear illustrations of
implementations of this method to (1) Conway’s Game
of Life (which entail that, in principle, universal com-
putation can be achieved by an asynchronous version of
Life) and to (2) the first examples of self-reproduction
in cellular automata. Going beyond these results, in
this paper we describe additional, implemented models
of self-reproduction in asynchronous cellular automata.
Moreover, we exhibit the first implemented example of
evolution occurring in asynchronous cellular automata.

Preliminaries on Cellular Automata

In this section we review the necessary background on
synchronous and asynchronous cellular automata.

Cellular Automata: Definitions

Cellular automata were introduced by J. Von Neumman
and S. Ulam to model natural physical and biological
phenomena, in particular, for Von Neumann’s pioneering
studies of self-reproduction.

A graph T is a set of nodes V and a set of edges E. An
edge e € FE is an unordered pair of nodes {v,v'} C V.
The neighborhood of a node is the set of nodes directly
connected to it in the graph by an edge. That is, node v
is a neighbor of v’ if {v,v'} is an edge in the graph. We
shall write v' € nbhd(v) if node v’ is a neighbor of node
.

A deterministic finite state automaton A is finite set

of states (), a finite set of inputs X and a transition
function § : Q x X — Q.

A cellular automaton is a finite or infinite network of
identical deterministic finite state automata and a graph
structure such that:

(1) each node has the same (finite) number of neighbors,
(2) at each node we have a fixed ordering on the neigh-
hor nodes (e.g. north, south, east, and west if there are
exactly four neighbors to every node), and

(3) the next state of an automaton at node v is always
the same function § of its current state and the current
states of its neighbors. (Thus the ordered list of states
at neighbor nodes is the input to the automaton at node
v.)

We shall denote the ordered list of the states of the neigh-
bors of node v by (quw)wenbhd(v)-

Although cellular automata are more general, for our
purposes, we may assume that the graph can be real-
ized in some N-dimensional Euclidean space, for exam-
ple as the set of points with integer coordinates, with
edges connecting points that differ by at most exactly
1 in exactly one position (“the Von Neumman neigh-
borhood”) or, alternatively by at most 1 in each coor-
dinate (“the Moore neighborhood”). For example, in a
two-dimensional case the point (2,3) has neighbors (1,3),
(3,3), (2,4), and (3,3) if our cellular automaton uses a
Von Neumann neighborhood, and has additional neigh-
bors (1,2), (1,4), (3,2), (3,4) if we instead have a cellular
automaton with Moore neighborhoods. We may allow
“wrap around” or a “toroidal topology” by identifying
nodes which differ by a fixed vector. For example, in a 25
x 50 node toroidal topology with Von Neumann neigh-
borhood, node (1,1) has neighbors (1,2), (2,1), (25,1)
and (1,50) since (25,1) is identified with node (0,1) and
(1,50) is identified with (1,0).!

Such cellular automata network topologies are specific
examples, but the methods presented here and the sup-
porting mathematical results apply to all cellular au-
tomata networks regardless of the details of their partic-
ular topologies.

In addition there is usually assumed to be a quiescent
state go € @ in the local finite state automata such that
if the automaton at node v is in state go and all of its
neighbors are in state g, then in the next time step the
automaton at node v will still be in state go. (We will
not have a strictly quiescent state in our asynchronous
cellular automata.)

A configuration is any assignment of local state values

to the set of automata at nodes in a finite subgraph of
T.

'"We remark that these definitions of Von Neumann and
Moore neighborhoods, and that of toroidal topology, are ap-
plicable to any dimension V.



Synchronous vs. Asynchronous Update
Rules

Usually a cellular automaton A is required to update the
state of the finite automata at all of its nodes simultane-
ously and in discrete steps. Thus, for all discrete times
t > 0, if at discrete time step t each node v is in some
state ¢, (¢) then at the next discrete time step ¢+ 1 node
v is in its next state g, (t+1). In the notation introduced
above,

Qv (t + 1) = 6((]11 (t)> (Qui (t))wEnbhd(v))'

Thus the new state g,(t + 1) at node v is given by the
local update rule as a function of g, (t), the current state
of v, and the (finite) list (qw(t))wensra(v) of all current
states ¢, (t) of all nodes w in the neighborhood of v. In
this case of globally simultaneous update, we say that
the cellular automaton is synchronous. The global state
of the cellular automaton A at time ¢ is comprised of the
states g, (t) of all its nodes at time ¢ and can be regarded
as a function from nodes V' to local states Q.

If the updates of the local component automata are
not required to take place synchronously, but each one
will be updated to its next state an unbounded num-
ber of times as (locally discrete) time goes on, then we
speak of an asynchronous automata network. The up-
dates are otherwise unconstrained, e.g. they may be de-
terministic, non-deterministic, random, sequential, etc.,
or even synchronous. For further discussion of the rel-
evance of synchronous and asynchronous cellular au-
tomata to the modelling of biological systems see for
example (Schonfisch and de Roos, 1999). Prior to this
paper and (Nehaniv, 2002), all published models of self-
reproduction and evolution in cellular automata have
used only synchronous cellular automata update rules.

Following the general method and theorem of (Ne-
haniv, 2002 (accepted)), which also applies to more gen-
eral types of automata networks than cellular automata,
for each synchronous cellular automaton A on graph T,
we construct another particular cellular automaton A4’
on the same graph. Moreover, if the local finite automata
in A have n states then component automaton in 4’ at
each node v will have 3n? states. The author’s theorem
guarantees that if A’ is updated by any asynchronous
method whatsoever, for each time ¢ in the computation
of A, the global state of A at ¢ is completely determined
by a “continuous spatio-temporal section” of the behav-
ior of A’ (see below).

This mathematical theorem implies that all computa-
tions that can be carried out on any synchronous au-
tomata network can be recovered from the computa-
tion of an asynchronous automata network with no con-
straints on how the updates actually occur in the latter.

Construction of Equivalent
Asynchronous Models

The construction of the local automata of the asyn-
chronous cellular automaton A4’ from local automata
of the synchronous cellular automaton A is extremely
straightforward: Suppose the local automaton of 4 has
states @ = {qo, . ..,qn—1} with go quiescent and update
function § : Q x X — Q.

The states of the local automaton in A’ are the 3n?2
states @ x @ x {0,1,2}.

For r € {0,1,2}, we say the neighborhood of a node v
in the asynchronous cellular automaton A’ is ready(r) if
none of v’s neighbors is in a state with third component
equal to 742 (mod 3).2 Recall that we write w € nbhd(v)
if w is a node in the neighborhood of v.

The update rule of this local automaton is given as
follows: suppose node v is in state (g, ¢’,r) with ¢ and ¢’
in @, and r € {0,1,2}, and has neighborhood with list
of states (qw, @y, Tw)wenbhd(v), then, if r = 0, the next
state of node v is

61((q7 qla 0)7 (Qwa qzua Tw)wenbhd(v))

(6(q7 (qﬂz)wEnbhd(v))a q, 1) if the neighborhood of
= v is ready(0)

(¢,4',0) otherwise,
qw if node w is in a state of the
form (qu,4q.,,0)
where ¢!/ =

q,, if node w is in a state of the

form (quw,q,,,1).

(Since the neighborhood is ready(0), these are the only
possibilities. Note the use of the original local transition
function § of the synchronous cellular automaton A in
this case of the definition of §'.)

For the remaining cases with r € {1,2}, the next state
is

61((q7 qla ’I"), (qw7 qzua Tw)wenbhd(v))

(¢,¢',7 + 1 (mod 3)) if the neighborhood of v
= is ready(r)
(¢,q',7) otherwise.

The state (g,q',7) can be thought of as encoding the
following information: The first coordinate ¢ shows the
“visible” state of the corresponding network A at this
node. The second coordinate ¢’ is “hidden” and is used
to remember the most recent old state of this node, in
case any neighbor needs to refer to it. The third coordi-
nate is used to locally synchronize updates of the visible
and hidden nodes.

For any integer n, “n (mod 3)” denotes the least nonneg-
ative integer k such that n — k is divisible by 3. Of course k
must then be one of {0,1,2}.



The above rule ¢’ only allows a local state of A’ to
change if no node in the neighborhood will get more than
one step behind if the update were to be made, otherwise
it allows no change at all to the current state. The im-
portant ready(0) and r = 0 case occurs exactly when the
asynchronous cellular automaton is locally ready to em-
ulate the transition of the synchronous cellular automata
at this local node using the local transition function of
A. Intuitively, the third component of a node v’s state
can locally distinguish ‘present’; ‘future’, and ‘past’ for
neighboring nodes, respectively, by whether they have
modulo 3 value equal to, one more than, or one less than
the value of the third component of v’s state.

Properties of the Emulation

The asynchronous cellular automaton has two important
properties established with detailed mathematical proofs
in the main theorem of (Nehaniv, 2002 (accepted)):

Suppose the synchronous cellular automaton A is
started in configuration C' with node v in state C'(v) and
all other cells quiescent. Also suppose that asynchronous
cellular automaton A’ is started with each node v of the
configuration active in state (C'(v), C(v),0) and all other
nodes in state (go, go, 0).

Freedom from Deadlocks. At each node v of the
asynchronous network, if the state of v has third compo-
nent 7 € {0, 1,2} eventually the neighborhood of v will
be ready(r), and the third component will change value
to r + 1 (mod 3).

Existence of Continuous Spatio-Temporal Sec-
tions. The state ¢,(0) at time 0 of node v of A is equal
to the first component of the state of node v of A’ in its
initial configuration. By mathematical induction, one
shows that the state ¢,(t) of node v in A at time ¢ is
equal to the first component of the state of node v in
A’ on the " time that the third component of node v
becomes 1.

The latter property implies that it is possible to com-
pletely recover the behavior of A from the behavior of
A' by simply recording the first components in the initial
configuration of A’ and recording the first component of
each node v whenever its local automaton makes a tran-
sition so that the third component changes from 0 to
1.3

3The author discovered this construction of asynchronous
cellular automata emulating any synchronous cellular au-
tomaton on 4 August 1998. An anonymous referee has kindly
pointed out that independently Tommaso Toffoli (1978) de-
scribed a closely related construction, using a modulo 4
counter for local synchronization. (See also Toffoli and Mar-
golus (1987, pp. 90-94)). However complete proofs of the
above properties appear not to have been published. Even
earlier and also independently, Katsuo Nakamura (1974) dis-
covered the same construction as the author (thanks to Fer-
dinand Peper for this observation). The multiple indepen-
dent discoveries of this and related methods is clear evidence
of their naturality and importance. See (Nehaniv (2002),

Temporal Waves

To an observer, time as it occurs in the synchronous cel-
lular automata may seem to pass at different rates in dif-
ferent parts of the asynchronous cellular space. In fact,
locally all neighboring cells are guaranteed to show a vis-
ible state (first component) that occurs at most one unit
of time in the past or future relative to the corresponding
state in the synchronous automaton. Thus, time of the
synchronous cellular automaton is emulated in a manner
such that it can never get very far out of sync locally in
the emulating asynchronous cellular automaton.

This results in waves of temporal update in the cel-
lular space with continuous wavefronts all in the same
state of temporal synchronization (i.e., all with the same
third component) representing the same moment in the
synchronous cellular automaton.

In many of the figures below the relative temporal
synchronization of each cell is indicated by differences
in shading. Another example is illustration of temporal
waves occurs in (Nehaniv 2002) for the example of an
asynchronous version of John Conway’s famous “Game
of Life”. Note that the possibility of implementation of
Conway’s Game of Life in an asynchronous cellular au-
tomaton entails that universal computation is possible in
a two-dimensional asynchronous cellular automata run-
ning the modified rules (Nehaniv 2002).

Self-Reproduction in Asynchronous
Cellular Automata

Detailed background on self-reproduction in cellular au-
tomata, including a survey of proposed definitions and
problems with these can be found in (Nehaniv 2002),
so we give only a brief overview before illustrating our
various implementations of self-reproduction in asyn-
chronous cellular automata. Discussions of the relation-
ship of self-reproduction to individuality and the heri-
tability of fitness can also be found there.

Some Synchronous Implementations

Langton (1984) implemented and studied the first ex-
ample of feasible self-reproduction in cellular automata,
using an 8-state cellular automaton with an initial con-
figuration of 86 cells, that produces a first offspring af-
ter 151 time steps and then proceeds to fill up available
space with copies. To avoid trivialities while avoiding
the complexity of Von Neumann’s model, Langton’s cri-
terion (1984, 1986) was proposed as a necessary con-
dition on self-reproduction and requires that informa-
tion is treated in two ways: as instructions that are eze-
cuted (‘translation’) and as data which are blindly copied

accepted) for complete, detailed proofs of the above men-
tioned properties, also in the more general setting of au-
tomata networks (i.e., inhomogeneous cellular automata with
inputs, and with topologies given by general directed graphs
of finitely bounded degree).



(‘transcription’). These properties are also present in
and abstracted from the general constructive and general
copying capacities of Von Neumann’s and later Codd’s
(1968) examples, and by that time also known to be char-
acteristic of biological self-reproduction. Subsequent ex-
amples of Byl (1989) and Reggia et al. (e.g., Reggia,
Armentrout, Chou, and Peng (1993), Lohn and Reg-
gia (1997)) simplified the self-replicating loop of Lang-
ton with fewer states or less cells in the initial config-
uration. Subsequently, various researchers kept Lang-
ton’s requirement for self-reproduction, but have added
more and more computational power to the relatively
small self-reproducing cellular automata configurations
(in comparison to Von Neumann’s solution). These
trends are surveyed by Lohn (1999), who also describes
the evolution of cellular automata rules that support
self-reproduction (see also Lohn and Reggia (1997)).
A fairly complete and up to date annotated bibliogra-
phy with links to various relevant on-line resources can
be found at Moshe Sipper’s Artificial Self-Replication
page. H. Sayama (1998b, 1999) has constructed vari-
ants of the self-reproducing Langton loop which exhibit
self-dissolution once they can no longer reproduce, thus
freeing up space for reuse by progeny, and most inter-
estingly, another similar variant called “evo-loop” which
exhibits heritable variability in loop size and is subject
to evolution via interaction among descendants of a com-
mon ancestor acting as a selective force (Sayama 1998a,
1999). Heritability, variability, and differential survival
in an environment with limited resources are present in
his evo-loop when run in finite spaces. Thus evo-loop ap-
pears to be the first convincing example of an evolution-
ary process occurring in synchronous cellular automata.
An asynchronous version is given below.

Asynchronous Langton, Byl, Reggia et al.
Self-Reproducing Loops

Using the method above it is now straightforward to
construct asynchronous cellular automata that exhibit
self-reproduction. Taking any of the models of Von
Neumann (1966), Codd (1968), Langton (1984, 1986),
Byl (1989), Reggia et al. (1993), Sayama (1998a, 1998b,
1999), etc., we merely apply the construction above.
The first implemented example of self-reproduction in
asynchronous cellular automata was given by applying
our construction to Langton’s self-reproducing loop (Ne-
haniv 2002); see Figure 1. In this paper, we give another
asynchronous implementation of Langton’s example to-
gether with asynchronous adaptations of Byl’s, Reggia
and Chou’s, and Sayama’s examples.

Using the rule of Langton (1984) for a synchronous
cellular automaton exhibiting self-reproduction, we de-
rive by the method above an asynchronous cellular au-
tomaton with 192(= 3 x 82) states possible in the local
automata at each node. Using random asynchronous
update of the nodes we achieved an implementation of

Figure 1: Asynchronously Self-Replicating Loop after
First Reproduction (from (Nehaniv 2002)).

self-reproduction in an asynchronous cellular automa-
ton. Figure 1 shows the state of the cellular automaton
near the end of the first reproduction cycle: a sheath
of cells encloses an asynchronously counterclockwise cir-
culating stream of instructions to extend a construction
arm and turn left. The instructions are copied as they
flow through a fork in the sheath. After this stream has
been executed four times, an offspring asynchronous loop
is present in the cellular space (right in Figure 1).

Figure 2 shows another implementation of the asyn-
chronous Langton loop with temporal synchronization
information indicated by shading.

Simplifications of Langton’s loop by Byl (1989) and
Reggia et al. (1993) reduced the size of the self-
reproducing loop and are illustrated with asynchronous
implementations in Figure 3.

Evolution in Asynchronous Cellular
Automata

In this section we review some obstructions to evolu-
tion in cellular automata models such as Langton’s self-
reproducing loop, and Sayama’s introductions of (1) self-
dissolution (apoptosis: “programmed cell death” or “sui-
cide” by individual loops that cannot replicate anymore)
and of (2) variability into cellular automata replicators.
We discuss how these properties relate to evolvability
and give illustrations of the first asynchronous imple-
mentations of these as we proceed.

Finite Resources and an Obstruction to
Turn-over of Generations

In Langton’s original example (1984) a finite space is
filled with loops which then become inert, and the space



Figure 2: Temporal Waves: Asynchronously Self-
Replicating Loop with Local Temporal Synchronization
Component Indicated by Darkness of Shading. Contigu-
ous locations with the same shade have local states of
cells that correspond to the same moment of time in the
emulated synchronous cellular automaton. There are 3
levels of darkness to indicate the modulo 3 value in the
synchronization counter component of state in the asyn-
chronous cellular automaton. The author has proved
that any two cells at distance d in the asynchronous au-
tomaton have states corresponding to moments in time
at most | 4] time units apart in the synchronous cellular
automata (Nehaniv, 2002 (accepted)).
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Figure 3: Asynchronous Versions of Byl’s (top panels)
and Reggia et al.’s (lower panels) Small Self-Replicating
Loops after One (left) and Several Reproductive Cycles
(right).

Figure 4: Asynchronously Self-Replicating Loop Pop-
ulation Nearly Exhausting Available Space Resources.
(Langton Loop, 4 snapshots from a single run; toroidal
topology). Replicants with monochromatic ‘cores’ have
ceased to reproduce due to lack of available space, but
persist and thus obstruct their descendants from repro-
ducing.

cannot be reused by descendants of the original ancestral
loop.

Figure 4 shows a space in which self-reproduction is
about to halt, since all available space will soon be filled
with the inert husks of replicators, that are no longer
active. The structure is reminiscent of a coral reef, and
could have continued to expand indefinitely in an un-
bounded space. However, if as in this case, the world
is finite, all available space is filled and cannot be re-
claimed for further replication to occur. This occurs for
the asynchronous implementation of Langton’s loop il-
lustrated here.

Programmed Cell Death

Sayama (1998) introduced self-dissolution into the study
of self-reproduction in cellular automata by modifying
Langton’s construction. This allows a loop to dissolve —
i.e. its cells return to a quiescent state — if the available
surronding space is already occupied so that no more
offspring can be produced near the loop. A new “disso-
lution” state is added to the local finite automata states
which the local automaton moves into if reproduction
is no longer possible and triggers cell-death in neighor-
ing cells as it moves around within the sheath, yielding
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Figure 5: Asynchronous Version of Sayama’s Struc-
turally Dissolvable Self-Reproducing Loop. Space is lib-
erated by “programmed cell death” and can be reused
by descendents of the original loop (4 snapshots of a
single run; toroidal topology). Differences in shading
correspondent to differences in the synchronization com-
ponent of local state. (See text.)

structural dissolution of the entire loop. Thus space can
be freed up and later reused by descendants of the ances-
tral (or potentially other) self-reproducing loops. This
occurs for the asynchronous implementation of Sayama’s
structurally dissolvable loop (see Figure 5).

Any evolutionary process without such turn-over of
generations in a finite space would necessary halt.
Sayama’s introduction of self-dissolution eliminates this
obstruction to evolution in cellular automta.

Evolvability, Robustness, and Heritable
Variability

Conrad (1980) discussed the importance of genetypic ro-
bustness for evolvability in relation to mutational buffer-
ing and extra-dimensional by-passes. Kirschner and Ger-
hart (1998) have discussed the importance for biological
evolvability of robustness to environmental and pheno-
typic variation.

Sayama also extended Langton’s cellular automata
rules and his own structural dissolution rule to allow
replication and survival of the self-reproducing loops to
occur in many more possible situations than was possi-
ble for Langton’s case. At the same time, he introduced
simple variability in size and contents. Combined with

the self-dissolution mechanism, the added robustness
transformed Langton’s recipe for self-replication into an
system that was evolution ready, “Evo-loop” (Sayama
1999). This result depends on the freeing up of finite
resources (space) to permit a turn-over of generations
and on the introduced robustness of replicators to en-
vironmental, phenotypic, and heritable variation. Our
asynchronous version is shown in Figure 6.

In a finite cellular space, this provides all the re-
quirements, identified by Darwin, for a rudimentary
evolutionary process: populations of self-replicators
with heredity, variability, turn-over of generations with
bounded resources (Sayama 1999). Since replicated off-
spring resemble their parent and the environment has the
same cellular automata “physics” as the environment of
the parent, reproductive success tends to be heritable as
well in the evo-loop model. However, due to the chang-
ing state of the cellular space, with loops of various sizes
reproducing and colliding within it, the “biotic” enviro-
ment of offspring may differ from that experienced by a
parent. Thus, as for organic evolution, reproductive suc-
cess in evo-loop is generally but not completely herita-
ble. In Sayama’s evo-loop model, heritable variation may
arise when collisions occur between loops giving rise to
new self-reproducing loops which may differ in size from
the ‘parents’ involved in the collision. That is, direct
interaction of the phenotypes produces heritable vari-
ability. Interestingly, given the cellular update rule and
initial configuration in a cellular array, this example of
evolution is completely deterministic, although Sayama
has also experimented with stochastic variants. *

The implementation described here and illustrated in
Figure 6 thus comprises the first example of evolution
occurring in an asynchronous cellular automata space.

Summary and Conclusions

Previous results (Nehaniv 2002) exhibited the first im-
plemented example of self-reproduction in asynchronous
cellular automata, and demonstrated that, in principle,
other cellular models of self-reproduction, universal com-
putation and universal construction can be implemented
in asynchronous cellular automata by applying our con-
struction to Von Neumann’s self-reproducing configura-
tion. Moreover, universal computation can also be real-
ized by our method as we have implemented Conway’s
Game of Life using asynchronous cellular automata.
Here, we have demonstrated the systematic imple-
mentation of asynchronous cellular automata that fully
emulate the behavior of any synchronous cellular au-
tomata. This was used to give numerous examples

4On-line illustrations and movies of implementations of
Langton’s and Sayama’s synchronous can be accessed at
Sayama’s webpage:
http://necsi.org/postdocs/sayama/sdsr/.
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Figure 6: Evolution in Asynchronous Cellular Au-
tomata: Asynchronous Version of Self-Reproducing Evo-
loop. (10 snapshots (not all from the same run); toroidal
topologies). Heritable variability of characteristics of in-
dividuals (e.g. loop size) entails that this is an evolution-
ary system.

of self-reproduction in asynchronous cellular automata.
Similarly, implementing the asynchronous version of
Sayama’s evo-loop we also have created the first instance
of evolution in a population of self-replicators in an asyn-
chronous cellular automaton.

In general, most results about synchronous cellular
automata carry over automatically now to the asyn-
chronous realm. Thus these methods free those us-
ing cellular automata models of computation, self-
reproduction, and evolution from the restriction of syn-
chronous global update. With asynchronous (e.g. ran-
dom) update, the same results are attained as guaran-
teed by the theorem of (Nehaniv, 2002 (accepted)), as
described above.

The type of evolution achieved here is still very
rudimentary. The range of variability possible using
Sayama’s construction seems largely limited to variabil-
ity in size of the replicators and to the particularities
of inherited genetic information. Unlike most currently
studied models of self-reproduction in cellular automata,
Von Neumann’s “general constructive automata” held
more promise for achieving open-ended evolvability with
potential for increasing complexity. For instance, the
genotype-phenotype map was largely under control of
Von Neumann'’s self-replicating configuration itself, and
thus heritable mutations (if somehow introduced in a
robust way) might potentially affect this mapping, and
might in principle lead to an open-ended evolutionary
process (see Von Neumman’s discussions related to such
“inheritable mutations” (1966, pp. 64-87) and the useful
illumination of this issue by McMullin (2000)). Exhibi-
tion in cellular automata (whether synchronous or not)
of an open-ended evolutionary process still remains an
unachieved goal for Artificial Life.

Fault-tolerance and self-repair (and their connections
to evolvability) in the asynchronous cellular automata
are natural next directions to explore. A generaliza-
tion of the methods presented here to cellular automata
networks of variable size and shape, i.e. allowing dy-
namic growth or changing topology of the cellular space,
would also be a desirable development as it would help
us study whether it is possible for an asynchronous cel-
lular automata space to expand under the activity of,
for example, evolving self-reproducers. This may pro-
vide the basis for physical realizations of asynchronous
self-replication, and related scientific and technological
applications.
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