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Abstract. Hierarchical structuring of behaviour is prevalent in natural
and artificial agents and can be shown to be useful for learning and per-
forming tasks. To progress systematic understanding of these benefits
we study the effect of hierarchical architectures on the required informa-
tion processing capability of an optimally acting agent. We show that an
information-theoretical approach provides important insights into why
factored and layered behaviour structures are beneficial.

1 Introduction

Animals sometimes make performing complex tasks seem almost trivial. For
instance, a praying mantis can show a wide arrange of complicated behaviours
like feeding, grooming and sexual behaviour, with very limited brain power.
Understanding this is only possible when realising that their behaviour is well
structured, partially in a hierarchical manner [1]. Nature supplies a large amount
of examples of this kind of hierarchical behaviour, e.g. in vocal behaviour in
singing birds [2] and ordering tasks in capuchin monkeys [3]. Unsurprisingly,
there has for long been a call in the field of ethology to not neglect this structure
[4].

Computational models of such structures are well established. Traditionally
as static systems [5], but the latest advances in reinforcement learning show
that adaptive hierarchical behaviour structures can significantly sped up learn-
ing [6][7][8], even when an agent has to autonomously build up its behavioural
hierarchy in parallel with learning a new task [9][10]. Recent research has in-
vestigated the relationship of biological structures to computational models of
layered control [11] and modern adaptive hierarchical architectures [12].

The benefits of hierarchical organisation of behaviour are intuitive: it reduces
complexity, eases learning and facilitates skill transfer [13]. What is missing
however is a systematic rather than heuristic understanding of the reasons of
success of this kind of structures in nature and in artificial agents. Additionally
quantitative methods for comparing the growing number computational models
of behaviour hierarchies are needed. Currently these are partly, if not wholly,
based on assumptions and external knowledge of their designer, of which the
necessity is difficult to judge.

Information theory has proven to be a useful tool in understanding funda-
mental, global properties and limits of agent-environment systems [14][15][16].
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Our hypothesis is that the advantages of hierarchical behaviour structures in
animals and artificial agents are grounded in their effect on the way an agent
processes information. Firstly, they divide the burden of information processing
over different layers. Secondly, information about the current context is retained
in more abstract behaviours at higher levels, relieving lower levels from perform-
ing redundant information processing. In this paper we will first research and
quantify these effects seperately. Subsequently we will investigate their combi-
nation.

2 Relevant Information

An agent with sensors and actuators combined with its environment forms an
action-perception loop, in which at each time step t the agent perceives the state
of the environment st ∈ S and decides on an action at ∈ A. The dynamics of
the total system are determined by the state transition probability distribution

Pa
st,st+1

= p(st+1|st, at) and the agent’s policy π(st, at) = p(at|st)
1.

We are interested in agents operating in an environment that rewards cer-
tain behaviour, according to an immediate reward function rt+1 = Rat

st,st+1
∈ R.

Given this reward we can determine two functions: the state value function

V π(s), which is defined as the expected future reward an agent will reserve
when starting in state s and following policy π, and the state-action value func-

tion (or utility function) Uπ(s, a) which gives the expected future reward when
taking action a when in state s and consequently following policy π [8]:

V π(s) =
∑

a

p(a|s)
∑

s′

p(s′|s, a) [r(s, a, s′) + γV π(s′)] (1)

Uπ(s, a) =
∑

s′

p(s′|s, a) [r(s, a, s′) + γV π(s′)] (2)

where γ ∈ (0, 1) is an inflation factor to provide an upper bound on the expected
future reward and to model preference of short term over long term reward.

An optimal policy for an agent in such an environment is one that maximises
the expected utility E [U(s, a)] =

∑
s,a p(s, a)U(s, a) =

∑
s,a p(a|s)p(s)U(s, a).

To be able to execute this policy, the agent needs to take in and process in-
formation from the environment through its sensors. However, not all available
information is needed. The concept of relevant information provides a concrete
minimum of the amount of information an agent needs to acquire to be able to
follow an optimal policy, measured by the mutual information between states
and optimal actions [14]:

I(S; A∗) = min
p(a|s):p(a|s)p(s)>0⇒a optimal for s

I(S; A) (3)

This measure is an important, fundamental property of the environment-agent
dynamics and a reward function. It does not depend on the actual method of

1 See appendix for notation
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Fig. 1: Grid-world environment used in experiments with the policy of the best solution
found using a flat, memory-less policy (a) and when using memory (b). The size of
the vectors is proportional to the probability of choosing the action to move in that
direction in a given state (π(s, a) = p(a|s)).

finding an optimal policy. Mutual information I(S; A) = H(A) − H(A|S) is
measured in bits and is defined by the change in entropy (uncertainty) about A

when S is being observed.

3 Grid-world Navigation Task

3.1 Environment

The environment used in this paper is a 2-dimensional grid-world as shown in
Fig. 1. The set of possible states S contains all unoccupied cells. The set of
available actions A consists of four actions that move the agent one cell north,
east, south or west. The environment is fully deterministic: Pat

st,st+1
∈ {0, 1}.

When performing an action that would bring the agent to an occupied grid cell,
the agent remains in the same state.

A single cell g is designated as the goal state and a reward is given when the
agent arrives in this state: Rat

st,st+1
= 1 if st 6= g, st+1 = g and 0 otherwise.

3.2 Policy Evolution

We are interested in the minimum amount of state information an agent takes
in when following an optimal policy, which we will denote as I, equipped with
different behaviour structures. When using a flat policy, this amount is the rele-
vant information as discussed in section 2: I = I(S; A∗), which can be found by
generalising the classical Blahut-Arimoto algorithm for rate-distortion[17][14].

However, it is not trivial to adapt this algorithm to the other behaviour
structures we will introduce further on in this paper. Therefore, we will use an
evolutionary approach to find policies that minimise I. We start with a popula-
tion of random individuals, defined by the conditional probability distributions
that make up their policies. At each epoch, individuals are iteratively selected
from the previous population and combined by crossing their genotypes to create



descendants, which advance to the next generation, possibly undergoing muta-
tion.

The selection is done through tournament selection. A number of individuals
is chosen at random and a fitness function F (π) is used to rate their policy.
The winner is selected for breeding and produces a single offspring, of which a
conditional probability distribution that is part of its policy can be crossed with
that of the child of another tournament winner. The probability of occurrence
of this crossing is determined by a cross-over rate pc ∈ [0, 1]. Cross-over mixes
distributions of the children such that pchild1(A|B) ← pchild2(A|B) for B >= b

where b is chosen at random. Mutation is applied by permuting a distribution
P (A = a|B = b)← P (A = a|B = b) + ǫ for each b with probability pm, where a

and ǫ are chosen at random. After mutation P (A = a|B = b) is renormalised.
In all experiments described in this paper we have used a population size

of 100 individuals and a tournament size of 3 individuals. The cross-over and
mutation rates have been set to pc = pm = 0.1. The fitness function is defined
as:

F = I + β
∑

s,a

p(a|s)p(s)U(s, a), (4)

where I is varied according to the experiments as described in the next sec-
tions. Furthermore, we set β = 105 to enforce near-optimal policies. Evolution
is run until the change of fitness of the best individual between generations be-
comes sufficiently small. To establish a baseline we have applied the evolutionary
algorithm using memory-less flat policies where I = I(S; A) . The algorithm
consistently converged to a solution with I = 1.26751 bits, which is the same
amount as found with the traditional Blahut-Arimoto algorithm. The policy of
this solution is shown in Fig. 1(a).

4 Hierarchical Policies

In this section we will investigate the first intuition about the advantage of using
a hierarchical policy: it splits up the task into simpler parts. The minimum in-
formation intake I gives a natural quantitative measure to determine complexity
of a (sub)task. Our hypothesis is that using a hierarchy reduces the amount of
information required, and thus the necessary complexity, at each layer.

Here we will use the simplest hierarchical model with two levels. At each
time step, a general decision is made at the higher level, based on the current
state, which we will call an option in accordance to the terminology of Sutton
et al [8]. At the lower the actual action that is to be performed is selected based
on this option ot and extra information about the current state. The policies at
the higher and lower level are determined by the conditional probability distri-
butions p(ot|st) and p(at|st, ot). The corresponding causal Bayesian network of
this hierarchical policy is shown in Fig. 2(a).

The total memory intake is the sum of the information intake at each level:

I = I(St; Ot) + I(St; At|Ot) = I(St; At) + I(St; Ot|At) (5)
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Fig. 2: Causal Bayesian network of the action-perception loop using a hierarchical policy
(b), memory (b) or temporally extended options (c), unrolled in time
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Fig. 3: Policy of the best solution found using a hierarchical, memory-less policy per
option. The size of the vectors is proportional to the probability of choosing the action
to move in that direction in a given state and option (p(a|o, s)). The opacity of the
arrows in a cell are proportional to the probability of selecting the respective option in
that state (p(o|s)).

As can be seen, this sum is greater than or equal to the mutual information be-
tween states and actions, with equality if either the current state or the chosen
option is completely determined by the selected action. Therefore, the total infor-
mation intake will never drop below the minimum achieved with a flat policy. It is
no surprise then that we find that both the evolutionary approach as an adapted
version of the Blahut-Arimoto algorithm find solutions where I(St; Ot) = 0 and
I(St; At|Ot) = I(St; At), effectively optimising away the hierarchy.

Our goal is to show that using a hierarchy can let one get away with com-
bining simple components. To do this we not only minimise the total sum, but
also the information intake of the most complex part by extending the fitness
function:

F = I + max [I(St; Ot), I(St; At|Ot)] + β
∑

s,a

p(a|s)p(s)U(s, a) (6)

In our experiments we set the number of options to 2. The best solution
found by the evolutionary algorithm resulted in average information intakes of
I(St; Ot) = 0.830826 bits, I(S; A|O) = 0.975234 bits, totalling to I = 1.8061
bits. Although the total system needs more information, the most complex level
(the lower level) can get away with handling almost 25% less information as
compared to a flat policy. The policy of this solution is shown in Fig. 3.



5 Memory

As mentioned in the introduction, the second intuition about hierarchical be-
haviour structures is that behaviours on higher levels function as a form of
memory and retain information about the environment and the current task
being performed. In this section we will investigate the effect of memory on
necessary information intake of a policy. When looking at trajectories of states
and actions, an agent can clearly get away with taking in less information than
the sum of the single-step intakes discussed in the previous sections. Knowing
about the past already gives you information about the current state without
looking, since inherent structure of the world restricts the number of possible
state transitions and the selection of an action is fed back into the distribution
of states.

To handle channels that show this kind of feedback, the concept of directed

information I(ST → AT ) [18] was developed, which measures the actual infor-
mation flow from an input sequence (ST ) to an output sequence (AT ) of length
T . The directed information intuitively gives an indication of the amount of in-
formation an agent has to take in when having access to information about the
past. In our experiments with memory we use this measure, scaled by trajectory
length, as the average per step intake:

I =
1

T
I(ST → AT ) =

1

T

T∑

t=0

I(St; At|A
t−1) (7)

We use the simplest model, where T = 2 and thus memory only goes back
a single time step, resulting in the network shown in figure Fig. 2(b). The best
solution found in these experiments resulted in an average information intake of
I = 1

2 (I(St; At) + I(St, St+1; At+1|At)) = 1
2 (1.31635 + 1.08365) = 1.2 bits. The

policy of this solution is shown in Fig. 1(b). As expected, this average is lower
than in the memory-less case. However, the average intake at the first step of a
two-step trajectory (I(St; At)) was consistently higher, increasing the minimum
needed complexity of information processing.

6 Temporally Extended Actions

The separate properties of hierarchical behaviour discussed in the previous sec-
tions show important effects on necessary complexity, however each require more
complexity in some aspects. In this section we study the combination of both
properties into a structure that corresponds better with the examples of nature
given in the introduction and the notion of Sutton’s options.

In these experiments we model a hierarchical policy that uses temporally
extended, abstract, actions: at higher levels in the hierarchy such an action (or
option) is chosen as in section 4, with the difference that this option is applied
for several subsequent time steps. An action is chosen at the lowest level in the
same way as in the memory-less case. The Bayesian network corresponding to



the model used in our experiments, with a two-step cycle, is shown in Fig. 2(c).
Note that this model is more limited than that of the previous section, since the
choice for an option can only retain direct information about the previous state,
information about the previous action is only implicit through the lower level
policy (p(a|o, s)).

In this model the total per-step information intake is the average over the
intake during both steps of a cycle:

I =
1

2
(I(St; Ot) + I(St; At|Ot) + I(St+1; At+1|Ot)) (8)

Again, we want to minimise both the complexity of the complete system and of
its parts, so we use the following fitness function:

F = I + max [I(St; Ot), I(St; At|Ot), I(St+1; At+1|Ot)] + β
∑

s,a

p(a|s)p(s)U(s, a)

(9)
Experiments with this structure in the grid-world described in the previ-

ous sections is still ongoing work at time of writing. Results obtained with a
smaller, 2-room environment, however, show that temporally extended actions
combine the advantages quantified in the previous two sections. One solution
achieves the minimum necessary information intakes I(St; Ot) = 0.618551 bits,
I(St; At|Ot) = 0.972351 bits, I(St+1; At+1|Ot) = 0.35756 bits and I = 0.97423
bits, where with a flat, memory-less policy one has I = 1.03253 bits. This indi-
cates that an agent can achieve an optimal policy with simpler components (as
in section 4) and still on average take in less information in total (as in section
5). Preliminary results suggest that these advantages generalise to more complex
environments.

7 Discussion and Future Work

The results presented in the previous sections show that hierarchical behaviour
structures can reduce the necessary amount of information an agent needs to be
able to process to perform a task optimally. We have also shown that simpler
parts placed in a hierarchy can perform as well as a more complex, flat system,
with the same or even smaller amount of information needed. This offers a quan-
tifiable, environment and architecture-independent argument for the use of these
structures.

The methods put forward in this paper promise applications in the study
of hierarchical behaviour in ethology, possibly resulting in systematic under-
standing of the prevalence of this phenomenon in nature. Additionally, they can
be applied to computational models and their specific implementations of be-
haviour structuring to determine the necessity of designer imposed assumptions
and heuristics.

Future work will consist including more general notions of behaviour structur-
ing. Most notably, we will investigate other models of memory and information
flow [19], study the utility/information processing trade-off under limitations
and noise.
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10. Şimşek, O., Barto, A.G.: Using relative novelty to identify useful temporal ab-
stractions in reinforcement learning. In: ICML 04: Proceedings of the twenty-first
international conference on Machine learning, New York, NY, USA, ACM (2004)
95

11. Prescott, T.J., Redgrave, P., Gurney, K.: Layered Control Architectures in Robots
and Vertebrates. Adaptive Behavior 7 (1999) 99–127

12. Botvinick, M., Niv, Y., Barto, A.: Hierarchically organized behavior and its neural
foundations: A reinforcement learning perspective. Cognition (2008)

13. Barto, A.G., Mahadevan, S.: Recent Advances in Hierarchical Reinforcement
Learning. Discrete Event Dynamic Systems 13(4) (2003) 341 – 379

14. Polani, D., Nehaniv, C., Martinetz, T., , Kim, J.T.: Relevant Information in Op-
timized Persistence vs. Progeny Strategies. Proc. Artificial Life X (2006)

15. Capdepuy, P., Polani, D., Nehaniv, C.L.: Constructing the Basic Umwelt of Arti-
ficial Agents: An Information-Theoretic Approach. In Costa, F.A.e., Rocha, L.M.,
Costa, E., Harvey, I., Coutinho, A., eds.: Proceedings of the Ninth European Con-
ference on Artificial Life. Volume 4648 of LNCS/LNAI., Springer (2007) 375–383

16. Klyubin, A.S., Polani, D., Nehaniv, C.L.: All Else Being Equal Be Empowered.
Advances in Artficial Life, European Conference on Artificial Life (ECAL 2005)
3630 (2005) 393–402

17. Blahut, R.E.: Computation of Channel Capacity and Rate-Distortion Functions.
(1972)

18. Massey, J.L.: Causality, Feedback and Directed Information. Proceedings of the
International Symposium on Information Theory and Its Applications (ISITA ’90)
(1990) 303–305

19. Ay, N., Polani, D.: Information Flows in Causal Networks. Advances in Complex
Systems 11(1) (2008) 17–41


