
Automated Formal Verification and Testing of C Programs for

Embedded Systems ∗

Susanne Kandl, Raimund Kirner, Peter Puschner
Institut für Technische Informatik

Technische Universität Wien
Treitlstraße 3/182/1

A-1040 Wien, Austria
{susanne, raimund, peter}@vmars.tuwien.ac.at

Abstract

In this paper we introduce an approach for auto-
mated verification and testing of ANSI C programs for
embedded systems. We automatically extract an au-
tomaton model from the C code of the SUT (system
under test). This automaton model is on the one hand
used for formal verification of the requirements defined
in the system specification, on the other hand, we can
derive test cases from this model, for both methods we
use a model checker. We describe our techniques for
test case generation, based on producing counterexam-
ples with a model checker by formulating trap proper-
ties. The resulting test cases can then be applied to the
SUT on different test levels. An important issue for
model checking C-source code, is the correct modeling
of the semantics of a C program for an embedded sys-
tem. We focus on challenges and possible restrictions
that appear, when model checking is used for the veri-
fication of C-source code. We specifically show how to
deal with arithmetic expressions in the model checker
NuSMV and how to preserve the numerical results in
case of modeling the platform-specific semantics of C.

1 Introduction

Due to the increasing capacity of processors used
in embedded systems, the complexity of the applied
software is growing. Thus, more and more effort is
needed for testing embedded systems software. Beside

∗This work has been partially supported by the FIT-IT re-
search project “Systematic test case generation for safety-critical
distributed embedded real time systems with different SIL levels
(TeDES)”; the project is carried out in cooperation with TU-
Graz, Magna Steyr, and TTTech.

conventional testing techniques [6], new testing meth-
ods are starting to gain ground. The goal is to op-
timize the effort of testing and thus it is an aim to
automate most parts of the testing process. Accord-
ing to safety-relevant embedded systems applications,
safety-standards like the IEC 61508 [25] apply that de-
fine strict conditions for the software quality and the
demanded testing process. One way for automated ver-
ification and test case generation is based on formal
methods. The SUT (system under test) is described
as an automaton model. A model checker is used to
verify the properties defined in the system specifica-
tion. In our approach we automatically extract the
model from the C code of the SUT. Verifying a prop-
erty on the model means, that this property holds on
the C-source code. Within the model extraction pro-
cess we have to deal, amongst other issues, with trans-
forming arithmetic operations, appearing in the appli-
cation, correctly to the automaton model. In a second
step we use the model for deriving test cases automat-
ically, these test cases can then be applied to the SUT.
Depending on the execution environment of the pro-
duced test cases, we can find failures of the different
representations of the SUT.

The article is organized as follows: In Section 2 we
describe our 2-step approach for verification and test-
ing of the system. In the Section 3 the model extrac-
tion process is demonstrated on an example. Section 4
refers to the formal verification step. In Section 5 we
explain our techniques for test case generation. Sec-
tion 6 deals with the challenges when a model checker
is used for the verification of C programs. In Section
7 we discuss the solution, how we deal with arithmetic
operations in the model checker NuSMV. Subsequently
we present our preliminary results and give an overview
on related work. Finally we conclude with a summary.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/1641888?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Verification Process

2.1 2-Step Approach

The verification of the SUT is realized in two impor-
tant independent steps:

In the first step the platform-independent semantics
of the system can be verified formally by model check-
ing. The automaton model extracted from the source
code can be used to verify the properties from the sys-
tem specification, because the automaton model is just
another representation of the platform-independent se-
mantics of the C program. By verifying all require-
ments from the specification, we can show that the C
program conforms to the specification. If a requirement
is not valid on the model, the implementation has to be
corrected. This step in the verification process proves
if the program behavior conforms to the specification.

The second step is testing the system by execution
of test cases on the target platform. For this purpose,
we are generating test cases by means of model check-
ing from the model of the system. The execution of
the test cases on the target platform proves, whether
the platform-specific semantics of the program has the
same behavior as the model. We proved the correctness
of the model in the first verification step. Showing that
the system, running on the target platform, conforms
to the model behavior proves that the platform-specific
behavior conforms to the specification.

2.2 Automatic Verdict and Test Case Application

To realize a testing procedure with automatic ver-
dict, one needs test cases, i.e., a structure, consisting
of input data and expected output. The big advantage
of our framework is, that the expected output is also
determined automatically.

The C-source code for the SUT is generated by a
code generator from the Matlab Simulink model of
the SUT. For the generation of test cases we also use
the automaton model that is automatically extracted
from the C-source code. That means that our model
maps directly to the C-source code, resp. to the Matlab
Simulink model (assuming that no errors occur during
the code generation process). When using the same
model for test case generation and code generation, the
verdict is deduced from a model that maps completely
to the code. In the first phase of our verification and
testing approach we show by formal verification that
the automaton model, that is just another representa-
tion of the C-source code (generated from the Matlab
Simulink model) is correct in respect to the specifica-
tion. This means, we show by formal verification that

the Matlab Simulink model and the corresponding C-
source code is correct. In the second phase we derive
test cases from the automaton model. Because we have
shown the correctness of the extracted model, we know
that the verdict given by the produced test cases is also
correct. The resulting test cases can be applied to the
Matlab Simulink model (testing on model in the loop
(MIL)-level), can be run against the object code of
the SUT (testing on software-in-the-loop (SIL)-level),
the test cases can also be run on the processor (test-
ing on processor-in-the-loop (PIL)-level) or within the
hardware environment (testing on hardware-in-the-loop
(HIL)-level).

All the test cases executed on the Matlab Simulink
model should pass the test procedure, because all the
behavior from the model was transformed within the
code generation process to the C-source code and then
represented in the automaton model, from which we de-
rived the test cases with the verdicts. Problems with
test cases, that fail the test procedure on the Matlab
Simulink model, may stem from the simulation envi-
ronment. For instance, the automaton model is de-
rived from the C-source code generated by TargetLink
from dSPACE1 and the Matlab Simulink simulation
is based on the Real-Time Workshop2. Running the
test cases on the object code should also result in no
failures. But also an erroneous behavior of the object
code may be identified caused by the compiler, typi-
cally due to optimization mechanisms. The simulation
of the Simulink model is, in general, not realized using
the same compiler as for generating the object code
for the target platform. If there are differences in the
system behavior depending on the used compiler, this
is a strong evidence that the compilation process influ-
enced the system behavior. Running the test cases on
the target platform proves, whether the actual behavior
differs from the behavior, predicted by the model. This
can, for instance, be caused by deviations due to the
target-execution on the processor. For instance, a 32-
bit floating-point calculation in the software is reduced
to 16-bit-fixed-point values and this influences the sys-
tem behavior on the target platform significantly. At
the last stage, testing is realized within the hardware
environment. At this stage dependencies within the
hardware environment (for instance caused by the bus
system) can cause that test cases fail.

Figure 1 shows the test case application and the fac-
tors, that can cause failures on the different testing
levels.

1http://www.dspace.com
2http://www.mathworks.com



 

C-source code 

M I L 

S I L 

P I L 

H I L 

Extracted Model 

Test 

Cases 

Target Platform? 

Simulation? 

Compiler? 

Dependencies? 

Figure 1. Test Case Application

3 Model Extraction

For the 2-step verification process described above
we need an automaton model for the system under test.
This automaton model is built from the C-source code.
The model is just another representation of the behav-
ior of the C program.

3.1 Basic Principles

The model extraction is done in the following steps:
1. First the C-source code is parsed and by static anal-
ysis the syntax tree of the program is generated.
2. The syntax tree is used to generate the automaton
model of the system. This is realized by sequentially
processing the syntax tree and interpreting the seman-
tics of the basic statements of the syntax tree.
3. The description of the automaton model is given in
an automata language (for instance, the modeling lan-
guage of the NuSMV3 model checker).
The described model extraction technique is, basically,
straight forward. However, as described in Section 7,
special care must be taken to ensure correct modeling
of arithmetic expressions. At the moment we are able
to extract the model for a subset of standard ANSI
C. Currently, we do not support extraction of control
structures like loops or function calls. Function calls
can be handled by in-lining.

3.2 Example

As an example, consider the small C program shown
in Listing 1. In this program the function test takes
two arguments x and a and contains two composed if-
else conditions. Depending on the current values of x
and a, the variable x is assigned with the values 10, 20,

3http://nusmv.irst.itc.it/

or is incremented. The resulting syntax tree consists
of approximately 100 nodes, of which we have to deal
with 16 basic statements for the generation of the au-
tomaton model. The analysis and interpretation of the
syntax tree yields the automatically generated NuSMV
model, see Listing 2: First the variables are defined
(lines 3 to 5). The additional variable sequence nr in
the NuSMV model stems from the static analysis and
represents the program counter. Starting in the ini-
tial state sequence nr = 16, there are two transition
blocks, one for the sequence nr and one for the vari-
able v0 x. In the lines 14 and 15 the first if-query of the
source code is checked. Depending on the assignment
of v0 x, the sequence nr changes to 2 and the value of
v0 x is assigned with 10 (line 18 of the Listing 2) or the
next query (else if) is checked (lines 12 and 13 of the
Listing 2). In this way the execution of the C program
is described as a transitional system. This NuSMV
model can be directly processed by the NuSMV model
checker. In the following sections we describe how to
verify this model and generate test cases from it.

1 int test (int x, int a) {
2 i f (x == 1) {
3 x=10;
4 } else i f (a == 2) {
5 x=20;
6 } else {
7 x=x+1;
8 }
9 }

Listing 1. C source code

4 Formal Verification

For the formal verification of the system the prop-
erties from the specification have to be translated into
temporal logic formulas (e.g., computation tree logic
CTL). These formulas can be verified on the model
with a model checker.

Some properties from the specification are suitable
to be checked directly on the extracted model. (e.g.,
reachability properties). In contrast to, other func-
tional properties have to be transformed to be suitable
for the verification process. If we consider a reactive
system, the function presented by the extracted model
is called in a loop. A function is terminated by set-
ting the sequence nr to 1. Thus the reactive loop can
be closed by resetting the counter sequence nr at the
exit points of the function not to 1, but to the value



1 MODULE main

2 VAR

3 sequence_nr: 0..255;

4 v0_x: 0..255;

5 v1_a: 0..255;

6 ASSIGN

7 init(sequence_nr):= 16;

8 next(sequence_nr):= case

9 sequence_nr= 2: 1;

10 sequence_nr= 5: 1;

11 sequence_nr= 8: 1;

12 sequence_nr= 12 & (v1_a=2) : 5;

13 sequence_nr= 12 & !(v1_a=2) : 8;

14 sequence_nr= 16 & (v0_x=1) : 2;

15 sequence_nr= 16 & !(v0_x=1) : 12;

16 esac;

17 next(v0_x):= case

18 sequence_nr= 2: 10;

19 sequence_nr= 5: 20;

20 sequence_nr= 8: v0_x + 1;

21 esac;

Listing 2. NuSMV model

of the sequence nr at the init-state, in our example
to sequence nr = 16. The step of formal verification
of the properties from the specification on the model
proves, whether the properties are valid on the automa-
ton model of the SUT. Because the model is directly
extracted from the ANSI C source code, we show in
the formal verification step that the C-source code is
correctly implemented referring to the specification. In
this verification step we can not validate any behavior
of the object code, or any behavior of the object code
executed on the target platform. Thus, to verify the
correct execution on the target platform, we need test
cases for testing purposes. In the next section the pro-
cess of test case generation is described. These test
cases can be applied to the object code running on the
target platform.

5 Test Case Generation

For the test case generation we also use model check-
ing techniques. Beside its original purpose of formal
verification of systems, model checking has become an
applicable tool for test case generation. The main pur-
pose of a model checker is to verify a formal property
on a system model. In case that the formal property
is invalid on a given model, a model checker provides
a counterexample, which describes a concrete path on
which the property is violated. This feature of a model
checker can be used to generate test cases in a formal

and systematic way.
For finding suitable test cases the challenge is to find

appropriate properties, that yield specific paths we can
use as test cases. This is realized by the formulation
of so-called trap properties. Trap properties are incon-
sistent with the model and force the model checker to
produce counterexamples. That means, a property f
formally states that a certain location in the model
cannot be reached. The counterexample generated by
the model checker provides a trace to reach this loca-
tion.

First, we have to identify the variables we are in-
terested in to test. For example, we are interested in
assignments to the variable x because a requirement
from the specification tells us, that this is a critical
item to test. The interesting instances of x are calcu-
lated by a prior static program analysis phase. Based
on the formulation of the property f the model checker
can find those paths that will reach the location of x.
This approach provides a systematic way to find test
cases for testing the assignments to x.

As an example, lets assume we are interesting in
testing the assignment x = 20 in our program in the
Listing 1 in Section 3.2. From our model extraction
we know that this assignment corresponds to the state
sequence nr = 5 in the automaton model. So we can
formulate the following property:
PSLSPEC G(sequence nr=5)->!(F sequence nr=1)

Providing this property to the model checker results
in a counterexample that represents a trace to test the
assignment of the value 20 to the variable x. The re-
sulting test cases can be applied to the system under
test.

6 Challenges in Model Checking C
Code

Applying model checking techniques to C code is,
basically, no novel method. There are lots of works
describing the application of model checking for veri-
fying and testing C programs, for instance Henzinger
et al. [23], Clarke and Kroening [10], or Chen et al. [9].
Also our testing framework has been successfully ap-
plied to a case study from the automotive domain sup-
plied by one of our industry partners. But within
our project, we were confronted with lots of C-specific
attributes, that may be a problem for model check-
ing. Only few works are concerned with the topic,
which challenges appear, when using a model checker
for verifying C-source code and what possible restric-
tions have to be considered. Schlich and Kowalewski
[36] present an interesting comparison and evaluation
of model checkers for embedded systems. According



to that work and reflecting the experiences within our
project, we want to summarize the items that have to
be kept in mind, when using model checkers for C-
source code.

6.1 C-Specific Semantics

There are model checkers, that are able to process C-
source code directly, for instance BLAST [23] or CMBC
[12]. These model checkers support ANSI C or a subset
of it. For most other model checkers the C-source code
has to be transformed into a model described in the
automaton language of the model checker, examples
for this kind of model checkers are SAL [16] or SMV
[29]. Both kinds of model checkers are not suitable to
handle all constructs used in C programs for embedded
systems.

• Hardware and Compiler Specific Behavior: As we
have already mentioned in Section 2 the C-source
code only describes the platform-independent be-
havior of the program. Although, we have to con-
sider also platform-specific attributes when build-
ing the model (e.g., a variable of the data type
int has another representation in a 16-bit architec-
ture, than in a 32-bit architecture), all hardware-
and compiler-specific attributes can not be for-
mally verified on the model of the system based
(only) on analysis of the C-source code. One at-
tempt may be to integrate compiler specific be-
havior into the model. This works for influences
caused by the compiler that are known and that
can be easily modeled. Many adjustments (e.g.
optimization) are done by the compiler without
detailed knowledge of the resulting effects on the
object code. In our testing framework we cover
these compiler-specific semantics by the execution
of the generated test cases.

• Embedded language statements: To enforce the
performance of programs closed to hardware,
many applications for embedded systems include
parts of assembly language statements. These
constructs are typically not supported by C-model
checkers, that can process ANSI C.

• Timing Behavior: Depending on the specification
of the system, timing constraints can be part of the
functional requirements. Abstract time can be in-
tegrated into the model of the system by introduc-
tion of an additional timing variable. Constraints
referring to some timing dependencies, for instance
a variable is assigned after the execution of a func-
tion, can be formulated in CTL and verified on

the extended model. Timing constraints accord-
ing to real time are not suitable to be verified with
a model checker like NuSMV. There exist special
model checkers, based on timed automata, like Up-
paal4. So far, as we experienced with Uppaal, only
small models can be handled conveniently. Tim-
ing behavior has to be tested by further analysis,
e.g. WCET (worst-case estimation time).

• Floating Point Arithmetic: Model checking code
with floating-point arithmetics is challenging.
This is not because of state explosion, since a
32-bit floating-point variable causes the same
state space as a 32-bit integer variable. However,
the problem is that modeling state transitions of
floating-point variables is quite expensive: one
has to model the semantics of the floating-point
unit to explicitly update the fields sign, mantissa,
and exponent of a floating-point variable. In
contrast, modeling integer transitions is much
more simple, as each modeling language already
provides integer operators, which only have to be
adjusted for the concrete value range of the data
type. Thus, model checking integer operations is
typically faster by a linear factor.

• Casting: In C programs casting is a common way
to change the data type. In model checkers like
NuSMV the data types are declared once in the
header of the model. A variable that is casted in
a C program as a signed int and then assigned to
a variable of type unsigned int can cause problems
in the model and results in an error messages for
incompatible data types. A possible solution may
be to introduce additional variables to save the
variables of the new data types, but this leads to
the effect, that far more variables have to be de-
fined as variables existing in the C program. This
causes additional state space explosion.

• Pointers: Model checking programs with arbitrary
use of pointers is very challenging. In this case,
one has to model each variable by its name and its
memory location. The memory itself becomes a
variable (large array) within the model. Since the
bit-space of the whole data memory is typically
much larger than the bit-space of all program vari-
ables together, this results in a significant increase
of the state space. Thus, modeling arbitrary use
of pointers is almost infeasible. However, point-
ers are often used in a restrictive way, such that
this behavior can be modeled without the need of
modeling the whole data memory. For example,

4http://www.uppaal.com/



the following use cases of pointers can be modeled
in an abstract way:
Call-by-reference: when a function takes a
pointer as an argument and this pointer is only
used to read and access a variable in the scope
of the caller, there is no need to model the whole
state space of the memory.
Function pointer: when a function pointer is
only directly assigned with function addresses and
this pointer is only used to call the function, there
is no need to model the state space of the memory.
Instead, at each function call using the pointer one
has to model the call by checking of equivalence to
all possibly assigned functions within the program.
Pointer-access to arrays: in general, as long as
a pointer is used to address elements within a cer-
tain object, one does not have to model the state
space of the whole memory. For example, when a
pointer is used to access elements of a data array,
one can model the pointer by a symbolic base ad-
dress (in this case the array name) and a numerical
offset. To ensure that this abstraction is correct,
one has to show that the offset of the pointer will
never go beyond the array limits. This property
can be directly checked using the model.
C-Model Checkers, like CMBC, support pointers
in a limited way [11].

6.2 Model Checking Specific Restrictions

The main drawback of using model checkers for
C software is the state space explosion for big data
domains. OBDD (ordered binary decision diagram)-
based model checkers are building the automaton for
the whole data space. This yields in large models. A
solution can be to use bounded model checking, where
the state space is created and searched only to a specific
depth of the underlying Kripke-structure defined by a
bound. A natural restriction by using bounded model
checking for the verification of systems is, that errors
can be missed, if the bound is not chosen properly.
Another way to deal with the state space explosion
is using abstraction techniques. A common abstrac-
tion techniques is predicate abstraction [13]. Still this
approach lacks on some restrictions [28]: limited num-
ber of supported C constructs or negligence of possible
arithmetic overflows.

7 Modeling in NuSMV

Out of the multitude of available model checkers, we
have chosen the model checker NuSMV for our project,
mainly because of two reasons: NuSMV is open source,

so adaptations to the source code of the model checker
can be done if necessary and NuSMV supports an ex-
tension of CTL for the formulation of the properties
as an IEEE standard, namely SUGAR5. NuSMV can
not directly process C-source code, so the program
has to be transformed into the automaton language
of NuSMV. We described this step detailed in the sec-
tion 3. In the following we describe, how we solved the
problem of dealing with arithmetic expressions appear-
ing in the C program within NuSMV.

7.1 Modeling Arithmetic Operations

Modeling the semantics of ANSI C operations in the
automaton language SMV, used in the model checker
NuSMV, has to be done carefully to preserve the nu-
merical results of arithmetic operations. There are two
aspects one has to be aware of:

• The semantics in the value domain of the ANSI C
language is not completely defined by the stan-
dard. For example, the width of basic data types,
the evaluation order of most operators, the mem-
ory layout, or memory alignment is not defined.
Each compiler or interpreter has to take several
implementation choices to complete the semantics
in the value domain. Thus, when analyzing or
modeling an ANSI C program, one has to be aware
of the properties of the concrete execution plat-
form. We therefore differ between the platform-
independent semantics and the platform-specific
semantics [27].

• When modeling a C program by a formal model-
ing language, it is the common case, that the data
types and operators of ANSI C do not directly
match those provided by the modeling language.
As already mentioned above, the width of ANSI C
data types depend on the concrete execution plat-
form. The integer data type of SMV is imple-
mented to be in the range of 2−31 . . . (231 − 1).
Though SMV allows to specify subranges of in-
teger types, this is not sufficient to model the C
data types. The problem is that specifying in-
teger subranges in NuSMV does not imply that
the operands also work with modular arithmetic
in that range.

7.1.1 Out-Of-Boundary Problem of NuSMV

Besides the numerical correctness of arithmetic opera-
tions, there is also another issue why arithmetic oper-
ations require some adaptations when modeling them

5http://www.haifa.ibm.com/projects/verification/

sugar/index.html



with NuSMV. Arithmetic operations in NuSMV can
cause the out-of-boundary-problem. That is that the
arithmetic decision diagram (ADD) is built for all pos-
sible values of a variable. For instance, incrementing
the maximum value of a variable results in a value out
of the data domain of this variable.

This behavior is caused by the way how NuSMV
interprets an arithmetic expression: The ADD is con-
structed for the right-hand side of an expression, like a
binary decision diagram (BDD) but the leaves are the
possible values that could be assigned to the left hand
side of an expression. If there is a leaf in this ADD that
is out of range for the left hand side then an error is
reported. In BDD-based model checking the (actually
never-claimed) values will disappear when the whole
model is built.

7.1.2 Possible Solutions

The following adaptation techniques of arithmetic op-
erations are solutions to the above mentioned modeling
problems:

Formulation of additional conditions:
Additional queries are added to cover critical con-
ditions, e.g., value < var max. Such conditions
can be easily formulated for simple arithmetic op-
erations. However, in case of complex arithmetic
expressions it can be hard to find appropriate
queries.

Adapting the transitions to boundary semantics
(BOUND):
By the means of handling the critical values in
separate transitions the minimum and maximum
values of a variable are handled specially. Again in
complex expressions identifying and trapping the
critical cases can be difficult. Take into account,
that regarding to the numerical correctness, the
above introduced techniques are only applicable if
the concrete arithmetic expression of the C code
is free of overflow, i.e., the modular arithmetic of
C is not used.

Integration of modulo operators (MOD):
Integrating an additional modulo operator works
for BDD-based model checking. The integration of
a modulo operator includes edges that are never
claimed, but they will disappear when the whole
model is build. In the case of bounded model
checking the extra clauses persist and causes not-
existing paths. Furthermore, regarding the numer-
ical correctness, this technique is only correct, if
the arithmetic expression in the C code consists
only of unsigned types, or it is free of overflow.

Adapting the transitions to modulo semantics
(MODULO):
Again the critical values are treated in separate
transitions. If the value of a variable is out of the
data range the value is set to the min/max-value
of the variable. This semantic provides the same
numerical results as the overflow handling in
the ANSI C programming language. For details
of the conversion of arithmetic operands in C
refer to the ISO/IEC 9899 Standard for the
Programming Language C [26], page 36 et seqq.,
resp. the semantics of expressions in [26], page
58 et seqq. Thus, all arithmetic expressions of
ANSI C programs where overflow can occur, have
to adapted with this technique.

7.1.3 Examples of Modeling Arithmetic Oper-
ations

In the following the algorithms to model arithmetic
expressions of ANSI C are exemplary given for the bi-
nary operator ’+’ (plus). Variables are denoted with
varname, the range of a variable is given by var min to
var max.

• Algorithm for BOUND:
Generic scheme:
sequence nr=s&expression<(var max+ 1):expression

sequence nr=s &expression>var max:var max

Line 20 of Listing 2 will be adapted to:
sequence nr=8&(v0 x+1)<(255+1):v0 x+1;

sequence nr=8&(v0 x+1)>(255+1):255;

• Algorithm for MOD:
Generic scheme:
sequence nr=s:expression mod(var max+1)

Line 20 of Listing 2 will be adapted to:
sequence nr=8:v0 x+1 mod(255+1);

• Algorithm for MODULO:
Generic scheme:
sequence nr=s&expression<(var max+1):expression

sequence nr=s&expression>var max:(expression-

var min) mod(var max-var min+1)+var min

Line 20 of Listing 2 will be adapted to:
sequence nr=8&(v0 x+1)<(255+1):v0 x+1;

sequence nr=8&(v0 x+1)>(255+1):(v0 x+1-0)

mod(255-0+1)+0;

To summarize, the MODULO adaptation technique
is required in the general case. The concrete values of
var min and var max depend on the concrete execu-
tion platform, i.e., the implemented semantics of the
compiler or interpreter.



8 Preliminary Results and Outlook

So far we have successfully implemented a prototype
for the model extraction with the integrated handling
of the modulo semantics for arithmetic operations. The
model extraction works for a subset of C (for instance,
function calls are only supported by in-lining the func-
tions). We can generate test cases by manual formula-
tion of the introduced trap properties. The test frame-
work has been successfully applied to a case study from
the automotive domain. Our future work will concen-
trate on the automated formulation of the necessary
properties to find test cases that map to a specific func-
tional property from the system specification. Once we
have identified rules and algorithms for the automatic
formulation of the trap properties, we will implement
these algorithms and integrate them into our test case
generation framework.

9 Related Work

For on overview on general testing techniques see
Harold: Testing - A Roadmap [22]. Testing techniques
especially for embedded systems are described detail
in the book from Broekman and Notenboom [6]. Re-
ferring to formal test methods Tretmans gives a in-
troductory overview in [38]. The thesis of Mirko [15]
discusses testing embedded systems on examples espe-
cially from the automotive domain. Our considerations
about the automatic verdict of the test cases derived
from the model are motivated by methodological is-
sues on model-based testing, described by Pretschner
et al. [33]. Our work on model extraction is based
on works from Wenzel et al. [39]. Similar ideas can
be found in Holzmann et al. [24]. Schroder et al. [37]
discusses a few interesting modeling aspects for the au-
tomated test case generation. Beside our approach of
extracting the automaton model from C-source code,
there are some model checkers that can directly pro-
cess C code, for instance BLAST (described in [23])
or CMBC [12]. For a general introduction to model
checking techniques please refer to the book of Clarke
et al. [14]. Model checkers can be also used for software
testing [1, 7]. Model checking especially for embedded
systems is discussed by Brinksma [5]. The idea of us-
ing model checkers for the generation of test cases aims
back to the mid’s of the ’90, amongst others from Calla-
han et al. [7]. Ammann et al. [2] and Black [4], resp.
Gargantini and Heitmayer [20] published works dealing
with using model checking to generate test cases from
system specifications. Coverage-based test case gener-
ation methods using model checkers are described from
Rayadurgam et al. [35]. Recent works concerning au-

tomated test case generation with model checkers are
from Okun et al. [30, 31], resp. Hamon et al. [21] us-
ing the model checker SAL. In principle all these works
concern to the formulation of trap properties to specify
the paths the model checker should deliver as a coun-
terexample. Engels el al. [17] refer to this idea with the
term never-claims. Automated testing focused on the
automotive perspective is also described by Ranville
and Black in [34]. Case studies and evaluation of the
model-based test case generation techniques are from
Chandra et al. [8], Pretschner et al. [3, 18] or Parad-
kar [32]. Corresponding to the manifold approaches to
automate the testing procedure, a lot of tools for test-
ing are provided. M.Broy et al.(Eds.) give an overview
on available tools [19]. So far, as we know, the above
mentioned literature does not discuss how to precisely
model arithmetics of ANSI C operators with a formal
modeling language.

10 Summary and Conclusion

We described a verification approach for automated
verification of ANSI C programs. This approach uses
a formal model for both, formal verification and test
case generation. The model itself is extracted from the
C code. We discussed the issues that may be criti-
cal when using model checkers for the verification of
C programs for embedded systems. Using a formal
modeling language as input to the model checker, it
is important that the arithmetic computations of the
C code are precisely modeled. We described special
adaptation rules to precisely model the modular se-
mantics of ANSI C. Due to the incomplete specification
of ANSI C, this adaptation rules are platform-specific.
Further, we have shown how the obtained formal model
can be used to formally verify the program. We de-
scribed also how to generate test cases automatically
in a systematic way to complement the formal verifica-
tion by testing.

References

[1] P. Ammann and P. E. Black. Model
checkers in software testing. Online:
http://citeseer.ist.psu.edu/ammann02model.html.

[2] P. Ammann, P. E. Black, and W. Majurski. Using
Model Checking to Generate Tests from Specifications.
In ICFEM, 1998.

[3] A.Pretschner, O.Slotosch, H.Lötzbeyer, E.Aiglstorfer,
and S.Kriebel. Model based testing for real: The in-
house card case study. In Proc. of FMICS 2006, pages
79–94, 7 2001.

[4] P. E. Black. Modeling and Marshaling: Making Tests
From Model Checker Counterexamples. In Proc. of the
19th DASC), volume 1, pages 1B3/1–1B3/6, 2000.



[5] E. Brinksma and A. Mader. Model checking embedded
systems desings. In Proc. of the Sixth International
Workshop on Discrete Event Systems, Oct. 2003.

[6] B. Broekman and E. Notenboom. Testing Embedded
Software. Addison-Weseley, 2003.

[7] J. Callahan, F. Schneider, and S. Easterbrook. Au-
tomated Software Testing Using Model-Checking. In
Proc. 1996 SPIN Workshop, August 1996. Also WVU
Technical Report NASA-IVV-96-022.

[8] S. Chandra, P. Godefroid, and C. Palm. Software
model checking in practice: an industrial case study. In
ICSE ’02, pages 431–441, New York, NY, USA, 2002.
ACM Press.

[9] H. Chen, D. Dean, and D. Wagner. Model checking
one million lines of C code, 2004.

[10] E. Clarke and D. Kroening. Hardware verification us-
ing ANSI-C programs as a reference. In Proceedings
of ASP-DAC 2003, pages 308–311. IEEE Computer
Society Press, January 2003.

[11] E. Clarke and D. Kroening. ANSI-C bounded model
checker user manual. Technical report, School of Com-
puter Science, Carnegie Mellon University, 2006.

[12] E. Clarke, D. Kroening, and F. Lerda. A tool for check-
ing ANSI-C programs. In K. Jensen and A. Podelski,
editors, TACAS 2004, volume 2988 of Lecture Notes
in Computer Science, pages 168–176. Springer, 2004.

[13] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav.
Predicate abstraction of ANSI–C programs using SAT.
Formal Methods in System Design (FMSD), 25:105–
127, September–November 2004.

[14] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, 2000.

[15] M. Conrad. Modell-basierter Test eingebetteter Soft-
ware im Automobil: Auswahl und Beschreibung von
Testszenarien. DUV, 2004.

[16] L. de Moura, S. Owre, H. Rueß, J. Rushby, N. Shankar,
M. Sorea, and A. Tiwari. SAL 2. In R. Alur and
D. Peled, editors, Computer-Aided Verification, CAV
2004, volume 3114 of LNCS, pages 496–500, Boston,
MA, July 2004. Springer-Verlag.

[17] A. Engels, L. M. Feijs, and S. Mauw. Test genera-
tion for intelligent networks using model checking. In
E. Brinksma, editor, Proc. 3rd International Work-
shop on Tools and Algorithms for the Construction
and Analysis of Systems, number 1217 in LNCS, pages
384–398. Springer, 1997.

[18] P. et al. One evaluation of model-based testing and its
automation. In Proceedings of the 27th international
conference on Software engineering. IEEE, 2003.

[19] M. et al.(Eds.), editor. Model-Based Testing of Re-
active Systems, LNCS 3472, Chapter 14 Tools for
Test Case Generation, pages 391–438. Springer-Verlag
Berlin Heidelberg, 2005.

[20] A. Gargantini and C. Heitmeyer. Using Model Check-
ing to Generate Tests From Requirements Specifica-
tions. In 7th European Software Engineering Confer-
ence, pages 146–162, 1999.

[21] G. Hamon, L. de Moura, and J. Rushby. Generat-
ing Efficient Test Sets with a Model Checker. In Pro-
ceedings of the 2nd International Conference on Soft-
ware Engineering and Formal Methods, pages 261–270,
2004. Submitted for publication.

[22] M. J. Harrold. Testing: A roadmap. In In Future of
Software Engineering, 22nd ICSE, June 2000.

[23] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre.
Software verification with Blast, 2003.

[24] G. J. Holzmann and M. H. Smith. Software model
checking: extracting verification models from source
code. Software Testing, Verification & Reliability,
11(2):65–79, 2001.

[25] IEC. IEC 61508 functional safety of electrical/-
electronic/programmable electronic safety-related sys-
tems. Technical report, IEC, 1998.

[26] International Standards Organisation. ISO/IEC
9899:1999 Programming Languages - C. American
National Standards Institute, New York, 2nd edition,
Dec. 1999. Technical Committe: JTC 1/SC 22/WG
14.

[27] S. Kandl, R. Kirner, and G. Fraser. Verification of
platform-independent and platform-specific semantics
of dependable embedded systems. In Proc. 3rd Inter-
national Workshop on Dependable Embedded Systems,
pages 21–25, Leeds, UK, October 2006.

[28] D. Kroening and E. Clarke. Checking consistency of
C and Verilog using predicate abstraction and induc-
tion. In Proceedings of ICCAD, pages 66–72. IEEE,
November 2004.

[29] K. McMillan. The SMV lanugage. Technical report,
Cadence Berkeley Labs, March 23 1999.

[30] V. Okun, P. Black, and Y. Yesha. Testing with model
checkers: Insuring fault visibility, 2003.

[31] V. Okun and P. E. Black. Issues in software testing
with model checkers, 2003.

[32] A. Paradkar. Case studies on fault detection effec-
tiveness of model based test generation techniques. In
A-MOST’05. ACM, 2005.

[33] A. Pretschner and J. Phillips. Model-Based Testing
of Reactive Systems, LNCS 3472 (Eds.: M.Broy et
al.), Chapter 10 Methodological Issues in Model-Based
Testing, pages 281–291. Springer-Verlag Berlin Heidel-
berg, 2005.

[34] S. Ranville and P. E. Black. Automated testing re-
quirements - automotive perspective. In The Second
International Workshop on Automated Program Anal-
ysis, Testing and Verification, May 2001.

[35] S. Rayadurgam and M. P. Heimdahl. Coverage Based
Test-Case Generation Using Model Checkers. In Proc.
of the 8th Annual IEEE Int. Conference and Workshop
on the Engineering of Computer Based Systems, pages
83–91. IEEE Computer Society, 2001.

[36] B. Schlich and S. Kowalewski. Model checking C
source code for embedded systems. In Proceedings of
ISoLA 2005. NASA/CP-2005-212788, 2005.

[37] P. J. Schroder, E. Kim, J. Arshem, and P. Bolaki.
Combining behavior and data modeling in automated
test case generation. In Proceedings of QSIC’03. ACM,
2005.

[38] J. Tretmans. Testing techniques, 2002.
http://www.cs.auc.dk/˜kgl/TOV04/tretmans-
notes.pdf.

[39] I. Wenzel, B. Rieder, R. Kirner, and P. Puschner. Au-
tomatic timing model generation by CFG partitioning
and model checking. In DATE ’05, pages 606–611.
IEEE, 2005.


