
Coercion as Homomorphism: Type Inference
in a System with Subtyping and Overloading

Alex Shafarenko
Dept. Comp. Science, University of Hertfordshire, AL10 9AB, U.K.

a.shafarenko@herts.ac.uk

ABSTRACT
A type system with atomic subtyping and a special form of
operator overloading, which we call offset-homomorphism
is proposed. A set of operator overloadings is said to be
offset-homomorphic when for each pair of overloadings the
coercion function realises a homomorphism of types and at
the same time certain conditions on the operator type signa-
ture are satisfied. We demonstrate that offset-homomorphic
overloading has sufficient power for supporting a compre-
hensive set of array operations in a declarative language.
The problem of inferring the least types in our type system
is proven to be equivalent to the shortest path problem for
weighted, directed graphs with non-negative cycle weights,
which has a computationally efficient solution.

Categories and Subject Descriptors
D.3.3 [Language Constructs and Features]: Polymor-
phism, Data types and structures

General Terms
Languages, Theory

Keywords
type inference, overloading, subtyping, data-parallel pro-
gramming, array processing

1. INTRODUCTION
The interplay between overloading and subtyping has been

an active research topic ever since the foundation work on
subtyping was done by Cardelli[1], Mitchell[2] and Reynolds
[6]. The intention of overloading in programming languages
is to eliminate excessive notation, which is achieved by re-
using operator symbols to denote different functions depend-
ing on the type of the operands. Despite the fact that denot-
ing different functions by the same symbol creates confusion
where there is no similarity between the operations, over-
loading schemes typically do not require different instances

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’02, October 6-8, 2002, Pittsburgh, Pennsylvania, USA.
Copyright 2002 ACM 1-58113-528-9/02/0010 ...$5.00.

to be related in any way. For example, the use of the symbol
+ to denote numerical addition and string concatenation is
typical in many languages, both declarative and imperative
(Java and C++ are among the many examples). Apart from
the fact that these operators are both associative, they are
completely independent. On the other hand, the two in-
stances of the addition operation, +1 : (int, int) → int and
+2 : (real, real)→ real are closely related algebraically.

The opposite concept of overloaded operator as a set of
models satisfying a single theory was proposed by Lievant[3]
and termed “discrete polymorphism”. Here an operator is
associated with a set of axioms which all its instances must
satisfy. This makes all overloadings identical algebraically.
In practice, discrete polymorphism may be too restrictive
since the purpose of overloading is to be able to denote
with the same symbol essentially different, albeit related,
instances of an operation.

Returning to the example mentioned above, we note that
the coercion int→ real acts as a homomorphism of models
(int, +) 7→ (real, +). In our opinion, this form of overload-
ing deserves systematic treatment. Besides the numerical
types, where homomorphism manifests itself in many opera-
tions and elementary functions due to the subtyping relation
between numbers: int ⊆ real ⊆ complex, homomorphism
plays an important role in multidimensional array types.
Here a rich variety of operations can be defined on top of
a subtyping hierarchy based on array rank (i.e. the num-
ber of dimensions): low-dimensional arrays are coerced up
by replicating their elements in extra dimensions. Array
functions, such as reductions and elementwise applications,
naturally lend themselves to overloading as they apply to
all array ranks. Without such overloading, array notation
becomes unnecessarily detailed making the meaning of ex-
pressions hard to grasp. On the other hand, the use of oper-
ator overloading and operand subtyping makes the expres-
sion ambiguous — unless, as we shall demonstrate, operator
homomorphism under type coercion is enforced.

The problem of overloading array operators becomes even
more important when array-processing services are to be
“discovered” on a Computational Grid [4]. Grid resources
are advertised in on-line directories and can be allocated au-
tomatically to an ongoing computation by mobile agents. In
order to determine the applicability of a resource, its declar-
ative wrapper needs to be matched with the declarations of
data objects or other processing resources. Matching by
type and selecting a correct instance of an overloaded func-
tion would be an attractive strategy as it usually delivers
some semantic guarantees. Such a strategy would require

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/1642211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

distributed type checking at the very least, but preferably a
distributed type inference mechanism.

In this paper we focus on the problem of type inference
in a declarative, data-parallel array language ASTL1 with
primitive recursion as the principal evaluation mechanism,
a follow-up from an earlier project [5]. In the next section we
will introduce our concept of overloading in the presence of
subtyping, which exploits the homomorphism of overloaded
operators with respect to type coercion. We then propose a
simplified version of general homomorphism, which we call
offset-homomorphism, and claim this version has sufficient
power to support a significant class of applications while
also supporting type inference. Section 3 justifies part of
our claim by describing a comprehensive set of ASTL ar-
ray operations which are typed using offset-homomorphism.
Section 4 focuses on the remaining part of the claim, i.e. on
the type inference method, showing that one exists which
delivers exact least types or detects an inconsistency in poly-
nomial time. Section 5 discusses the implications of our ap-
proach to distributed computing and finally we give some
conclusions.

2. OFFSET HOMOMORPHISM
As mentioned in Introduction, the idea of homomorphic

overloading in the presence of subtyping is central to our
approach. Specifically, we concern ourselves with a language
where overloaded operators must satisfy the following

Homomorphism restriction For any (overloaded) op-
erator L, an instance L2 : a2 → b2 is said to be homomor-
phic to an instance L1 : a1 → b1 iff a1 ⊆ a2, b1 ⊆ b2 and
(∀x : a2)b21L1x = L2a21x, where a21 is the type coercion
a1 → a2 and b21 is the coercion b1 → b2. For any over-
loaded operator L and any pair of its instances L1,2, one
instance must be homomorphic to the other.

Lemma 1.1 The set of instances of an overloaded opera-
tor which satisfies the homomorphism restriction is linearly
ordered.

Proof. Observe that if L1 is homomorphic to L2 6= L1,
the converse is not true, since subtyping is an antisymmet-
ric relation. Moreover, homomorphism of instances is a re-
flexive and transitive relation (assuming that the coercions
are compositional, i.e. that (∀t1t2t3 : t1 ⊆ t2 ⊆ t3)c31 =
c32 ◦ c21, where cij is the coercion tj → ti). Consequently,
the instances of any operator form a poset. Since the homo-
morphism restriction requires every pair of instances to be
homomorphic, the order is, in fact, linear. 4

We resolve the type ambiguity of an operator application
L x by defining it to be the result of applying to x the least
instance of L, Lmin : τ → α such that the type of x is a sub-
type of τ. This means that each operator application gen-
erally consists of the coercion that raises the operand type
to the input type of the nearest instance, and the applica-
tion of that instance. There is, therefore, no least operand
type, but there can be a maximum permissible operand type
which corresponds to the highest instance of the operator.
On the other hand, the output type can be increased fur-
ther by coercion up to the maximum available type if the
context requires it; it is therefore the least output type that
we concern ourselves with.

Note that our choice of a disambiguation rule makes op-
erator overloading completely transparent to the program-

1ASTL = Array Stream Transforming Language

mer: when applying an overloaded L to x : a, if a higher
instance L2 : a2 → b2 is meant rather than Lmin : a1 → b1,
a2 > a1 ≥ a (and the result type b2 > a2 is expected by the
rest of the expression) the programmer will not notice the
difference. Indeed, thanks to the homomorphism of L2 to
Lmin, Lmin x can be coerced to the type b2 yielding exactly
the same value as L2 x′, where x′ is the value of x coerced
to the type a2.

The type hierarchy in applications is often consistent with
computational cost, which means that choosing the least op-
erator instance also minimises the complexity of computa-
tion. For example, it is generally much cheaper to compute
an array result once and then replicate it than it is to per-
form a number of identical computations when a replicated
result is required.

Corollary (type monotonicity): The result type of
a homomorphically overloaded operator is a non-decreasing
function of a single operand type, or each of the types in the
operand tuple. This is a direct consequence of standard tuple
subtyping (see formula (5) below) and the homomorphism
restriction. We shall call such operators type-covariant.

To define the type transformation associated with an over-
loaded operator two properties must be stated. First of
all, as was mentioned earlier, the input type of the high-
est instance Lmax may be less than the maximum available
type. For example, the maximum instance of the operator
>: (τ, τ) → bool is the one with τ = real as complex num-
bers are not comparable. This leads to the requirement that
each operator must state its maximum admissible operand
types: (amax

1 , . . . , amax
n), where n is the arity of the operator.

Secondly, the relationship between the input and output
types must be stated. According to the above Corollary, the
output type is a non-decreasing function of input types. The
structure of this function is not arbitrary and is governed by
the following

Theorem 1. For any homomorphically-overloaded n-ary
operator L : (a1, a2, . . . , an) → b, the output type b can be
expressed in the following form:

b(a1, a2, . . . , an) = max(f1a1, f2a2, . . . , fnan) ,

where f1 . . . fn are some non-decreasing step functions from
types to types defined on the range ak ≤ amax

k :

fkx = T
[jk]
k where jk = min {i | x ≤ t

[i]
k } (1)

Here for all k, T 1
k , . . . , T µ

k and t1k, . . . , tµ

k are non-decreasing
sequences of type constants, µ is the multiplicity of L (i.e.
the number of overloadings), and tµ

k = amax
k .

Proof is based on Lemma 1.1 and the fact that each
operand’s type dictates the least admissible overloading sep-
arately. If we take the maximum of those overloadings, it
will be the least admissible overloading for all the operands’
types jointly . Observe that the functions fk simply select

the least overloading Li : t
[i]
k → T

[i]
k whose input type t

[i]
k is

not less than x. 4
Although parametrisation (1) is completely general, it is

also quite unwieldy making it difficult to find a compre-
hensive type-inference solution. We have discovered that
a less general form of type transformation, namely repre-
senting the functions fk as offset functions fkak = ak + mk,
where mk is an integer offset, makes homomorphic overload-
ing much more tractable. Here we use the notation t + n
with a positive integer n as a shorthand of the nth supertype

of t, or −nth subtype of t when n < 0 2. This corresponds

to a particular choice of t
[i]
k and T

[i]
k which limits the variety

of homomorphically overloaded operators the type system
can represent.

In the remainder of the paper we shall demonstrate that

1. despite the limitation, an important application do-
main, namely data-parallel array processing, can be
supported exclusively by offset signature of this kind;

2. thanks to the particular representation of the functions
fk as offset functions, a computationally-efficient, au-
tomatic inference of the exact least types of all vari-
ables is possible.

For ease of reference, homomorphically overloaded operators
having offset type signatures will be called offset-homomor-
phic operators henceforth.

To conclude this section, let us dwell briefly on the rep-
resentation of type signatures for offset-homomorphic oper-
ators. In the presence of subtyping, one needs to introduce
type coercions directly into the concept of type. This can
be done at a level of type inference logic, in which case each
subexpression would need to be equipped with two type vari-
ables: one for the type yielded by it and the other one for
the (possibly higher) type expected by the context. Alter-
natively, coercions could be factored into the operator type
signatures themselves. We prefer the latter option, which
also means that the type signature ceases to be a type func-
tion (yielding the output type based on the input ones) and
becomes a type relation. In other words, the type signature
indicates which types can be yielded by the expression, or
any of its subsequent type coercions, given the input type.
Formally this means that the signature has some type vari-
ables that are both universally quantified and conditioned
by a set of constraints — as in constrained type theory pre-
sented in [7].

The output part of a type signature will consequently in-
clude the relations between the output type and each of
the input types. Due to the use of offset functions and the
presence of type coercions, each of these relations can be
written in the form of inequality as follows (where m is an
integer constant and either t1,2 is a type variable or a type
constant):

t1 ≥ t2 ±m, (2)

We shall refer to Ineq. (2) as the canonical form for con-
straints henceforth. Curiously, due to the multiplicity of
potential constraints on a pair of type variables, the canoni-
cal form is capable of supporting type equations as well: for
instance, t1 = t2 can be represented as {t1 ≥ t2, t2 ≥ t1}.
Also note that the canonical form is suitable for representing
input constraints, too: the assertion a ≤ amax is equivalent
to amax ≥ a + 0.

3. CONSTRUCTS OF ASTL

3.1 Arrays and shape
2Strictly speaking these are sub- and supertypes within the
linearly ordered variety of admissible types for each operand
of a homomorphically overloaded operator; types may not
be linearly ordered in the type system as a whole.

ASTL defines a set of constructs for array manipulation.
Unlike most programming languages, it treats all objects
as arrays of some rank (i.e. number of dimensions). Ob-
jects that have no associated dimensions are called scalars
and assumed to have the rank 0. The shape of an array is
considered to be its dynamic characteristic and is therefore
outside the scope of the type system. Conventional binary
operations on arrays, such as elementwise addition, multi-
plication, etc., usually require the operand shapes to be the
same. Such a requirement is convenient if conformance can
be checked statically in all cases. However, for any compre-
hensive set of array operations, which include liberal rear-
rangements of elements and complex selections, array shape
quickly becomes untraceable and shape conformance stat-
ically unenforceable. ASTL avoids shape-related problems
by replacing conformance by the following intersection rule :
the extent of the result of a binary operation which involves
juxtaposition of the operands (such as element-wise addi-
tion) is the lesser of the operand extents in each dimension.
For example, if A has the shape 100 × 200 and B 150 × 70,
the result shape of A ⊕ B, where ⊕ is such an operator, is
100 × 70 .

3.2 Type and subtyping
ASTL objects have two static attributes: element type t

and array rank r. These attributes will be referred to as
“types” below. Where this may lead to a confusion, the full
term “element type” will be used in contrast with “complete
type” which includes both the element type and the rank of
the object. The set of element types

T = {bool, char, int, real, complex} (3)

has a subtype relation defined on it:

bool ⊂ char ⊂ int ⊂ real ⊂ complex, (4)

which is a linear order. Owing to the linear ordering of the
types, type increment is well-defined, so we write t + a to
denote the ath supertype of t and t− a for its ath subtype,
in keeping with the requirements of offset-homomorphism.

The ranks are taken from a range of integer numbers
R = 0..ρmaxwith the subtype relation being ≤. Conceptu-
ally, rank coercion is achieved by infinite replication of the
object in additional dimensions. For example, integer scalar
3 can be implicitly coerced to rank 1 by forming an infinite
one-dimensional array [3,3,3,...]. In practice, infinite arrays
do not remain infinite, since the only reason for coercion is
to increase the array rank to match it with the rank of an-
other array for a binary operation. In such a case, the other
array will determine the shape of the result according to the
intersection rule. For instance, if the above array [3,3,3...] is
added to an existing one-dimensional array X elementwise,
the result is a new array X ′ conforming to X, its elements
being equal to the corresponding elements of X plus 3. For
example, if X = [2, 4, 6], X + 3 = [5, 7, 9].

When x has a type t and a rank r, we write x : r#t.
An operator with more than one operand is assumed to

act on the operand tuple. The subtyping relation on 2-tuples
is defined in the standard way:

(a1, a2) ⊆ (b1, b2) ≡ a1 ⊆ b1 ∧ a2 ⊆ b2, (5)

and similarly for 3-tuples, etc. A similar rule could be
introduced for subtyping the complete types: the element

type and rank must satisfy their subtyping relations simul-
taneously. However, since all type signatures of ASTL are
formulated for element types and ranks separately, the need
for subtyping complete types never arises.

3.3 Operators
ASTL operators are families of offset-homomorphic in-

stances where each instance applies to operands of a certain
type and produces the result of a certain output type. In
keeping with Section 2, their associated type transforma-
tions can be described collectively using a type signature in
the form requires ⇒ ensures. The requires part defines
the maximum operand types for which an operator instance
exists. Operands are gathered into a comma-separated list
of entities in the form opd : r#t.C, where r is the rank and t
the element type variables associated with the operand opd,
and C is the set of constraints on the element type and rank
of opd that are imposed by the operation. For example, the
requires part of a unary operator ∼ requiring an operand
whose type is not higher than integer and the rank is not
higher than scalar is x : r#t.{r ≤ 0; t ≤ int}. For com-
pactness we shall write constraints in any convenient form
as long as the equivalent canonical form exists, for instance,
the above t ≤ int is equivalent to the canonical int ≥ t + 0.

The ensures part defines the constraints on the output
type variables: exp : r#t.C , where exp is the application of
the operator to its operands, r and t are the associated type
variables, and C is a set of constraints applied to them as a
result of the operator action. For instance, the elementwise
comparison x > y of two arrays requires them to be at most
real (complex numbers cannot be compared) and ensures
that the result is at least bool (which is true anyway as bool
is the bottom type) and has at least the maximum rank of
the two operand arrays:

c x : t1#r1.{t1 ≤ real}, y : t2#r2.{t2 ≤ real}
⇒

x > y : t#r.{t ≥ bool; r ≥ r1; r ≥ r2} .

Next we present the type signatures and actions of some
ASTL operators. Our goal in this section is to demonstrate
that offset homomorphism has a natural meaning for both
array computation and geometric manipulations of array el-
ements.

3.3.1 Array constructor
Since the intention of ASTL is to support array process-

ing, it must provide a facility for creating an array object
from the function that defines the values of its elements.
This is achieved with the help of an array constructor oper-
ation, which has the following syntax:

array (i1 | b1, ..., in | bn) exp

where b1...bn are the expressions defining the extents of the
array and i1, ..., in are the variables to be used as array in-
dices in the expression exp, which defines the content of the
corresponding array element. For instance, the array

array(x|3, y|4) 10 ∗ x + y =

��
0 1 2 3

10 11 12 13
20 21 22 23

��
.

The type signature for the array constructor depends on the
value of n which is determined from syntax:

exp : r#t.{r = 0},
(∀k, 0 < k ≤ n)bk : rk#tk.{rk = 0; tk ≤ int},

ik : ρk#τk.{ρk = 0; τk = int}
⇒

array (i1 | b1, ..., in | bn) exp : ρ#τ.{ρ ≥ n; τ ≥ t}

3.3.2 Recast
An array can be formed by copying and re-packaging some

of the elements of another array. Array processing languages
traditionally introduce a number of ad hoc operations, such
as slice, transpose, etc. By contrast, ASTL offers one general
operation, called recast, which has the following syntax:

exp0[exp1, ..., expm ← i1 | b1, ..., in | bn] ,

where the 0-th expression is the source array, expressions
from 1 to m are indices for the source array and i1...in are
the “input” indices. The bounds b1, ..., bn delimit the shape
of the resulting array. The values of n and m are deter-
mined from syntax. For example, if A denotes the array
array(x|3, y|4)10 ∗ x + y used earlier, then

A[2− a, 3− b← a|2, b|2] = � 23 22
13 12 �

If the rank ρ of the source array is less than m then the
extra m − ρ indices are ignored (this corresponds to the
replication of the argument array in the extra dimensions)
and the result rank remains at least3 n. When ρ > m, the
extra ρ−m indices are appended to the n input indices on
the right, giving the result rank of at least n + ρ−m . It is
easy to see that both cases are covered by the constraint set
{r ≥ n; r ≥ ρ+(n−m)}, which is in canonical form, giving
the signature:

(∀k : 1, ..., n)bk : rk#tk.{tk ≤ int; rk = 0}, exp0 : ρ#τ
⇒

exp0[exp1, ..., expm ← i1 | b1, ..., in | bn] : r#t
.{r ≥ n; r ≥ ρ + n−m; t ≥ τ}

3.3.3 Unary and binary arithmetic and elementary
functions

Note that the homomorphism restriction is satisfied by
the conventional arithmetic operators +,−,×, / as far as
the element types are concerned, with the proviso that the
division operator for integers only yields real results. To pre-
serve the homomorphism, the integer division that discards
the remainder must be lexically different (denoted by div,
for instance). We ignore the fact that it may be possible to
add or multiply integer numbers as floating-point numbers
correctly, while doing this in the integer type before coerc-
ing the result to real would cause an overflow. In such cases
it may be desirable to enforce the real type from the start,
by applying a type cast operator (see below) to each of the
operands. In the same vein, rounding errors can break the
homomorphism of comparisons, since two different integer
numbers after coercion to the real type may turn out to
be rounded to the same floating-point value. Fortunately,
this can never be observed in a program, since the typing

3We say ’at least’ because a higher rank can be expected by
the expression context due to the rank subtyping rule.

algorithm described in the next section will assume homo-
morphism and choose the least type, and it is that type that
guarantees the correct answer.

The binary operator ↑ for raising to a power also satisfies
the homomorphism restriction although here the correct def-
inition of instances is slightly trickier. There are three cases
of element type: the integer version, usually implemented
via repeated multiplication:

a : t1.{ }, b : t2.{t2 = int} ⇒ a ↑int b : t.{t ≥ t1};

the real version, implemented via real logarithm and requir-
ing a positive base:

a : t1.{t1 ≤ real}, b : t2.{t2 = real} ⇒ a ↑re b : t.{t ≥ t1}

(assuming that a negative base throws an exception, rather
than requiring the subtype of nonnegative reals); and the
complex version, implemented via complex logarithm,

a : t1.{ }, b : t2.{ }
⇒

a ↑cpx b : t.{t = complex}

all of which can be defined jointly as

a : t1.{t1 ≥ t2}, b : t2.{ } ⇒ a ↑ b : t3.{t3 ≥ t1}.

which represents six instances of the power operator.
The ranks of the operands to a binary operator are re-

quired to be equal (up to the rank subtyping), therefore the
output rank is greater than or equal to the greater input
rank. We list the rest of the signatures of the ASTL com-
putational operators below, without comments; it is easy to
see that all of them satisfy the homomorphism restriction.

•
√
−1 imaginary unit
⇒ iunit : r#t.{t = complex; r = 0}

• Unary minus
a : r1#t1.{ } ⇒ −a : r#t.{t ≥ t1; t ≥ int; r ≥ r1}

• Unary negation
a : r1#t1.{t1 ≤ bool} ⇒ not a : r#t.{t ≥ t1}; r ≥ r1

• Elementary functions:

a : r1#t1.{t1 ≤ real} ⇒ f(a) : r#t.{t ≥ real; r ≥ r1}

for trigonometric functions and

a : r1#t1.{ } ⇒ f(a) : r#t.{t ≥ real; t ≥ t1; r ≥ r1}

for the square root, logarithm and exponential. Note
that for correct treatment of exceptions, the type of
the operand to logarithm or square root may need to
be forced up to complex explicitly if the context sug-
gests the real type, a negative value is possible but the
intended interpretation of the operator is at complex
type.

• Binary arithmetic a : r1#t1, b : r2#t2 ⇒ a ⊕ b :
r#t.{r ≥ r1; r ≥ r2; t ≥ t1; t ≥ t2; } where ⊕ is one of
+ ,− , or ×;

• Comparisons a : r1#t1.{t1 ≤ real}, b : r2#t2.{t2 ≤
real} ⇒ a 	 b : r#t.{r ≥ r1; r ≥ r2}, where 	 is one
of < ,>,= , ≤, ≥, or 6= .

• If-then-else

c : r0#t0.{t0 = bool}, a : r1#t1, b : r2#t2
⇒

if c thena else b endif : r#t
.{r ≥ r0; r ≥ r1; r ≥ r2; t ≥ t1; t ≥ t2} .

This is an operation that uses three array operands,
which, after rank coercion and the application of the
intersection rule, will have the same shape. The con-
dition and the two alternatives are selected from the
corresponding elements of the arrays and a conforming
result array is returned.

• Minimum and maximum a : r1#t1.{t1 ≤ real}, b :
r2#t2.{t2 ≤ real} ⇒ a ⊕ b : r#t.{r ≥ r1; r ≥ r2; t ≥
t1; t ≥ t2; }, where ⊕ is one of max, min.

• Modulo and integer division a : r1#t1, b : r2#t2.{t1 ≤
int; t2 ≤ int} ⇒ a� b : r#t.{r ≥ r1; r ≥ r2; t ≥ int; }
where � is one of mod, div.

• Binary logic a : r1#t1.{t1 ≤ bool}, b : r1#t2.{t2 ≤
bool} ⇒ a o b : r#t.{r ≥ r1; r ≥ r2}, where o is one of
∨ , ∧

• Exponentiation: a : t1#r1.{t1 ≥ t2}, b : t2#r2.{ } ⇒
a ↑ b : t3#r3.{t3 ≥ t1; r ≥ r1; r ≥ r2; }

• Type cast:

rounding

a : r1#t1.{t1 ≤ real} ⇒
toInt(a) : r#t.{t = int; r ≥ r1} ,

taking the real/imaginary part

a : r1#t⇒ Re/Im(a).r#t.{t = real; r ≥ r1} ,

enforcing a type

a : r1#t1.{t1 ≤ int} ⇒
forceint(a) : r#t.{t = int; r ≥ r1} ,

a : r1#t1.{t1 ≤ real} ⇒
forcereal(a) : r#t.{t = reali; r ≥ r1} ,

a : r1#t1.{t1 ≤ complex} ⇒
forcecomplex(a) : r#t.{t = complex; r ≥ r1} .

3.3.4 Concatenation
The operator recast defined earlier is intended for rear-

rangements of array elements into new arrays. However,
recast can use only one array as a source. To be able to
use more than one source array, an additional operator is
required. Since recast supports arbitrary rearrangements,
the new operator need not be flexible with the placement
of the elements in the result: a simple concatenation of the
operand arrays is sufficient. Accordingly, ASTL has a con-
catenation operator with the following syntax:

exp1 ∼ k ∼ exp2.

Concatenation proceeds along the axis indicated by the
integer constant k ∈ [1, Rmax] placed in the operator sym-
bol, e.g. a ∼ 2 ∼ b is the concatenation of the arrays a and
b along axis 2. If the operands have the rank k or above, the

action of concatenation is straightforward. The extent of
the result in the kth dimension is the sum of the operands’
extents, while the extents in the rest of the dimensions are
governed by the intersection rule. If either operand has a
lesser rank, it is coerced to the rank k − 1 by replication
(provided that it is not rank k − 1 already) and then on to
the rank k by assuming the extent 1 in the kth dimension.
Then concatenation proceeds as before.

For instance, 1 ∼ 2 ∼ 2 is a 2d array having the following
values: � 1 1 1 . . .

2 2 2 . . . �
The type signature is as follows:

a : r1#t1.{ }, b : r2#t2.{ }
⇒

a ∼ k ∼ b : r#t.{t ≥ t1; t ≥ t2; r ≥ r1; r ≥ r2; r ≥ k} .

Since nothing happens to the values of the array elements
participating in concatenation, the homomorphism in ele-
ment type is straightforward. The homomorphism in rank
is not obvious. In every dimension other than that of con-
catenation, replication takes place whenever the ranks do
not match, hence homomorphism is assured. In the dimen-
sion of concatenation homorphism would be broken, but the
operation itself is not defined on replicated objects here, as
it requires a finite extent of either argument. We conclude
that for any valid interpretation of concatenation the homo-
morphic restriction is satisfied.

3.3.5 Reduction
ASTL follows the standard interpretation of reduction as

lowering the rank of an array by inserting a scalar commuta-
tive-associative operator between the elements in its first
dimension. This is denoted by ⊕/exp where ⊕ is the scalar
operator in question and exp is an array expression of rank
one or above:

a : r1#t1 ⇒ ⊕/a : t#r.{t ≥ t1; r ≥ r1 − 1},
where ⊕ : (τ, τ) → τ is one of + ,×, ∨ , ∧ , =, 6= (the last
four introducing t1 ≤ bool in the requires constraint set).

Reductions can also be made from the max and min op-
erators:

a : r1#t1.{t1 ≤ real} ⇒ �/a : t#r.{t ≥ t1; r ≥ r1 − 1}
where � is either min or max.

It is easy to prove that as far as the element type is con-
cerned, if the operator ⊕ satisfies the homomorphism restric-
tion then so does the reduction ⊕/. With regard to operand
rank, the homomorphism restriction is satisfied trivially.

3.3.6 Replication
This operation adds an extra dimension into its operand.

The newly added dimension becomes dimension 1, the ex-
isting dimension 1 becomes dimension 2, etc. The object is
replicated in the new dimension the number of times indi-
cated by the second operand. This is denoted as A � N .
For example,

(array(x|3)x)� 2 =

��
0 0
1 1
2 2

��
.

Note that replication is not equivalent to rank coercion as it
adds lower, rather than higher, dimensions and produces the
result of a finite shape. Its purpose is to help define arrays
of regular structure without resorting to obscure recasts.

The type signature of replication is as follows

a : r1#t1.{ }, n : r2#t2.{t2 ≤ int; r2 ≤ 0}
⇒

a� n : t#r.{t ≥ t1; r ≥ r1 + 1}

3.3.7 Singleton
A singleton operator increases the rank of an array by 1

without replication. This is a convenient way to create ob-
jects such as a single-column matrix, etc., which could then
exploit the intersection rule for slicing lower-dimensional
subsets from other arrays. There is also an important use
of singletons in l-expressions (see section 3.6 below) where
replication must be suppressed. A singleton made out of an
array A is denoted !A, For instance, !5 is a one-dimensional
array of size 1 whose only element is the number 5, and !!5 is
the same array interpreted as a 1× 1 matrix. The singleton
operator has a signature similar to that of replication:

a : r1#t1.{ } ⇒!a : t#r.{t ≥ t1; r ≥ r1 + 1}

3.4 Transformer constructs
In the previous sections we have described the expression

syntax, semantics and typing of ASTL. Inferring expression
types is a trivial problem which can be solved by bottom-
up joining of the type signatures associated with the nodes
of the expression tree. The process becomes rather more
involved when expressions are recursively linked with vari-
ables, which is the main evaluation mechanism of declarative
languages. In this section we describe the evaluation mech-
anism of ASTL to prepare the ground for the next section,
which describes the type inference method.

The ASTL model of computation is a stream-processing
network. The edges of the network represent directed, tuple-
valued channels, or streams. The nodes have input and/or
output streams incident to them and act as stream trans-
formers. A stream transformer processes tuples which it
reads from one or more input streams and generates new
tuples which are sent to the output streams. The tuples of
the input streams are combined into a single input tuple,
which is either locked in place or updated from the input
streams at every cycle of the stream transformer depending
on an optional hold condition. The transformer itself is a re-
currence relation between its input and output tuples. The
output tuple is subjected to optional filtering. At every cy-
cle, if the filter (a Boolean expression) evaluates to true the
output tuple is released to the output stream(s), otherwise it
is discarded. The action of the transformer consists in apply-
ing the recurrence relation to the stream variables defined in
it. The term “recurrence” refers to primitive recursion, i.e.
generating new values of the variables based on the current
ones. Recurrence relations are common in computational
applications, where they are used for defining mesh-based
numerical methods, iterative algorithms, etc.

The syntax of the stream transformer is as follows:

name 〈par1, ..., parn〉 out in body ,

where the name is the transformer identifier, the variables in
the angular brackets are non-stream formal parameters, out
is the output interface and in the input interface; the body

contains the recurrent relations associated with the trans-
former. The input interface is omitted if the transformer
has no input streams. The output interface has the follow-
ing syntax:

(exp1, ..., expn) check exp,

with a rank-0 Boolean exp which may depend on stream
variables (see below) and which controls the release of the
tuple (exp1, ..., expn) into the output stream. The output
expressions can name any variables including the parame-
ters.

The input interface is similar:

(var1, ..., varn)hold exp.

Here the expression is also a rank-0 boolean, which controls
whether the input tuple (var1, ..., varn) is held or updated
from the input streams. The hold expression can name
stream variables as well.

ASTL transformers can be either fixed-shape or variable-
shape.

3.5 Variable-shape transformer (VST)
A variable-shape transformer body contains any number

m ≥ 0 of stream-variable definitions in the following syntax:

vari ← exp0i, expi,

where 1 ≤ i ≤ m , exp0i is the initial value of the stream
variable vari and expi is the recurrence step, i.e. an expres-
sion that defines the new value of vari given the current
values of all stream variables. The stream variables are in-
troduced by naming them on the left of ←. They must not
clash with any of the variables of the input interface and can
be named in the output interface. The transformer produces
a stream one stage at a time, by simultaneously evaluating
the recurrence steps and associating the results with the
corresponding stream variables. For instance, the stream of
natural numbers can be programmed as n ← 1, n + 1, the
stream of Fibonacci numbers as m ← 1, k; k ← 1, m + k,
with the actual Fibonacci sequence associated with m, etc.
Note that both the initial-values and the step expressions
can name formal parameters parj and variables from the
input interface.

Stream-variable definitions generate type constraints from
the expressions that they contain; there is an additional con-
straint stemming from the fact that for each stream-variable
definition, the initial value and the result of the recurrence
step must be compatible with the type of the stream vari-
able:

var : r#t, init : r1#t1, step : r2#t2
⇒

var← init, step : r#t.{r1 ≤ r; t1 ≤ t; r2 ≤ r; t2 ≤ t}
Note that the stream variable var acquires a contravariant
type constraint, i.e. its type is bounded from below.

3.6 Fixed-shape transformer (FST)
A fixed-shape transformer, as the name suggests, defines

output streams of fixed-shape array values. Since the shape
is fixed, the recurrence step no longer defines the shape of the
stream which is now fully determined by the initial values.
ASTL puts this circumstance to use by allowing part of the
step value to be undefined, taking the undefined part from

the corresponding portion of the previous step. Another
new feature of fixed-shape transformers is left-expressions in
the stream definition. The left-expression is a well-formed
expression containing exclusively concatenation, rearrange-
ment and choice operators, i.e. concatenation, recast and
if -then-else, where the condition part and the recast index
expressions are “normal”, right-expressions, which have the
type signatures defined earlier. The semantics of the left-
expression is one of a target for the step. The target can
be thought of as a reference object which re-directs the val-
ues coming from the right-hand side to the receiving array-
elements of stream variables; the rest of the elements of the
stream variables take their default values. For instance, the
step definition a[i, j ← i|N − 1, j] ∼ 2 ∼ b := b ∼ 2 ∼ a
(assuming that the initial values of a and b are shaped as
N×N matrices) causes the values of the b elements to be as-
signed to the corresponding elements of the matrix a except
the last row which remains the same as the last step; and
at the same time the old values of a are assigned to the cor-
responding values of the matrix b. The shapes of the target
and the right-hand side are subject to the same intersection
rule as the operands of a binary elementwise operation.

The syntax of the fixed-shape transformer includes two
sections, initial and update. The initial section contains
initialisations of stream variables in the form var = exp,
where var is a stream variable and exp is the expression
defining its initial value. These expressions can only name
stream parameters parj . The update section consists of
the step declarations in the form lexp := exp explained
above. The left-expression lexp cannot name variables of
the input interface or any of the stream parameters, except
in conditions and index formulae where they are allowed.
The need for these restrictions is straightforward from the
semantics of the target.

Let us now analyse the type signatures of the l-operations.
Consider the element type first. The target will accept ele-
ments of the type that is equal or junior to the least element
type of any element of the target. Indeed the right-hand side
will yield an object each element of which is of the same type.
No element of the target can refer to a stream variable of a
lesser type since in that case it would not be possible to as-
sign the corresponding value. This principle must be applied
recursively to the l-expression structure and is a manifesta-
tion of the same contravariance of type as was observed with
VSTs.

Next, looking at rank coercion, an l-expression cannot use
replication for its elements as this would result in multiple
values of the right-hand side directed to the same target ele-
ment of the left-hand side, an ambiguous assignment. Con-
sequently l-expressions must not allow rank subtyping if that
involves replication of target elements. In the case of con-
catenation along the kth axis, the operands’ rank must not
be less than k − 1; if one operand’s rank is k the other one
can be k or k − 1, otherwise the ranks must match. Any
other rank combination involves replication. Unfortunately
this constraint is not offset-homomorphic because it involves
logical condition besides an offset. The solution lies in for-
bidding the (k, k − 1) combination. The singleton operator
must be used instead ensuring that the operand ranks are
equal in all cases. For example, the r-expression

1 ∼ 1 ∼ array(x|2)x + 2

is legal and yields the array (1,2,3) but a similar l-expression

s ∼ 1 ∼ v with a scalar s and a 1d array v causes rank
mismatch and hence is not allowed. It should be written as
(!s) ∼ 1 ∼ v on the left-hand side.

To summarise, the signature of l-concatenation is as fol-
lows:

a : r1#t1.{r1 ≥ k}, b : r2#t2.{r2 ≥ k}
⇒

a ∼ k ∼ b : r#t.{t ≤ t1; t ≤ t2; r = r1; r = r2} .

L-recast and l-if-then-else operators cause no difficulty
in arriving at the following fixed-rank, contravariant signa-
tures:

(∀k : 1, ..., n)bk : rk#tk.{tk ≤ int; rk = 0},
exp0 : ρ#τ.{ }

⇒
exp0[exp1, ..., expm ← i1 | b1, ..., in | bn] : r#t

.{r = ρ + n−m; t ≤ τ}

L-if-then-else

c : r0#t0.{t0 = bool}, a : r1#t1, b : r2#t2
⇒

if c then a else b endif :
r#t.{r = r0 = r1 = r2; t ≤ t1; t ≤ t2}

Note that parts of the last two signatures have covariant
constraints where values rather than targets are involved.
The formal basis for contravariance of the target types is not
very obvious. A target can be thought of as a function which
receives the value from the right-hand side and produces
the new stage value of the corresponding stream variable.
A target-to-target coercion is in this sense a coercion of an
arrow to the same arrow except for a different argument
type. It is well known from the theory of subtyping [2]
that an arrow x→ y is contravariant with respect to x and
covariant with respect to y so x→ y is a subtype of x′ → y′

iff x′ ⊆ x and y ⊆ y′, which agrees with our treatment of
targets.

From the implementation point of view, a target of type
t can be interpreted as “reference-to t”. However, since
geometric transformations are semantically neutral to the
nature of the elements, the difference between an ordinary
element type t and the reference type t′ = ref(t) can be
addressed in implementation and ignored in type inference.

Each definition in the initial section produces the follow-
ing constraint on the stream variable named in it:

exp : r1#t1.{} ⇒ var = exp : r#t.{r ≥ r1; t ≥ t1} .

A definition in the update section is treated as follows:

lexp : rl#tl, rexp : rr#tr

⇒
lexp := rexp : .{rr ≤ rl; tr ≤ tl} .

where the construct as a whole does not return any value
and so has no type, but still has constraints on the types of
expressions that occur in it. Also note, that formally := is
a binary element-wise operator and hence the intersection
rule is used in determining the shapes of the right- and left-
hand-sides involved in the actual update.

4. TYPE INFERENCE
The type rules described in earlier sections decorate the

abstract syntax tree of an ASTL program with type at-
tributes (tk and rk) connected by type constraints. If a tree
node represents an occurrence of a variable then the type
attributes are associated with the variable and remain the
same for every occurrence of that variable within its scope.
Otherwise, the node represents a (sub)expression, to which
a fresh set of attributes is attached.

4.1 Step 1. Constraint set expansion
Each of the type constraints gathered from branches of the

syntax tree is in canonical form (2) and defines a primary
type constraint in the program. The primary constraints
also include the constraints on constant types and ranks
which can be written in canonical form as follows:

integer ≥ boolean + 1
boolean ≥ integer− 1

real ≥ integer + 1
integer ≥ real− 1

. . .

with the bottom and top elements of the type system satis-
fying additional consistency constraints:

(∀t ∈ Vt)(t ≥ boolean) ∧ (complex ≥ t) ,

where Vt is the set of all type variables associated with the
syntax tree. Similar constraints are introduced for constant
ranks:

ρ1 ≥ ρ0 + 1
ρ0 ≥ ρ1 − 1
ρ2 ≥ ρ1 + 1
ρ1 ≥ ρ2 − 1

. . .

.

and on their bottom and top elements:

(∀r ∈ Vr)(r ≥ ρ0) ∧ (ρtop ≥ r) ,

where Vr is the set of rank variables. Thus variable and
constant type attributes are treated uniformly.

By combining available constraints pairwise where two
constraints have one or two common variables, new con-
straints in canonical form can be produced, which we shall
call secondary. Denote the set of all primary and secondary
constraints of the program as � . Two rules are proposed: a
chain rule,

τ1 ≥ τ2 + a ∈ �
τ2 ≥ τ3 + b ∈ �

� → � ∪ {τ1 ≥ τ3 + (a + b)} (chain)

and a cull rule

τ1 ≥ τ2 + a ∈ �
τ1 ≥ τ2 + b ∈ � , b < a

� → � \ {τ1 ≥ τ2 + b} . (cull)

Here and below we use meta-variables τi that range over
type and rank variables of the program. It is easy to see,
that (chain) and (cull) are the only ways of deducing new
information from two inequalities in canonical form. To ob-
tain all relationships between the types, chaining and culling
must be applied repeatedly until a fixed point is reached,
and it will be reached eventually (see Theorem 2 below). To

avoid spurious cycles where a constraint is added by chain-
ing and then immediately culled out, we modify the chain
rule thus:

τ1 ≥ τ2 + a, a > −∞ ∈ �
τ2 ≥ τ3 + b, b > −∞ ∈ �
τ1 ≥ τ3 + c ∈ � , c < a + b

� → (� \ {τ1 ≥ τ3 + c}) ∪ {τ1 ≥ τ3 + (a + b)} , (chain’)

and assume that for each pair of type variables ti,tj the re-
lation ti ≥ tj−∞ is added to the set of primary constraints,
and then culling is applied as many times as possible before
the rest of the inference process takes place. Note that the
constant offsets a and b, while required to be finite, can still
be negative.

Next introduce an inconsistency rule:

τ ≥ τ + a ∈ � , a > 0

� is inconsistent
(incons)

and a tautology rule

τ ≥ τ + a ∈ � , a ≤ 0

� → � ∪ {τ ≥ τ} , (taut)

both of which have the obvious meaning.
The above rules act as inference rules for deducing sec-

ondary constraints from the primary ones. They are sound
by construction, as the derived inequalities are logically im-
plied by the premises. It is unclear, however, whether the
proposed rules are complete, i.e. whether any inequality
whose truth is implied by the primary constraint set can be
proven by a finite application of the rules.

The following theorem gives an affirmative answer to the
question about completeness. First we need to introduce
some terminology. A chain between τ1 and τn is a finite set
of constraints in the form:

τ1 ≥ τ2 + s1

τ2 ≥ τ3 + s2

. . .
τn−1 ≥ τn + sn−1

The chain is called open if τn 6= τ1 otherwise it is closed.
For any chain between τ1 and τn, we derive the secondary
constraint τ1 ≥ τn + σ, where σ = � n−1

k=1 sk is called the
strength of the chain. Now we are ready to state

Lemma 2.1. If a constraint set contains no closed chains
of positive strength, for every type variable t there exists a
chain with τ1 = t such that no other chain with τ1 = t is
stronger than it.

Proof. Consider an arbitrary chain between τ1 = t and
τn. If, for some positive i < j ≤ n, τi = τj , then the chain
contains a closed subchain between τi and τj which, by the
premise of the lemma, has a non-positive strength. So it can
be removed from the chain without decreasing its strength.
We can therefore discard all such chains, and since only a
finite number of chains is left, there exists one (or more)
with the maximum strength. 4

Lemma 2.2. A constraint set is satisfiable iff it contains
no closed chains of positive strength.

Proof. The “only if” part is proven immediately by
observing that a closed chain of positive strength implies
τ1 ≥ τ1+s with s > 0 which is a contradiction. The “if” part
is proven by showing that in the absence of a closed chain
of positive strength, there exists an assignment of types to
the type variables that satisfies all primary constraints.

Consider the following type assignment:

ti = ⊥+ Si , (6)

where Si is the strength of the maximum-strength chain
beginning at ti, which exists according to Lemma 2.1, i
enumerates all type variables, and ⊥ is the bottom type
(∀i)ti ≥ ⊥ of the type system. Obviously (∀i)Si ≥ 0.

Eq. (6) satisfies all primary constraints. Indeed, for any
primary constraint

ti ≥ tj + cij

observe that it forms a chain from ti if used as a prefix to the
strongest chain from tj . So the right-hand side represents
the bottom type offset by the strength of a chain from ti,
while the left-hand side represents the bottom type offset by
the strength of the strongest such chain. This means that
the inequality holds and since i and j are arbitrary indices,
the whole set of primary constraints is satisfied. 4

Theorem 2 (Completeness). If an inequality ti ≥ tj+c
is implied by a satisfiable primary-constraint set, it can be
proven by a finite number of applications of the inference
rules.

Proof. By the premise the constraint set � ∪ {tj ≥ ti −
c+1}, where � is the primary constraint set, is unsatisfiable.
By Lemma 2.2, this means that a closed, positive-strength
chain exists in that set. Since it does not exist in � , we
conclude that the chain includes the added inequality. Split
that chain into the open chain between ti and tj and the
added inequality4. Apply the (chain) rule to the open chain
repeatedly to derive ti ≥ tj + d, with some d. From the
positive strength of the closed chain we have d − c + 1 > 0
which means d ≥ c and so ti ≥ tj + c is proven.4

It should be noted that the fact of completeness by itself
does not provide an algorithm to find all the consequences
of the primary constraints nor a method of selecting appro-
priate inference rules for proving a constraint to be a logical
consequence of the primary set. It is for this reason that
additional rules have been introduced even though Theo-
rem 2 indicates that (chain) is the only rule required for
completeness. Their equivalence to (chain) is due to the
following

Theorem 3. For every derivation that uses (chain’) and
(taut) to prove a secondary constraint, there exists a deriva-
tion that uses exclusively the rule (chain) and proves the
same constraint.

Proof. Observe that the difference between applying
(chain’) and (chain) is that the former additionally re-
moves from the set a constraint involving the same pair of
variables that has been used in the proof already. Such re-
moval is irrelevant as we are free not to repeat the variables
involved with the proof for reasons disclosed in the proof
of Lemma 2.1. An application of (taut) adds a constraint
between a type variable and itself, which can be left out of
any derivation for the same reasons. 4

The next theorem shows the utility of the full set of infer-
ence rules.

Theorem 4. The constraint set reaches either a fixed
point or inconsistency after a finite number of applications
of (chain’) (taut) and (incons).

4The open chain can be empty if the added inequality is
self-contradicting, e.g. t ≥ t + 1, in which case the proof
involves zero applications of the inference rules.

Proof. The process of expanding the constraint set can
be re-formulated in the language of graph theory as follows.
Place type variables at different vertices of a weighted di-
rected graph that has no edges initially. For every constraint
in canonical form τ1 ≥ τ2 + a add the edge (τ1, τ2) with the
weight (−a) (which we shall call the “distance” between τ1

and τ2 henceforth). Then an application of (chain’) has
either no effect or it replaces the edge between vertices t1
and t3 by one whose distance corresponds to the shorter
route from t1 to t3 via t2 . Repeated applications will have
the effect of inserting minimum distance shortcuts between
vertices. Observe that if the distance between any t and it-
self becomes negative in the course of expansion, � is found
inconsistent straight away. On the other hand, if that dis-
tance is positive, an application of (taut) makes it equal to
zero and places a 0-length loop on a vertex (which is effec-
tive only once). We conclude that the graph in question has
only zero-weighted loops and no cycles of negative distance.
Under such circumstances, the application of (chain’) to
non-distinct vertices has no effect. When all three vertices
are different, the rule shortens an edge by giving it the dis-
tance of a (shorter) path between the vertices it is incident
to. It is easy to see that as the number of paths between
any two vertices is finite, there can only be a finite number
of applications of the rule — hence a fixed point is reached
or an inconsistency is detected. 4

In practice an efficient minimum-distance algorithm 5 can
be used to expand the constraint set up to its fixed point.
The result of the constraint-set expansion is a matrix W =
wij such that for all i, j (−wij) is the minimum distance
between the types ti and tj according to the program tree.
This matrix is, in fact, the direct sum of two matrices: one
corresponding to element type and one to rank, since these
attributes do not mix in any constraints and since none of
the rules causes them to become mixed either. For unrelated
types the corresponding matrix element contains −∞.

4.2 Step 2. Minimisation
The task of type inference, understood as a constraint-

satisfaction problem, is to assign the least type value for
every type variable given the constraints. We are interested
in the least admissible types of objects because they cor-
respond to the least instances of overloaded operators ap-
plied to these objects. We assume that the higher the type
the higher the computational cost incurred by the operator.
This assumption is justified for the numerical operators act-
ing on arrays in any reasonable implementation; it is also
likely that operators of a different nature would have an
associated cost which increases with type.

The type minimisation algorithm must take into account
the fact that some of the type variables are external to the
program (i.e., those associated with input streams and pa-
rameters) and so cannot be mimimised without the knowl-
edge of the external constraints. Moreover, the minimum of
each internal type variable may depend on the values of the
external ones. In a distributed stream processing environ-
ment, the external types of a stream transformer may them-
selves be dependent on its output types when, for example,
an output stream of transformer X is fed into transformer
Y and the output of Y is part of the input to X. This prob-

5for example, the Floyd-Warshall algorithm, which com-
putes the minimum distance between all pairs of vertices
in a directed graph in cubic time.

lem will be discussed later; for now let us assume that the
external types are known.

The minimisation process is performed for element types
and ranks separately and identically since they are not mixed
in any of the constraints and since the inference logic is in-
sensitive to the nature of type variables. For the avoidance
of confusion, in the rest of the section we shall focus exclu-
sively on element types.

Let us partition the set of all type variables � = {ti | 0 ≤
i < n} into the set of external variables � = {ti | 0 ≤ i < m}
with the bottom element boolean included as t0, and the set
of internal variables � = {ti | m ≤ i < n} so that each type
variable has an index within the appropriate range. Next
we recall the fixed-point constraint matrix W = wij , which
was introduced at the end of the previous section, so that
each constraint in the expanded set is represented as

ti ≥ tj + wij .

Since external variables do not occur on the left-hand side
of the stream transformer construct (where they would be
expected to have sufficiently high types to be able to receive
the values of the right-hand side), their associated type vari-
ables do not occur on the left-hand side of any constraints,
i.e. (∀k < m)wkj = −∞ and hence need not be minimised.
In fact, the minimum of all these types due to a program
where they are external is obviously the bottom type of the
type lattice.

The solution of the minimisation problem is given by the
following Theorem 5. For any values of the external type
variables that satisfy the constraints between themselves

ti ≥ tj + wij where ti,j ∈ �

the type assignment for the internal variables ti ∈ �

ti = max
0≤j<m

tj + wij (7)

is the finite, least-type solution of the constraint satisfaction
problem.

Proof Substitute the solution into a primary constraint
between any two internal type variables ti and ti′ (m ≤ i < n
and m ≤ i′ < n):

ti ≥ ti′ + wii′ .

Since addition is distributive over maximum, this is equiva-
lent to

max
0≤j<m

tj + wij ≥ max
0≤j<m

tj + wii′ + wi′j .

Remember that w is a fixed-point matrix, so

wii′ + wi′j ≥ wij ,

which means that every term under maximisation on the
right-hand side does not exceed the corresponding term on
the left-hand side and so the constraint holds. Next observe
that the solution (7) satisfies the constraints between the
internal and the external variables, i.e. ti ≥ tj + wij , where
0 ≤ j < m ≤ i < n, and finally that it is the least such
solution.

The last issue is the finiteness of the type assignment. In-
finite negative offsets in the constraints were introduced as
a tool which enabled us to ignore the fact that not all pairs
of types are mutually constrained. However, we must en-
sure that any type assignment uses only finite offsets from
any types that serve as a basis. Two factors guarantee that.

Firstly, one of the “external” type variables is the bottom
type of the type hierarchy, t0. Since for all i, ti ≥ t0 and so
wi0 ≥ 0, at least one term in Eq. (7) is bounded from be-
low. Secondly, if an infinite negative offset occurs in another
term, thanks to the max operation that term will have no
effect in the presence of a finite term. 4

Corollary The least type of an internal type variable is
a nondecreasing function of the types of any external type
variables. This follows from the structure of Eq. (7) and
the fact that maximum is monotonic with respect to each of
its arguments.

4.3 Step 3. Constraining external type vari-
ables

All external types tj ∈ � must satisfy the trivial con-
straints tj ≥ t0 which cannot be strengthened for reasons
mentioned earlier; so wj0 = 0 for all j < m. More impor-
tantly, however, in the process of expanding the constraint
set, secondary constraints in the form

t0 ≥ tj − cj

where 0 ≤ j < m and cj = −w0j , may appear (note that
cj ≥ 0 since t0 is the bottom type). As they are equivalent
to tj ≤ t0 + cj , they set the maximum admissible type of
any external tj to t0 + cj .

To conclude this section, it is interesting to note that the
type minimisation problem can be regarded as an integer
programming [9] problem with the objective function

g =
n−1�

i=m

ti − t0 ,

the variables tj , 0 ≤ j < m, acting as free parameters and
the primary constraints defining the optimisation domain.
Indeed, as we must minimise all internal types given the con-
straints, and since all types are bounded from below by the
bottom type with which they are comparable as supertypes,
the above sum reaches the minimum only when each of the
variables occurring in it is minimised. Although the toolkit
of integer programming is too general for our purposes (and
we already have an efficient constraint satisfation algorithm
with minimisation), this angle on the problem may prove
important for non-offset situations.

5. DISTRIBUTED TYPE INFERENCE
When stream transformers are deployed on different hosts

included into a Computational Grid, the streams become
real network connections. Leaving aside the problem of con-
figuring ASTL network, we remark that any configuration
of streams must be consistent with the external types of the
stream transformers. The procedure outlined in the pre-
vious section obtains a type relation for every transformer
whereby the type of the variables in the output interface is
dependent on the type of the variables in the input interface
and the type of the transformer parameters. The parame-
ters are set directly by the Grid infrastructure, whereas the
inputs and outputs are matched with the outputs and inputs
of other transformers, respectively. However, as mentioned
earlier, a transformer’s external (i.e. input) types can no
longer be considered as given.

The following distributed type-reconciliation procedure is
proposed. Each transformer approximates its input type
variables as the bottom type/rank and calculates the type

of the output variables using Eq. (7). These output types
are passed along the data links to the receiving transformer
in a special message. When a transformer receives such a
message, it treats the received types as a new approximation
of the input types. It then generates a new approximation
of the output types to be sent to the corresponding inputs,
etc.

According to the corollary to Theorem 5, since the input
types increase with each approximation, the output types
stay the same or increase as well. If the output types of
the transformer remain the same after an approximation, a
termination point is reached: no more messages will be sent
by this transformer. It is easy to see that after a finite num-
ber of messages have been passed between the transformers,
each of them either reaches a termination point or receives
types that violate the maximum type constraints as defined
in section 4.3. In either case no more messages will be sent.

All transformers in a transformer network need to know
that they all have reached a termination point and whether
or not errors have been encountered. The former task is an
instance of a well-known distributed termination-detection
problem (see survey [8] for existing algorithms). The latter
task can either be incorporated in the termination detection
infrastructure or it can be completed separately by back-
propagation of failure to the neighbouring nodes.

Conclusions
We have shown that offset-homomorphic overloading is a
natural mechanism for describing a variety of array oper-
ations in a declarative language. All basic constructs for
array computation and geometric manipulation of arrays
have been shown to satisfy the offset-homomorphism restric-
tion. We have proposed, and proven the correctness of, a
type inference method which deduces the type attributes of
a stream transformer from the external type information.
A procedure of reconciling types in a distributed stream-
processing network has been delineated and will be pub-
lished separately.

Future work will include optimising the shortest-path al-
gorithm towards the specific structure of the type-dependen-
cy graph induced by a syntax tree; for instance, the fact that
there are many type variables that are localised each in a
small portion of the tree needs to be taken into account as it
may improve the performance of the type-inference method.
It is perhaps even more important to address the problem
of error reporting. Since type errors may result from violat-
ing secondary constraints, it is not straightforward (if at all
possible) to relate them back to primary constraints and ul-
timately to specific occurrences of operators in expressions.
This problem is common to most type inference situations;
an inference algorithm usually points to a mismatch between
type signatures and not to the offending operator directly.
While inference by unification makes it relatively easy to find
which of the signatures that fail to unify is to blame, in our
case there can be a whole trail of chained constraints lead-
ing to a contradiction. Future work will attempt to suggest
useful heuristics in the framework of the ASTL language.
We expect the problem of error reporting in a distributed
environment to prove especially interesting.

The author wishes to thank the anonymous referee for the
encouraging remarks and Prof Chrystopher Nehaniv for his
attention to this work and a number of useful discussions.

References

1. L.Cardelli and P.Wegner. On understanding types,
data abstraction, and polymorphism. Computing Surveys,
17(4):471-522, 1985.

2. J.Mitchell. Type inference with simple subtypes. Jour-
nal of Functional Programming, 1:245–285, 1991.

3. D. Lievant Discrete Polymorphism. Proc. 1990 ACM
Conference on LISP and Functional Programming, pp. 288–
297, 1990.

4. I. Foster, C. Kesselman and S Tuecke. The Anatomy
of the Grid. Enabling Scalable Virtual Organisations. Intl.
J. Supercomputer Applications, 2001. Also see
citeseer.nj.nec.com/492895.html.

5. A.Shafarenko. RETRAN: a Recurrent Paradigm for
Data-Parallel Computing. Computer Systems Science and
Engineering, vol 11, No 4, July 1996, pp 201-209

6. J.C.Reynolds. Three approaches to type structure. In:
TAPSOFT proceedings, LNCS vol 185, pp.97-138, 1985.

7. J.Eifrig, S.Smith and V.Trifonov. Type inference for
recursively constrained types and its application to OOP.
Theoretical Computer Science, December 1995, vol. 152, no
2, p. 326–345.

8. J. Matocha and T. Camp, A Taxonomy of Distributed
Termination Detection Algorithms, The Journal of Systems
and Software, vol. 43, no. 3, pp 207-221, 1998.

9. A. Schrijver. Theory of Linear and Integer Program-
ming. John Wiley & Sons, 1998.

