
The Development of iHARP: 
A Multiple Instruction Issue Processor Chip 

G.B. Steven , R.G. Adams, P.A. Findlay and S.A. Trainis 

1. Introduction 

During the last decade RISC ideas on processor architecture have become widely accepted. RISC 
architectures achieve significant performance advantages over CISC architectures by striving to 
execute one instruction per cycle. However, a traditional RISC architemre can never execute more 
than one instruction per cycle. Achieving further performance improvements beyond RISC 
depends on developing processors which fetch and execute more than one operation in each 
processor cycle. 

The objective of the HARP project is to design, build and test a processor which executes 
non-numeric benchmarks at a sustained execution rate in excess of two instructions per cycle. 
Earlier work at Hatfield c e n t d  around the design of an a b s m t  HARP architectural model [l-33. 
This paper describes MAW [4,5], a physical realisation of the HARP architectural model within 
the constraints of a single VLSI chip. 

The MARP processor fetches a 128-bit long instruction word from an instruction cache every 
processor cycle. Each long instruction consists of four, 32-bit short RISC primitives which are 
dispatched to four integer pipelines for parallel execution. The HARP compiler is responsible for 
detecting groups of instructions which can be executed in parallel and for placing them in a single 
long instruction word at compile time. Multiple-instruction-issue architectures which rely on the 
compiler to schedule instructions at compile time are often called VLIW (Very Long Instruction 
Word) architectures[6-8]. More recently processors which use hardware techniques to execute 
multiple instructions in parallel have been termed superscalar processors[9]. 

iHARP is a single chip, multiple-instruction-issue processor which is targeted at non-numeric 
applications. Non-numeric code differs from numeric code in several ways. First, there is less 
parallelism to exploit. Consequently. long instruction latencies are less easily tolerated, and the 
compiler must employ more aggressive instruction scheduling techniques. Second, a typical 
operand is no longer an element of a large array. The latency of a typical memory load instruction 
can thexefore be significantly reduced by providing a data cache. 

This paper introduces the chip design. Particular attention is paid to the development of the 
pipeline structure, to the register file organisation and to iHARP features which minimise 
insauction latencies. The paper concludes with a summary of the current status of the project. 

2. Instruction Set 

iHARP supports a conventional RISC load and store architecture. Computational instructions use 
two general-purpose register operands and return a result to a third register. In all cases a signed 
1 1-bit literal or a long 32-bit literal can be substituted for the second operand. Load and store 
instructions use the same two operands to compute memory addresses. 

Conventional condition codes are replaced by eight. one-bit Boolean registers which are set 
explicitly by relational or compare instructions. For example 

NE Bl,R2,R3 

sets Boolean register B 1 to TRUE if register R2 is not equal to register R3. As well as being tested 
by conditional branch instructions, the Boolean registers are used to directly control instruction 

Hatfield Polytechnic, Hafield, Hens ALlO 9AB 

2/1 



execution. All instructions, including conditional branch instructions, specify a Boolean register 
and a truth value. An instruction is only executed if the value held in the Boolean register 
corresponds to the specified truth value. For example, the instruction 

T B2 ADD Rl,R2,R3 

will only add register R2 to R3 and place the result in R1 if Boolean register B2 holds the value 
TRUE. Conditional instruction execution allows instructions which are normally executed after a 
branch to be executed as soon as the Boolean condition which controls the branch is computed. 
Unconditional instruction execution is achieved by testing BO which is always FALSE. 

3. Pipeline Structure 

All MARP instructions are executed in the following four stage pipeline: 

Fetch next instruction from instruction cache 
Fetch register operands from register file 
Perform operation or access data cache 
Return results to register file 

IF 
RF 
ALU/MEh4 
WB 

Computational instructions use all four stages: reading two operands in the second stage, 
performing the actual computation in the third stage and returning a result to a register in the final 
stage. Relational instructions use a dedicated high-speed comparator in each pipeline to compute a 
Boolean value during the first half of the ALUMEM stage. As a result new Boolean values are 
available for control purposes before the end of the ALUFIEM stage. Memory reference 
instructions compute a memory address in the RF stage and access a separate off-chip data cache in 
the ALUNEM stage. Load instructions also retum a result to a register during the W B  phase. All 
iHARP branch instructions have a branch delay of one. Branch instructions use dedicated adders 
to compute branch targets in the RF stage, thus allowing branch resolution at the end of the RF 
stage. 

Not all instructions are supported by all four pipelines. Memory reference instructions, for 
example, can only be executed in pipelines zero and two. While two pipelines are able to generate a 
memory address, only one access can be made to the data cache in each cycle. Two memory 
reference instructions may therefore only be placed in a single long instruction word if they are 
guarded by mutually exclusive Boolean conditions. Similarly, branch instructions are restricted to 
pipelines one and three. Since a branch instruction in pipeline three is always given priority, two 
branch instructions executed in parallel have the same effect as two branches executed 
consecutively in sequential code. 

4. Register File Organisation 

The iHARP processor provides 32 general-purpose registers which are shared by all four pipelines. 
Register zero is read only and always delivers zero. While each short instruction normally requires 
two register operands, a store instruction may require three, two to compute the memory address 
and a third to provide the data to be stored. As a result W R P  ideally requires a fourteen-ported 
register file which is capable of reading ten operands and writing four results in every processor 
cycle. 

The iHARP register file implementation uses standard RAM primitives with two read ports and two 
write ports. Multiple read ports are provided by replicating the register file and associating one file 
with each pipeline. An additional register file, associated with the address unit, provides the third 
operand for store instructions. Only two of the four ALUs are allowed to return a result to a 
general-purpose register in each processor cycle. 

To reduce the scheduling pressure on the write ports, results can be bypassed to the next sequential 
instruction without being written to a register. A write-back bit provided in each short instruction 
controls this facility. If the write-back bit is not set, the hardware makes no attempt to return a 
result to the specified register. However, the result is still automatically forwarded to any short 
instruction in the next instruction word which uses the same register operand. This facility avoids 



>ring temporary results which are immediately used. 

It is felt that two write ports in conjunction with iHARPs distinctive optional write-back facility will 
not significantly reduce the parallelism realised by the i" instruction scheduler. Many 
instructions, including relational, branch and store instructions, do not produce integer results. 
Furthermore two instructions scheduled on mutually exclusive Boolean conditions only generate a 
single write to the register file. Such instruction pairs occur frequently as a byproduct of the code 
motion undertaken by the HARP instruction scheduler. 

5. Instruction Latency 

The W processor is specifically targeted at non-numeric applications. In such an environment 
the available parallelism may be as low as two. It is therefore essential not to squander any 
hard-won parallelism gained by the compiler on increased instruction latencies. This section 
discusses aspects of the i" design which are related to instruction latency. 

5.1 Bypassing 

Since iHARF' instructions are executed in a four-stage pipeline, a result produced by one instruction 
is not written to the general-purpose register file in time to be read as an operand by the next 
sequential instruction. Immediate re-use of data is only possible if a bypass path is provided from 
ALU output to ALU input. To minimise instruction latencies, 32-bit bypass paths are provided 
from all four ALU outputs to all eight ALU inputs. Similarly a value loaded from the data cache 
can be bypassed to the ALU inputs for immediate use. 

5.2 ORed Indexing 

Many RISC processors provide delayed load instructions. As a result data loaded from the data 
cache can not be used by the next instruction. Recent simulations [ 101 suggest that introducing a 
one cycle load delay in WRP would degrade the instruction-issue rate by approximately 25%. 
W thenfore implements the following four cycle load instruction: 

IF Instruction Fetch 
RF 
ALu/MEM Acctss data cache 
W B  

Fetch address components and compute memory address 

Load data into register file 

This timing allows data loaded from the data cache to be bypassed directly to the next instruction. 
The drawback is that memory addresses must be computed in the IW stage. Since insufficient time 
is available to access the register file and perform a 32-bit addition of the address components, 
some simplification of the addressing mechanism is essential. 

iHARP implements a distinctive ORed indexing mechanism, where a bitwise OR operation is 
performed between the two address components to form the effective address[ 113. This simple 
mechanism is equivalent to an addition, providing the calculation is actually a concatenation. 
HARP compilers enforce this requirement by starting all procedure activation records on a 
power-of-two boundary[l2,13]. The least significant bits of the stack pointer are forced to zero on 
procedure entry and variables are accessed relative to the stack pointer using ORed indexing. The 
power-of-two boundary used is adjusted from procedure to procedure to avoid excessive memory 
hgmentation. Effectively a new variable-sized 'page' is allocated on the stack on procedure entry. 

5.3 Boolean Registers 

All WARP instructions are conditionally executed. Each short instruction specifies one of eight 
Boolean registers and an associated truth value. At run-time an instruction is only allowed to 
change the machine state if the Boolean register holds the specified value. The Boolean values 
themselves are generated using a set of relational instructions. Conditional instruction execution 
can be viewed as a mechanism for reducing branch latency. Instructions which are normally 
executed after a branch instruction can now be conditionally executed as soon as the branch 
condition is resolved. Thus the code fragment 

2/3 



NE Bl,Rl,R2 
BT B1,label 
NOP 
Instrl 
Instr2 
Instr3 

P Calculates a Boolean value */ 
P Branch if Boolean TRUE */ 
/* Branch delay slot */ 

label: Instr4 
Instr5 
Instr6 

can be scheduled in parallel as: 

NE Bl,Rl,R2 
BT Bl.label+& F B1 Insal; T B1 Instr4 

T B 1 Instr5 
Instr3 

F B 1 Instr2; 

label+2: Instr6 

Both instruction streams following a branch instruction can therefore be moved up by at least two 
instruction slots. Further code motion is possible if the relational instruction can be separated from 
its branch. Note that the introduction of pairs of instructions which are executed on a mutually 
exclusive Boolean condition will reduce the write-back pressure on the general-purpose registers. 

NOW consider the timing of the first two long instructions. The initial comparison for equality is 
carried out by a dedicated comparator in the first portion of the ALU pipeline stage, and the 
Boolean result is loaded immediately into the appropriate register. In contrast, the whole of the 
ALU pipeline stage is required to compute the two following ALU operations, and the integer 
results are not returned to the register file until the final write-back stage of the pipeline, two cycles 
after the value of B 1 is updated. These observations suggest that it should be possible to move the 
ALU operations in parallel with the relational instruction. As a result the iHARP instruction 
scheduler can produce the following parallel code: 

NE Bl,Rl,R2; F B1 ALUInstrl; T B1 ALUInstr4 
BT B 1 .label+% F B 1 Instr2; 

F B 1 Instr3; 
T B1 Instr5 
T B 1 Instr6 

label+3: : 

Both original sequential instructions streams have now been moved up by three instruction slots. 
Only computational instructions can be scheduled in this fashion. The remaining instruction types 
can not be placed in parallel with an instruction which computes their Boolean conml value. 

6.0 Project Status 

The iHARP design is targeted at the 1.5 micron CMOS ES2 process. The chip has a target size of 
150 sq mm and will be packaged in a 180 pin grid array. To squeeze the chip into a 180 pin 
package, the 128-bit wide instruction bus is time multiplexed. Short instructions one and three are 
returned to the chip from the instruction cache at the start of the RF cycle, while instructions zero 
and two are returned mid-way through the cycle. No time penalty is incurred, since only the 
branch instruction offsets from pipeline one and three are actually required on-chip during the first 
half of the RF pipeline stage. 

The chip is being developed using Cascade, formerly Seattle Silicon, ChiPCrafter software running 
on an Apollo workstation. To reduce development time, heavy reliance is being placed on the 
high-level building blocks provided by Chipcrafter. The iHARP design data base is complete and 
layout, timing analysis and simulation are now in progress. Chip fabrication is scheduled for the 
final quarter of 1992. 



, prototype chip will be incorporated in a small test-bed system. At the heart of the system will 
. a custom designed processor board consisting of the iHARP processor chip. off-the-shelf 
Motorola cache chips and a VME bus interface. Main memory will be provided by a standard, 
dual-ported, VME RAM card. These two boards will be embedded in a standard VME 
development systcm which will be used to test the iHARP processor and to provide an interface to 
the Hatfield campus network. This test bed will allow evaluation of the MAW architecture using C 
and Modula-2 benchmarks. 

7. Conclusions 

The success of the project ultimately depends on the ability of the HARP compiler system to 
schedule iHARP instructions in parallel. Initial results obtained using an ELLA simulation of the 
abstract HARP model are encouraging[l2]. Using a suite of ten integer benchmarks, a 
straightforward instruction scheduling algorithm reduced dynamic execution times by an average 
factor of 2.07. 

On iHARP the instruction latency timings are more aggressive, especially with respect to relational 
instructions. Also the scheduling techniques employed to date have been very straightforward. As 
a result, we are confident that, with the use of more advanced instruction scheduling techniques, 
iHARP will be able to execute non-numeric benchmarks at a sustained instruction execution rate in 
excess of two instructions per cycle. 

Acknowledgements 

The HARP project is supported by SERC Research Grant GW88018. Part of this work is also 
supported by an SERC studentship. 

References 

Steven,G.B., Gray,S.M. and Adams,R.G. "HARP: A Parallel Pipelined RISC Processor", 
Microprwessors and Microsystems, Vol. 13, No.9 (November 1989), pp 579-587. 
Adams,R.G., Gray,S.M. and Steven,G.B. "Utilising Low Level Parallelism in General 
Purpose Code: The HARP Project," Microprocessing and Microprogramming. Vo1.29, No.3 

Steven,G.B. and Gray,S.M. "Specification of a Machine Model for the HARP Architecture 
and Instruction Set - Version 3", Hatfield Polytechnic, Division of Computer Science, 

Trainis,S.A. "A Device Specification for the iHARP Processor", Hatfield Polytechnic, 
Division of Computer Science, TR118, February 1991, ppl-46. 
Findlay,P.A., Trainis,S.A., Steven,G.B. and Adams,R.G. "HARP: A VLIW RISC 
Processor", CompEuro91, Bologna, May 1991, pp368-372. 
Colwell,R.P., Nix,R.P., ODonnel1,J.J.. Papworth,D.B., and Rodman,P.K. "A VLIW 
Architecture for a Trace Scheduling Compiler" IEEE Transactions on Computers, Vo1.37, 

Annaratone,M., Arnou1d.E.. Gr0ss.T.. Kung,H.T.. Lam.M.. Menzilcioglu.0. and 
Webb,J.A. "The Warp Computer: Architecture, Implementation, and Performance," IEEE 
Transactions on Computers, Vo1.C-36, No. 12, December 1987, pp1523-1538. 
Rau.B.R.. Yen,D.W.L., Yen,W. and Tow1e.R.A. "The Cydra 5 Departmental 
Supercomputer: Design Philosophies, Decisions and Trade-offs," Computer, January 1989, 

October 1990, ~~137-149 .  

TR117, Jan~ary 1991, ppl-52. 

NO. 8, August 1988, ~~967-979 .  

DD 12-35. r r - -  

[9] Johns0n.M. "Superscalar Microprocessor Design", Prentice-Hall, New Jersey, 1991. 
[lo] Chang.P.P., Mahlke,S.A., Chen,W.Y., Waner,N.J. and Hwu,W.W. "IMPACT: An 

Architectural Framework for Multiple-Instruction-Issue Processors", 18th Annual 
International Symposium on Computer Architecture, Toronto, May 1991, pp266-275. 

[ l l ]  Steven,G.B. "A Novel Effective Address Calculation Mechanism for RISC 
Microprocessors", SEARCH, September 1988, pp150-6. 

[ 121 Gray,S.M. "Code Generation for Long Instruction Word Architectures", PhD Thesis, 
Hatfield Polytechnic, expected December 1991. 

[13] WangL. "Crafting a C Compiler for the iHARP Chip using the GNU Compiler Compiler", 
Division of Computer Science, Hatfield Polytechnic, TR121, April 1991, ppl-43. 

2/5 


