
Principles of Timing Anomalies in Superscalar Processors ∗

Ingomar Wenzel, Raimund Kirner, Peter Puschner, Bernhard Rieder
Institut für Technische Informatik

Technische Universität Wien
Treitlstraße 3/182/1
1040 Wien, Austria

{ingo, raimund, peter, bernhard}@vmars.tuwien.ac.at

Abstract

The counter-intuitive timing behavior of certain features
in superscalar processors that cause severe problems for ex-
isting worst-case execution time analysis (WCET) methods
is called timing anomalies.

In this paper, we identify structural sources potentially
causing timing anomalies in superscalar pipelines. We pro-
vide examples for cases where timing anomalies can arise in
much simpler hardware architectures than commonly sup-
posed (i.e., even in hardware containing only in-order func-
tional units). We elaborate the general principle behind tim-
ing anomalies and propose a general criterion (resource al-
location criterion) that provides a necessary (but not suffi-
cient) condition for the occurrence of timing anomalies in a
processor.

This principle allows to state the absence of timing
anomalies for a specific combination of hardware and soft-
ware and thus forms a solid theoretic foundation for the
time-predictable execution of real-time software on complex
processor hardware.

1. Introduction

Due to the temporal constraints required for correct op-

eration of a real-time system, predictability in the temporal

domain of a real-time computer system is a stringent imper-

ative to be satisfied. Therefore, it is necessary to determine

the timing behavior of the tasks running on a real-time com-

puter system. Worst-case execution time (WCET) analysis

is the research field investigating methods to assess the tim-

ing behavior of real-time tasks.

∗ This work has been supported by the FIT-IT research project “Model-
based Development of Distributed Embedded Control Systems (MoD-
ECS)”.

A central part in analyzing the execution time behavior

of real-time tasks is modelling the timing behavior of the in-

volved hardware within the analysis process.

The analysis of simple hardware architectures without

caches, complex pipelines, or branch prediction mecha-

nisms can be successfully performed with a number of well

established WCET analysis methods [19, 21].

Besides these WCET analysis techniques designed for

quite simple architectures, a number of solutions exist for

architectures that we would like to call “moderately” com-

plex. Moderately complex architectures are very restrictive

as far as parallelism in instruction processing is concerned.

Still they make use of caches and pipelines [11, 10, 2, 12, 6].

Recent research addresses the WCET analysis of the lat-

est high-performance processor systems that take advan-

tage of numerous performance enhancing mechanisms, es-

pecially including instruction-level parallelism and specula-

tive execution. However, these features cause a lot of prob-

lems for WCET analysis [7]. The high parallelism and the

interference of operations executed in the different units

of these processor systems make it practically infeasible

to evaluate exact worst-case timing models of reasonably-

sized software in a monolithic timing model1. Instead, the

analysis is usually decomposed into a number of steps that

model the timing of different features of the computer sys-

tem in separation, e.g., in [22]. The partial results of these

steps are then combined to compute the final WCET bound

for the code under consideration.

It is important to note that the divide-and-conquer strat-

egy as proposed above will only work, if partial results can

be safely combined to yield the total result. This means that

the scenarios of the solutions found in one step of the anal-

ysis must never invalidate a result found in any other step.

If this composability property does not hold, the final re-

sult of the analysis can never be guaranteed to be safe. This

1 By a monolithic timing model we mean a timing model that models
all details of the entire processor system “simultaneously”

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/1641942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

property is very important for WCET analysis, as the in-

dependence of the different steps of the analysis cannot be

guaranteed for all kinds of processor systems. In particular,

processor systems that allow for so-called timing anomalies
to occur, cannot be safely analyzed with a simple divide-

and-conquer approach as described above [14]. Due to com-

plex inter-dependencies between the timing of parallel func-

tional units, the safe application of the divide-and-conquer

approach is impossible, or gets unmanageably complex.

In order to differentiate computer systems for which

WCET analysis is highly complex from those whose tim-

ing can be analyzed with reasonable efforts, this paper in-

vestigates the phenomenon of the timing anomaly in detail.

It is the purpose of this paper to establish a criterion that al-

lows the safe identification of hardware/software combina-

tions that can be stated to be free of timing anomalies and

thus can be analyzed safely with reasonable effort and with-

out introducing too much pessimism. In this way, this work

also forms the theoretic basis for the safe application of

newly developed measurement-based WCET analysis ap-

proaches [25] for complex processor architectures.

1.1. Contribution

First, we introduce properties required for the safe appli-

cation of traditional WCET analysis methods on complex

processors (Subsection 2.4).

Second, we identify structural sources of superscalar

pipelines potentially causing timing anomalies (Section 3).

We provide examples, showing that timing anomalies can

arise in much simpler architectures than commonly sup-

posed (i.e. even with hardware containing only in-order

functional units).

Third, we elaborate the general principle behind timing

anomalies and present a general criterion (the resource al-
location criterion) that provides a necessary (but not suffi-

cient) condition for the occurrence of timing anomalies in

a processor. We explain how this principle can be used to

identify problematic features of hardware (Section 4).

This simple and strong criterion allows two conclusions:

(a) Whenever the processor contains resources that allow

dynamic resource allocation decisions at runtime it might

be vulnerable to timing anomalies. (b) However, if the ac-

tually executed instruction sequence does not cause any of

these decisions at execution time, the actual combination of

hardware and software can be guaranteed to be free of tim-

ing anomalies.

1.2. Structure of the Document

The rest of the paper is structured as follows: In Section 2

we provide an introduction to timing anomalies and give a

precise explanation of the relationship of WCET analysis

methods and timing anomalies. Section 3 presents the re-

sults of our investigation of structural architectural patterns

that potentially cause timing anomalies. The observations

are used for the development of the resource allocation cri-
terion in Section 4. Finally, in Section 5 we critically review

our results and the concept of timing anomalies in general.

2. Formulating the Concept of Timing
Anomalies

In this section, we outline the concept of timing anoma-

lies in detail. After introducing relevant related work, we

characterize the idea behind a timing anomaly. Subsec-

tion 2.3 gives a formal definition of timing anomalies. Con-

cluding this section, we elaborate on the impact of timing

anomalies on WCET analysis.

2.1. Related Work

The term timing anomaly was introduced by Lundqvist

and Per Stenström who were the first to discover this kind of

problematic timing behavior when using modern processor

hardware [14]. They present examples of timing anomalies

and identify out-of-order resources as the characteristic fea-

ture that causes timing anomalies. Furthermore, they pro-

vide interesting ideas for strategies to avoid timing anoma-

lies on the PowerPC architecture by modifying the program

code.

Schneider developed a WCET analysis method for the

Motorola PowerPC 755 architecture in his PhD thesis [20].

His method handles timing anomalies occurring on that spe-

cific architecture; especially problems resulting from pre-

emptions were resolved. He provides various examples of

timing anomalies actually occuring on the PowerPC plat-

form thus implicitly covering a wide range of anomalies.

Further, he was the first who provided a real example for

the domino effect [14]. The domino effect is an unbounded

timing effect caused by different initial pipeline states prop-

agating over loop boundaries.

An interesting approach for handling timing anomalies

is the runtime re-configuration of processor features into a

safe and predictable mode when timing anomalies are de-

tected during runtime [1]. In this approach, a soft deadline

mechanism is used to check the timely execution of code

at runtime. When a deadline miss is detected, the proces-

sor hardware is re-configured into a safe-mode, thus en-

suring that the execution of the remaining task code com-

pletes in time. This approach allows to gain the advantages

of complex architectures (performance vs. saving energy)

while regular operation. In the case timing anomalies be-

ing present, the safe-mode guarantees the timely comple-

tion of the execution.

2.2. Characterization of the Idea behind Timing
Anomalies

The term “anomaly” denotes deviation of actual behav-

ior from expected behavior. Hence, an anomaly never exists

alone; it is necessarily embedded in some context (result-

ing in an “expectation”). Thus, the context has to be an ex-

plicit part of the analysis of an anomaly.

The context of timing anomalies is the set of WCET

analysis methods. Within the first developed WCET anal-

ysis methods [18, 17], hardware modelling is an implicit

part. When considering WCET analysis methods for more

complex architectures that contain caches and pipelines, it

makes sense to partition the WCET analysis process into

subtasks and analyze different architectural features sepa-

rately [22, 4].

The subtask of hardware modelling is deriving bounds

of the execution time of some program code sequence ex-

ecuted on a specified hardware architecture starting with a

well defined initial state.

Due to the lack of exact state information (e.g., a mem-

ory access cannot be precisely classified as cache hit or

cache miss), worst-case assumptions are made (for instance,

a cache miss is assumed). As Lundqvist et al. have shown,

the expected consequences of these assumptions do no hold

for dynamically scheduled pipelines [14].

From this viewpoint, a timing anomaly is the unexpected

deviation of real hardware behavior contrasted with the

modelled one, namely in the sense that predictions from

models become wrong. This unexpected behavior could

lead to erroneous calculation results by WCET analysis

methods when actually implemented. Thus, the concept of

timing anomalies rather relates to the WCET analysis mod-

elling process and does not denote malicious behavior at

runtime.

2.3. Definition of Timing Anomalies

To describe timing anomalies more formally, we as-

sume a sequence of instructions (I1, I2, ..., In) where each

instruction has a corresponding latency [14, 13] tIi
with

i ∈ 1...n in its according functional unit. The total exe-

cution time for the instruction sequence resulting from the

execution of the instruction sequence and its related laten-

cies is denoted by C. The latency of the first instruction tI1

is varied by a value Δt and the future execution time C ′ re-

sulting from the same instruction sequence but the changed

latencies tI1
+ Δt, tI2

, ..., tIn
is compared with the origi-

nal execution time C. The difference between both times C

and C ′ is defined to be ΔC = C ′ − C, more intuitively

C ′ = C +ΔC. Definition 2.1 is semantically identical with

Lundqvist’s definition provided in [14, 13]:

Definition 2.1 A timing anomaly is defined as a situation
where according to the sign of Δt one of the following cases
becomes true:

a) Increase of the latency:
Δt > 0 → (ΔC > Δt) ∨ (ΔC < 0)

b) Decrease of the latency:
Δt < 0 → (ΔC < Δt) ∨ (ΔC > 0)

Whenever the term Δt > 0 → ΔC < 0 or

Δt < 0 → ΔC > 0 is responsible for a timing anomaly

as described in a) or in b) of Definition 2.1, we call

this counter-directive impact of the latency varia-

tion Δt and the execution time change ΔC because

sgn(Δt) = −sgn(ΔC).
If one from the remaining terms Δt > 0 → ΔC > Δt

or Δt < 0 → ΔC < Δt is active, we call this a strong im-
pact timing anomaly.

This means, a timing anomaly is said to be present when

the expected change of the future execution time ΔC re-

sides outside the interval [0,Δt] whenever Δt > 0 or out-

side [Δt, 0] with Δt < 0, respectively.

Immediately following from Definition 2.1, the symme-
try property of timing anomalies can be identified: when-

ever the sequence of latencies tI1
, tI2

, ..., tIn
leads to a fu-

ture execution time change ΔC using the latency variation

Δt, then the future execution time change starting from la-

tency sequence (tI1
+ Δt), tI2

, ..., tIn
equals to −ΔC as-

suming an used latency variation of −Δt.

Note, that the definition of timing anomalies does not

make any assumption about the initial processor state. It is

implicitly assumed that the processor contains a particular

state before we observe the execution of our instruction se-

quence. Thus, when we consider a sequence of instructions

we always assume some initial hardware state. This can be

an empty pipeline state, but there may be also some instruc-

tions executed before. The only relevant aspect when con-

sidering timing anomalies is that an ”almost identical” ini-

tial internal state is assumed for the two compared scenar-

ios (except the part of the state that causes the latency vari-

ation, e.g., a slightly different cache content).

Some examples for timing anomalies occurring on real

hardware can be found in [20].

2.4. The Influence of Timing Anomalies on WCET
Analysis

Timing anomalies make the WCET analysis process

extremely complex, especially when the safeness of the

WCET bound is required. Consequently, hardware allow-

ing timing anomalies can only be analyzed safely using the

pessimistic serial execution method [14] leading to useless

results due to high overestimation or complex approaches

[20].

With the aim being able to use well-established tradi-

tional analysis methods, the following - in these analysis

methods inherently supposed assumptions - have to be sat-

isfied.

Monotonicity assumption. Hardware involving timing

anomalies introduces new problems and difficulties. The

main reason identified for this explosion of complexity is

the violation of the monotonicity assumption.

The monotonicity assumption means that when uncer-

tain information is processed by a WCET analysis ap-

proach, it is assumed that a longer latency for an instruction

necessarily imposes an at least equal or longer (bounded

by the amount of the latency change) execution time for

the overall instruction sequence under consideration. This

assumption can be imagined being implicitly included in

many WCET approaches and stipulates how uncertain in-

formation is incorporated in the hardware modelling pro-

cess.

In the case of timing anomalies, this assumption does not

hold. The situation can be compared with the anomalous be-

havior in bin packing algorithms [16].

Basic composability assumption. In many WCET cal-

culation methods a basic composability2 assumption is

taken for granted. This assumption denotes the fact that

WCET bound values for sub-paths can be safely com-

posed by the WCET calculation method to compute the

WCET bounds for the composite paths. However, this prop-

erty of the validity of the sub-paths WCET bounds is lost

when timing anomalies are present.

For instance, when in tree-based methods the WCET

bound of a loop is calculated, the loop bound is multiplied

with the WCET bound of the loop body. However, when

due to a violation of the monotonicity and composability

assumption (resulting from timing anomalies) the WCET

bound of the loop body is underestimated in a particular ex-

ecution context, this error will multiply during runtime, de-

pendent on actual input data values. This phenomenon is

called an unbounded timing effect [14, 13, 20, 24] and re-

sults from an insufficiently modelled hardware state. Effects

lasting beyond the borders of the analyzed sub-paths are re-

ferred to as late effects [13] respectively long timing effects
[5].

3. Structural Patterns of Timing Anomalies

After studying the examples presented by Lundqvist et

al. [14], we systematically investigated abstract hardware

structures in order to find out whether it is possible to iden-

tify minimal structural patterns allowing timing anomalies

2 An architecture supports composability with respect to a specified
property whenever the property that has been established at the sub-
system level remains valid during subsystem composition [9]. Com-
posability is an important property in architectural design.

to arise [24]. The respective results are presented in the fol-

lowing.

First, in Subsection 3.1 and 3.2 we describe the basic

terminology. Subsection 3.3 provides examples for timing

anomalies that arise when using a single out-of-order re-

source, as this type of resources has been commonly sup-

posed to be the reason for timing anomalies [14, 13]. Fi-

nally, in Subsection 3.4 we present the surprising result that

timing anomalies even occur with structurally simpler hard-

ware.

3.1. Hardware Related Terminology

A superscalar architecture can be characterized by the

following two properties [8]:

1. The superscalar pipeline includes all features of a clas-

sical pipeline, but additionally, instructions may be ex-

ecuted simultaneously in the same pipeline stage, i.e.,

the stream of instructions can be distributed among dif-

ferent functional units available at the execute stage.

2. The execution of multiple instructions can be initiated

simultaneously in one clock cycle. Such machines are

often referred to as multiple issue machines. Instruc-

tions are dynamically scheduled (i.e., the actual in-

struction grouping is performed at runtime) in contrast

to VLIW (very long instruction word) architectures [8].

The terms dispatch and issue are often used in a con-

fusing manner in literature. In this paper, dispatch refers to

the primary distribution of instructions among the particular

subsystems of functional units (including possible buffers)

whereas issue refers to the assignment of an instruction to

a particular functional unit for immediate execution. Dis-

patch and issue coincide whenever there are no buffers be-

tween the dispatch and issue stage.

For our purposes (in order to show the principles behind

a timing anomaly), we abstract from real hardware by intro-

ducing simplified hardware models. For instance, details of

the mechanisms ensuring semantically correct operation of

the hardware (e.g. Tomasulo’s algorithm [23]) are lost due

to abstraction. Indeed, we focus on changes of the resource

allocations in these simplified models. Clearly, the abstrac-

tions do not cause any loss of generality.

3.2. In-Order and Out-Of-Order Resource Alloca-
tions

Resource models are applied in order to model the archi-

tectural state of a processor. Resources (e.g. registers, func-

tional units) are allocated to instructions.

Lundqvist et al. divide resources into two disjunctive

classes [14]:

��

���

��	
 �����
 �������

��������

���

��

���

���

���

��������

�������	
��� �������	
��

��	
 �����
 �������

���

���

���� ����

Figure 1. Model M1 with two reservation sta-
tions allowing out-of-order allocation of func-
tional unit FU2. Model M2 consisting of two
non-equivalent functional units.

In-order resources. “In-order resources can only be al-

located in program order to instructions. (...) Examples of

in-order resources are registers that must be preserved in-

order to guarantee that data dependencies in the program

are not violated.”

Out-of-order resources. “Out-of-order resources can be

allocated to instructions dynamically, i.e. a new instruction

can use a resource before an older instruction uses it ac-

cording to some dynamic scheduling decision. Typical out-

of-order resources are functional units that service instruc-

tions dynamically (out-of-order initiation).”

3.3. Timing Anomalies caused by Out-of-Order
Resources

In this subsection we show examples for timing anoma-

lies that are due to hardware containing of out-of-order re-

sources. Even though we will show later (Subsection 3.4)

that the original claim by Lundqvist et al., that the pres-

ence of out-of-order resources is a necessary condition for

the occurrence of timing anomalies, is too strong, we con-

sider out-of-order timing anomalies very essential and rele-

vant.

We assume the abstracted hardware architecture depicted

in Figure 1(a) including the following units: instructions

are dispatched by the DS stage to its according reserva-

tion station RSi. Whenever there is no free reservation sta-

tion buffer available, dispatch stalls. Consecutively, instruc-

tions are issued to the respective functional unit. When the

functional unit is idle on dispatch, dispatch and issue coin-

cide in one cycle. Whenever an instruction is issued, its ac-

Instruction Required Functional Unit

A FU1

B FU2

C FU2

D FU1

Table 1. Resource requirements of the in-
struction sequence for model M1

cording reservation station entry still remains allocated until

the instruction has finished its execution and can be moved

into the reorder buffer ROB where it is completed as soon

as possible (i.e. all previous instructions have completed).

Model M1 in Figure 1(a) uses the following issue policy:

(i) the functional units serve disjunctive sets of instruction

types and (ii) at most one instruction per cycle is assumed

to be dispatched.

We constructed examples for timing anomalies involv-

ing multiple issue architectures, i.e., multiple instructions

are issued in one clock cycle. However, as we will see in

Subsection 3.4 and 3.3, even by excluding multiple issues

through constraint (ii) in our issue policy, timing anoma-

lies can arise in our hardware models.

In Table 1 the resource requirements for the instruction

sequence (A,B,C,D) are depicted. Instructions A and D

require functional unit FU1, while B and C require FU2.

Figure 2 depicts the execution of this sequence with

model M1 in a timing diagram. The arrows below the in-

struction labels visualize the instruction dispatch event. The

instruction latencies and the latency variation can be ob-

tained from the small boxes on the right side of the diagram.

The arrows beside the latencies identify the dependency re-

lationships between the instructions.

The diagram illustrates two situations: the first two rows

shown are called case 1 and show the execution of the se-

quence using the latencies of the box besides. The bars il-

lustrate the utilization of the according functional unit by an

instruction, the dotted lines above the bars depicts the reser-

vation station allocation by the instructions.

The two rows below will be referred to as case 2 and

show quite the same situation like case 1 - the only differ-

ence is that instruction latency tA is modified by Δt=2 and

thus the execution of the instruction sequence results in an-

other resource allocation. When comparing the total execu-

tion time of case 1 and case 2, we encounter the occurrence

of a counter-directive timing anomaly.

For the same instruction sequence, in Figure 3 an exam-

ple for a strong impact timing anomaly is provided.

The latencies of the instructions can been chosen rela-

tively free. When trying to construct examples for timing

� � �

���

���

���

���

�	
����

����������������������

�

����������������������
������� ��!���������������

�

�

�

�

�

�

�

����������������������

 �"�
 �"
 �"
 �"

Δ �"#�

Δ�"��

Figure 2. Example for a counter-directive tim-
ing anomaly in model M1

��� ��� ��

���

���

���

���

	
����

���������������������

�

����������������������
���������� ���������������

�

�

�

�

�

���������������������

�!�
��!�
��!�
��!�

Δ�!"�

Δ�!"�

Figure 3. Example of a strong impact timing
anomaly in model M1

anomalies as simple as possible, it turned out that timing

anomalies even can occur for bigger and smaller instruction

latencies (examples can be found in [24]). We selected ba-

sic latency values of 3 in order to provide demonstrative ex-

amples.

3.4. Timing Anomalies caused by In-Order Re-
sources

In contrast to common and our former belief we found

that timing anomalies can even occur in hardware archi-

tectures that only have in-order resources, like our abstract

sample architecture depicted in Figure 1(b).

In model M2 (overlapping functional units) we consider

two functional units serving an overlapping set of instruc-

tion types without any reservation stations. FU1 can serve

all instructions of type c ∈ IC1, FU2 serves instructions of

type c ∈ IC2 (the set IC1 contains generic types of instruc-

Instruction Required Functional Unit

A FU1 or FU2

B FU1 or FU2

C FU1 or FU2

D FU2

Table 2. Resource requirements of the in-
struction sequence of model M2

�

���
���

���

���

��	
���

� � � �

�

��� ������������������������

��� �

�

�� �
�� �
�� �
�� �

Δ�� !�
�

� �

�

� �

Δ� ��

Figure 4. Example for a counter-directive tim-
ing anomaly in model M2

tions for functional unit i). For the instruction classes IC1

and IC2 the relation IC1 ⊂ IC2 holds. This simply means

that FU2 is able to serve more types of instructions than

unit FU1. Instructions dispatched to FU1 could also be ex-

ecuted using FU2, but the reverse is not true. Thus, we have

to introduce a new issue policy in order to determine which

functional unit should be used when both units are avail-

able. Therefore, we extend our issue policy by defining FU1

as default unit.

Now consider the instruction sequence in Table 2. For

each instruction the corresponding functional units are

listed that are capable to serve this instruction.

Figure 4 shows an example for a counter-directive tim-
ing anomaly using model M2 only employing in-order func-

tional units.

Figure 5 depicts an example for a strong impact timing
anomaly using model M2.

Both functional units, FU1 and FU2, are allocated to in-

structions strictly in-order. Still, due to the different capa-

bilities of both functional units, resource conflicts can arise

causing timing anomalies.

���

���

���

���

���

�	
����

����� ���� ���� �

�
�������� � �����������������������

�

� � �

�

�

���
���
���
���

�

��� ��������������������� !�"��

Δ���#�

Δ��#

Figure 5. Example of a strong impact timing
anomaly in model M2

4. The Principle Behind Timing Anomalies

The previous section has shown that the differentiation

between in-order and out-of order resources is not precise

enough for the explanation of timing anomalies. Thus, we

investigate in this section the common principle behind the

timing anomalies occurring in both models presented in

Section 3.

4.1. Terminology for Analyzing Resource Alloca-
tions

A resource allocation is defined as the assignment of

an instruction Ii ∈ S of a given instruction sequence

S = (I1, I2, ..., In) to hardware resources u ∈ FU at par-

ticular points in discrete time, having FU denoting the set

of functional units in the hardware model.

Furthermore, we define

tent(I, u) . . . entry timestamp of instruction I

into functional unit u

tI,u duration of resource usage for in-

struction I in unit u (latency) with

tI,u = tent(I, u) − trel(I, u)

Next, we define a resource usage function

use(u) : FU → ℘(I) describing the set of all instruc-

tion instances using a functional unit in an finite ex-

ecution scenario. Note, that our viewpoint is that of

an imagined outside observer thinking of the execu-

tion of an “appropriate” execution scenario. Thus, we do

not deal with aspects like computability or the halting prob-

lem.

Since every functional unit can only serve one instruc-

tion at a time, according to the entry timestamps (and also

to release timestamps, respectively) an order relation <u on

use(u) is implied.

Concluding, the resource allocation for a given hardware

model depends on (i) the instruction type of the instructions

in the sequence and their data dependencies, (ii) on the types

of instructions that can be executed in each of the functional

units and (iii) on the instruction’s latencies in their respec-

tive functional units.

4.2. Possible Resource Allocation Decisions in
Pipelines

In order to have a possibility for comparing resource al-

location scenarios we consider tracing the instruction flow

through each individual functional unit. As in the previ-

ous subsection described, for each resource u ∈ FU , an or-

dering relation <u is derived on the instructions passing

through this resource considering the entry timestamps.

Second, the value of the latency is varied and for this

slightly modified scenario the ordering relation is obtained,

too.

Third, these ordering relations are compared whether

they differ. In such a case, a different resource allocation

has taken place.

Definition 4.1 A resource allocation decision is defined to
be possible in a hardware model M whenever an arbitrary
instruction sequence S exists that may cause at least for
one u ∈ FU the instruction order relations <u and <u′

to be different from each other (<u �=<u′

) due to a latency
variation by Δt of one single instruction in sequence seq.
The relation <u denotes the order relation of the instruc-
tions of sequence S implied by tent(I, u) and the natural
mathematical < relation resulting from the execution of se-
quence S on model M using instruction latencies tI,u

3.
The order relation <u′

is defined analogously to <u with
the difference that one single instruction has a different
latency: t′I = tI + Δt for I ∈ use(u) and t′J = tJ for all
J ∈ use(u) with I �= J .

4.3. The Resource Allocation Criterion - a Neces-
sary Condition for Timing Anomalies

According to our observations we have made in Subsec-

tion 3.3 and 3.4, the idea that possible resource allocation

decisions as defined in Definition 4.1 are a necessary condi-

tion for timing anomalies to occur, leads to the formulation

of Theorem 4.2.

Theorem 4.2 The possibility of a resource allocation deci-

sion as defined in Definition 4.1 for a hardware model M is
a necessary, but not sufficient condition for timing anoma-
lies to be present.

3 Instead of tI , u often tI is written for simplification reasons whenever
the associated FU is clear and unambiguous.

The proof of Theorem 4.2 is provided in Proof 4.3.

Proof 4.3 In the first step, the necessity condition is proven.
Assume we have given an instruction sequence S and two
latency scenarios tI and t′I with tI �= t′I for one single in-
struction I . Whenever all functional units are used in the
same order, for both scenarios a latency increase may only
result in a deferred execution initiation of dependent in-
structions. Therefore, no additional cycles can be imposed.

Second, it has to be proven that the occurrence of a
resource allocation decision is not sufficient for a timing
anomaly to take place. For this purpose, consider a model
like M2 but having two equivalent functional units. The re-
source allocation sequence may change, but since both units
are equivalent considering the pipeline state this cannot
have any impact on further instructions. �

Finally, Corollary 4.4 provides our final conclusion:

Corollary 4.4 In processors not allowing resource alloca-
tion decisions no timing anomalies can be present.

Corollary 4.4 directly follows from Theorem 4.2.

5. Discussion and Future Work

The introduced resource allocation criterion allows two

important conclusions:

First, the resource allocation criterion provides a sim-

ple and effective mask to diagnose the potential for tim-

ing anomalies. Whenever the change of a single latency can

cause different resource allocations in an architecture, then

timing anomalies may occur. We elaborated that not the or-

dering of the instructions on the resources is the precondi-

tion, but rather the potential for different resource alloca-

tion decisions at runtime. Whenever the processor contains

resources that allow such runtime resource allocation deci-

sions (e.g., out-of-order pipelines, functional units serving

different instruction types) then latency variations of sin-

gle instructions might cause timing anomalies further down

the instruction stream on this particular type of hardware.

The reasons for latency variations of single instructions

may result from caches [14], different operand values (e.g.,

floating points operations) or branch prediction mecha-

nisms.

The information whether a processor contains hardware

features that may cause timing anomalies can be obtained

easily by looking into hardware manuals of the processor

(e.g., by looking into the manual whether there are multi-

ple functional units serving overlapping instruction sets or

containing out-of-order resources).

Second, if the actually executed instruction sequence

does not cause any dynamic resource allocation decision

at execution time, an actual combination of hardware and

software can be guaranteed to be free of timing anomalies.

This condition can be ensured by analyzing the instruction

streams of the real-time tasks and the resulting potential re-

source allocation decisions. If necessary, an according soft-

ware rearrangement like the insertion of additional instruc-

tions [14] or an appropriate instruction reordering may be

performed.

A simple example would be the execution of a sequence

consisting purely of floating point instructions on the Pow-
erPC platform. Due to the absence of potential resource al-

location decisions (because there is only one single float-

ing point unit in the PowerPC 755), no timing anomaly can

occur. In this case and the additional satisfaction of the in-

troduced monotonicity and composability assumption (Sub-

section 2.4), a time-predictable execution environment can

be provided that allows to use complex processor hardware

together with well-established WCET analysis methods.

In other words, it is possible to create a temporal pre-

dictable execution environment for safety-critical real-time

code while using the advantage of powerful complex pro-

cessor hardware. Especially, this is of high importance for

mixed-criticality systems [3, 15]. It can be avoided to de-

velop costly new hardware by introducing software archi-

tectural elements in those parts of the system that require

temporal predictable execution and are subject to WCET

analysis.

We extend published solutions dealing with tim-

ing anomalies [14] by analyzing the instruction streams

and/or reordering the instructions if necessary. Only when

needed, additional instructions have to be inserted.

Currently, we investigate simple code transformations

(for the code of real-time tasks subject to execution on

a specified hardware architecture) with respect to our re-

source allocation criterion in order to provide a method

for “immunizing” a hardware/software combination against

timing anomalies.

6. Conclusion

In this paper we explored the fundamental causes for the

presence of timing anomalies in superscalar processors.

Instead of considering in-order and out-of-order alloca-

tions of processor resources as the sources of timing anoma-

lies, our criterion investigates the potential that different re-

source allocation decisions may be taken at runtime. The

existence of different possible resource allocations has been

proven to be a necessary precondition for timing anomalies

(Section 4).

The introduced simple and strong resource allocation cri-

terion allows two conclusions:

1. Whenever the processor contains resources that allows

dynamic resource allocation decisions, timing anoma-

lies might occur on this particular type of hardware.

2. We provide a simple criterion for testing if a specific

software running on given hardware may cause timing

anomalies. When an actual hardware/software combi-

nation of a real-time task is free of timing anomalies, a

time-predictable execution environment (by applying

well-established WCET analysis methods) for safety-

critical real-time code can be established while using

the advantages of powerful complex processor hard-

ware.

It is worth noting, that in-depth knowledge about the

phenomena of timing anomalies is not only important for

static WCET analysis of complex processor architectures.

Our conclusions also form a solid base for the safe applica-

tion of new measurement-based WCET analysis approaches

that we are currently working on [25].

References

[1] A. Anantaraman, K. Seth, K. Patil, E. Rotenberg, and

F. Mueller. Virtual simple architecture (VISA): exceeding

the complexity limit in safe real-time systems. In Proceed-
ings of the 30th annual international symposium on Com-
puter architecture, pages 350–361. ACM Press, 2003.

[2] R. D. Arnold, F. Mueller, D. B. Whalley, and M. G. Har-

mon. Bounding worst-case instruction cache performance.

In Proceedings of the 28th Annual Simulation Symposium
April 1995, pages 172–181, 1995.

[3] B. Dutertre and V. Stavridou. A model of noninterference

for integrating mixed-criticality software components. In

Dependable Computing for Critical Applications, volume 7,

pages 301–316, 1999.

[4] J. Engblom. Static properties of commercial embedded real-

time programs, and their implication for worst-case execu-

tion time analysis. In Real-Time Technology and Applica-
tions Symposium, pages 46–55, 1999.

[5] J. Engblom. Processor Pipelines and Static Worst-Case Ex-
ecution Time Analysis. PhD thesis, Acta Universitatis Up-

saliensis, 2002.

[6] C. Healy, R. Arnold, F. Mueller, D. Whalley, and M. Har-

mon. Bounding pipeline and instruction cache performance.

IEEE Transactions on Computers, 48(1):53–70, Jan. 1999.

[7] R. Heckman, M. Langenbach, S. Thesing, and R. Wilhelm.

The influence of processor architecture on the design and the

results of wcet tools. In Proceedings of the IEEE, volume 91,

pages 1038–1054, July 2003.

[8] J. L. Hennessy and D. A. Patterson. Computer Architecture
- A Quantitative Approach. Morgan Kaufman Publishers,

2003.

[9] H. Kopetz. Real Time Systems. Kluwer Academic Publish-

ers, 3rd. edition, 1997.

[10] Y.-T. S. Li, S. Malik, and A. Wolfe. Efficient microarchitec-

ture modeling and path analysis for real-time software. In

IEEE Real-Time Systems Symposium, pages 298–307, 1995.

[11] S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min, C. Y.

Park, H. Shin, K. Park, S.-M. Moon, and C.-S. Kim. An ac-

curate worst case timing analysis for RISC processors. vol-

ume 21, pages 593–604, 1995.

[12] S.-S. Lim, J. H. Han, J. Kim, and S. L. Min. A worst case tim-

ing analysis technique for multiple-issue machines. In RTSS,

pages 334–345, 1998.

[13] T. Lundqvist. A WCET Analysis Method for Pipelined Mi-
croprocessors with Cache Memories. PhD thesis, Chalmers

University of Technology Sweden, June 2002.

[14] T. Lundqvist and P. Stenström. Timing anomalies in dynam-

ically scheduled microprocessors. In IEEE Real-Time Sys-
tems Symposium, The 20th IEEE, pages 12–21, December

1999.

[15] M. Morgan. Integrated modular avionics for next genera-

tion commercial airplanes. Aerospace and Electronic Sys-
tems Magazine, 6(8):9–12, Aug. 1991.

[16] F. D. Murgolo. Anomalous behavior in bin packing algo-

rithms. Discrete Applied Mathematics, 21:229–243, 1988.

[17] C. Park and A. Shaw. Experiments with a program timing

tool based on source-level timing schema. IEEE Computer,

24(5):48–57, May 1991.

[18] P. Puschner and C. Koza. Calculating the maximum execu-

tion time of real-time programs. Journal of Real-Time Sys-
tems, 1(2):159–176, Sep. 1989.

[19] P. Puschner and A. Schedl. Computing maximum task ex-

ecution times – a graph-based approach. volume 13, pages

67–91, Jul. 1997.

[20] J. Schneider. Combined Schedulability and WCET Analysis
for Real-Time Operating Systems. PhD thesis, Saarland Uni-

versity, Germany, December 2002.

[21] A. C. Shaw. Reasoning about time in higher-level language

software. Technical report, July 1989.

[22] H. Theiling and C. Ferdinand. Combining abstract interpre-

tation and ilp for microarchitecture modelling and program

path analysis. In Real-Time Systems Symposium, 19, pages

144–153, December 1998.

[23] R. M. Tomasulo. An efficient algorithm for exploiting mul-

tiple arithmetic units. In IBM Journal of Research and De-
velopment, number 11, pages 25–33, January 1967.

[24] I. Wenzel. Principles of Timing Anomalies in Superscalar

Processors. Master’s thesis, Technische Universität Wien,

Institut für Technische Informatik, Treitlstr. 3/3/182-1, 1040

Vienna, Austria, 2003.

[25] I. Wenzel, B. Rieder, R. Kirner, and P. Puschner. Automatic

Timing Model Generation by CFG Partitioning and Model

Checking. In Design Automation and Test in Europe, 2005.

to be published.

