
Submitted to: JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM

Interplay and competition between superconductivity and charge orderings

in the zero-bandwidth limit of the extended Hubbard model
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We present studies of an e�ective model which is a simple generalization of the standard model
of a local pair superconductor with on-site pairing (i.e., the model of hard core bosons on a lattice)
to the case of �nite pair binding energy. The tight binding Hamiltonian consists of (i) the e�ective
on-site interaction U , (ii) the intersite density-density interactions W between nearest-neighbours,
and (iii) the intersite charge exchange term I, determining the hopping of electron pairs between
nearest-neighbour sites. In the analysis of the phase diagrams and thermodynamic properties of this
model we treat the intersite interactions within the mean-�eld approximation. Our investigations of
the U < 0 andW > 0 case show that, depending on the values of interaction parameters, the system
can exhibit three homogeneous phases: superconducting (SS), charge-ordered (CO) and nonordered
(NO) as well as the phase separated SS�CO state.

PACS numbers: 71.10.Fd � Lattice fermion models (Hubbard model, etc.), 74.20.-z � Theories and
models of superconducting state, 64.75.Gh � Phase separation and segregation in model systems (hard
spheres, Lennard-Jones, etc.), 71.10.Hf � Non-Fermi-liquid ground states, electron phase diagrams and
phase transitions in model systems, 71.45.Lr � Charge-density-wave systems
Keywords: extended Hubbard model, phase separation, superconductivity, charge orderings, local pairing,
phase diagrams

I. INTRODUCTION

The interplay and competition between superconduc-
tivity and charge orderings is currently under intense
investigations (among others in high temperature su-
perconductors such as cuprates, barium bismuthates,
fullerenes and several other nonconventional supercon-
ducting materials, e.g., the Chevrel phases) [1]. They
belong to a unique group of extreme type II supercon-
ductors and generally exhibit low carrier density, a small
value of Fermi energy (EF ≤ 0.1 ÷ 0.3 eV) and a short
coherence length ξ0 (ξ0kF ≈ 1 ÷ 10). These general fea-
tures are consistent with short-range, almost unretarded
e�ective interactions response for local pairing.
In this report we will concentrate on the intriguing

problem of phase separation and the competition between
superconductivity and charge orderings. The model
Hamiltonian considered has the following form:

Ĥ = U
∑
i

n̂i↑n̂i↓ − µ
∑
i

n̂i (1)

− 2I
∑
〈i,j〉

ρ̂+i ρ̂
−
j +

W

2

∑
〈i,j〉

n̂in̂j ,

where n̂i =
∑
σ n̂iσ, n̂iσ = ĉ+iσ ĉiσ, ρ̂

+
i = (ρ̂−i )† = ĉ+i↑ĉ

+
i↓.

ĉ+iσ (ĉiσ) denotes the creation (annihilation) operator of
an electron with spin σ =↑, ↓ at the site i, which satisfy
canonical anticommutation relations:

{ĉiσ, ĉ+jσ′} = δijδσσ′ , {ĉiσ, ĉjσ′} = {ĉ+iσ, ĉ
+
jσ′} = 0, (2)
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where δij is the Kronecker delta.
∑
〈i,j〉 indicates the sum

over nearest-neighbour sites i and j independently. z will
denote the number of nearest-neighbours. U , I, and W
are the interactions parameters, I0 = zI, W0 = zW . µ is
the chemical potential, connected with the concentration
of electrons by the formula: n = (1/N)

∑
i 〈n̂i〉, with

0 ≤ n ≤ 2 and N is the total number of lattice sites.

The interactions U , I, and W will be treated as the
e�ective ones and will be assumed to include all the
possible contributions and renormalizations like those
coming from the strong electron-phonon coupling or
from the coupling between electrons and other elec-
tronic subsystems in solid or chemical complexes [1].
In such a general case, arbitrary values and signs of
U , I, and W are important to consider. In the ab-
sence of the external �eld conjugated with the SS or-
der parameter (∆ = (1/N)

∑
i〈ρ̂
−
i 〉) there is a symme-

try between I > 0 (s-pairing) and I < 0 (η-pairing, ηS,

∆Q = (1/N)
∑
i exp (i ~Q · ~Ri)〈ρ̂−i 〉, ~Q is half of the small-

est reciprocal lattice vector) cases for model (1), thus we
restrict ourselves only to the I > 0 case. The CO param-

eter is de�ned as nQ = (1/N)
∑
i exp (i ~Q · ~Ri)〈n̂i〉.

We have performed extensive study of the phase dia-
grams (PDs) of model (1) [2]. In this report we inves-
tigate the properties of model (1) for the case of on-site
attraction (U < 0, local pair or Bose condensation limit
[3�8]) and intersite repulsion (W > 0). In the analysis
of the model at T ≥ 0, we have adopted a variational
approach (VA) which treats the on-site interaction U ex-
actly and the intersite interactions W and I within the
mean-�eld approximation (MFA). The PDs of model (1)
have been investigated until now for the special cases:
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FIG. 1. kBT/I0 vs. µ̄/I0 phase diagrams (upper row) and corresponding kBT/I0 vs. n diagrams (lower row) for U/I0 = −1.0
and di�erent values of W/I = 0.5, 1.1, 2.0 (as labelled). Dotted, solid, and dashed lines indicate �rst-order, second-order, and
�third-order� boundaries, respectively. B denotes bicritical points.

W = 0 [3�12] and I = 0 [13�21] only. Some ground state
results for W 6= 0 and I 6= 0 have been also obtained
[5, 22, 23].

Within the VA the intersite interactions are decoupled
within the MFA, which allows us to calculate the averages
n, nQ, ∆, and ∆Q. It gives a set of four self-consistent
equations (for homogeneous phases). The de�nitions of
homogeneous phases with the values of order parameters
are as follows: (i) SS � nQ = 0, ∆ 6= 0, ∆Q = 0; (ii) CO
� nQ 6= 0, ∆ = 0, ∆Q = 0; (iii) M � nQ 6= 0, ∆ 6= 0,
∆Q 6= 0; (iv) NO � nQ = 0, ∆ = 0, ∆Q = 0. It is
important to �nd a solution corresponding to the lowest
energy.

Phase separation (PS) is a state in which two do-
mains with di�erent electron concentration: n+ and n−
exist in the system (coexistence of two homogeneous
phases). The free energies of the PS states are calcu-
lated in a standard way, using Maxwell's construction
(e.g., Refs. [5, 18, 19, 24]). In model (1) for the range
of parameters considered in this paper only one PS state
can occur, which is coexistence of the SS and CO phases.

In the report, we have used the following conven-
tion. A second- (�rst-)order transition is a transition
between homogeneous phases with a (dis-)continuous
change of the order parameter at the transition tem-
perature. A transition between homogeneous phase and
PS state is symbolically named as a �third-order� transi-
tion [5, 6, 17�21].

II. RESULTS IN THE LOCAL PAIRING LIMIT

A. Phase diagrams

One should noticed that PDs obtained are symmetric
with respect to half-�lling (n = 1) because of the particle-
hole symmetry of Hamiltonian (1), so the PDs will be
presented only in the range µ̄ = µ− U/2−W0 ≤ 0 and
0 ≤ n ≤ 1.

For any U ≤ 0 and �xed W > 0, the PDs are quali-
tatively similar, all (�rst-order, second-order and �third-
order�) transition temperatures decrease monotonically
with increasing U and in the VA for U = 0 the transi-
tion temperatures account for a half of those in the limit
U → −∞, what can be symbolically written as

kBTc(U → −∞) = 2kBTc(U = 0), (3)

where Tc denotes the transition temperature (which can
be SS-NO, SS-CO, CO-NO, PS-CO or PS-SS).

Notice that in the U → −∞ limit model (1) is equiv-
alent with the hard-core boson model on a lattice [25�
29]. Moreover in that limit model (1) can be derived as
e�ective Hamiltonian at the strong-coupling limit of the
extended Hubbard model by the degenerate perturbation
theory [22, 23, 30].

In the range of the attractive on-site interaction the
structure of PDs of model (1) depends on the ratio W/I
only (cf. Fig 1 for U/I0 = −1). One can distinguish
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two ranges of the ratio W/I in which the system exhibits
substantially di�erent behaviours:
(i) 0 ≤W/I < 1. In Figs. 1a,b, we present particu-

lar PDs for W/I = 0.5. For 0 < W/I < 1 and U < 0,
only the second-order SS�NO transitions occur with in-
creasing temperature. If we analyze the system for �xed
n, for this range of model parameters, the PS states do
not occur and the obtained PDs have the same struc-
ture as those derived in [3�5]. The transition between
homogeneous SS and NO phases taking place with in-
creasing temperature is second order for arbitrary µ̄ and
n, and it decreases monotonically with increasing |µ̄|/I0
and |1− n|.
(ii) 1 < W/I. A few particular PDs in this regime are

presented in Figs. 1c-f. For W/I = 1 the SS, the CO and
the M phases are degenerate at n = 1. For W/I > 1,
three homogeneous phases (SS, CO, NO) appear. The
SS�NO and CO�NO transitions are of the second order
and these transition temperatures are decreasing function
of |µ̄| and |1−n|. The SS-CO transition is discontinuous
for �xed µ̄, and thus the PS state SS-CO is stable in the
de�nite range of n. All transitions lines meet at a bicriti-
cal pointB. With increasingW , theB-point moves along
the boundary between SS and NO phases toward larger
|µ̄| (|1 − n|). This is due to the fact that in the VA the
SS�NO transition is independent ofW (for �xed n). The
region of the CO phase occurrence is extended, whereas
the region of the SS phase stability is reduced by increas-
ing the ratio W/I. The �rst-order SS-CO as well as the
�third-order� SS-PS and PS-CO transition temperatures
increase with |µ̄| and |1− n|, respectively.
One should notice that for Wij restricted to nearest

neighbours (W2 = 0) the PS state is strictly degenerated
at T = 0 with the M phase in the whole range of sta-
bility of both these states [22, 23]. This degeneration is
removed at T > 0, even for W2 = 0 and the PS state
occurs on PDs. Repulsive W2 > 0 between next-nearest
neighbours destabilizes the PS state with respect to the
M phase, whereas attractiveW2 < 0 extends the stability
region of PS state and eliminates the M phase.
In the case of attractive W < 0 (precisely for W/I <

−1), the model can exhibit phase separation NO-NO
(electron droplets state) at low temperatures [20, 22, 23,
31] and for U < 0 the PDs as a function of n have the
similar structure as those derived in [31]. We leave deeper
analysis of this problem to future publications.

B. Order parameters and thermodynamic

properties

Let us focus now on the temperature dependencies of
the order parameters and thermodynamic properties of
the system at the sequence of transitions: SS → CO →
NO for W/I = 2.0, U/I0 = −1.0 and µ̄/I0 = −2.0.
The temperature dependencies of the order parame-

ters: ∆ and nQ are presented in Fig. 2. It is clearly
seen that at the SS-CO transition (at kBTc1/I0 = 0.40)
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FIG. 2. Temperature dependencies of (a) superconducting
order parameter |∆| and (b) charge order parameter nQ for
W/I = 2.0, U/I0 = −1.0 and µ̄/I0 = −2.0.

the both order parameters change discontinuously. The
CO-NO transition at kBTc2/I0 = 0.83 is of the second
order.
Calculating the grand potential per site ω =
−1/(Nβ) ln (Tr[exp(−βĤ)]) within the VA one can ob-
tain thermodynamic characteristics of the system for ar-
bitrary temperature. The entropy s and the speci�c
heat c can be derived as s = −(∂ω/∂T ) and c =
−T (∂2ω/∂T 2). ω, s, and c as a function of temperature
are shown in Fig. 3. s increases monotonically with in-
creasing T . It is discontinuous at Tc1 whereas it is contin-
uous at Tc2. One can notice that in the high-temperature
limit s/kB → ln(4) ≈ 1.386 (there are four possible con-
�gurations at each site). The peak in c(T ) is associated
with the �rst-order transition (at Tc1), while the λ-point
behaviour is typical for the second-order transition (at
Tc2).

III. CONCLUSIONS AND FINAL REMARKS

In this report, we have presented some particular PDs
of the extended Hubbard model with pair hopping and in-
tersite density-density interactions in the zero-bandwidth
limit for the case of local attraction U < 0. One �nds that
the system considered can exhibit very interesting mul-
ticritical behaviours. Our investigations show that, de-
pending on the values of interaction parameters (the ratio
W/I), the system can exhibit three homogeneous phases:
superconducting, charge-ordered and nonordered. The
SS-NO and CO-NO transitions are of the second order.
The SS-CO transition is discontinuous (for �xed µ), what
leads to phase separation on the phase diagrams as a
function of n for W/I > 1. The homogeneous mixed
phase (with nonzero both charge-ordered and supercon-
ducting order parameters) never occurs on PDs at T > 0,
at least in the absence of the next-nearest neighbours in-
teractions. On the contrary the PS state: SS-CO is found
to be stable in de�nite ranges of model parameters and
temperatures.
Our results are exact in the limit of in�nite dimensions,
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FIG. 3. Temperature dependencies of thermodynamics parameters: (a) the grand potential ω, (b) the entropy s, and (c) the
speci�c heat c for W/I = 2.0, U/I0 = −1.0 and µ̄/I0 = −2.0.

where the MFA treatment of intersite terms is rigourous
one [3�6, 11]. In �nite dimensions due to quantum �uc-
tuations connected with the I term, the regions of the
ordered homogeneous phases occurrence are extended in
comparison with the VA results [5, 6].
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