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On the phase diagram of the zero-bandwidth extended Hubbard model

with intersite magnetic interactions for strong on-site repulsion limit
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In this report we have analyzed a simple e�ective model for a description of magnetically ordered
insulators. The Hamiltonian considered consists of the e�ective on-site interaction (U) and the
intersite Ising-like magnetic exchange interaction (J) between nearest neighbors. For the �rst time
the phase diagrams of this model have been determined within Monte Carlo simulation on 2D-square
lattice. They have been compared with results obtained within variational approach, which treats
the on-site term exactly and the intersite interactions within mean-�eld approximation. We show
within both approaches that, depending on the values of interaction parameters and the electron
concentration, the system can exhibit not only homogeneous phases: (anti-)ferromagnetic (F) and
nonordered (NO), but also phase separated states (PS: F�NO).

PACS numbers: 71.10.Fd, 75.30.Fv, 64.75.Gh, 71.10.Hf

I. INTRODUCTION

The extended Hubbard model with spin exchange in-
teraction [1�4] is a conceptually simple e�ective model
for a description of magnetically ordered insulators in
narrow band systems.
In this report we will focus on the zero-bandwidth limit

of the extended Hubbard model with magnetic Ising-like
interactions, which has the following form:

Ĥ = U
∑
i

n̂i↑n̂i↓ − 2J
∑
〈i,j〉

ŝzi ŝ
z
j − µ

∑
i

n̂i, (1)

where U is the on-site density interaction, J is z-
component of the intersite magnetic exchange interac-
tion,

∑
〈i,j〉 restricts the summation to nearest neigh-

bors. ĉ+iσ denotes the creation operator of an electron
with spin σ at the site i, n̂i =

∑
σ n̂iσ, n̂iσ = ĉ+iσ ĉiσ and

ŝzi = 1
2 (n̂i↑ − n̂i↓). The chemical potential µ depending

on the concentration of electrons is calculated from

n =
1

N

∑
i

〈n̂i〉, (2)

with 0 ≤ n ≤ 2 and N is the total number of lattice sites.
The hamiltonian (1) can be considered as a very simpli-

�ed model for the family of A0.5M2X4 compounds (where
A is Ga or Al, M is one of the transition metals V or
Mo, and X is S, Se, or Te). These compounds exhibit
very interesting ferromagnetic behavior which is a mix-
ture of itinerant and localized behavior [5, 6]. However,
the single-particle excitations play a dominant role in the
magnetic behavior of these compounds. Although the
electrons are not itinerant in the system, there is a �nite
density of states at the Fermi level, and therefore low en-
ergy charge excitations are possible [7]. This points that
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the magnetic properties result from this band of localized
electrons.
The model (1) can be treated as an e�ective model of

magnetically ordered insulators. The interactions U and
J will be treated as e�ective ones and be assumed to in-
clude all the possible contributions and renormalizations
like those coming from the strong electron-phonon cou-
pling or from the coupling between electrons and other
electronic subsystems in solid or chemical complexes. In
such a general case arbitrary values and signs of U are
important to consider. One should notice that ferromag-
netic (J > 0) interactions are simply mapped onto the
antiferromagnetic cases (J < 0) by rede�ning the spin di-
rection on one sublattice in lattices decomposed into two
interpenetrating sublattices. Thus, we restrict ourselves
to the case J > 0.
For the model (1) only the ground state phase dia-

gram as a function of µ [8] and special cases of half-�lling
(n = 1) [9] have been investigated till now. Some our pre-
liminary results have been also presented in Ref. 10.
We have performed extensive study of the phase dia-

grams of the model (1) for arbitrary n and µ [10�12]. In
the analysis we have adopted two complementary meth-
ods: (i) a variational approach (VA), which treats the on-
site interaction term (U) exactly and the intersite inter-
actions (J) within the mean-�eld approximation (MFA)
and (ii) Monte Carlo (MC) simulations for d = 2 dimen-
sional square (SQ) lattice in the grand canonical ensem-
ble. In this report we present some results concerning
strong on-site repulsion limit.
The ferromagnetic (F) phase is characterized by non-

zero value of the magnetic order parameter (magnetiza-
tion) de�ned as m = (1/N)

∑
i〈ŝzi 〉. In the nonordered

(NO) phase m = 0.
The phase separation (PS) is a state in which two do-

mains with di�erent electron concentration exist (coexis-
tence of two homogeneous phases). In the model consid-
ered only one PS state (F�NO) can occur.
In the paper we have used the following conven-
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FIG. 1. Phase diagrams kBT/J0 vs. µ̄/J0 for U/J0 = 1, 10
(as labeled) obtained within VA. Dotted and solid lines in-
dicate �rst and second order boundaries, respectively. T de-
notes a tricritical point.

tion. A second (�rst) order transition is a transition
between homogeneous phases with a (dis-)continuous
change of the order parameter at the transition temper-
ature. A transition between homogeneous phase and PS
state is symbolically named as a �third order� transition.
During this transition a size of one domain in the PS state
decreases continuously to zero at the transition temper-
ature. One should notice that the �rst order transition
line on the diagrams for �xed µ splits into two �third or-
der� lines and it is connected with occurrence of PS sates
on the diagrams for �xed n.
We also introduce the following denotation: J0 = zJ ,

where z is the number of nearest neighbors.
Obtained phase diagrams are symmetric with respect

to half-�lling (n = 1, µ̄ = µ− U/2 = 0) because of the
particle-hole symmetry of the Hamiltonian (1), so the
diagrams will be presented only in the range 0 ≤ n ≤ 1.

II. RESULTS AND DISCUSSION

A. The variational approach

In this subsection we discuss the results for strong
on-site repulsion obtained within VA. The dependencies
of the transition temperature F�NO as a function of µ̄
for U/J0 = 1 and U/J0 = 10 (this is close to the limit
U → +∞) are shown in Fig.1. The range of the F phase
stability is reduced with decreasing U/J0. A tricritical
point T connected with a change of the F�NO transition
order is located at kBT/J0 = 1/3 and its location does
not dependent on U/J0 in the limit considered.
If the system is analyzed for �xed n [10], at su�ciently

low temperatures the homogeneous phases are not states
with the lowest free energy and the PS state can oc-
cur. On the phase diagrams, there is a second order
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FIG. 2. Phase diagrams kBT/J0 vs. n for: (a) U/J0 = 1 and
(b) U/J0 = 10 obtained within VA. Solid and dashed lines in-
dicate second order and �third order� boundaries, respectively.
T denotes a tricritical point.

line at high temperatures, separating F and NO phases.
A �third order� transition takes place at lower tempera-
tures, leading to a PS of the F and NO phases. The crit-
ical point for the phase separation (T ) lies on the second
order line F�NO and it is located at kBT/J0 = 1/3 and
n = 1/3. Phase diagrams for U/J0 = 1 and U/J0 = 10
are shown in Fig. 2. With increasing kBT/J0 the system
exhibits either a sequence of transitions: PS→F→NO
(for 1/3 < n < 1) or a single transition: PS→NO (for
n < 1/3) and F→NO (for n = 1).

B. Monte Carlo results

Here, we present a numerical investigations of model
(1), using standard MC methods in the grand canonical
ensemble (for details see e.g. Ref. 13). The MC sim-
ulations have been done for two dimensional SQ lattice
(z = 4) with periodic boundary conditions. The size of
the lattice is relatively small, i.e. 10× 10.
The general properties of MC phase diagrams are sim-
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FIG. 3. Phase diagrams kBT/J0 vs. µ̄/J0 for U/J0 = 1, 10
(as labeled) obtained within MC simulation for 10 × 10 SQ
lattice. T denotes a tricritical point. Details in text.

ilar to those obtained within VA. However, it is obvi-
ous that the transition temperatures resulting from MC
simulations for d = 2 SQ lattice are lower than those ob-
tained within VA, which is exact in the limit of in�nite
dimensions.

The phase diagrams as a function of µ̄ for U/J0 = 1
and U/J0 = 10 are shown in Fig. 3. The transitions in �-
nite systems are not sharp (the �nite-size e�ect on the or-
der parameter, i.e. in the NO phase m 6= 0 is larger than
zero near the transition) and thus the precise location of
boundaries between di�erent phases are determined by
the discontinuity of the magnetic susceptibility. A tri-
critical point T connected with a change of the F�NO
transition order is located at kBT/J0 ≈ 0.27. The F�NO
transition can be �rst order (for temperatures below
T -point) as well as second order (for temperatures above
T -point). The maximum for the F�NO transition tem-
perature is at half-�lling (n = 1, µ̄/J0 = 0) and it equals
(i) kBT/J0 ≈ 0.48 for U/J0 = 1 and (ii) kBT/J0 ≈ 0.59
for U/J0 = 10. The behaviors of the boundaries at low
temperatures (i.e. for kBT/J0 < 0.1) have not been de-
termined.

One can translated the (grand-canonical) diagrams
from Fig. 3 into the (canonical) diagrams for arbitrary n
by the standard way. The resulting diagrams are shown
in Fig. 4. At higher temperatures the F and NO phases
are separated by a second order line. At lower tem-
peratures (below T -point) the PS state occurs, which
is separated from homogeneous phases (i.e. F and NO
phases) by �third order� boundaries. The tricritical point
is placed at substantially higher electron concentrations
(n ≈ 0.61) in comparison to VA results and (as in VA)
its location is independent of the on-site repulsion U/J0
in the limit considered.
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FIG. 4. Phase diagrams kBT/J0 vs. n for: (a) U/J0 = 1 and
(b) U/J0 = 10 resulting from MC simulation for 10 × 10 SQ
lattice. Denotations as in Fig. 2. Details in text.

III. FINAL COMMENTS

We considered a simple model of magnetically ordered
insulators. We presented phase diagrams for strong on-
site repulsion including a tricritical behavior obtained by
Monte Carlo simulations and compared them with VA
results. It was shown that MC results are qualitatively
similar to those derived within the VA. However, one
should notice that the MC transition temperatures are
signi�cantly smaller than VA ones. The F�NO transi-
tion can be second as well as �rst order. At su�ciently
low temperatures, where the F�NO transition is discon-
tinuous (if µ̄/J0 is �xed), homogeneous phases do not
exist (if n is �xed) and the phase separated states have
a lowest energy.

Let us stress that the knowledge of the zero-bandwidth
limit can be used as starting point for a perturbation
expansion in powers of the hopping and as an important
test for various approximate approaches analyzing the
corresponding �nite bandwidth models.

We leave the problem of detailed analysis concerning
arbitrary U/J0 for the future investigations [12].
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