
Toward Libraries for Real-time Java∗

Trevor Harmon
Electrical Engineering and Computer Science

University of California, Irvine
tharmon@uci.edu

Martin Schoeberl
Institute of Computer Engineering

Vienna University of Technology, Austria
mschoebe@mail.tuwien.ac.at

Raimund Kirner
Institute of Computer Engineering

Vienna University of Technology, Austria
raimund@vmars.tuwien.ac.at

Raymond Klefstad
Electrical Engineering and Computer Science

University of California, Irvine
klefstad@uci.edu

Abstract

Reusable libraries are problematic for real-time soft-
ware in Java. Using Java’s standard class library, for ex-
ample, demands meticulous coding and testing to avoid re-
sponse time spikes and garbage collection. We propose two
design requirements for reusable libraries in real-time sys-
tems: worst-case execution time (WCET) bounds and worst-
case memory consumption bounds. Furthermore, WCET
cannot be known if blocking method calls are used. We
have applied these requirements to the design of three Java-
based prototypes: a set of collection classes, a networking
stack, and trigonometric functions. Our prototypes show
that reusable libraries can meet these requirements and thus
be viable for real-time systems.

1 Introduction

General-purpose software libraries, such as the Standard
Template Library for C++, the Base Class Library for .NET,
and the Class Library for Java, provide helpful functions,
such as sorting lists or parsing strings. But since they are
designed for good average-case performance, rather than
to minimize worst-case performance, their highly variable
execution times are unsuitable for real-time systems.

Adapting general-purpose libraries for real-time systems
is even more problematic with the Real-Time Specification
for Java (RTSJ) [1]. Java libraries often rely on unpre-
dictable Java idioms and design patterns. In the RTSJ’s
scoped memory model, using objects in mixed contexts, ei-
ther shared by heap and non-heap objects or accessed from

∗The work on the Canteen library was supported in part by the Wiener
Innovationsförderprogramm für betriebliche Forschung & Entwicklung –
Call IKT Vienna 2004.

different memory areas, causes illegal assignment errors
and memory leaks. Efforts such as the Javolution [2] library
mitigate these problems, but its reliance on exception han-
dling and dynamic memory allocation hinders formal anal-
ysis techniques to ensure timeliness.

In a hard real-time system, all tasks must meet known
deadlines. Meeting deadlines is guaranteed by the system’s
design and by schedulability analysis. A library, in order to
provide this guarantee, must meet two requirements: 1) it
must have predictable worst-case execution time (WCET),
which further requires non-blocking functions, and 2) it
must have predictable worst-case memory consumption.

Known Execution Time. To be useful for real-time sys-
tems, all operations in the library must be statically analyz-
able for WCET. The maximum bound of any loop must be
known in order to calculate the WCET; information about
all loop bounds must therefore be incorporated into the real-
time library. This information allows the WCET analysis
tool we developed, called Clepsydra [3], to verify timeli-
ness of individual tasks.

In addition, real-time systems must avoid all blocking
calls to the operating system. The unknown time of block-
ing calls defeats schedulability analysis. Instead, real-time
systems must use periodic tasks, a form that is easily ana-
lyzable.

Known Memory Consumption. Time-predictable exe-
cution of tasks can usually be guaranteed only when virtual
memory management is disabled. Therefore, a guarantee
must be made that the application never runs out of mem-
ory. In particular, dynamic memory management must be
carefully analyzed: the maximum stack size of each thread
and interrupt handler must be determined, and the individ-
ual sizes must be included in the link process.

Without dynamic creation of objects, Java becomes a re-
stricted subset of itself. Recent work on real-time garbage

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/1641887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


collection (GC) tries to relax this restriction [10, 4, 9]. How-
ever, the allocation and deallocation rate must still be known
so that the garbage collection thread can be scheduled.

Three Real-time Library Prototypes. To show that a li-
brary can meet all of the above requirements, we have built
three prototype libraries: 1) a library of collection classes,
2) a non-blocking network stack, and 3) a set of trigonomet-
ric functions. These prototypes vary in the techniques they
must use to meet real-time requirements: collection classes
are memory intensive; network stacks must also eliminate
extensive use of blocking functions; complex mathemati-
cal functions are computationally intensive with unbounded
loops. Collectively, these three varying prototypes demon-
strate that predictable real-time Java libraries are possible.

This work is built on JOP [7], a predictable platform con-
sisting of a Java-only processor without any operating sys-
tem, and uses Clepsydra [3], a WCET analyzer for JOP and
other Java-based processors. JOP provides a predictable
platform because, unlike most microprocessors, every in-
struction on JOP has a known, bounded execution time.
Clepsydra can therefore immediately and automatically dis-
play the WCET for each line of code as it is written, pro-
vided that the maximum number of iterations for each loop
is known. (For loops with variable iterations, the program-
mer must insert an annotation with a constant for the maxi-
mum number of iterations.)

2 Analyzable Collection Classes

Our first real-time library prototype is a library of collec-
tion classes called Canteen, which offers features for con-
venience, type-checking, and compatibility.1 Canteen im-
plements the same List, Set, and Map interfaces declared in
Java’s standard library, allowing them to act as drop-in re-
placements for the standard collection classes. Canteen also
achieves running time complexities that are asymptotically
identical to standard non-real-time algorithms, demonstrat-
ing that performance need not be sacrificed to ensure pre-
dictability.

Canteen provides the following four implementations of
the three most common types of collection interfaces (List,
Set, and Map):

PredictableArrayList A simple sequence that allows
precise control over element ordering. It allows multiple en-
tries of the same element, including null. It is implemented
as a simple linear array.

PredictableLinkedList Identical to the PredictableAr-
rayList but implemented as a linked list.

PredictableTreeSet A sorted collection that guards
against duplicate elements. As the name implies, it models

1Distributed under an open-source license as part of the Volta project:
http://volta.sourceforge.net/

the mathematical abstraction known as a set. It is imple-
mented as a red-black tree.

PredictableTreeMap A sorted dictionary-type collec-
tion that maps keys to values. Each key can map to at most
one value. It is also implemented as a red-black tree.

2.1 Known Execution Time

Since predictability of performance is the key factor in a
real-time library, Canteen’s collection classes are analyzed
with Clepsydra to calculate the known WCET. For loops,
we use source code annotations to declare the loop’s maxi-
mum number of iterations.

The bound of almost every loop in a collection class de-
pends on the maximum size of a particular instance of that
collection class. For example, if two list objects have max-
imum sizes of 10 and 100, then the loop bound of a search
operation for the latter list will be 10 times more than the
former. In other words, the loop bound annotation of a
collection class method cannot be specified using a simple
constant. To address this issue, loop bound annotations in
Canteen are expressed using specially named constants. For
example:

// User code
@CollectionBound(max=1024)
private PredictableList <Int > list;
...

// Canteen code
class PredictableList ... {

...
@LoopBound(max=COLLECTION_BOUND)
for (int i = 0; i < array.length; i++)

...

To preserve the intended logarithmic time for all oper-
ations in Canteen’s Set and Map classes, we developed a
list-tree hybrid data structure. It consists of a normal binary
tree whose entries contain the usual left and right pointers to
child nodes. In addition, each entry also contains previous
and next pointers to form the doubly-linked list of a mem-
ory pool; this allows entries to be removed and returned to
the memory pool in constant time. The red-black tree al-
gorithms in Canteen were then modified so that these list
pointers are properly updated across all rebalancing opera-
tions. Figure 1 shows an example of how the list-tree hybrid
is altered by the removal of an element.

2.2 Known Memory Consumption

To satisfy the requirement of known memory consump-
tion, Canteen allocates no memory during the mission
phase. This approach prevents unpredictable delays caused
by the GC and allows total memory consumption to be
known immediately after initialization. Instead of dynamic
memory management, Canteen relies on static memory



2

1 4

3 5

0 0
tree root

list sentinel pool of unused entries

2

1 4

5

0 0
tree root

list sentinel pool of unused entries

3

Figure 1. This hybrid list-tree data structure allows bi-
nary trees to use memory pools. Element #3 is removed
from a tree of current size 5 and maximum size 7. The
element is returned to the pool, and the list pointers are
updated accordingly.

pools to retrieve pre-allocated elements to be added to a col-
lection. When an element is removed from the collection,
Canteen returns it to the collection’s pool for later use. The
maximum size of a pool must be programmer-specified dur-
ing instantiation, and the effect of exceeding this maximum
is undefined.

Implementing memory pools in the List classes is
straightforward: the memory pool is stored at the unused
end of the preallocated array. For PredictableTreeSet and
PredictableTreeMap, however, supporting memory pools is
much more involved. These classes are backed by a red-
black tree structure, and the memory pool must be main-
tained across the elaborate rebalancing operations that oc-
cur after adding or removing elements in the tree.

3 A Non-blocking Network Stack

Our second prototype of a real-time Java library is an im-
plementation of a TCP/IP stack called ejip (Embedded Java
Internet Protocol).2 The lowest level of the stack contains
device drivers for Ethernet (a CS8900 chip driver adapted
from the Linux sources), SLIP, and a PPP implementation.
At the next level, IP, UDP3, and a restricted subset of TCP

2Ejip is available as part of the JOP distribution at http://www.
opencores.org/.

3UDP is used for an application-designed protocol of a soft real-time
application in the railway domain described in Section 3.3.

are implemented. The restriction is that we handle only one
packet on the fly. TCP is a streaming protocol where block-
ing operations are natural; as a proof of concept, we imple-
mented a TCP handler on port 23—the Telnet port—on top
of TCP/IP. On top of that stack, a TFTP server, a simple
web server, and a minimal telnet server are available.

Ejip meets real-time requirements: all of its operations
are WCET analyzable, and its memory consumption is
known before runtime. A key challenge to achieve known
execution time was to eliminate blocking method calls. In
the following sections, we describe how ejip is designed and
implemented to meet real-time requirements.

3.1 Known Execution Time

In a general-purpose system, read from and write to an
I/O channel are designed as blocking I/O operations. By
contrast, however, ejip is designed as a set of periodic ac-
tivities: the periodic task model is used for all layers of the
stack. We do not use any asynchronous notification mecha-
nisms, such as interrupts, in the stack. Waiting for an oper-
ation to finish has to be performed at the level of the appli-
cation.

At the lowest layer—the network layer—the Ethernet
driver polls the Ethernet chip and the packet buffer within
a periodic loop. It polls for packets that are in the Ethernet
chip buffer and also for packets that are ready to send. A
received packet is put into the packet pool.

The next layer, the IP layer, periodically polls the packet
pool. When a pending packet is received from the network
layer, it processes one packet at each iteration and hands
them over to the next layer (ICMP, UDP, or TCP).

Normal blocking to wait on a TCP packet to receive an
application-defined message does not always work as ex-
pected. One can never be sure that a complete packet is re-
ceived with one blocking read operation. It is possible to get
less than the application-defined message, in which case a
second (or more) blocking read operation is necessary to re-
trieve the whole message. This behavior is ignored in some
applications, which rely on the chance that a single message
(that is short enough) will not be split by the transport layer.
However, this is not guaranteed. For correct handling of
packet splitting, reassembly of application messages would
be necessary at the application level. That reassembly is
similar to our API. We provide the application with the raw
TCP packets as they are received at the network interface.
The application code must split and reassemble them into
the application messages.

Handling more complex application protocols can be
performed by offloading the work to another thread. The
handler simply does the preprocessing and hands the packet
over to the other thread.

The WCET is known, as we showed with an earlier ver-



sion [8]. The protocol stack processes only one packet per
period, using protocol-specific handlers. The WCET of the
packet processing thread is the WCET of the slowest han-
dler. For example, UDP-based applications register a UDP
handler which includes the listening port number; when a
UDP packet arrives, the corresponding handler is invoked.
If no corresponding handler is found, the packet is dropped.
The TCP handler works in a similar way.

Furthermore, all loops are bounded, and no recursion is
used. We annotate all loops with the maximum loop bound.
In previous WCET analysis of an earlier version of ejip, the
WCET is excessively conservative for small packets, since
the loops for packet processing are bounded by the maxi-
mum Ethernet packet size [8]. A data-flow analysis or spe-
cial versions of some functions with a smaller packet size
can help to reduce the pessimism. Nevertheless, we achieve
the goal of safe bounds on execution time.

3.2 Known Memory Consumption

Ejip uses a packet buffer pool in which all buffers are
allocated at initialization time. The packet buffer manage-
ment plays a central role in the TCP/IP stack, providing free
buffers, buffers that are received, and packets that are ready
to send. The number of buffers is controlled by a construc-
tor parameter. Each layer merely grabs the packets that it
expects, works with them, and puts them back into the pool.

All memory allocation is bounded. A buffer can contain
a single Ethernet packet, and the number of packet buffers
is fixed. Without an OS and due to the safety of Java, we
do not need any memory protection or OS protection levels.
Therefore, we implemented a zero-copy TCP/IP stack. The
data is read at the network interface layer (Ethernet or se-
rial line) into a packet buffer and moved up the whole stack
without any copy. When the application consumes the data,
it releases the packet buffer. For a simple UDP-based com-
mand/response protocol, the buffer can also be reused and
passed back down the network stack.

This conservative memory management is common in
real-time systems. It eliminates analysis of mission-phase
memory allocation and fits the upcoming standard for
safety-critical Java (JSR 302) prohibiting a GC [5].

3.3 An Example Application

In a soft real-time application for the railway industry,
we use the UDP function heavily. An end module in each
locomotive is equipped with a GPRS modem. That module
receives commands from the master station and sends its
location data to the master station.

The flow control between the master station and the
module is handled by the application. Each command or
message is acknowledged by the receiver through a reply

packet. The sender is responsible for retransmission when
the message or the acknowledgment packet is lost. This
protocol relieves the receiver from handling retransmission.

Retransmission is performed after a fixed timeout and
a fixed number of tries. A failure after a fixed number of
retries is reported to the uppermost layer, the user.

All these timeouts and retries are implemented in peri-
odic tasks. Therefore, the code is time-predictable. The In-
ternet and GPRS do not provide real-time capabilities; how-
ever, we handle this non real-time property at the commu-
nication level with the application code. We hide it to some
extent, but also expose it when all retries fail. In that case,
the user must find a way around the problem.

Writing a communication application in the periodic
style is unusual and requires some adaptation in program-
ming style. Our experience in writing the modem commu-
nication and the PPP link negotiation phase as a periodic
task showed that this programming style is not trivial. The
complexity is in the state of the link layer. Several depen-
dent state machines are triggered by events such as time-
outs, modem responses, and link negotiation protocol re-
sponses.

4 Trigonometric Functions

The third type of real-time library functions we imple-
mented are trigonometric functions. We chose the trigono-
metric cosine function as a representative of this class of
mathematical library functions; others can be calculated
similarly, for example, by shifting the phase of the input
of the cosine by −π/2 to give the sine function. In previ-
ous research we have compared two different ANSI C im-
plementation styles that are time-predictable and memory-
predictable: 1) calculation based on Taylor series, and
2) precomputed values based on lookup tables [6].

4.1 Known Execution Time

The calculation based on Taylor series with polynomials
of degree 2n is computed as follows:

cos(x) =
∞

∑
n=0

(−1)n · x2n

(2n)!
≈

7

∑
n=0

(−1)n · x2n

(2n)!
(1)

For double variables a value of nmax = 7 is sufficient.
To avoid any loop, in practice the iterative calculation of
above formula is calculated directly. We have implemented
instances with n+1 of at maximum 2, 4, 6, and 8, where 8
is used by standard double implementations. (We give the
maximum value of n+1 because n starts at zero.)

We implemented the lookup-table approach with inter-
polation (cos lutinterp) and without (cos lutprim). Both im-
plementations do not contain any loop constructs.



etmin [cycles] etmax [cycles]
cos8 50,971 813,393
cos6 48,623 650,992
cos4 47,132 530,042
cos2 45,433 449,033
cos lutprim 46,060 688,514
cos lutinterp 371,010 1,052,518

Figure 2. Execution Time of Cosine Variants.

As both implementation styles are without loops, ana-
lyzing the WCET is rather simple. Clepsydra does not yet
support analysis of methods using float values. Therefore,
we instead measured the execution times for these functions
on JOP, as shown in Figure 2.4 Note that the high variation
in execution time is due to the optimizations for argument
values of zero in our current floating-point emulation used
in the Java execution environment.

Our previous work using lookup-table implementations
based on double values in ANSI C showed them to be an in-
teresting alternative to iterative calculations based on Tay-
lor series with respect to WCET [6]. However, as shown in
Figure 2, there was no such benefit for our float implemen-
tations in Java, due to the inefficient array initialization in
Java 1.6.

On the other hand, our experiments have shown that the
limited iterative approach for computing a Taylor series is
predictable and efficient in Java.

4.2 Known Memory Consumption

Both approaches, the limited iterations and the precom-
puted lookup tables, have known memory usage. Imple-
mentations based on the Taylor series have a small code size
and do not allocate data on the heap. As both approaches
lack recursive function calls and loops, memory consump-
tion is easily analyzable. The memory consumption is sum-
marized in Figure 3. Precomputed lookup-table functions
do use additional memory, even on the heap, but the table
size is fixed and known before runtime.

5 Conclusion

Designing reusable shared libraries for real-time Java
systems requires careful design to ensure that WCET and
memory consumption can be known. Blocking functions
must be eliminated. Our work thus far in three types of li-
braries with very different challenges demonstrates that pre-
dictable libraries for real-time Java are possible. The com-
bination of JOP, Clepsydra, and the prototype libraries pro-
vide a predictable foundation and an interactive tool with

4The actual WCET may be slightly different, since the measurements
do not ensure that we have sufficiently covered hardware effects like the
method cache.

Code Const Heap Sum
[byte] [byte] [byte] (N=100)

cos8 119 40 0 159
cos6 107 36 0 143
cos4 97 32 0 129
cos2 89 24 0 111
cos lutprim N ·6+104 N ·4+24 N ·4 1,528
cos lutinterp N ·6+138 N ·4+20 N ·4 1,588

Figure 3. Memory Demand of Cosine Variants. Code
shows code size, Const shows memory attributed to the
constant pool, and Heap shows memory allocated on
the heap.

which to build hard real-time applications in a high-level
language.

References

[1] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and
M. Turnbull. The Real-Time Specification for Java. Java
Series. Addison-Wesley, June 2000.

[2] J.-M. Dautelle. Validating java for safety-critical applica-
tions. In AIAA Space 2005 Conference, 2005.

[3] T. Harmon and R. Klefstad. Interactive back-annotation of
worst-case execution time analysis for Java microproces-
sors. In Proceedings of the Thirteenth IEEE International
Conference on Embedded and Real-Time Computing Sys-
tems and Applications (RTCSA 2007), August 2007.

[4] R. Henriksson. Scheduling Garbage Collection in Embed-
ded Systems. PhD thesis, Lund Institute of Technology, July
1998.

[5] Java Expert Group. Java specification request JSR
302: Safety critical java technology. Available at
http://jcp.org/en/jsr/detail?id=302.

[6] R. Kirner, M. Grössing, and P. Puschner. Comparing
WCET and resource demands of trigonometric functions
implemented as iterative calculations vs. table-lookup. In
F. Mueller, editor, 6th Intl. Workshop on Worst-Case Execu-
tion Time (WCET) Analysis, Dagstuhl, Germany, 2006.

[7] M. Schoeberl. JOP: A Java Optimized Processor for Em-
bedded Real-Time Systems. PhD thesis, Vienna University
of Technology, 2005.

[8] M. Schoeberl and R. Pedersen. WCET analysis for a Java
processor. In Proceedings of the 4th International Workshop
on Java Technologies for Real-time and Embedded Systems
(JTRES 2006), pages 202–211, New York, NY, USA, 2006.
ACM Press.

[9] M. Schoeberl and J. Vitek. Garbage collection for safety
critical Java. In Proceedings of the 5th International Work-
shop on Java Technologies for Real-time and Embedded Sys-
tems (JTRES 2007), pages 85–93, Vienna, Austria, Septem-
ber 2007. ACM Press.

[10] F. Siebert. Real-time garbage collection in multi-threaded
systems on a single processor. In 20th IEEE Real-Time Sys-
tems Symposium (RTSS’99), Phoenix, Arizona, 1999.


