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INTRODUCTION AND BACKGROUND 
The island systems of American Samoa represent a unique opportunity for forest conservation 

and ecological research. Forest covers the majority of the five main islands of Tutuila, Aunu’u, 

Ofu, Olosega and Ta’u. Recognizing this potential, the National Park system of the United States 

and the government of American Samoa established the National Park of American Samoa 

(NPSA), including both terrestrial and marine features of the islands of Tutuila, Ofu and Ta’u. 

These NPSA units contain excellent representatives of the natural ecosystems of American 

Samoa for long-term preservation, education and research. 

Long-term management of forest ecosystems requires a detailed understanding of both 

the resources contained in the Park, as well as forest dynamic processes over time. Long-term 

monitoring is generally viewed as an appropriate way to capture both the static features of 

natural ecosystems as well as the dynamic processes within those ecosystems. Permanent forest 

monitoring plots are important for an understanding of the ecological processes that take place in 

a forest. Basic measures of tree diversity, forest structure, tree growth, and forest turnover are 

important parameters to monitor ecological processes in a dynamic environment. Over the long-

term, the impacts of large-scale disturbances such as hurricanes and global climate change can be 

measured using permanent sample plots (hereafter, plots). Moreover, the impacts of human 

activity, conservation, and even invasive species can be addressed through a set of plots.  

In the late 1990s, three 1.2-ha long-term forest permanent sample plots were established 

in the Tutuila unit of the NPSA (Webb and Fa’aumu 1999). A fourth plot was established outside 

the NPSA on Tutuila. However, there has been no effort to establish plots in the Ta’u unit. 

Therefore, establishing a set of plots on the island of Ta’u is an important step in the long-term 

conservation, management, education and research agenda of the National Park. This document 

presents the principal activities and results of field work to establish forest plots in the Ta’u unit 

of the NPSA.  

 

METHODS 
Site description 

The volcanic island of Ta’u is the youngest island in the Samoan archipelago, formed 

approximately 300,000 ybp (Nunn 1998). The entire archipelago was formed above a geologic 

‘hotspot’. The hotspot is a massive pool of lava beneath the surface of the earth that produced the 
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islands periodically as the plates moved over the hotspot in a westerly direction. Evidence for 

this formation is in the age of the islands, which follows a W-E pattern from oldest to youngest, 

with the island of Savai’i being the oldest at approximately 2.69 million years old (Nunn 1998). 

Although the island of Ta’u was formed by the activity of one large volcano – Lata 

Volcano – two smaller lava volcanoes, Tunoa Volcano and Luatele Volcano, contributed to the 

NW and NE corners of the island. On the south side of the island, sheer cliffs from Lata summit 

(930 m asl) drop near-vertically to the Liu Bench and subsequently into the sea. 

The Ta’u unit of the NPSA is located on the eastern portion of the island and extends 

from above Fitiuta village at the NE corner of the village past Luatele Crater and up to Lata. It 

extends to the southern edge of the island and includes portions of the Li’u Bench and southern 

coastline. It also covers the SE coastline, extending as far northward as the Saua village site, 

Figure 1. Maps showing plot locations on Ta’u island. Top left: a topographic map with the Ta’u unit 
of the NPSA shown in gray. Bottom left, a three dimensional west-looking image. Right: a vertical 
view. The two color images are the output of a resolution merge between two IKONOS® images, (1 m 
and 4 m) resulting in a 1-m resolution image. 
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where the boundary is above the eastern escarpment (Figure 9). Within the Ta’u unit, several 

vegetation types have been described by Whistler (1992). Of those, only a few are dominated by 

trees (Table 1). 

 

Site Selection 
In general, the eastern side of Ta’u has been under traditional Samoan cyclical cultivation and 

(presumably) dispersed habitation for an unknown number of generations1. Clan-owned 

plantation land would usually be marked with several breadfruit and coconut trees on the 

borders, or with rock walls. In plantation areas, all forest trees would be cleared and crops such 

as taro and ta’amu would be planted for a few cycles depending on soil conditions and fertility. 
                                                 
1 Historical information was gathered through informal conversations with High Chief Paopao and with 
several other citizens of Fitiuta village. 

Table 1. Description of tree-dominated vegetation (forest) types of Ta’u as defined by Whistler 
(1992). 

Forest Type  Definition 

Littoral forest Dominated by Barringtonia asiatica, Pisonia grandis and 
Hernandia nymphaeifolia. Extends to about 60 m inland. 
 

Dysoxylum lowland forest 
on coral rubble 

Heavily dominated by D. samoense. In Whistler’s 1980 survey of a 
20 m x 50 m plot in the same site as the present D. samoense coastal 
forest, D. samoense had a relative basal area of 68%. 
 

Dysoxylum lowland 
forest on talus slopes and 
cliffs 

Located on cliffs and steep slopes along coasts. Dominated by D. 
samoense and Hibiscus tiliaceus. 
 
 

Mixed lowland forest Above cliff faces to about 35 m on the east side of the island. This 
‘undisturbed’ forest type is generally absent from Ta’u because of 
agriculture and hurricanes. However, Whistler suspected that it 
would be dominated by Syzygium inophylloides. 
 

Montane forest Species-rich forest type beginning around 450 m elevation (lower on 
the east side, evidently). Dominated by Astronidium pickeringii, 
Dysoxylum huntii, Cyathea spp., and others. 
 

Secondary forest Forest recovering from both natural disturbance (hurricanes) and 
human-induced disturbances (agriculture). Dominated by Alphitonia 
zizyphoides, Bischofia javanica, Dysoxylum samoense, Neonauclea 
forsteri, Pometia pinnata, and Rhus taitensis, as well as the 
agroforestry species Artocarpus altilis, Cocos nucifera, and Carica 
papaya. 
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Although farmers would attempt to cut all trees, very large or unwieldy trees would be burned 

rather than cut. This technique, while generally successful, did not kill all the large trees on the 

land. Hence, some very large trees would inevitably remain on some farming land.  

Afterwards, bananas would be planted and root crops would be shifted to a new location. 

It was very difficult to piece together the specific cultivation history of eastern Ta’u prior 

to 1987. We learned that just before 1987, root crop cultivation was practiced in several locations 

above the escarpment until hurricane Tusi struck and destroyed the plantations. Subsequently, 

cultivation was shifted to Si’u. By 1991 / 92, root crop cultivation had shifted to Luama’a / Saua 

when hurricanes Ofa and Val struck in those years, respectively.  

Although several informants revealed that they believed there were dispersed villages or 

houses above the eastern escarpment historically, it had not occurred in their lifetimes. So, 

although it is likely that there were dispersed settlements creating a matrix of forest and 

agriculture, it is unclear how long ago these existed. We were unable to find clear evidence of 

fale (traditional Samoan house) foundations in the forest during our field work, but we did not 

make a complete survey of the eastern part of the island.  

Our field methods were undertaken through three general phases: initial reconnaissance, 

plot establishment, and tree survey. Reconnaissance hikes were taken in order to gather a specific 

understanding of the forest structure and composition of this NPSA unit before deciding on final 

plot locations. To achieve this, we undertook several days of reconnaissance hikes to evaluate 

forest conditions and assess the potential for plot establishment. Our reconnaissance hikes were 

done on several occasions and not only at the beginning of the field work. Our initial 

reconnaissance was done along the SE coastline to assess the potential for plot establishment in 

the coastal forest. This was followed by hikes to and above Luatele Crater from the old road 

above the quarry, and up to and following Laufuti Stream on Li’u Bench. 

We first decided on establishing two 1-ha (50 m x 200 m) coastal plots at Lua amata: one 

in a relatively intact site described as Dysoxylum coastal forest by Whistler (1992), and a second 

in an area that clearly had beeN utilized as a plantation prior to the establishment of the NPSA 

(Figure 2). The Dysoxylum coastal forest (hereafter referred to as the Coastal Forest plot)   
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had many very large Dysoxylum and other native forest trees, as well as few or no plantation 

trees. Additionally, the bird’s nest fern Asplenium nidus L. was very abundant on the forest floor 

and growing on rocks. In contrast, the plantation site (hereafter referred to as the Coastal 

Plantation plot) had fewer large trees and large populations of coconut and breadfruit trees. The 

soil of both plots was the Ngedebus variant, i.e. poorly weathered basaltic alluvium with coral 

rubble.  

We established two 2-ha (100 m x 200 m) plots in forest near 200 m elevation, in an area 

generally known as Lalomaota (Figure 2). Evidently, Lalomaota was recognized as an area that 

contained a high density of maota trees, under which one could rest after the walk to the area, or 

after hunting or other work on the plantation. According to Whistler (1992), ‘maota’ refers to D. 

huntii on Ta’u, although on Tutuila, ‘maota’ refers to Dysoxylum maota. Since there is no D. 

maota on Ta’u, the Lalomaota reference may be to D. huntii. High Chief Paopao described 

Figure 2. Photographs of three of the four sites selected for plot establishment: a and b, Coastal 
Forest (note abundant Asplenium nidus); c, Upper Forest (note epiphytes); d, Upper Plantation 
(note abundant multiple-stemmed Artocarpus altilis trees).
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‘maota’ as a slow-growing, hard-wooded tree with short compound leaves. D. huntii leaves fit 

this description, although we do not know the growth rate or wood hardness.  

The third plot is a regenerating plantation located at about 150 m elevation. We 

interviewed several people and they were all aware of extensive plantations above the 

escarpment, in approximately the same area where this plot was located. We are confident that 

this plot was established within the area described as old village plantations. This plot was 

named Upper Plantation. 

The landscape is terraced to facilitate taro cultivation. This forest was dominated by a 

population of breadfruit trees, which appeared to be a well-established and regenerating 

population that had taken over previously cleared agricultural land. While native forest trees and 

regeneration were encountered during our initial reconnaissance, it was clear to us that this site 

was clearly dominated by the agroforestry species. We therefore took great interest in the area as 

a monitoring site, which will allow us to follow regeneration of the forest after abandonment 

since (presumably) 1987. 

The fourth plot is located approximately 500 m south of the Upper Plantation, at 

approximately 200 m elevation. During our reconnaissance surveys we encountered this area and 

noted that it seemed to have the most complex structure on the eastern slope, which may suggest 

the least amount of disturbance from agriculture and/or natural processes. There were several old 

rock walls of about 1 m height in an uphill-downhill orientation in the area. These may have 

been boundary markers among households or villages. Despite the clear indication of human 

presence, we found no large plantation trees in the immediate vicinity; we did, however, 

encounter several seedlings of Artocarpus altilis in and near the plot. The area was also notable 

because of the presence of a massive Calophyllum inophyllum tree and many large trees of slow-

growing species. Moreover, there was a robust epiphyte load. These features suggested that the 

area was the least impacted forest and would therefore make an excellent comparative plot to the 

Upper Plantation. This plot was named Upper Forest. The soil of the upper plots was the Pavaiai 

series, i.e. a very rocky soil underlain with lava flow.  

GPS points for the NE corner of each plot using the UTM coordinate system (datum 

NAD83) are as follows: Coastal Plantation: E 670209, N 8424413; Coastal Forest: E 670251, N 

8424663; Upper Plantation: E 669970, N 8425889; Upper Forest: E 669857, N 8425231. 
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Plot establishment and survey 
We established the plots using standard protocols designed and implemented for permanent 

sample plots around the world (Alder and Synnott 1992). The plots were established to measure 

1-ha and 2-ha on the horizontal plane, with PVC tubes inserted into the ground every 10 m. We 

used a Suunto® KB-14 sighting compass (accuracy 0.17 degree) and Leica DISTO® laser 

distance meter (accuracy ±3 mm) to make the measurements. The KB-14 compass could not be 

calibrated for the large magnetic declination in American Samoa, so the plots were oriented 

towards magnetic north2. Subplots were numbered from 1 to 20 in the westernmost ‘column’, 

subplots 21 – 40 in the adjacent column, and so forth. The lowest subplot numbers in the column 

were always to the north (Figure 3). 

                                                 
2 All plots were oriented so that the long axis was oriented N-S. 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

30 50 70 90 110 130 150 170 190

21 41 61 81 101 121 141 161 181

40 60 80 100 120 140 160 180 200

North

Figure 3. Numbering scheme of 
subplots in the permanent plots. Each 
subplot is 10 m x 10 m. This example is 
for the 2 ha upper plots (100 m x 200 
m). 
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We encountered serious difficulty with ‘magnetic anomalies’ in all plots. These 

anomalies were shifts in the magnetic field that strongly affected the compass reading. These 

fields could change a compass reading by several degrees, leading to erroneous readings and 

difficulties in making straight plot lines. This may have been related to the magnetic orientation 

of minerals in the lava. We triangulated readings from other PVC tubes when necessary to make 

the plots as precisely measured as possible with our equipment.  

When the plot framework was established, we surveyed every tree ≥10 cm dbh (diameter 

at 1.4 m height, avoiding stem irregularities). In each subplot, every stem was identified to 

species and measured for dbh using a standard diameter tape (Figure 4). For trees that branched 

Figure 4. Some data collection 
methods. Top left: measuring DBH 
of large buttressed Dysoxylum 
samoense tree. Top right: nailing 
tag into a double-stemmed 
Syzygium inophylloides tree. 
Lower left: measuring DBH and 
recording of a small Ficus scabra 
tree. Lower right: Using a laser 
meter to measure distance from a 
triple-stemmed individual to 
subplot corners. 



 9

below 1.4 m height, including coppices, we measured, tagged and recorded each stem 

individually.3 However, these stems were all recorded as belonging to the same individual.  

Hibiscus tiliaceus is a scrambling shrub or tree, and it is not uncommon to find 

adventitious roots emerging from a vertical branch on a horizontal main stem. Moreover, large 

stems may also enter into the soil and set root. In effect, rooting of both branches and main stems 

could make those sections of the individual independent of the larger organism. When we 

encountered mature, adventitious rooting systems in H. tiliaceus beyond 1.4 m from the original 

base of the tree that would allow that portion of the individual to survive in the case of damage to 

the base of the tree, we considered it to be a unique individual. Any adventitious roots within 1.4 

m of the base of the tree were considered to be part of that individual. Using this rule allowed us 

to make consistent decisions for our data collection. However, in our data an individual of H. 

tiliaceus does not necessarily refer to genetically distinct individuals. Our decision rule resulted 

in some redundant measurements of the same genets, although we have no idea of how much 

redundancy there was. 

A unique numbered tag was nailed to the stem 20 cm above the dbh measuring point. The 

tags for this project were numbered from 1 to 1000. In the 2 ha plots there were more than 1000 

trees in each plot, so trees 1000 – 1500 were given two consecutively-numbered tags (e.g. 

001002), and trees 1500 – 1833 were given 3 tags (e.g. 001002003).  

We included tree ferns (Cyathea spp.) in the survey. Tree ferns were included because 

they added an important element to the structure of the forest. However, we did not measure dbh 

because the diameter of tree ferns does not increase like dicotolydonous trees. However, we did 

map their locations and calculate their heights. 

Heights of all trees and tree ferns were calculated using a Suunto® clinometer and 

measuring the angle to the top of the tree, to the first branch above 1.4 m, to the base of the tree, 

and by measuring the horizontal distance to the tree with the laser meter. The height of first 

branch was measured in order to add a new measure of forest structural complexity to our 
                                                 

3 In many cases, where multiple stems were superficially fused or when multiple stems emerged 
very close together from the ground, it was difficult to determine whether those stems were from one 
genetically unique individual, or whether each stem was itself an individual. We examined every 
questionable case thoroughly, looking for evidence of a shared root system, which would indicate a 
coppice or vegetative sprout (e.g. root sucker). Where there was clear evidence of a shared root system, 
coppicing, or branching, we recorded those stems as belonging to one individual. When clear evidence 
was lacking, we recorded each stem as a unique individual. 
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analysis. For tree ferns, the ‘height of first branch’ was the height of emergence of the lowest 

frond. 

We constructed a map of all trees and tree ferns in the plots. Mapping was accomplished 

by measuring the distance of each individual to the NW and SW corner of the subplot and 

converting those measures into Cartesian coordinates (x,y) for the subplot, and then converting 

those coordinates to Cartesian coordinates for the entire plot.  

The total field time to set up these four plots was 66 days. It is important to note that the 

core four-member team maintained consistency in work quality by having each member follow a 

specific data collection duty for the entire field period (Figure 5). There were several data points 

being collected simultaneously for each tree: tag number, dbh, species name, coordinates, tree 

height measurements, and any notes of interest (tree leaning, bark damage, etc). It was essential 

Figure 5. Data collection duties were consistent for each team member 
throughout the course of the field work; such data collection requires serious 
concentration and commitment. Enamul Kabir, pictured below, was 
responsible for recording each of the >40,000 data points. Similarly, Martin 
van de Bult (not pictured) measured the heights of all stems, using a 
clinometer to measure three features of the >4100 stems. Maintaining team 
cohesiveness and morale is essential for accurate data collection, and when 
present can lead to high data collection efficiency and a low error rate. In a 
resurvey of these plots in 2005 after Cyclone Olaf, we detected a data 
collection error rate of less than 0.1%. 
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that we maintained consistency as much as possible in terms of which person was 

communicating a particular piece of information to the data recorder. Thus, team members did 

not shift among work duties very much, so the overall team was able to maintain a high level of 

work efficiency as we evolved an effective data collection strategy. 

 

Data analysis 
After data entry, the data were cleaned by a thorough check. Any discrepancy was rectified by 

revisiting the tree in the field, resampling the individual, and changing the entry in the computer 

if necessary. 

For the analysis, we differentiated between ‘individuals’ and ‘stems’. A tree with several 

branches originating below 1.4 m was considered one individual with multiple stems. We 

calculated our diversity indices and tree densities (and derivatives of tree densities) based on 

individuals. Basal area measurements, however, included all stems of all species. 

The similarity among plot species compositions was calculated using the Morisita-Horn 

Index of similarity, which is less influenced by species richness and sample size than other 

similarity indices such as the Jaccard Index or Sorenson Index (Magurran 1988). Diversity 

indices were calculated with the statistical ecology programs written by Ludwig and Reynolds 

(1988). We calculated three diversity indices aside from total richness: Simpson’s λ (Simpson 

1949), Shannon’s H’ (Shannon and Weaver 1949), and the modified Hill Ratio for evenness 

(Alatalo 1981). 

To estimate the degree of clumping of trees in each plot, we calculated Ripley’s K 

(Ripley 1981) for the entire tree community and the most important species. Ripley’s K was 

calculated across a range of lag distances, from 1 – 25 m for the coastal plots and 1 – 50 m for 

the upper plots; in both cases we used 1-m lag distance intervals. We used the Splancs package 

(Rowlingson and Diggle 2004) adapted for the R language and environment (R Development 

Core Team 2005). In this paper we present the basic spatial analysis of whether the species 

exhibited clumping and if so, at what lag distances. 
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RESULTS AND DISCUSSION 
Forest composition 

In the total 6 ha, we encountered a total of 54 tree species, not including the tree ferns which we 

recorded as Cyathea sp. (Appendix 1). Several of the tree species in the plots are uncommon to 

rare in American Samoa. These include Celtis harperi, Litsea samoensis, Crateva religiosa, and 

Euodia hortensis. Dysoxylum samoense was the most abundant species across all four plots, 

followed by Artocarpus altilis and Hibiscus tiliaceus. However, there was substantial variation 

among plots in terms of composition and diversity.  

A total of 18 species were found in the Coastal Plantation. This plot was dominated by D. 

samoense, with Macaranga harveyana, A. altilis, and Cocos nucifera of secondary importance 

(Appendix 1). In the Coastal Forest, we encountered 16 species. The plot was dominated by D. 

samoense, accounting for about 41% of all trees. Of secondary importance was Diospyros 

samoensis, Sterculia fanaiho, and Pisonia umbellifera (Appendix 1). 

In the Upper Plantation, 26 tree species were recorded. This plot was heavily dominated 

by A. altilis and D. samoense, with Ficus scabra a distant third in importance (Appendix 1). 

There were 70 stems of Morinda citrifolia, several large Spondias dulcis trees, along with one 

Carica papaya stem and one Syzygium malaccense tree. In the Upper Forest, a total of 35 species 

were encountered. H. tiliaceus was the most common individual, followed by Myristica inutilis 

(Appendix 1). This plot contained good populations of Trichospermum richii and Pometia 

pinnata, both of which were absent from the NPSA plots on Tutuila (Webb and Fa’aumu 1999). 

This plot also contains Celtis harperi, Litsea samoensis and Euodia hortensis, which were 

uncommon in American Samoa and absent from the National Park plots on Tutuila. 

Of particular interest was the finding of several non-native Flueggea flexuosa individuals 

in the Coastal Plantation and the Upper Forest. To date there have been no formal reports of F. 

flexuosa establishing in natural forest outside of homesteads, so these plots demonstrate that F. 

flexuosa can naturalize in native forests of American Samoa. 
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Diversity indices revealed that in addition to the highest species richness, the Upper 

Forest was most diverse in terms of Simpson’s λ and Shannon’s H’ (Table 2). On the other hand, 

the modified Hill Ratio – which approaches zero as one species becomes increasingly dominant 

in the community – suggests that the species in the Upper Forest were the least evenly 

distributed. This is probably because of the heavy dominance of H. tiliaceus in the Upper Forest. 

The relatively greater dominance of H. tiliaceus over species ranks 2, 3, and 4 than in other plots 

resulted in a low evenness index. 

Morisita-Horn Indices revealed high similarities between the Coastal Plantation and the 

Coastal forest (0.779) and between the Coastal Plantation and the Upper Plantation (0.702) 

(Table 3). Moderate similarity existed between the Coastal Forest and the Upper Plantation 

(0.518), and low similarity was exhibited between the Upper Forest and any of the other three 

plots (<0.200 for each). Thus, compositional similarities were greatest among the two lowest-

diversity plots, with the least similarity between the highest diversity plot and any other plot. 

 

Table 2. Diversity indices of the four permanent forest plots, Ta’u. 

Diversity Index 
Coastal 

Plantation 
Coastal 
Forest 

Upper 
Plantation 

Upper 
Forest 

Richness 18 16 26 35 

Simpson’s λ 0.18 0.21 0.25 0.15 

Shannon’s H' 2.08 1.99 1.84 2.47 

Modified Hill Evenness Ratio 0.65 0.59 0.58 0.51 

Stem Density (number / ha) 459 327 588.5 633.5 

Basal Area / Ha 23.78 31.42 27.23 29.27 

Table 3. Morisita-Horn similarity indices among the four plots. 

 
Morisita-Horn Index of similarity 

  Coastal Plantation Coastal Forest Upper Plantation 
Coastal Forest 0.779   

Upper Plantation 0.702 0.518  

Upper Forest 0.140 0.188 0.163 
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Forest structure 
Forest structure varied across the four plots. Tree densities ranged from 327 ha-1 in the Coastal 

Forest to 633.5 ha-1 in the Upper Forest (Table 2). The Coastal Plantation and Upper Plantation 

were intermediate, with 459 trees ha-1 and 588.5 trees ha-1, respectively. Basal areas ranged from 

23.8 m2 ha-1 in the Coastal Plantation to 31.42 m2 ha-1 in the Coastal Forest. The Upper 

Plantation and the Upper Forest plots were intermediate, with 27.2 m2 ha-1 and 29.7 m2 ha-1, 

respectively. The Coastal Forest had few small trees, resulting in low tree density values, but 

massive Dysoxylum trees that accounted for 24.1 m2 ha-1, i.e. 76.6% of the total plot basal area 

(Appendix 1). Species ranks according to total basal area were generally similar to abundance 

rankings. D. samoense was first in three of the four plots, with H. tiliaceus ranking first in the 

Upper Forest.  

A total of 372 trees in 31 species were multiple-stemmed (Table 4), which is 11.5% of all 

individuals, and 57% of the species. The coastal plots had proportionately fewer multiple-

stemmed trees, 6.5% and 4.9% in the Coastal Plantation and the Coastal Forest, respectively. In 

contrast, 13.1% of the trees in the Upper Plantation, and 13.6% of the trees in the Upper Forest 

were multiple-stemmed. In terms of proportion of species with multiple-stemmed individuals, 

the numbers were consistent across plots. The Coastal Plantation had 9 species with multiple-

stemmed individuals (50% of the total species), the Coastal Forest had 7 species (44%), the 

Upper Plantation 11 species (42%) and the Upper Forest 15 species (43%). Thus, whereas the 

number of trees with multiple-stems differed across sites, the proportion of species with 

multiple-stems did not. 

Species that had notably high levels of multiple-stemmed trees included A. altilis, 

Bischofia javanica and D. samoense in the Upper Plantation, and H. tiliaceus and Syzygium 

inophylloides in the Upper Forest. However, for A. altilis and D. samoense it was very difficult 

to differentiate between multiple-stemmed individuals and genetically unique individuals that 

had established next to each other. It is most likely that multiple-stemmed trees in the Upper 

Plantation resulted from historical cutting during plantation management, such as with B. 

javanica. 
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Table 4. Frequency of individuals with multiple-stems in each plot. 

 Coastal 
Plantation  Coastal 

Forest  Upper 
Plantation 

Upper 
Forest  Total 

SPECIES N %  N %  N % N %  N % 
Alphitonia zizyphoides  2 1.9  2 1.8
Artocarpus altilis 11 18.0 57.0 12.2    68 12.9
Barringtonia asiatica 5 33.3 2 20.0    7 28.0
Barringtonia samoensis  2 11.8    2 11.8
Bischofia javanica  19 26 2 4.3  21 17.6
Cerbera manghas  1 16.7  1 16.7
Diospyros samoensis  2 5.1    2 3.4
Dysoxylum samoense 2 1.3 2 1.5 46 14.6 10 11.9  60 8.7
Elaeocarpus floridanus  1 2.9  1 2.9
Erythrina  variegata  2 100.0    2 100.0
Ficus scabra  9 8.3    9 5.5
Ficus tinctoria  1 100.0    1 25.0
Flacourtia rukam  4 13.3  4 12.9
Flueggea flexuosa 1 11.1    1 5.6
Garuga floribunda  2 25.0    2 11.1
Hernandia nymphaeifolia 3 30.0    3 30.0
Hibiscus tiliaceus  3 8.8 121 27.9  124 26.6
Litsea samoensis  1 50.0  1 50.0
Macaranga harveyana 1 1.3    1 1.3
Macaranga stipulosa  2 66.7 1 4.5  3 12.0
Morinda citrifolia 1 14.3 8 11.4    9 10.0
Myristica inutilis  5 3.9  5 3.5
Neonauclea forsteri  4 12.9  4 11.4
Pipturus argenteus  1 5.6    1 4.8
Pisonia grandis 4 19.0    4 10.8
Pisonia umbellifera  5 15.2    5 15.2
Planchonella garberi  1 8.3  1 8.3
Rhus taitensis  5 45.5 6 6.7  11 11.0
Sterculia fanaiho 2 66.7 2 6.1    4 4.9
Syzygium inophylloides  12 12.8  12 12.8
Trichospermum richii  1 4.8  1 4.8

Sum 30 16 154 172   372 
Percent stems 6.5 4.9 13.1 13.6    11.5
Percent species 50 44 42 43    57



 16

The Coastal Forest had the tallest canopy, which was defined as the tallest 10% of trees 

in each plot (Figure 6). The top 10% of trees were taller than 25 m in the Coastal Forest, 19.8 m 

in the Coastal Plantation, 18.3 m in the Upper Forest, and 15.4 m in the Upper Plantation (Figure 

6 inset). These figures may not precisely measure the ‘canopy height’, which is the height of the 

upper contiguous tree crowns of a forest (Richards 1996). However, they can be considered 

general estimates of canopy height, and are accurate indicators of the difference in canopy 

heights among the plots. It is clear that the two coastal plots were taller than the upper plots. This 

difference becomes more evident if the comparison is made between analogous plots, where the 

Coastal Forest canopy was about 9.5 m taller than the Upper Forest, and the Coastal Plantation 

canopy was about 4.5 m taller than the Upper Plantation canopy. 

The decline of the scaled-rank-height curves for the subcanopy was parallel for the 

Coastal Plantation, Upper Forest and Upper Plantation plots (Figure 6). This suggests that the 

plots had similar proportions of trees across the height spectrum. Vertical structural complexity 

of those three plots was therefore similar. However, the Coastal Forest curve declined at a faster 

rate than the other three plots. This indicates that the Coastal Forest had fewer mid-story trees 

relative to the other plots, suggesting a more simplified vertical structure than the other three 

plots. The simplified vertical structure was also evident with a lower proportion of trees with 

multiple stems (Table 4). 
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The Coastal Forest contained the tallest tree of the 6 ha (43.6 m), and there were no other 

trees >40 m in the 6 ha (Table 5). This single tree could be considered the only true emergent 

tree in the 6 ha surveyed, because it was more than 5 m taller than the second tallest tree in the 

plot (Table 5). The set of the eight tallest trees in the Coastal Plantation were not emergents since 

their heights (30.1 – 32.8 m) were canopy height for the Coastal Forest only 50 m away, and this 

forest would be expected to revert to a Dysoxylum-dominated coastal forest in time. There were 

no emergent trees in the short-statured upper forest plots.  

The species composition of the tallest tree group differed among the four plots (Table 5). 

D. samoense contributed greatly to the upper canopy composition of both coastal plots, and was 

the only species found in the upper canopy of the Coastal Forest. Pisonia grandis was an 

important feature of the upper canopy composition in the Coastal Plantation. In contrast, the 

tallest trees in the Upper Plantation consisted of the agroforestry species S. dulcis and the 

secondary species A. zizyphoides. Only one D. samoense tree was among the ten tallest trees in 

the Upper Plantation. The upper stratum of the Upper Forest canopy consisted primarily of A. 

Table 5. The tallest 20 trees in each plot. In order to save space, the species coding system uses the first three 
letters of the genus name and the first three letters of the species name. 

 Coastal Plantation Coastal Forest Upper Plantation Upper Forest 

Rank Species DBH (cm) Ht (m) Species DBH (cm) Ht (m) Species DBH (cm) Ht (m) Species DBH (m) Ht (m) 

1 PISGRA 100.5 32.8 DYSSAM 101.3 43.6 SPODUL 54.8 25.7 ALPZIZ 37.4 27.2 
2 PISGRA 134.3 32.4 DYSSAM 63.7 37.3 SPODUL 67.2 25.5 SYZINO 38.0 24.9 
3 DYSSAM 79.0 31.8 DYSSAM 84.5 36.0 SPODUL 53.2 24.7 PLAGAR 52.3 23.7 
4 PISGRA 109.9 31.7 DYSSAM 93.5 34.7 ALPZIZ 39.0 23.8 SYZINO 45.4 23.5 
5 DYSSAM 57.0 31.6 DYSSAM 71.8 34.5 SPODUL 67.7 22.6 DYSSAM 65.7 23.4 
6 DYSSAM 54.8 30.5 DYSSAM 94.0 32.9 ALPZIZ 33.9 22.0 ALPZIZ 14.4 23.4 
7 DYSSAM 77.5 30.4 DYSSAM 84.5 32.4 SPODUL 76.7 21.1 DYSSAM 44.0 23.3 
8 DYSSAM 80.5 30.1 DYSSAM 98.9 31.8 DYSSAM 32.3 20.9 ALPZIZ 27.7 23.0 
9 FICOBL n/a 29.7 DYSSAM 93.7 31.5 ALPZIZ 49.4 20.6 SYZINO 57.8 22.9 
10 DYSSAM 30.6 27.5 DYSSAM 97.7 31.3 SPODUL 41.7 20.6 ALPZIZ 33.6 22.9 
11 DYSSAM 63.6 25.7 DYSSAM 65.9 30.8 ALPZIZ 15.0 20.4 SYZINO 54.1 22.6 
12 HERNYM 57.4 25.7 DYSSAM 31.0 29.7 CANODO 39.8 19.9 ALPZIZ 22.6 22.4 
13 ARTALT 40.7 25.4 DYSSAM 110.9 29.7 SPODUL 50.0 19.8 SYZINO 40.3 22.1 
14 DYSSAM 57.6 25.4 DYSSAM 89.9 29.4 RHUTAI 34.7 19.7 ALPZIZ 39.6 22.0 
15 DYSSAM 48.9 25.3 DYSSAM 62.3 28.8 DYSSAM 40.3 19.7 ALPZIZ 38.0 21.8 
16 DYSSAM 31.4 25.3 DYSSAM 59.4 28.7 DYSSAM 35.4 19.7 RHUTAI 27.6 21.6 
17 ARTALT 25.4 25.2 DYSSAM 73.6 28.5 DYSSAM 28.1 19.6 ALPZIZ 47.0 21.5 
18 DYSSAM 34.2 24.8 DYSSAM 99.5 28.2 RHUTAI 61.3 19.2 ALPZIZ 37.3 21.4 
19 ARTALT 40.5 24.2 DYSSAM 68.2 28.1 DYSSAM 38.0 19.1 STEFAN 21.8 21.3 
20 DYSSAM 37.7 24.2 DYSSAM 93.2 27.7 ARTALT 26.6 18.7 ALPZIZ 20.9 21.3 
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zizyphoides and S. inophylloides, with D. samoense contributing a minor component. Of the six 

Planchonella garberi trees in the Upper Forest, one was among the three tallest trees at that site.  

In Figure 7 we compare the size class distributions of the tree communities across the 

four sites. In general the distribution of size classes was similar across sites, with the exception 

of the larger tree size classes in the Coastal Forest. In that plot, there was a higher proportion of 

large trees than in the other three plots. In contrast, the basal area class distributions varied 

substantially across the four plots (Figure 7). In the Coastal Plantation, the three basal area 

classes with the greatest contribution to overall basal area were 10 – 20 cm, 20 – 30 cm, and 

≥100 cm dbh. In the Coastal Forest, the majority of basal area was contained in trees ≥80 cm 

dbh, with each class <80 cm dbh contributing similarly. In the Upper Plantation most of the basal 

area was in trees 10 – 40 cm dbh, and peaking in the 20 – 30 cm dbh class (about 35% total in 

that class). With no trees above 80 cm dbh in the Upper Plantation, there was no contribution of 

trees ≥80 cm dbh to plot basal area. The Upper Forest was similar to the Upper Plantation in that 

the three smallest size classes contributed the greatest to total community basal area, but the 10 – 

20 cm dbh class contributed the most to basal area (about 27%). With only two trees ≥80 cm 

dbh, the contribution of large trees to total community basal areas was minimal. 

There was variability in the size class distributions for six common species in the coastal 

plots (Figure 8). The only species that had similar size class distributions in both coastal sites 

was F. scabra, but this is not surprising because that species rarely achieves large dimensions. It 

is interesting to note, however, that in the Coastal Forest, we encountered one relatively large F. 

scabra tree of 31.4 cm dbh. The other five species, however, had substantial differences in their 

size class distributions between the two plots. Barringtonia asiatica, D. samoense, and P. 

grandis all showed higher numbers of trees 10 – 20 cm dbh in the Coastal Plantation. Moreover, 

in comparison with the Coastal Forest, B. asiatica and D. samoense had fewer large trees in the 

Coastal Plantation. In contrast, Diospyros samoensis and S. fanaiho had higher numbers of trees 

10 – 20 cm dbh in the Dysoxylum coastal plot, in addition to greater abundances of larger trees, 

than in the Coastal Plantation. 
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Figure 7. Diameter and basal area class distributions for the trees communities of the four 
permanent forest plots, Ta’u. 
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Diospyros samoensis is known to be a shade-tolerant and slow growing species that 

requires long periods of time to reach 10 cm dbh. Our observations have been that seedlings have 

the capacity to survive in low light levels, and with very slow growth rates. Growth rate data for 

adult D. samoensis trees show that its growth rates are among the slowest of any species in 

American Samoa (E. Webb, unpublished data). Thus, the recruitment of seedlings into the 10 – 

20 cm dbh class takes many years. The higher numbers of D. samoensis trees in all size classes 

in the Coastal Forest therefore suggests that the understory of the Coastal Forest had been 

subjected to lower intensities of disturbance, and may have had longer to recover from 

agricultural practices, than the Coastal Plantation. 

One rather puzzling result is the difference in size class distributions of S. fanaiho 

between the two coastal plots. It is generally recognized that the Sterculiaceae, along with the 

closely related Tiliaceae, contain a high proportion of species that can be found in open to 

disturbed forests. Notwithstanding the fact that Webb and Fa’aumu (1999) found no difference in 

abundances of S. fanaiho among three forest plots on Tutuila (low sample sizes), we would have 

expected to see higher abundances of S. fanaiho in the Coastal Plantation, where light levels 

were higher. Lack of agreement with our expectation leads us to question whether S. fanaiho is 

an early-successional species that establishes in recently-disturbed forest, or whether it requires a 

closed secondary forest to be established before seeds can germinate and compete with other 

species. The fact that large S. fanaiho trees can be found in older-growth forest suggests that it is 

a ‘persistent secondary’ species. Alternatively, it is possible that seeds are being dispersed into 

the Coastal Plantation at slower rates than in the Coastal Forest. This could come about as a 

result of a lack of local seed source or fewer seed deposition events by dispersers (i.e. preference 

of birds for the Coastal Forest habitat over the Coastal Plantation habitat). Research needs to 

evaluate the germination and survival requirements of the species. 

Six of eight species in the Upper Forest had higher levels of regeneration than the Upper 

Plantation (Figure 9). Alphitonia zizyphoides, Cananga odorata, H. tiliaceus, Macaranga 

stipulosa, Rhus taitensis, and S. inophylloides all showed higher numbers of trees in the 10 – 20 

cm dbh class than the Upper Plantation. Of those species, all except Cananga odorata had more 

trees in all size classes; 30 – 50 cm dbh C. odorata trees were more abundant in the Upper 

Plantation. In contrast, B. javanica and D. samoense had more robust populations, with higher 

levels of 10 – 20 cm dbh trees, in the Upper Plantation than in the Upper Forest.   
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Figure 8. Size class distributions for important species in the two coastal plots. 

Figure 9. Size class distributions for important species in the two upper plots. 
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 These results are different than our expectation based on apparent intensity of 

disturbance and forest physiognomy in the upper plots. On Tutuila, Webb and Fa’aumu (1999) 

found higher abundances of A. zizyphoides, B. javanica, C. odorata, H. tiliaceus, M. stipulosa, 

and R. taitensis in a regenerating forest (Alava) than in mature forest (Amalau or Vatia). On 

Ta’u, what we considered to be more mature forest had higher abundances of all those species 

except for B. javanica.  

 

Tree dispersion patterns 
There was substantial variation between the two coastal plots in the spatial distributions of 

important species (Table 6, Appendix 2). In the Coastal Plantation, four of the five most common 

species exhibited clumping at all lag distances (except F. scabra, which was not clumped for 1 – 

5 m lag distances). In contrast, only S. fanaiho exhibited clumping in the Coastal forest, at 3 – 15 

m lag distances. 

The spatial distribution of abundant species also varied across the two upper plots. In the 

Upper Plantation, all five of the abundant species were clumped, and the minimum lag distance 

of clumping increased with species rank (Table 6). In contrast, in the Upper Forest M. inutilis 

exhibited no clumping; however aside from that species a similar trend of increasing minimum 

lag distance was apparent. 

 

 

Table 6. Results of spatial analysis calculating Ripley’s K for the most abundant species in each plot. The 
numbers in parentheses indicate the lag distances (m) at which the species exhibited clumping in that plot.  

Rank Coastal 
Plantation  Dysoxylum 

Coastal Forest  Upper 
Plantation  Upper 

Forest 
1 D. samoense (>1)  D. samoense  A. altilis (>0)  H. tiliaceus (>0) 

2 M. harveyana (>0)  D. samoensis  D. samoense (>0)  M. inutilis 

3 A. altilis (>1)  S. fanaiho (3-15)  F. scabra (1-4)  A. zizyphoides (1-30) 

4 C. nucifera  P. umbellifera  B. javanica (>9)  S. inophylloides (15-35) 

5 F. scabra (>5)    M. citrifolia (>13)  R. taitensis (5-25) 

6       D. samoense (13-32) 
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Tree fern community 
Tree ferns were only found in the two upper plots. A total of 388 tree ferns were encountered, of 

which 379 were in the Upper Forest. In the Upper Plantation, the nine tree ferns ranged in 

heights, with six of the nine tree ferns greater than 9.0 m. In contrast, of the 378 tree ferns in the 

Upper Forest, the vast majority was less than 6.0 m tall (Table 7). 

The finding that no tree ferns were present in the Coastal Forest was probably due to the 

substratum in the coastal plots, which was most likely not suitable for Cyathea. The large 

difference in tree fern densities between the Upper Plantation and the Upper Forest plots may 

have been due to substrata differences, disturbance differences, or a combination of the two. A 

visual comparison of the spatial maps of Cyathea and H. tiliaceus in the Upper Forest suggested 

that there may be a negative association between those two species. Assuming that H. tiliaceus is 

an indicator of past disturbance, then the hypothesis could be generated that Cyathea populations 

are associated with less disturbed forest patches, and therefore less overall-disturbed forests. 

Further investigation of the tree fern – forest disturbance association should be undertaken in the 

future. 

Table 7. Height class distribution of Cyathea spp. tree ferns in the two upper plots. 

Height (m) Upper Plantation Upper Forest 
<2.0 0 4 

2.0-2.9 1 72 

3.0-3.9 1 95 

4.0-4.9 0 116 

5.0-5.9 0 50 

6.0-6.9 1 10 

7.0-7.9 0 2 

8.0-8.9 0 8 

9.0-9.9 3 5 

10.0-10.9 2 3 

11.0-11.9 0 5 

12.0-12.9 1 4 

13.0-13.9 0 2 

14.0-14.9 0 2 

Total 9 378 
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Forest history, disturbance and condition 
The Upper Forest canopy was dominated by S. inophylloides, R. taitensis, D. samoense, and A. 

zizyphoides. R. taitensis and A. zizyphoides are considered to be dominant early-successional 

trees (Drake et al. 1996, Franklin et al. 1999), but S. inophylloides is a late-successional species. 

Thus, despite the lack of evidence for agricultural disturbance, this result confirmed earlier 

observations (Whistler 1992) that the forests along the eastern slope of Ta’u have been strongly 

impacted by disturbance and are in a state of succession. The presence of S. inophylloides 

indicates that if left undisturbed, the plot will mature into Syzygium-dominated mixed lowland 

forest (Whistler 1992). Increasing dominance of S. inophylloides in later-successional forests 

may be due to the dense wood of the species, which presumably allows it to persist in hurricane-

disturbed forest relatively more successfully than other species (Whistler 1992, Webb et al. 

1999). Over time, resistance of S. inophylloides to hurricanes, when other species would be 

uprooted, snapped or severely damaged, would allow them to attain canopy stature and become 

an important canopy component. Given a long enough period of recovery after a cyclone (in this 

case since Tusi in 1987), structure and diversity could return to more mature-phase conditions. 

Variability in composition and structure of the plots reflects the agricultural histories we 

were able to ascertain from interviews. In the Coastal Plantation, nearly 25% of the relative 

abundance and relative basal area consisted of A. altilis and C. nucifera, and in the Upper 

Plantation A. altilis alone comprised 40% of the relative abundance and 32% of the relative basal 

area. Prolific regeneration of A. altilis, which was evident during our field research, served to 

maintain dominance of this important agroforestry species in former plantations. Monitoring the 

two plantation plots will reveal the dynamics and compositional changes associated with 

succession in abandoned plantations (see also Franklin et al. 1999).  

Cyclones are an important factor in shaping forests of Samoa and Polynesia in general 

(Elmqvist et al. 1994, Elmqvist et al. 2001, Hjerpe et al. 2001, Franklin et al. 2004). Webb et al. 

(1999) found significant differences in canopy height as a function of topography on Tutuila, 

with well-protected valley forests being significantly taller than exposed ridge forest. The 

escarpment between the coastal plots and the upper plots is an obvious topographical feature, and 

could potentially affect the amount of damage sustained by forests during catastrophic events. 

For example, in Fiji, 72% of the 50 recorded tropical storms (including cyclones) that passed 
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within 180 nautical miles of Lautoka (Viti Levu) came from the northwest (Brand 2003). Storm 

trajectory will affect both directionality and force of the winds striking a particular point. In the 

case of Ta’u it is possible that the coastal plots, which were taller than the upper plots, have been 

more protected from wind disturbance in the recent past than the upper plots.  

Successional development generally results in older forests having greater basal area than 

younger forests but not necessarily fewer stems (Aide et al. 1995, Guariguata and Ostertag 2001, 

Franklin 2003). In this study, basal area was greater in both forest plots than their corresponding 

plantation plots. Stem density in the Coastal Plantation was greater than the Coastal Forest, while 

the Upper Forest had greater stem densities than the Upper Plantation. The high stem densities in 

the plantations are due to the fact that trees such as A. altilis, and C. nucifera were already 

present at the time of abandonment. Indeed, calculating total stem density and basal area in each 

plot without including those two species dramatically reduces those values. In the Coastal 

Plantation, stem densities and basal area would be reduced to 348 trees ha-1 and 18.2 m2 ha-1, 

while the Upper Plantation would be reduced to 353 trees ha-1 and 18.3 m2 ha-1.  

Greater overall canopy heights in the forest plots than their corresponding plantation plots 

may reflect the land management techniques of clearing large trees in heavily disturbed 

plantation areas. Large trees would be removed for plantations because the root systems and 

wide crowns would reduce agricultural output. Long-term monitoring of the compositional and 

structural changes of these plots will reveal the rate at which structural features change over 

time. 

 

Exotic species in NPSA 
Introduced species have become a common feature in the forests of American Samoa, but as yet 

they are not as threatening to native biodiversity as is the case in other island systems (e.g. 

Meyer and Florence 1996). Although 99% of all non-native stems in these plots were of species 

considered not to be a major threat to American Samoa, monitoring and proactive action must 

take place. For example, we found mature F. flexuosa trees in both coastal and upland forest on 

Ta’u. This species has been widely promoted as a potentially valuable tree in American Samoa 

for use as building material. The fruits of F. flexuosa are favored by several species of birds, 

including purple-capped fruit doves (Ptilinopus porphyraceus) and Pacific pigeons (Ducula 

pacifica) (J. Seamon, Department of Marine and Wildlife Resources, unpublished data). 
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Therefore, while it is not surprising that F. flexuosa escaped into natural forest, it is important to 

recognize it as a potentially invasive species. Other tree species in American Samoa have been 

introduced only to naturalize and become aggressive invasives, notably Adenanthera pavonina, 

Castilla elastica Cerv., and Paraserianthes falcataria (L.) I. Neilsen, the latter of which has been 

the focus of an intensive eradication program within the National Park of American Samoa. As 

of yet, there have been no reports of P. falcataria on Ta’u, but C. elastica has already arrived (E. 

Webb personal observation). We recommend that F. flexuosa be included in the list of potential 

invasive species for American Samoa. While the plots for this study will give a small sample size 

of trees to estimate growth rates and possibly localized regeneration, more thorough studies of 

the growth and regeneration of F. flexuosa in native forest of American Samoa are necessary to 

determine the level of threat posed by this species. At present, the low density of F. flexuosa 

does not make it a high priority for eradication efforts; monitoring of its presence in the forest 

would, however, be advisable. 

 

Benefits of long-term monitoring for NPSA 
Permanent forest plots allow research on the response of vegetation communities to natural 

disturbances such as hurricanes and human-induced disturbances (e.g. clearing for plantation). 

The plots we have established, particularly the two plantation plots, will provide unique data on 

the processes of succession following intensive agriculture and agroforestry activities. These can 

be compared to the dynamics of the apparently less-disturbed plots of the Dysoxylum coastal plot 

and the Upper Forest. Medium to long-term comparative data could lead to important 

management recommendations to reduce the level / impact of non-native plantation species in 

regenerating forest, improve the regeneration of native tree species, or ameliorate negative 

impacts of potentially invasive species. 

Another important benefit of long-term vegetation data is the ability to evaluate forest 

dynamics within a changing environment. Cyclical changes in weather patterns (such as El Niño) 

are well documented, and long-term changes in regional weather patterns may also be taking 

place. Several papers have determined that long-term changes in weather patterns are having 

measurable impacts on ecosystems. For example, a recent report highlighted the impact of a 

changing regional climate on the phenology of forest trees in Uganda (Chapman et al. 2005). 

Although American Samoa is a remote island system in the South Pacific, it will not be immune 
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to climate changes, and is impacted strongly by El Niño. Thus, the plots we have established can 

contribute to a better understanding of the impacts of climate change on terrestrial ecosystems.  

Long-term ecological processes and changes in processes associated with climate change 

are best measured at the seedling and sapling size classes. Changes in habitat leading to 

favorable or unfavorable regeneration conditions will first be seen in changes in tree species 

regeneration. In the plots we established in this project, we only surveyed trees ≥10 cm dbh. It 

takes decades for small environmental changes to be reflected in changes in the tree community. 

However, it may take only several years to measure differences in recruitment rates that might be 

associated with environmental parameters such as an increase or decrease in rainfall. Thus, 

smaller plots should be established within the larger permanent plots to monitor the regeneration 

of tree communities from the seed and seedling stage. This will be much more labor-intensive 

than monitoring the tree community, but will reveal crucial information on the dynamics of the 

smaller size classes. This could serve as an early-warning system to park management. 
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The main field team in the Upper Forest plot. From left to right: Rachel Conejos, Edward Webb, 
Siaifoi Fa’aumu, Martin van de Bult, Md. Enamul Kabir, Wanlop Chutipong. 
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Appendix 1. Summary information for four permanent forest monitoring plots on Ta’u, 
American Samoa. NO/HA = the number of individuals per hectare, RA = relative abundance, BA 
/ HA = basal area per hectare of all stems, RBA = relative basal area of all stems.
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 Coastal Plantation Coastal Forest Upper Plantation Upper Forest All Plots (6 ha) 

Species NO / HA RA BA / HA RBA NO / HA RA BA / HA RBA NO / HA RA BA / HA RBA NO / HA RA BA / HA RBA NO RA BA RBA 

Adenanthera pavonina L. 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.5 0.08 0.03 0.10 0.5 0.08 0.01 0.03 2 0.06 0.07 0.04 

Aglaia samoensis A. Gray 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 1.5 0.24 0.02 0.06 3 0.09 0.03 0.02 
Alphitonia zizyphoides (Spreng.) A. 
Gray 0 0.00 0.00 0.00 0 0.00 0.00 0.00 3.5 0.59 0.44 1.62 51.5 8.13 2.73 9.34 110 3.41 6.35 3.78 

Artocarpus altilis (Parkinson) 
Fosberg 61 13.29 2.99 12.56 0 0.00 0.00 0.00 233.5 39.68 8.82 32.41 0 0.00 0.00 0.00 528 16.35 20.63 12.27

Barringtonia asiatica (L.) Kurz 15 3.27 0.54 2.26 10 3.06 1.31 4.16 0 0.00 0.00 0.00 0 0.00 0.00 0.00 25 0.77 1.85 1.10 

Barringtonia samoensis A. Gray 0 0.00 0.00 0.00 0 0.00 0.00 0.00 8.5 1.44 0.11 0.42 0 0.00 0.00 0.00 17 0.53 0.23 0.14 

Bischofia javanica Bl. 0 0.00 0.00 0.00 0 0.00 0.00 0.00 36.5 6.20 1.94 7.11 23 3.63 0.80 2.73 119 3.68 5.47 3.25 

Calophyllum inophyllum L. 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.5 0.08 0.63 2.15 1 0.03 1.26 0.75 
Calophyllum neo-ebudicum 
Guillaumin 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 1 0.16 0.01 0.04 2 0.06 0.02 0.01 

Cananga odorata (Lam.) Hook. f. 
Thoms. 0 0.00 0.00 0.00 0 0.00 0.00 0.00 5 0.85 0.46 1.68 11 1.74 0.33 1.13 32 0.99 1.57 0.94 

Canarium vitiense A. Gray 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 1 0.16 0.08 0.27 2 0.06 0.16 0.09 

Carica papaya L. 1 0.22 0.01 0.06 0 0.00 0.00 0.00 0.5 0.08 0.01 0.02 0 0.00 0.00 0.00 2 0.06 0.02 0.01 

Celtis harperi Horne 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 1 0.16 0.03 0.12 2 0.06 0.07 0.04 

Cerbera manghas L. 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 3 0.47 0.12 0.42 6 0.19 0.25 0.15 

Cocos nucifera L. 50 10.89 2.59 10.91 0 0.00 0.00 0.00 2 0.34 0.14 0.51 0 0.00 0.00 0.00 54 1.67 2.87 1.71 

Crataeva religiosa Forst. f. 1 0.22 0.02 0.08 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 1 0.03 0.02 0.01 

Diospyros samoensis A. Gray 17 3.70 0.33 1.38 39 11.93 1.22 3.89 0 0.00 0.00 0.00 1.5 0.24 0.02 0.07 59 1.83 1.59 0.95 

Dysoxylum samoense A. Gray 157 34.20 7.13 29.98 134 40.98 24.06 76.58 157.5 26.76 9.72 35.71 42 6.63 3.37 11.50 690 21.36 57.37 34.11
Elattostachys falcata (A. Gray) 
Radlk. 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 5.5 0.87 0.14 0.47 11 0.34 0.27 0.16 

Elaeocarpus floridanus Hemsl. 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 17.5 2.76 0.33 1.14 35 1.08 0.67 0.40 

Erythrina variegata L. 0 0.00 0.00 0.00 2 0.61 0.08 0.27 0 0.00 0.00 0.00 0 0.00 0.00 0.00 2 0.06 0.08 0.05 

Euodia hortensis Forst. 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.5 0.08 0.01 0.02 1 0.03 0.01 0.01 

Ficus obliqua Forst. f. 2 0.44 0.03 0.12 1 0.31 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 3 0.09 0.03 0.02 

Ficus scabra Forst. f. 23 5.01 0.41 1.72 24 7.34 0.40 1.28 54 9.18 1.21 4.44 4.5 0.71 0.05 0.16 164 5.08 3.32 1.98 

Ficus tinctoria Forst. f. 0 0.00 0.00 0.00 1 0.31 0.02 0.07 0.5 0.08 0.00 0.01 1 0.16 0.01 0.04 4 0.12 0.05 0.03 
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 Coastal Plantation Coastal Forest Upper Plantation Upper Forest All Plots (6 ha) 

Species NO / HA RA BA / HA RBA NO / HA RA BA / HA RBA NO / HA RA BA / HA RBA NO / HA RA BA / HA RBA NO RA BA RBA 

Flacourtia rukam Zoll. & Mor. ex 
Mor. 0 0.00 0.00 0.00 1 0.31 0.02 0.05 0 0.00 0.00 0.00 15 2.37 0.26 0.89 31 0.96 0.53 0.32 

Flueggea flexuosa Muell. Arg. 9 1.96 0.31 1.32 0 0.00 0.00 0.00 0 0.00 0.00 0.00 1.5 0.20 0.05 0.18 13 0.35 0.42 0.25 

Garuga floribunda Decne. 2 0.44 0.04 0.16 8 2.45 0.53 1.69 4 0.68 0.56 2.07 0 0.00 0.00 0.00 18 0.56 1.70 1.01 

Glochidion ramiflorum Forst. 0 0.00 0.00 0.00 0 0.00 0.00 0.00 2 0.29 0.08 0.31 3 0.39 0.05 0.18 10 0.27 0.27 0.16 
Hernandia nymphaeifolia (Presl.) 
Kub. 10 2.18 2.93 12.32 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 10 0.31 2.93 1.74 

Hibiscus tiliaceus L. 0 0.00 0.00 0.00 0 0.00 0.00 0.00 17 2.89 0.67 2.46 216.5 34.18 5.86 20.02 467 14.46 13.06 7.77 

Inocarpus fagifer (Park.) Fosb. 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.5 0.08 0.01 0.02 1 0.03 0.01 0.01 
Litsea samoensis (Christoph.) A.C. 
Smith 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 1 0.16 0.05 0.18 2 0.06 0.11 0.06 

Macaranga harveyana Muell. Arg. 76 16.56 1.56 6.56 3 0.92 0.07 0.21 0.5 0.08 0.01 0.02 0 0.00 0.00 0.00 80 2.48 1.64 0.97 

Macaranga stipulosa Muell. Arg. 0 0.00 0.00 0.00 0 0.00 0.00 0.00 1.5 0.25 0.12 0.44 11 1.74 0.21 0.71 25 0.77 0.66 0.39 

Meryta macrophylla (Rich) Seem. 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 1 0.16 0.01 0.04 2 0.06 0.02 0.01 

Morinda citrifolia L. 7 1.53 0.23 0.97 9 2.75 0.13 0.41 35 5.95 0.51 1.87 2 0.32 0.03 0.10 90 2.79 1.44 0.85 

Myristica inutilis Rich ex A. Gray 0 0.00 0.00 0.00 11 3.36 0.34 1.08 1.5 0.25 0.01 0.05 64 10.10 1.92 6.56 142 4.40 4.21 2.50 
Neonauclea forsteri (Seem. ex Havil) 
Merr. 1 0.22 0.00 0.00 2 0.61 0.11 0.34 0.5 0.08 0.06 0.21 15.5 2.45 0.48 1.63 35 1.08 1.17 0.70 

Omalanthus nutans (Forst.) 
Guillemin 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.5 0.08 0.01 0.02 0 0.00 0.00 0.00 1 0.03 0.01 0.01 

Pipturus argenteus (Forst. f.) Wedd. 3 0.65 0.03 0.13 0 0.00 0.00 0.00 9 1.53 0.15 0.54 0 0.00 0.00 0.00 21 0.65 0.32 0.19 

Pisonia grandis R. Br. 21 4.58 4.41 18.54 16 4.89 0.62 1.97 0 0.00 0.00 0.00 0 0.00 0.00 0.00 37 1.15 5.03 2.99 

Pisonia umbellifera (Forst.) Seem. 0 0.00 0.00 0.00 33 10.09 0.85 2.71 0 0.00 0.00 0.00 0 0.00 0.00 0.00 33 1.02 0.85 0.51 

Planchonella garberi Christoph. 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 6 0.95 0.68 2.33 12 0.37 1.37 0.81 

Pometia pinnata Forst. 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 5.5 0.87 0.30 1.01 11 0.34 0.59 0.35 

Psydrax merrillii (Setchell) Whistler 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 3 0.47 0.07 0.23 6 0.19 0.13 0.08 

Rhus taitensis Guillemin 0 0.00 0.00 0.00 0 0.00 0.00 0.00 5.5 0.93 0.83 3.03 44.5 7.02 3.92 13.38 100 3.10 9.49 5.64 

Spondias dulcis Forst. 0 0.00 0.00 0.00 0 0.00 0.00 0.00 3.5 0.59 0.98 3.61 0 0.00 0.00 0.00 7 0.22 1.97 1.17 

Sterculia fanaiho Setchell 3 0.65 0.22 0.92 33 10.09 1.67 5.30 5 0.85 0.34 1.25 17.5 2.76 0.37 1.27 81 2.51 3.31 1.97 

Syzygium malaccense Merr. & Perry 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.5 0.08 0.01 0.03 0 0.00 0.00 0.00 1 0.03 0.02 0.01 
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 Coastal Plantation Coastal Forest Upper Plantation Upper Forest All Plots (6 ha) 

Species NO / HA RA BA / HA RBA NO / HA RA BA / HA RBA NO / HA RA BA / HA RBA NO / HA RA BA / HA RBA NO RA BA RBA 

Syzygium inophylloides (A. Gray) C. 
Muell. 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 47 7.42 5.49 18.74 94 2.91 10.97 6.52 

Syzygium samarangense (Bl.) Merr. 
& L.M. Perry 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 2 0.32 0.03 0.10 4 0.12 0.06 0.03 

Trema cannabina Lour. 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.5 0.08 0.01 0.04 0 0.00 0.00 0.00 1 0.03 0.02 0.01 
Trichospermum richii (A. Gray) 
Seem. 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 10.5 1.66 0.81 2.77 21 0.65 1.62 0.96 

Sum 459  23.78  327  31.42  588.5  27.23  633.5  29.27  3230  168.20  

Number of species 18    16    26    35    54    
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Appendix 2. Output of spatial analysis calculating Ripley’s K for various lag distances of 
common species for each plot. For each graphical pair, the left figure is the map of that species in 
the plot, and the right graph shows Ripley’s K value across lag distances. The dotted lines 
represent the calculated maximum and minimum values of Ripley’s K for that lag distance in the 
plot and the dark line represents the actual K value for the species in the plot. Where the dark 
line is outside the maximum or minimum values indicates significant clumping (if above the 
maximum value) or significant hyperdispersion (if below the minimum value).
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