
Kernelizing LSPE(λ)
Tobias Jung

University of Mainz, Germany
E-mail: tjung@informatik.uni-mainz.de

Daniel Polani
University of Hertfordshire, UK

E-mail: d.polani@herts.ac.uk

Abstract— We propose the use of kernel-based methods as un-
derlying function approximator in the least-squares based policy
evaluation framework of LSPE(λ) and LSTD(λ). In particular we
present the ‘kernelization’ of model-free LSPE(λ). The ‘kernel-
ization’ is computationally made possible by using the subset of
regressors approximation, which approximates the kernel using
a vastly reduced number of basis functions. The core of our
proposed solution is an efficient recursive implementation with
automatic supervised selection of the relevant basis functions. The
LSPE method is well-suited for optimistic policy iteration and
can thus be used in the context of online reinforcement learning.
We use the high-dimensional Octopus benchmark to demonstrate
this.

I. INTRODUCTION

Least squares based policy evaluation is ideally suited for
the use with linear models and a very sample-efficient variant
of reinforcement learning (RL). In this paper we propose a
(non-parametric) kernel-based approach to approximate the
value function. in least squares based policy evaluation. The
rationale for doing this is that by representing the solution
through the data and not by some basis functions chosen
before the data becomes available, we can better adapt to the
complexity of the unknown function we are trying to estimate.
In particular, parameters (i.e. basis functions) are not ‘wasted’
on parts of the input space that are never visited. The hope
is that thereby the exponential growth of parameters due to
high-dimensional inputs is bypassed.

To solve the RL problem of optimal control we consider the
framework of optimistic policy iteration and the least squares
based policy evaluation method LSPE(λ). The LSPE method is
formulated with linearly parametrized function approximation
in mind and can be easily ‘kernelized’. A straightforward
application to LSTD(λ) is also possible, but not given here
in detail.

We use the subset of regressors method to approximate the
kernel using a much reduced subset of basis functions. To
select this subset we employ sparse greedy online selection,
similar to [7], [8], that adds a candidate basis function based
on its distance to the span of the previously chosen ones.
One improvement is that we consider a supervised criterion
for the selection of the relevant basis functions that takes
into account the reduction of the cost in the original learning
task in addition to the reduction of the error incurred from
approximating the kernel. Since the per-step complexity during
training and prediction depends on the size of the subset,
making sure that no unnecessary basis functions are selected
ensures more efficient usage of otherwise scarce resources.
This way learning in real-time becomes possible.

This paper is structured in three parts: the first part (Sec-
tion II and Section III) gives a brief introduction on RL
and describes the kernelization of LSPE. The second part
(Section IV) describes our recursive implementation. The third
part (Section V) contains the experiments. One final note: our
work is in many respects similar to the GPTD approach from
Engel et al. [8], [9], [10]. A longer discussion of the two
approaches is deferred to the end of this paper.

II. LEAST SQUARES BASED REINFORCEMENT LEARNING

Reinforcement learning (RL) is a simulation-based form
of approximate dynamic programming, e.g. see [2], [26].
Consider a discrete-time dynamical system with (finite) states
S: at every time step t, when the system is in state st, a
decision maker chooses a control-action at (selected from
a finite set of admissible actions A) which changes proba-
bilistically the state of the system to st+1, with distribution
P (st+1|st, at). Every such transition yields an immediate
reward rt+1 = R(st+1|st, at). The ultimate goal of the
decision-maker is to choose a course of actions such that the
long-term performance, a measure of the cumulated sum of
rewards, is maximized.

A. Model-free Q-value function and optimal control

For a fixed deterministic policy π : S → A we want to
evaluate the state-action value function (Q-function) which is
here the expected infinite-horizon discounted sum of rewards

Qπ(s, a) = Eπ

∑
t≥0

γtrt+1|s0 = s, a0 = a

 ∀s, a

where st+1 ∼ P (· |st, π(s)) and rt+1 = R(st+1|st, π(st)).
Parameter γ ∈ (0, 1) denotes the discount factor.

Ultimately we are interested in optimal control, i.e. we seek
an optimal policy π∗ = argmaxπ Qπ . To accomplish that,
policy iteration interleaves the two steps policy evaluation and
policy improvement: First, compute Qπk for a fixed policy πk.
Then, once Qπk is known, derive an improved policy πk+1

by choosing in every state the action that achieves the best Q-
value, i.e. ∀s, πk+1(s) = argmaxa Qπk(s, a). Obtaining the
best action is trivial if we employ the Q-notation, otherwise
we would need both the transition probabilities and reward
function (i.e. a ‘model’).

B. Policy evaluation

To compute the Q-function, one exploits the fact
that Qπ obeys the fixed-point relation Qπ(s, a) =

338

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

1-4244-0706-0/07/$20.00 ©2007 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/1642317?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

E {rt+1 + γQπ(s′, π(s′))|st = s, at = a, st+1 = s′}. In prin-
ciple, it is possible to calculate Qπ exactly by solving the
corresponding linear system of equations, provided that the
transition probabilities P (s′|s, a) and rewards R(s′|s, a) are
known in advance. However, in many practical situations this
is not the case. Instead, one employs simulation (i.e. an agent
interacts with the environment) to generate a large number
of observed transitions; the expectation value is then approxi-
mated from these samples. A second need for approximation
arises from the number of states, which is often very large or
infinite. Then, one can only operate with an approximation
of the Q-function, e.g. a linear approximation Q̃π(s, a) =
ϕ(s, a)Tw, where ϕ(s, a) is a feature vector and w the
adjustable weight vector. An important example employing
both approaches is the temporal difference algorithm TD(λ),
initially proposed by Sutton [27].

C. Approximate policy evaluation with least squares methods

In what follows we will discuss two related algorithms
for approximate policy evaluation, that share most of the
advantages of TD(λ) but converge much faster, since they
are based on solving a least squares problem in closed form,
whereas TD(λ) is based on stochastic gradient descent. Both
methods assume that an (infinitely) long1 trajectory of states
and rewards is generated using a simulation of the system. The
trajectory starts from an initial state s0 and consists of tuples
(s0, a0), (s1, a1), . . . and rewards r1, r2, . . . where action ai

is chosen according to the current policy π and successor
states and associated rewards are sampled from the underlying
transition probabilities. From now on, to abbreviate these state-
action tuples we will understand xt as denoting xt := (st, at).
Furthermore, we assume that the Q-function is parameterized
by

Q̃π(x) = 〈ϕ(x),w〉 = ϕ(x)Tw (1)

where ϕ(x) is a (possible infinite dimensional) feature vector
(e.g. arising from the Mercer kernel map [23]). In the context
of kernel-based learning (1) is often called the primal form.

1) The LSPE(λ) method: The λ-least squares policy evalua-
tion method LSPE(λ) was proposed by [18], [3] and proceeds
by making incremental changes to the weights w. Assume
that at time t (after having observed t transitions) we have a
current weight vector wt and observe a new transition from
xt to xt+1 with associated reward rt+1. Then we compute the
solution ŵt+1 of the least squares problem

ŵt+1 = argmin
w

t∑
i=0

{
ϕ(xi)Tw − ϕT(xi)Twt −

t∑
k=i

(λγ)k−id(xk,xk+1;wt)
}2

(2)

1If we are dealing with an episodic learning task with designated terminal
states, we can generate an infinite trajectory in the following way: once an
episode ends, we set the discount factor γ to zero and make a zero-reward
transition from the terminal state to the start state of the next (following)
episode.

where

d(xk,xk+1;wt) := rk+1 + γϕ(xk+1)Twt − ϕ(xk)Twt.

The new weight vector wt+1 is obtained by setting

wt+1 = wt + η(ŵt+1 − wt) (3)

where w0 is the initial weight vector and 0 < η ≤ 1 is a step
size.

2) The LSTD(λ) method: The related least squares temporal
difference method LSTD(λ) proposed by [6] for λ = 0 and
by [5] for general λ ∈ [0, 1] does not proceed by making
incremental changes to the weight vector wt. Instead, at time
t, the weight vector wt is obtained by solving the fixed-point
equation

ŵ = argmin
w

t∑
i=0

{
ϕ(xi)Tw − ϕ(xi)Tŵ −

t∑
k=i

(λγ)k−id(xk,xk+1; ŵ)
}2

(4)

for the unique solution wt.

3) Comparing LSTD(λ) and LSPE(λ): For a linearly pa-
rameterized approximation both LSPE(λ) and LSTD(λ) con-
verge to the same limit, which is also the limit to which
TD(λ) converges (see [3]). Both methods rely on the solution
of a least squares problem (either explicitly as is the case
in LSPE or implicitly as is the case in LSTD) and can be
efficiently implemented using recursive computations. Compu-
tational experiments in [4], [16] indicate that both approaches
can perform much better than TD(λ).

Both methods differ as far their role in the approximate
policy iteration framework is concerned. LSPE can take ad-
vantage of previous estimates of the weight vector and can
hence be used in the context of optimistic policy iteration.
For LSTD this is not possible; here a more rigid actor-critic
approach is called for. In this paper we are interested in
online learning with optimistic policy iteration; hence we will
only deal with the ‘kernelization’ of the LSPE variant. Note
however, that LSTD allows a very similar ‘kernelization’, see
[14] for details.

III. LSPE WITH KERNELS

A. The primal form

Now we want express (2), (3) using matrices. Define:

Φ :=

ϕ(x0)T

...
ϕ(xt)T

 , Φ̄ :=

ϕ(x0)T − γϕ(x1)T

...
ϕ(xt)T − γϕ(xt+1)T

r :=

r1

...
rt+1

 , Λ :=

1 (λγ)1 · · · (λγ)t

0
. . .

...
...

. . . 1 (λγ)1

0 · · · 0 1

339

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

Now we state (2) with an added weight regularizer to
improve stability (as in ridge regression [13]); thus ŵt+1 is
the solution of

min
w

{ ∥∥Φt+1w − Φt+1wt − Λt+1

(
rt+1 − Φ̄t+1wt

)∥∥2

+σ2 ‖w − wt‖2
}

where σ2 > 0 is the regularization parameter. Computing the
derivative wrt w and setting it to zero:

0 =ΦTΦŵt+1 − ΦT(
Φwt + Λt+1(rt+1 − Φ̄wt)

)
+ σ2(ŵt+1 − wt)

thus

(ΦTΦ + σ2I)ŵt+1 =

ΦTΦwt + ΦTΛt+1(rt+1 − Φ̄wt) + σ2wt

and so

ŵt+1 = wt + (ΦTΦ + σ2I)−1ΦTΛt+1(rt+1 − Φ̄wt) (5)

The problem with (5) is that everything that is done depends
on the number of features, which may be high or infinite
(e.g. for Gaussian kernels). Proceeding similarly as in the
‘kernelization’ of ridge regression, we can put (5) in dual form.

B. The dual form

Applying the known matrix identity (e.g. see [12])

(P−1 + BTR−1B)−1BTR−1 = PBT(BPBT + R)−1

we obtain for the inverse matrix in (5)

(ΦTΦ + σ2I)−1ΦT = ΦT(ΦΦT + σ2I)−1

and thus (5) may be written as

ŵt+1 = wt + ΦT(ΦΦT + σ2I)−1Λ(r − Φ̄wt).

Obviously solutions ŵ of (5) lie in the column space of
ΦT. Thus we may express all primal variables w by dual
variables α =

(
α(1), . . . , α(m)

)T
, i.e. w =

∑t
i=0 α(i)ϕ(xi).

This way we can turn a problem depending on the number
of features into a problem depending on the number of
the data. Define K := ΦΦT, the matrix of inner products
[K]ij = 〈ϕ(xi),ϕ(xj)〉 =: k(xi,xj) and H := Φ̄ΦT with
[H]ij = k(xi,xj)−γk(xi+1,xj). Then we can write (5) using
dual variables

α̂t+1 = αt + (K + σ2I)−1Λ(r − Hαt)

and thus the dual LSPE update (3)

αt+1 = αt + η(K + σ2I)−1Λ(r − Hαt) (6)

Predictions (1) in test points x∗ can also be made just using
the dual variables

Q̃π(x∗) = 〈ϕ(x∗),wt+1〉 = 〈ϕ(x∗),
t∑

i=0

α
(i)
t+1ϕ(xi)〉

=
∑

α
(i)
t+1k(x∗,xi) (7)

Kernelizing LSPE is equivalent to using kernel ridge regres-
sion in the underlying least squares problem. Also, kernel
ridge regression is equivalent to the mean of posterior of
Gaussian process regression (GPR), see [21]. If we assume the
standard error model for regression that the targets are noisy
observations with independent normal noise distribution, then
we can exploit this connection to the probabilistic framework
to obtain in addition to predictions (7) an expression for the
predictive variance:

var(Qπ(x∗)) = k(x∗,x∗) − k(x∗)T(K + σ2I)−1k(x∗) (8)

where k(x∗) =
(
k(x∗,x0), . . . , k(x∗,xt)

)T
, see [21] for

details. In our application to online reinforcement learning,
we will use, as suggested in [9], the predictive variance (8) to
guide the choice of actions during exploration.

C. The subset of regressors approximation

Since LSPE is an iterative, online method, solving the full
t× t problem in (6) every time a new transition is observed is
clearly computationally infeasible. Instead we need to consider
means of approximation. In the subset of regressors (SR)
approach [19], [17], [25], [23] one chooses a subset {x̃i}m

i=1

of the data, with m 	 t and approximates for all x the feature
representation ϕ(x) by

ϕ(x) ≈
m∑

i=1

aiϕ(x̃i). (9)

Coefficient vector a in (9) is found by minimizing the length
of the residual

δ(x) := min
a∈Rm

∥∥∥∥∥ϕ(x) −
m∑

i=1

aiϕ(x̃i)

∥∥∥∥∥
2

. (10)

Writing (10) with inner products, computing the derivative
w.r.t. a and equating it with zero gives

a = K−1
mmkm(x) (11)

where matrix [Kmm]ij = k(x̃i, x̃j) and vector km(x) =(
k(x, x̃1), . . . , k(x, x̃m)

)T
. Applying the approximation (9) to

arbitrary x,x′ we obtain

k(x,x′) ≈ km(x)TK−1
mmkm(x′) (12)

which is exact if either x or x′ belongs to the subset. Likewise
we see that the full (t + 1) × (t + 1) kernel matrix K is
approximated by K̃ = Kt+1,mK−1

mmKT
t+1,m, where Kt+1,m

is the (t + 1) × m submatrix [Kt+1,m]ij = k(xi, x̃j).
Replacing in (6), (7) every occurrence of k(·, ·) by the

approximation (12) we obtain (skipping the derivation) in
place of (6)

αt+1,m = αt,m + η(KT
t+1,mKt+1,m + σ2Kmm)−1

KT
t+1,mΛt+1(rt+1 − Ht,mαt,m) (13)

and in place of (7)

Q̃π(x∗) =
m∑

i=1

α
(i)
t+1,mk(x, x̃i). (14)

340

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

Note that here αtm denotes a m× 1 vector. Overall the effect
of SR is to reduce the number of dual variables α from t + 1
to m. Instead of solving a O(t2) problem in (6) computional
costs per step are reduced to O(m2) in (13) and to O(m) for
predicting in (14). Moreover, since LSPE is an incremental,
online algorithm, the per-step cost does no longer depend on
the number of previously observed transitions t, but on the
fixed number m.

Finally, when applying SR, the predictive variance (8) is
computed by (see [21])

var(Q̃π(x∗)) =

σ2km(x∗)T(
KT

t+1,mKt+1,m + σ2Kmm

)−1
km(x∗). (15)

D. Online selection of the subset

In LSPE we assume that the data becomes available se-
quentially at t = 1, 2, . . ., so that we cannot select the subset
{x̃i}m

i=1 in advance (as for example is done with random
selection in [28], selection by incomplete Cholesky in [11], or
greedy forward selection using matching pursuit techniques in
[24]). Working in the context of GPR, [7] and later [8] have
proposed sparse greedy online approximation: start from an
empty subset (termed the dictionary or set of basis vectors
BV) and build it up incrementally by examining at every time
step if the new example xt+1 needs to be included in the
current set BV or if it can be processed without augmenting
BV .

The criterion they employ to make that decision is an
unsupervised one: at every time step t compute for the new
data point xt+1 the error from (10)

δt+1 := k(xt+1,xt+1) − km(xt+1)TK−1
mmkm(xt+1) (16)

incurred from approximating the new data point using the
current BV . If δt+1 exceeds a given threshold TOL1 then it is
considered as sufficiently different and added to the dictionary
BV .

Note that only the current number of elements in BV at
any given time t is considered, the contribution from basis
functions that will be added at a later time is ignored (i.e. a is
padded with zeros). Here it might be helpful to visualize the
(t+1)×m data matrix Kt+1,m once BV is augmented. Adding
the new element xt+1 to BV means adding a new basis func-
tion (centered on xt+1) to the model and consequently adding
a new associated column q =

(
k(x0,xt+1), . . . , k(xt,xt+1)

)T

to Kt+1,m. With sparse online approximation all t past entries
in q are given by k(xi,xt+1) ≈ km(xi)TK−1

mmkm(xt+1),
i = 0 . . . , t, which is exact for the m basis-elements and an
approximation for the remaining t − m non-basis elements.
Hence, going from m to m + 1 basis functions, we have that

Kt+1,m+1 =
[
Kt+1,m q

]
=

[
Kt,m Kt,mat+1

km(xt+1)T k(xt+1,xt+1)

]

where at+1 := K−1
mmkm(xt+1). The overall effect is, that

now we do not need to access the full data set any longer. All

costly O(tm) operations that normally arise from adding a
new column (i.e. adding a new basis function, computing the
reduction of error during greedy forward selection of basis
functions, computing predictive variance with augmentation
as in [20]) now become a more affordable O(m2).

This is exploited in [15]; here a simple modification of
this selection procedure is presented, where in addition to
the unsupervised criterion from (16) the contribution to the
reduction of the error (i.e. the objective function one is
trying to minimize) is taken into account. Here we will also
employ this supervised criterion (see Section IV-C.2). Since
the per-step complexity during training and then later during
prediction critically depends on the size m of the subset BV ,
making sure that no unnecessary basis functions are selected
ensures more efficient usage of otherwise scarce resources and
makes online learning in real-time possible.

IV. IMPLEMENTATION

Now we have all the pieces together to formulate an
efficient online implementation for kernel-based LSPE(λ) with
automatic basis selection. An outline of the implementation is
sketched in Fig. 1; the following sections will explain each of
the steps in more detail.

A. Recursive updates

Let xt+1 = (st+1, π(st+1)) be the currently observed state-
action pair and rt+1 the associated reward. Assume that from
the past transitions the m examples {x̃i}m

i=1 were selected into
the dictionary BV . In the following we will use a double index
(also for vectors) to indicate the dependence on the number of
examples t and the number of basis functions m. Every time
a new transition (xt+1, rt+1) is observed we will perform one
or both of the following update operations:

1) Normal step: Process (xt+1, rt+1) using the current
fixed set of basis functions BV .

2) Growing step: If the new example is sufficiently different
from the previous examples in BV (i.e. the recon-
struction error in (16) exceeds a given threshold) and
strongly contributes to the solution of the problem (i.e.
the decrease of the loss when adding the new basis
function is greater than a given threshold) then the
current example is added to BV and the number of basis
functions in the model is increased by one.

Consider the dual minimization problem for LSPE when
using SR (the result of the skipped computation in Section
III-C):

min
α∈Rm

Jt+1,m(α) :=

‖Kt+1,mα − Kt+1,mαtm + Λt+1(rt+1 + Ht,mαtm)‖2

+ σ2(α − αtm)TKmm(α − αtm) (17)

341

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

Algorithm Online policy evaluation with kernelized LSPE

Input: policy π

Output: Q-function: linearly parameterized Q̃π(x) = km(x)Tαt,m (m basis functions)
Generate first state s0. Choose a0 = π(s0).
For t = 0, 1, . . .

Execute action at (simulate a transition).
Observe next state st+1 and reward rt+1.
Choose action at+1 = π(st+1).

1. Check: If xt+1 := (st+1, at+1) should be added to the subset of basis functions

2. Case 1: Update weight vector αt,m without augmenting the basis
Perform the ‘normal step’ in Section IV-B

3. Case 2: Update weight vector αt,m and augment the basis
(Prepare the ‘growing step’ by caching certain terms)
Perform the ‘normal step’ in Section IV-B
Perform the ‘growing step’ in Section IV-C

st+1 → st, at+1 → at

Fig. 1. Online policy evalution with Kernel-LSPE(λ) at O(m2) operations per step, where m is the number of current basis functions

To write the expressions more compactly, we introduce the
shorthands

Bt+1,m := (KT
t+1,mKt+1,m + σ2Kmm)

ZT
t+1,m := KT

t+1,mΛt+1

bt+1,m := ZT
t+1,mrt+1

At+1,m := ZT
t+1,mHt+1,m

Thus the LSPE update (restated from (13)) when using a fixed
basis is

αt+1,m = αt,m + ηB−1
t+1,m(bt+1,m − At+1,mαt,m) (18)

and when adding a new basis function

αt+1,m+1 =
[
αt,m

0

]

+ ηB−1
t+1,m+1

(
bt+1,m+1 − At+1,m+1

[
αt,m

0

])
(19)

Assuming that {αt,m,B−1
t,m,At,m,bt,m} are known from

the previous step, we need to derive update equations for the
two cases:

{αt,m,B−1
t,m} → {αt+1,m,B−1

t+1,m}
{αt+1,m,B−1

t+1,m} → {αt+1,m+1,B−1
t+1,m+1}

Our update operations work along the lines of recursive
least squares (RLS), i.e. propagate forward the inverse2 of the
m × m matrix Bt+1,m.

To perform these updates we use the two well-known matrix
identities for recursively computing the inverse of a matrix:
(for matrices G,g with compatible dimensions)

if Gt+1 = Gt + ggT then

G−1
t+1 = G−1

t − G−1
t ggTG−1

t

1 + gTG−1
t g

(20)

2A better alternative (from the standpoint of numerical implementation)
would be to not propagate forward the inverse, but instead to work with the
cholesky factor. For this paper we chose the first method in the first place
because it gives consistent update formulas. For details on the second way,
see e.g. [22].

which is used when adding a row to the data matrix. Likewise,

if Gt+1 =
[
Gt g
gT g∗

]
then

G−1
t+1 =

[
G−1

t 0
0 0

]
+

1
∆b

[−G−1
t g
1

] [−G−1
t g
1

]T

(21)

with ∆b = g∗ − gTG−1
t g. This second update is used when

adding a column to the data matrix.

B. Normal step: {t,m} → {t + 1,m}
With kt+1 := km(xt+1) and ht+1 := kt − γkt+1 one gets

Kt+1,m =
[
Kt,m

kT
t+1

]
,Ht+1,m =

[
Ht,m

hT
t+1

]
, rt+1 =

[
rt

rt+1

]
.

Thus Bt+1,m = Bt,m + kt+1kT
t+1 and we obtain from (20)

B−1
t+1,m = B−1

t,m − B−1
t,mkt+1kT

t+1B
−1
t,m

∆
(22)

where ∆ = 1+kT
t+1B

−1
t,mkt+1. Skipping some derivations we

compute the vector

zt+1,m = (λγ)zt,m + kt+1

used to update At,m,bt,m as follows

At+1,m = At,m + zt+1,mhT
t+1 (23)

bt+1,m = bt,m + zt+1,mrt+1 (24)

The set of basis functions BV is not altered during this step.
The new weight vector αt+1,m can now be obtained from
(18). Operation count is O(m2).

C. Growing step:{t + 1,m} → {t + 1,m + 1}
1) How to add a BV: When adding an additional basis

function (centered on xt+1) to the model we augment the
set BV with x̃m+1 (which is the same as xt+1). Adding a
new basis function means appending a new column/row to the
relevant matrices. Due to the lack of space we cannot describe

342

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

the derivations in more detail; we just give the results: invoking
(21) we obtain

B−1
t+1,m+1 =

[
B−1

t+1,m 0
0 0

]
+

1
∆b

[−wb

1

] [−wb

1

]T

(25)

where

wb = at+1 +
δ

∆
B−1

t,mkt+1

∆b =
δ2

∆
+ σ2δ

with at+1 = K−1
mmkm(xt+1) from (11), δ := k∗

t −
kT

t at+1, k∗
t := k(xt,xt+1). Furthermore, compute k∗

t+1 :=
k(xt+1,xt+1), h∗ := k∗

t − γk∗
t+1 and z∗ := (λγ)zT

t,mat+1 +
k∗

t . Then we obtain

zT
t+1,m+1 =

[
zT

t+1,m z∗
]T

and thus with u := aT
t+1At,m and v := At,mat+1

At+1,m+1 =
[

At+1,m v + zt+1,mh∗

u + z∗ht+1 uat+1 + z∗h∗

]

bt+1,m+1 =
[

bt+1,m

aT
t+1bt,m + z∗rt+1

]

Caching and reusing those terms already computed in the
preceding step (see Sect. IV-B) we can perform these updates
in O(m2) operations. Finally, every time we add an example
to the BV set we must also update the inverse kernel matrix
K−1

mm needed during the computation of at+1. This can be
done using the formula for partitioned matrix inverses (21).

2) When to add a BV: To decide whether or not the current
example xt+1 should be added to the BV set, we employ
a supervised two-part criterion similar to [15]. The first part
measures the ‘novelty’ of the current data point: compute as
in [7] the squared norm of the residual from projecting the
feature ϕ(xt+1) onto the span of the current BV set, i.e. we
compute δt+1 from (16). If δt+1 < TOL1 for a given threshold
TOL1, then xt+1 is well represented by the given BV set and its
inclusion would not contribute much to reduce the error from
approximating the kernel by the reduced set. On the other
hand, if δt+1 > TOL1 then xt+1 is not well represented by the
current BV set and leaving it behind could incur a large error
in the approximation of the kernel.

However, using as sole criterion the reduction of the er-
ror incurred from approximating the kernel is probably too
wasteful of resources, since examples could get selected into
the subset that are unrelated to the original task [1]. We want
to be more restrictive, particularly because the computational
complexity per step scales with the square of basis functions
in BV (so that the size of BV will soon become the limiting
factor).

Aside from novelty, we thus consider as second part of the
selection criterion the ‘usefulness’ of a basis function candi-
date. Usefulness is taken to be its contribution to the reduction
of the regularized costs in the dual minimization problem (17).
One can show that for a given xt+1 this reduction is equal

to ∆−1
b (c − wT

bd)2 where c = aT
t+1(bt,m − At,mαt,m) +

z∗(rt+1 −hT
t+1αt,m) and d = bt+1,m −At+1,mαt,m. Again

this reduction can be very cheaply obtained in O(m) time
(thus again independently from the number of total examples).

D. Action selection with augmented predictive variance

Once a dual weight vector αt+1,m is known we can choose
a control action a∗ for an arbitrary state s∗ by taking the action
a∗ that achieves the maximum value:

a∗ = argmax
a

km(s∗, a)Tαt+1,m.

Sometimes however, instead of choosing the best (greedy)
action, it is recommended to try out an alternative (non-greedy)
action to ensure sufficient exploration. Here we will employ
the ε-greedy selection scheme; we choose a random action
with a small probability ε, otherwise we pick the greedy action
with probability 1− ε. Taking a random action usually means
to select one with equal probability. Here we will exploit the
predictive variance of (15) to assign probabilities according to
the ‘novelty’ of the state-action pair x∗ = (s∗, a).

Note, that directly computing the predictive variance for
SR approximation is not helpful, since the resulting quantity
tends to zero3 if we stray far from the examples saved in the
subset BV . This is exactly the opposite of what we really want;
the predictive variance should be high for novel test points.
As a remedy [20] suggest to use an augmented predictive
variance, which adds during every prediction a new basis
function centered on the test point. Here again we can benefit
from sparse online approximation from Section III-D to carry
out what would normally be a O(tm) operation in only O(m2)
time. Due to the lack of space we omit the corresponding
formulas.

V. EXPERIMENTS WITH THE OCTOPUS ARM

The experimental work we carried out for this article uses
the publicly available octopus arm benchmark4. Learning to
control an octopus arm is a high-dimensional control task
with both continuous state space (the arm is discretized into 8
compartments which results in 66 dimensions) and continuous
actions (the action space has 22 dimensions) and was initially
proposed and formulated as a reinforcement learning problem
by Engel et al. in [10]. Instead of dealing with continuous
actions we are using, as in [10], 7 meaningful predefined
activation patterns that each translate into a 22-dimensional
action.

A. The reaching task

Figure 2 shows a picture of the octopus problem. The
objective for the octopus arm is to reach the goal, which is
just a point in the 2D plane. Reaching is successful as soon as

3For distance-based kernels, like for example the Gaussian RBF, the kernel
goes to zero when the distance to a fixed center goes to infinity. Thus km(x∗)
will also be nearly zero.

4from the ICML06 RL benchmarking page:
http://www.cs.mcgill.ca/dprecup/
workshops/ICML06/octopus.html

343

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

Fig. 2. Illustrating the octopus task. The octopus arm must wiggle and stretch
considerably to touch the red goal.

any part of the arm touches this point. For our experiments,
we used the ‘hardTask’ goal configuration, which places the
target far away such that the arm needs to perform a rather
sophisticated sequence of control actions in order to succeed.
The reaching task is an episodic task. It starts from a random
position of the arm (these initial states are read in from a file
and thus are the same for different runs) and proceeds until the
goal is reached. Every step incurs a negative immediate reward
of -1, successfully reaching the goal is awarded with +1000
reward. Note that the reward itself does not carry helpful
information about the distance to the goal. An episode is
truncated if the agent fails to reach the goal after 1000 steps.

B. Setup of LSPE and hyper-parameters

We use online reinforcement learning and pair our ker-
nelized LSPE(λ) with optimistic policy iteration. Thus the
underlying policy is continually modified to reflect the chang-
ing estimates of Q. To select actions we employ ε-greedy
action selection (ε=0.05). Whenever chance indicates that an
exploratory action should be chosen, we pick the one with the
highest associated predictive variance (see Section IV-D).

Since the kernel is defined for state-action tuples, we employ
a product kernel k([s, a], [s′, a′]) = kS(s, s′)kA(a, a′) as
suggested by Engel et al. in [9]. The action kernel kA(a, a′)
is taken to be the Kronecker delta, since the actions are
discrete and disparate objects. As state kernel kS(s, s′) we
chose the Gaussian RBF with length-scale h = 200. The
other parameters were set to: regularization σ2 = 0.1, discount
factor for RL γ = 0.999, λ = 0.6, and LSPE step size
η = 0.5. The novelty parameter for basis selection was set
to TOL1= 0.1. For the usefulness part we actually tried
out different values to examine the effect supervised basis
selection has; we started with TOL2= 0 corresponding to
the unsupervised case and then examined increasingly higher
thresholds.

C. Results

Figure 3 shows the learning curves obtained during the first
200 episodes for independent runs made using the same choice
of hyper-parameters. The curves (smoothed by the rolling
mean) plot the cumulated reward attained in one episode

0 20 40 60 80 100 120 140 160 180 200
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Episodes

T
ot

al
 r

ew
ar

d
pe

r
ep

is
od

e

Fig. 3. Online performance with Kernel-LSPE during the first 200 episodes.
The results are smoothed and shown for three different runs. A negative total
reward means that the agent was not able to reach the goal in 1000 time steps
(the maximum time allowed before an episode is truncated). A positive total
reward means that the agent was able to reach the goal.

against the number of episodes the agent is learning. A total
reward of -1000 means that the agent failed to reach the
goal in 1000 time steps. A positive total reward means that
the agent was able to reach the goal in that episode; here
a higher number indicates that the agent completed the task
more quickly. The plots show that kernel-LSPE is able to
eventually solve the problem with a success rate of 100%.
What is rather surprising is that this happens within very few
episodes (an average of 20-50 episodes was needed before the
agent completed the first successful trial).

We would also like to mention the effectiveness of our
proposed supervised basis function selection. Moving TOL2
gradually away from zero (which corresponds to the unsu-
pervised case) to larger values selects an increasingly fewer
number of basis functions into the dictionary BV; the unsu-
pervised case results in ∼ 2000 basis functions, whereas a
supervised selection with TOL2=0.01 only requires ∼ 1200
basis functions. The level of performance is not adversely
affected by this reduction.

VI. DISCUSSION AND RELATED WORK

We have presented a kernel-based approach for model-free,
least squares based policy evaluation in RL using ‘kernel-
ized’ LSPE (note that the related LSTD algorithm can be
‘kernelized’ in a very similar manner). One key point is the
automatic construction of relevant features used to represent
the approximated value function. We presented an efficient
supervised basis selection mechanism, which selects a subset
of relevant basis functions directly from the data stream.

Kernelized LSPE(λ) is particularly useful in the context of
optimistic policy iteration and allows us to apply online RL
to solve high-dimensional control tasks. We prove the effec-
tiveness of our approach using the recent Octopus benchmark.
The overall results indicate that online learning in RL using
kernels is in practice very well possible and recommendable.

344

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

One property that makes the kernel-based approach partic-
ularly attractive is that it only requires the setting of some
fairly general parameters that do not depend on the specific
control problem one wants to solve. On the other hand, using
traditional (parametric) function approximation in high dimen-
sions, e.g. a fixed basis function network, requires considerable
manual effort on part of the programmer to carefully devise
problem-specific features and manually choose suitable basis
functions.

Engel et al. initially advocated using kernel-based methods
in RL and proposed the related GPTD algorithm [8], [9]. Our
method using kernel ridge regression develops this idea further.
Both methods have in common the online selection of relevant
basis functions based on [7]. As opposed to the unsupervised
selection in GPTD we use a supervised criterion to further
reduce the number of relevant basis functions selected. A
more fundamental difference is the policy evaluation method
addressed by the respective formulation; GPTD models the
Bellman residuals. Thus, in its original formulation GPTD
can be only applied to RL problems with deterministic state
transitions. In contrast, we provide a unified and concise
formulation of LSPE (and LSTD) with kernels, which can
deal with stochastic state transitions as well.

REFERENCES

[1] F. R. Bach and M. I. Jordan. Predictive low-rank decomposition for
kernel methods. In Proc. of ICML 22, 2005.

[2] D. Bertsekas and J. Tsitsiklis. Neuro-dynamic programming. Athena
Scientific, 1996.

[3] D. P. Bertsekas, V. S. Borkar, and A. Nedić. Improved temporal
difference methods with linear function approximation, LIDS Tech.
Report 2573, MIT, 2003, also appears in Learning and Approximate
Dynamic Programming, by A. Barto, W. Powell, J. Si, (Eds.), IEEE
Press, 2004.

[4] D. P. Bertsekas and S. Ioffe. Temporal differences-based policy iteration
and applications in neuro-dynamic programming, LIDS Tech. Report
LIDS-P-2349, MIT, 1996.

[5] J. A. Boyan. Least-squares temporal difference learning. In Proc. of
ICML 16, 1999.

[6] S. J. Bradtke and A. Barto. Linear least-squares algorithms for temporal
difference learning. Machine Learning, 22:33–57, 1996.

[7] L. Csató and M. Opper. Sparse representation for Gaussian process
models. In Advances in NIPS 13, pages 444–450, 2001.

[8] Y. Engel, S. Mannor, and R. Meir. Bayes meets Bellman: The Gaussian
process approach to temporal difference learning. In Proc. of ICML 20,
pages 154–161, 2003.

[9] Y. Engel, S. Mannor, and R. Meir. Reinforcement learning with gaussian
processes. In Proc. of ICML 22, 2005.

[10] Y. Engel, P. Szabo, and D. Volkinshtein. Learning to control an octopus
arm with gaussian process temporal difference methods. In Advances in
NIPS 17, 2005.

[11] S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel
representation. JMLR, 2:243–264, 2001.

[12] G. Golub and C. Van Loan. Matrix Computations (3rd Edition). John
Hopkins University Press, Baltimore, 1996.

[13] A. E. Hoerl and R. Kennard. Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics, 12(3):55–67, 1970.

[14] T. Jung and D. Polani. Learning robocup-keepaway with kernels.
submitted, 2006.

[15] T. Jung and D. Polani. Sequential learning with ls-svm for large-scale
data sets. In Proc. of ICANN 16, 2006.

[16] M. G. Lagoudakis and R. Parr. Least-squares policy iteration. JMLR,
4:1107–1149, 2003.

[17] Z. Luo and G. Wahba. Hybrid adaptive splines. J. Amer. Statist. Assoc.,
92:107–116, 1997.

[18] A. Nedić and D. P. Bertsekas. Least squares policy evaluation algorithms
with linear function approximation. Discrete Event Dynamic Systems:
Theory and Applications, 13:79–110, 2003.

[19] T. Poggio and F. Girosi. Networks for approximation and learning.
Proceedings of IEEE, 78:1481–1497, 1990.

[20] C. E. Rasmussen and J. Quinonero-Candela. Healing the relevance
vector machine through augmentation. In Proc. of ICML 22, 2005.

[21] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian
Processes for Machine Learning. MIT Press, 2006.

[22] A. Sayed. Fundamentals of Adaptive Filtering. Wiley Interscience, 2003.
[23] B. Schölkopf and A. Smola. Learning with Kernels. Cambridge, MA:

MIT Press, 2002.
[24] A. J. Smola and P. L. Bartlett. Sparse greedy Gaussian process

regression. In Advances in NIPS 13, pages 619–625, 2001.
[25] A. J. Smola and B. Schölkopf. Sparse greedy matrix approximation for

machine learning. In Proc. of ICML 17, pages 911–918, 2000.
[26] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT

Press, 1998.
[27] R. S. Sutton. Learning to predict by the methods of temporal differences.

Machine Learning, 3:9–44, 1988.
[28] C. Williams and M. Seeger. Using the Nyström method to speed up

kernel machines. In Advances in NIPS 13, pages 682–688, 2001.

345

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

