
Optimising a Neural Tree Classifier Using a Genetic Algorithm

Wanida Pensuwon

W.Pensuwon@herts.ac.uk

Rod Adams

R.G.Adams@herts.ac.uk

Neil Davey

N.Davey@herts.ac.uk

Computer Science Dept. University of Hertfordshire, Hatfield, Herts, AL10 9AB,United Kingdom.,
Tel: +44 01707 284321

Abstract. This paper documents experiments
performed using a GA to optimise the parameters of a
dynamic neural tree model. Two fitness functions
were created from two selected clustering measures,
and a population of genotypes, specifying parameters
of the model were evolved. This process mirrors
genomic evolution and ontogeny. It is shown that the
evolved parameter values improved performance.

1 INTRODUCTION
Organising the output nodes of a competitive network
into a tree structure may produce potential
improvements in both convergence and recall rates. It
may also make the network more stable in responding
to changes in the data being classified. However a
limitation of most clustering algorithms is that they
require the number of classes to be predefined. This is
a problem if no a-priori knowledge about the data is
available [3].

Dynamic neural tree networks (DNTN) may avoid the
above limitation by dynamically creating nodes and
automatically creating a tree structure. However, all
the original models require parameters to be externally
set, which will significantly influence the hierarchical
structure and the classification that is produced [8, 11,
12].

A more recent DNTN is the Competitive Evolutionary
Neural Tree (CENT), [1,2,3]. This model is
comparatively robust, with respect to its parameter
settings when compared with other DNTNs [2].
Nonetheless, it is unclear precisely how the internal
parameters affect the performance, which lead to the
investigation reported here. In order to explore the
parameter space a good default set of parameters was
needed, and a genetic algorithm (GA) was used as the
search vehicle. A given genome (a set of parameters),
together with a data set allowed CENT to produce a
classificatory tree. The fitness of these trees was
calculated using two clustering measures (described in
section 4). Nine data sets were used.

2 ALGORITHM
In CENT, the tree structure is created dynamically in
response to structure in the data set. The neural tree
starts with a root node with its tolerance (the radius of
its classificatory hypersphere) set to the standard
deviation of input vectors and its position set to the
mean of input vectors. It has 2 randomly positioned
children. Each node has two counters, called inner
and outer, which count the number of occasions that a
classified input vector is within or outside tolerance,
respectively. These counters are used to determine
whether the tree should grow children or siblings once
it has been determined that growth is to be allowed.

2.1 TOP-LEVEL ALGORITHM
At each input presentation, a recursive search through
the tree is made for a winning branch of the tree.
Each node on this branch is moved towards the input
using the standard competitive neural network update
rule.

Any winning node is allowed to grow if it satisfies 2
conditions. It should be mature (have existed for an
epoch), and the number of times it has won compared
to the number of times its parent has won needs to
exceed a threshold. A finite limit is put on the number
of times a node attempts growth.

W inner node

C hild nodes a re c rea ted

W inne r node

S ib ling node is crea ted

Input d a ta

W inne r node

Figure 1. Process of growing a tree

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/1642301?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

When a node is allowed to grow, if it represents a
dense cluster, then its inner counter will be greater
than its outer counter and it creates two children.
Otherwise, it produces a sibling node. The process of
growing is illustrated in figure 1. To improve the tree
two pruning algorithms, short and long term, are
applied to delete the insufficiently useful nodes. The
short-term pruning procedure deletes nodes early in
their life if their existence is not improving the
previous classificatory error according to an
ErrorAcceptance (EA) parameter value. The long-term
pruning procedure removes a leaf when its activity is
not greater than an epsilon parameter. See figure 2 for
a pruning process.

(b) Singleton is removed, the tree is reconstructed.

(a) Node to be pruned.

(c) Final t ree af ter pruning process

Figure 2. Pruning process

3 PARAMETER SETTINGS
The parameters that are the object of this investigation
are briefly described in this section.

The growthparameter is the maximum times a node is
allowed to grow. The K parameter influences how
easy it is for a node to grow - its activity must satisfy:

KchildofnumbersParentactivitysParent

activitysNode

+
>

'

1

'

'

As K is increased, it makes node growth easier, and
thereby bigger trees will result.

The A and B parameters determine the new tolerance
(tol) of any children produced.

⎟
⎠
⎞⎜

⎝
⎛ +=

=

InnerB

Outer
ACwhere

CtolsParenttolschildrenNew

*

*''

An increase in A, and/or a decrease in B tend to make
the trees deeper.

When a node produces a sibling these two nodes have
larger tolerance values, mediated by Sbtol.

)1(* tolSbTolOldTolNew +=

Increasing this parameter limits sibling growth.

EA is a parameter used in short-term pruning. The
condition to determine when a node should be deleted
is as below:

EA
errorprevioussParent

siblingofNumbererrorofsumssiblingTotal >
'

)(*)'(

In a long-term Pruning procedure, a leaf node is
deleted when its activity is not greater than epsilon.

4 CLUSTER MEASURES
The general goal in many clustering applications is to
arrive at clusters of objects that show small within-
cluster variation relative to the between-cluster
variation [7]. Clustering is difficult as many
reasonable classifications may exist for a given data
set, moreover it is easy for a clusterer to identify too
few or too many clusters. Suitable cluster criterion
measures are therefore needed [4].

An initial investigation, concentrated on 10 clustering
criterion selected from a comparative evaluation of
Milligan and Cooper [9] and another 2 hierarchical
methods [5]. From this study, 2 measures were
chosen: the gamma measure, which measures the flat
partitioning performance and the hierarchical
distortion that assesses a hierarchical clustering
against the data.

5 GENETIC ALGORITHM
OPTIMISATION

Searching a complex space of problem solutions often
involves a balance between two apparently conflicting
objectives. The first is exploiting the best solutions
currently available and the second is exploring the
space. GAs have been identified as a general purpose
search strategy that strikes a reasonable balance
between exploration and exploitation [10].

The seven parameters, described earlier, were encoded
in a binary genome of 40 bits. A population of 50
individuals with random initialisation, were evolved
using the GENESIS package from John Grefenstette
[6], for 50 generations. The mutation rate was 0.001
and the crossover rate was 0.6, using dual point

crossover. Selection was rank based using an elitist
strategy [10].

1 0 1 1

Gene

Encoded parameter

1 0 1 1
Min: -0.95 Max: 5.40

K : 7 bits

1 0 1 1
Min: 0.005 Max: 0.950

A : 6 bits

1 0 1 1
Min: 1 Max: 32

B : 5 bits

1 0 1 1
Min: 1 Max: 32
Growthpara : 5 bits

1 0 1 1
Min: 0.00 Max: 0.63

Sb tol: 6 bits

1 0 1 1
Min: 0.05 Max: 1.60

E A : 5 bits 1 0 1 1
Min: 1.00 Max: 4.15

Epsi lon : 6 bits

Figure 3. A Genome picture of 7 encoded parameters

5.1 FITNESS EVALUATION
The genome for each individual was decoded into
parameter values for CENT. The corresponding
model was applied to all nine data sets three times; the
resulting trees were evaluated using the two criterion
described above, and the overall fitness of an
individual calculated from the average fitness of the
three runs across the nine data sets.

We investigated two different fitness functions, one in
which the two measures were simply combined:

Fitness function1 = Hierarchical distortion-Gamma

And a second which contained an additional factor
penalising large trees, namely:

Fitness function2 = Hierarchical distortion–Gamma +
(Totalnode if > 40)

In both cases minimisation of the fitness function was
required.

6 RESULTS
Figures 4 and 5 show the average and best fitness in
the population for the two fitness functions:

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0 10 20 30 40 50

Generations

Fitness

Best

Average

Figure 4. The average and best fitness of the
population when using the first fitness function.

It can be seen that in both cases the overall fitness
level of the population and the best individual fitness
reduced over time. An improvement in performance
was obtained by using the parameters found by the
GA compared to the set originally thought to be
appropriate. For the second fitness function, the final
fitness level was significantly higher, due to the
propensity of the hierarchical distortion measure to
prefer large trees, something heavily penalised by this
fitness function. This difference in tree sizes is
illustrated in Figures 6 and 7, where, for a
representative data set, the total number of nodes and
the number of leaf nodes is plotted whenever the best
individual changes.

The CENT model is fairly tolerant to its parameter
values. Ranges of values can produce reasonable
results, hence the GA quickly finds an adequate
solution. However a really good solution was harder
to find, and the GA needed to run for longer. The
relative change in the clustering measures can often be
small even though the classification may be visibly
better, so that the observed small changes in
population fitness can be significant.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0 10 20 30 40 50

Generations

Fitness

Best

Average

Figure 5. The average and best fitness of the
population when using the second fitness function.

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Best of population

No. of Nodes

Total Node

Leaf Node

Figure 6. Results in term of number of total nodes,
and number of leaf nodes, using the first fitness
function and a representative data set.

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20

Best of population

No. of Nodes

Total Node

Leaf Node

Figure 7. Results in term of number of total nodes,
and number of leaf nodes, using the second fitness
function and a representative data set.

7 DISCUSSION AND
CONCLUSIONS

One of the interesting features of this study is that the
fitness function is not applied directly to the genotypes
on the population that the GA is evolving but to neural
classifiers that have grown in response to
environmental stimuli. This provides a direct
analogue with the normal genotype to phenotype
mapping that occurs in ontogeny.

The results presented here demonstrate that a GA can
help in optimizing the internal parameter settings of a
neural network. Moreover different fitness functions
clearly produced different parameter sets. Previous
experimentation had shown that certain parameters
had a more critical impact on the tree structures
produced, and the GAs produced parameter settings
that corresponded with intuition, varying with the aim
of the specific fitness function.

Acknowledgments

Part of this research work is financially supported by
the Royal Thai Government.

References

[1] Adams, R.G., Butchart, K. and Davey, N. (1999)
Hierarchical Classification with a Competitive
Evolutionary Neural Tree. Neural Networks,
Vol. 12, pp 541-551.

[2] Butchart, K. (1996) Hierarchical Clustering Using
Dynamic Self Organising Neural Network.
Ph.D. Thesis. University of Hertfordshire.

[3] Davey,N., Adams, R.G. and George, S.G. (1999)
The Architecture and Performance of a
Stochastic Competitive Evolutionary Neural
Tree Network, Applied Intelligence, Vol. 12,
No. 1/2, pp.75-93.

[4] Everitt, B.S. (1993) Cluster Analysis, Edward
Arnold, London.

[5] Gordon, A.D. (1987) A Review of Hierarchical
Classification. Journal of the Royal Statistical
Society ,Vol. 150, pp 119-137.

[6] Grefenstette J.J. (1995) Genesis 5.0,
ftp://www.aic.nrl.navy.mil/pub/galist/source-
code/ga-source

[7] Hartigan, J.A. (1975) Clustering Algorithms, John
Wiley & Sons, USA.

[8] Li, T., Tang, Y.Y. and Fang, L.Y. (1995) A
Structure-Parameter-Adaptive (SPA) Neural
Tree for the Recognition of Large Character
Set. Pattern Recognition, Vol.28, No. 4, pp
315-329.

[9] Milligan, G.W. and Cooper, M.C. (1985) An
Examination of Procedures for Determing the
Number of Clusters in a Data Set.
Psychometrika, Vol. 50, No. 2, pp 159-179.

[10] Mitchell, M. (1998) An Introduction to Genetic
Algorithms, MIT Press, USA.

[11] Racz, J. and Klotz, T. (1991) Knowledge
Representation by Dynamic Competitive
Learning Algotithm. Proceedings SPIE
Applications of Artificial Neural Network II ,pp
778-783.

[12] Song, H. and Lee, S. (1998) A Self-Organising
Neural Tree for Large-Set Pattern
Classification. IEEE Transaction on Neural
Networks, Vol. 9, No. 3, pp 369-380.

