
Avoiding Timing Problems in Real-Time Software �

Peter Puschner and Raimund Kirner
Institut für Technische Informatik

Technische Universität Wien, A1040 Wien, Austria
Email: peter@vmars.tuwien.ac.at

Abstract

To safely establish the correct timing of a real-time pro-
cessing node, adequate architectural structures have to be
used. This refers to the hardware architecture of the pro-
cessing node as well as the software architecture of its op-
erating system and application software.

This paper presents architectures that allow for a well
structured and simple timing analysis. First, it presents so-
lutions for cleanly splitting the overall timing analysis into
schedulability analysis and task worst-case execution time
analysis. Second, it presents a programming strategy that
yields software that is highly temporally predictable and
easy to analyze for its worst-case execution time.

1 Introduction

Real-time computer systems consist of a single process-
ing node or a number of cooperating processing nodes that
interact with the environment. In this interaction with the
environment the processing nodes have to obey the timing
constraints imposed by the application. Only if the system
meets all timing requirements the correct and safe operation
of the entire real-time system can be guaranteed.

In this paper we explain how the correct timing of a sin-
gle processing node of a real-time system can be estab-
lished. In our argumentation we follow the widely-used
strategy to separate the overall timing analysis into two
parts, schedulability analysis and task execution-time analy-
sis. First we discuss the problems that have to be considered
when separating the two subproblems. Second, we propose
a task programming strategy that yields tasks that are highly
temporally predictable and easy to analyse for their worst-
case execution time (WCET). This paper does not deal with
scheduling techniques and schedulability analysis, because

�This work has been supported by the IST research project “High-
Confidence Architecture for Distributed Control Applications (NEXT
TTA)” under contract IST-2001-32111.

these topics have gained broad coverage elsewhere, see,
e.g., [15, 9].

Section 2 discusses the classical separation of timing
analysis into schedulability analysis and task timing anal-
ysis. Section 3 discusses hardware and operating system
design considerations to allow for a clear and simple sepa-
ration of the two steps of the analysis. Section 4 proposes a
programming strategy that is well suited for writing tempo-
rally predictable and WCET-analysable code.

2 Structured Timing Analysis

To reduce complexity of real-time systems, program-
ming is usually split into two levels: Programming in the
large decomposes the overall application into smaller com-
ponents, e.g., modules and modes of a system and the re-
spective tasks, and defines the relationships and interaction
between the tasks. Programming in the small focuses on the
programming of the well-defined task components that have
been separated out during the programming-in-the-large de-
composition.

To establish the correct timing of a real-time program,
each of the two programming levels needs to be supported
by adequate techniques for evaluating the temporal prop-
erties of the artefacts it created. At the programming-in-
the-small level WCET analysis computes a bound ci for the
maximum time comsumption of each task Ti.

At the programming-in-the-large level schedulability
tests are used to test whether the selected set of tasks
�Ti� can be scheduled on the system. To test for example
whether such a task set can be scheduled by rate monotonic
scheduling [8], the utilisation factor µ of the system has to
meet the following test:

µ �
n

∑
i�1

ci�pi � n�21�n�1��

where n denotes the number of tasks and pi the period of
task Ti.

Without taking care it can be difficult to establish a struc-
tured timing analysis based on these two levels. On modern

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/1641886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


processors that use pipelines and caches, the execution of
a certain piece of code leaves its footprints in the internal
state of the processor. The temporal execution behaviour
of code subsequently executed depends on these footprints,
i.e., the timing of different executions varies. This implies
that it becomes potentially impossible to calculate a safe
and precise bound for the maximum time consumption of
each task Ti in isolation of the overall system configuration.
A detailed discussion of properties in conventional systems
that prevent a precise timing prediction of a single task at
programming-in-the-small level is given by Schneider [14].
To weaken this limitation, Schneider proposes to use static
configuration parameters (e.g., number of tasks and their
memory mapping) that are fixed for a particular applica-
tion. For the remaining challenges in execution time analy-
sis Schneider proposes to develop a comprehensive WCET-
and schedulability-analysis approach. The drawback of this
approach is that timing analysis becomes quite complex and
without support for structured analysis.

It is an interesting topic of research to find more system-
atic ways to restrict the system design so that a higher pre-
dictability is achieved. A well structured system would then
allow us to apply a structured timing analysis at a reasonable
cost. In the following we describe research achievements in
this area.

3 Separating the Timing-Analysis Steps

The use of caches in real-time systems in general makes
the prediction of the WCET of tasks quite complicated.
Therefore, Hand argued that real-time applications must be
run with the cache disabled when determining the guaran-
teed level of performance offered by the system [3].

An approach to improve the overall predictability of a
system is to make caches more predictable. Kirk et al. pro-
posed a hardware based partitioning of caches [4, 5]. In this
scheme, each task is assigned an equal-sized portion of the
cache. A further portion of the cache is allocated for data
shared between tasks. Using hardware partitioned caches
prevents the modification of the cache partition of a task
due to preemptions. The drawback of this approach is that
the partition size is fixed and specific hardware is required.
Another constraint is that the overall memory allocation of
a task is determined by the relative size of its assigned cache
portion.

Mueller proposed a software based cache partitioning
technique with compiler support [10]. The compiler rear-
ranges the code so that each task fits into a unique set of
cache lines. Larger blocks are split by inserting uncondi-
tional jumps. It remains to evaluate the overall performance
impact of this approach via quantitative analysis.

An approach for software-based cache partitioning per-
formed at the operating system level is described by Liedtke

et al. [7]. Their approach assigns a cache partition to a cer-
tain task via the translation of virtual memory. This requires
no hardware modification of processors or caches. The ap-
proach can therefore only be applied to a cache outside the
processor (e.g., second level cache). Liedtke et al. use a
technique they call free coloring to relax the dependence
between allocated memory and relative size of cache par-
tition. Free coloring requires to change the wiring of the
processor board.

An alternative strategy to improve the predictability is
to replace the cache by more predictable mechanisms.
Cogswell et al. have described the Multiple Active Context
System (MACS) that avoids the necessity of caches by man-
aging multiple task contexts by the processor pipeline [2].
The processor executes a different task on every cycle by
repeatedly rotating through all task contexts. The delay of
memory accesses of one context thus overlaps with execu-
tion cycles of the other contexts. Only extensive accesses to
the same memory bank degrade performance.

Another technique to avoid the necessity of caches,
called threaded prefetching is described by Lee et al. [6].
They use instruction prefetching instead of caching. Each
block is assigned a designated prefetching block which is
calculated by the compiler via analysis of the worst-case
execution path.

To conclude, the support for structured timing analysis is
preferred to reduce the complexity of WCET analysis. The
whole system design has to be done carefully to achieve this
structural reduction of complexity in analysis.

4 Obtaining WCET-Analysable Code

We demand from WCET analysis to produce reliable
and tight estimates of the worst-case execution times of the
tasks. Besides this, it is important that WCET analysis is
simple, i.e., it must be both easy to apply and its results
must be easy to trace and understand.

WCET analysis is not simple per se. On the contrary,
without the use of an appropriate programming strategy, one
can run into one of the severe problems of WCET analysis
[12]. We therefore propose a task programming strategy
that yields tasks that are highly temporally predictable and
easy to analyze for their WCET.

4.1 WCET-Oriented Programming

We observe that today real-time programs, like most non
real-time programs, are often designed and coded to achieve
a good average performance to allow for a high through-
put. The primary performance goal of such a programming
strategy is the speed optimization for the most probable sce-
narios. In order to be able to favour the frequent cases, the
code tests the properties of input-data sets (inclusive any



data that store a state between different activations of code)
and chooses the actions to be performed during and execu-
tion based on these input data.

Using input-data dependent control decisions is an effec-
tive way to achieve short execution times for favoured input-
data sets. This approach is therefore well suited for opti-
mizing the average case. On the other hand, a programming
style that is based on input-data dependent control decisions
adversely affects the quality of the achievable WCET. The
code optimizations that favour some inputs come at the cost
of a substantially higher execution time for the other inputs.
Further, the time it takes to execute the input-data dependent
control decisions adds up to the total execution time. While
the fast code executed for favoured inputs makes up for this
additional time, the durations of these tests increase the ex-
ecution time without compensation for all other situations.
As stated above, this increases the WCET.

In order to write code that has a good WCET, the short-
comings of the traditional, performance-oriented program-
ming style and algorithms have to be avoided. A program-
ming strategy for real-time code must use a completely
different coding approach. We call this coding approach
WCET-oriented programming, see [12]:

WCET-oriented programming (i.e., program-
ming that aims at generating code with a good
WCET) tries to produce code that is free from
input-data dependent control flow decisions or, if
this cannot be completely achieved, it restricts op-
erations that are only executed for a subset of the
input-data space to a minimum.

In some applications it is impossible to treat all inputs
identically. This can be due to the inherent semantics of
the given problem or the limitations of the programming
language used. In these situations the programmer has to
try to keep input-data dependencies local to small portions
of the code.

WCET-oriented programming produces unconventional
algorithms that may not look straightforward at the first
sight. The resulting pieces of code, however, are character-
ized by competitive WCETs. Besides keeping the WCET
down, WCET-oriented programming also keeps the total
number of different execution paths through a piece of code
low. Identifying and characterizing a smaller number of
paths for WCET analysis is easier and therefore much less
error-prone than dealing with a huge number of alterna-
tives. In this way, WCET-oriented programming does not
only produce code with better WCET performance but also
yields more dependable WCET-analysis results and thus
more dependable real-time code than traditional program-
ming.

4.2 Generating Single-Path Code

The WCET-oriented programming approach provides a
programming strategy that aims at avoiding input-data de-
pendent code or at least keeping input-data dependencies lo-
cal to a limited number of operations. Still, WCET-oriented
code cannot be guaranteed to be free of input-data depen-
dencies. On the contrary, we have to be prepared that
WCET-oriented code will in general not get along entirely
without input-data dependent control flow. To eliminate
the remaining input-data dependent branches and thus re-
duce the complexity of WCET analysis, we conceived the
single-path programming paradigm [13]. The following
paragraphs give a summary on single-path programming.

As mentioned before, one reason for the complexity of
WCET analysis is that different input data cause the code to
execute on different execution paths with differing execu-
tion times. The single-path approach avoids this complex-
ity by ensuring that the code has only a single execution
path. This approach uses code transformations to transform
input-data dependent loops and branches [11]. It transforms
loops with input-data dependent termination conditions into
loops with invariable iteration counts. Input-data depen-
dent branches with the semantics of if or case statements
and their alternatives are transformed into strictly sequential
code. To be precise, the code resulting from the transfor-
mation of branches avoids data dependencies in execution
times by keeping input-data dependent branching local to
single operations with data-independent execution times.

The conversion of if or case statements into sequential
code is called if-conversion [1]. The sequential code gen-
erated by the above-mentioned loop transformation and if-
conversion uses so-called predicated operations, i.e., oper-
ations that implement branches within single machine in-
structions. A number of modern microprocessors (e.g., Al-
pha, IA-64, Motorola M-Core, Pentium P6) realize pred-
icated execution to allow compilers to generate code that
avoids conditional branch instructions and thus potential
pipeline stalls. The idea of predicated execution is that in-
structions are associated with predicates. An instruction
is only executed if its predicate evaluates to true. If the
predicate evaluates to false the microprocessor internally re-
places the instruction by a no-operation (NOP) instruction.

In summary, the combination of WCET-oriented pro-
gramming and the single-path conversion produces code
that is well suited for real-time systems: WCET-oriented
programming yields highly competitive WCETs. Due to
the single-path conversion the execution time of the code is
constant and therefore fully predictable. Because there is
only a single path it is possible to obtain the WCET in a
single measurement run. The latter allows us to get around
the problems that are inherent to static WCET analysis.



5 Summary and Conclusion

In this paper we discussed the problem of building real-
time processing nodes whose timing is predictable and can
be easily assessed. We observed that it is highly desirable
that the correct timing of a processing node can be estab-
lished in two clearly separated steps: WCET analysis as-
sesses the timing of single tasks and schedulability analysis
tests the correct timing of the whole task set of the node
using the results of WCET analysis.

A cleanly structured timing analysis has to be supported
by an adequate choice of hardware and operating system. It
is important that the hardware and operating-system mech-
anisms are laid out such that task preemptions and run-time
decisions taken in single tasks do not have side effects on
the execution time of the other tasks. Different approaches
that aim at independent task timing have been introduced.

In the second part of the paper we focused on task devel-
opment. The WCET-oriented programming strategy allows
programmers to write code with good worst-case timing.
The single-path transformation of WCET-oriented code fur-
ther yields code with only a single execution path. This
code has a constant and therefore fully predictable execu-
tion time, which equals its WCET. Because there is only
one possible path to choose, the WCET of the code can be
safely obtained by measuring the execution time of the code
with an arbitrary set of input data. This implies that no static
analysis is needed and there is no danger of running into the
problems of static WCET analysis.

References

[1] J. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conver-
sion of Control Dependence to Data Dependence. In Proc.
10th ACM Symposium on Principles of Programming Lan-
guages, pages 177–189, Jan. 1983.

[2] B. Cogswell and Z. Segall. Macs: A predictable architec-
ture for real time systems. In Proc. of the IEEE Real-Time
Systems Symposium, pages 296–305, 1991.

[3] T. Hand. Real-Time Systems Need Predictability. Computer
Design (RISC Supplement), pages 57–79, Aug. 1989.

[4] D. B. Kirk. Smart (strategic memory allocation for real-
time) cache design. In Proc. 10th Real-Time Systems Sympo-
sium, pages 229–237, Santa Monica, CA, USA, Dec. 1989.

[5] D. B. Kirk and J. K. Strosnider. Smart (strategic memory
allocation for real-time) cache design using the mips r3000.
In Proc. 11th Real-Time Systems Symposium, pages 322–
330, Lake Buena Vista, Florida, USA, Dec. 1990.

[6] M. Lee, S. Min, C. Park, Y. Bae, H. Shin, and C. Kim. A
Dual-mode Instruction Prefetch Scheme for Improved Worst
Case and Average Case Program Execution Times. In Proc.
14th Real-Time Systems Symposium, pages 98–105, 1993.

[7] J. Liedtke, H. Hartig, and M. Hohmuth. OS-Controlled
Cache Predictability for Real-Time Systems. In Proc. 3rd
IEEE Real-Time Technology and Applications Symposium,
pages 213–223, June 1997.

[8] C. L. Liu and J. W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment. Journal of
the ACM, 20(1):46–61, Jan. 1973.

[9] J. W. Liu. Real-Time Systems. Prentice Hall, 2000.
[10] F. Mueller. Compiler support for software-based cache par-

titioning. In Proc. of the ACM SIGPLAN Workshop on Lan-
guages, Compilers, and Tools for Real-Time Systems, pages
137–145, La Jolla, CA, USA, June 1995.

[11] P. Puschner. Transforming execution-time boundable code
into temporally predictable code. In B. Kleinjohann, K. K.
Kim, L. Kleinjohann, and A. Rettberg, editors, Design and
Analysis of Distributed Embedded Systems, pages 163–172.
Kluwer Academic Publishers, 2002. IFIP 17th World Com-
puter Congress - TC10 Stream on Distributed and Parallel
Embedded Systems (DIPES 2002).

[12] P. Puschner. Algorithms for dependable hard real-time sys-
tems. In Proc. 8th IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems, Jan. 2003.

[13] P. Puschner and A. Burns. Writing Temporally Predictable
Code. In Proc. 7th IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems, pages 85–91, Jan.
2002.

[14] J. Schneider. Why You Can’t Analyze RTOSs without Con-
sidering Applications and Vice Versa. In Proc. of the 2nd In-
ternational Workshop on Worst-Case Execution Time Anal-
ysis (WCET 2002), June 2002.

[15] J. Stankovic, M. Spuri, K. Ramamritham, and G. Buttazzo.
Deadline Scheduling for Real-Time Systems: EDF and Re-
lated Algorithms. Kluwer Academic Publishers, 1998.


