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Abstract. The principle of least effort in communications has been shown, by
Ferrer i Cancho and Solé, to explain emergence of power laws (e.g., Zipf’s law)
in human languages. This paper applies the principle and the information-
theoretic model of Ferrer i Cancho and Solé to genetic coding. The applica-
tion of the principle is achieved via equating the ambiguity of signals used
by “speakers” with codon usage, on the one hand, and the effort of “hear-
ers” with needs of amino acid translation mechanics, on the other hand. The
re-interpreted model captures the case of the typical (vertical) gene transfer,
and confirms that Zipf’s law can be found in the transition between referen-
tially useless systems (i.e., ambiguous genetic coding) and indexical reference
systems (i.e., zero-redundancy genetic coding). As with linguistic symbols, ar-
ranging genetic codes according to Zipf’s law is observed to be the optimal so-
lution for maximising the referential power under the effort constraints. Thus,
the model identifies the origins of scaling in genetic coding — via a trade-off
between codon usage and needs of amino acid translation. Furthermore, the
paper extends Ferrer i Cancho – Solé model to multiple inputs, reaching out
toward the case of horizontal gene transfer (HGT) where multiple contribu-
tors may share the same genetic coding. Importantly, the extended model also
leads to a sharp transition between referentially useless systems (ambiguous
HGT) and indexical reference systems (zero-redundancy HGT). Zipf’s law is
also observed to be the optimal solution in the HGT case.

1 Introduction — coding thresholds

The definition and understanding of the genotype-phenotype relationship continues
to be one of the most fundamental problems in biology and artificial life. For ex-
ample, Woese strongly argues against fundamentalist reductionism and presents the
real problem of the gene as “how the genotype-phenotype relationship had come to
be” [1], pointing out the likelihood of the “coding threshold”. This threshold signi-
fies development of the capacity to represent nucleic acid sequence symbolically in
terms of a amino acid sequence, and separates the phase of nucleic acid life from an
earlier evolutionary stage. Interestingly, the analysis presented by Woese sheds light
not only on this transition, but also on saltations that have occurred at other times,
e.g. advents of multicellularity and language. The common feature is “the emergence
of higher levels of organization, which bring with them qualitatively new properties,
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properties that are describable in reductionist terms but that are neither predictable
nor fully explainable therein” [1].

The reason for the increase in complexity can be identified as communication

within a complex, sophisticated network of interactions: “translationally produced
proteins, multicellular organisms, and social structures are each the result of, emerge
from, fields of interaction when the latter attain a certain degree of complexity and
specificity” [1, 2]. The increase of complexity is also linked to adding new dimensions
to the phase space within which the evolution occurs, i.e. expansion of the network of
interacting elements that forms the medium within which the new level of organization
(entities) comes into existence [1, 2]. An increase of complexity is one of the landmarks
of self-organization, typically defined as an increase of order within an open system,
without an explicit external control.

As pointed out by Ferrer i Cancho and Solé [3], the emergence of a complex
language is one of the fundamental events of human evolution, and several remarkable
features suggest the presence of fundamental principles of organization, common to
all languages. The best known is Zipf’s law, which states that the frequency of a word
decays as a (universal) power law of its rank. Furthermore, Ferrer i Cancho and Solé
observe that “all known human languages exhibit two fully developed distinguishing
traits with regard to animal communication systems: syntax [4] and symbolic reference
[5]”, and suggest that Zipf’s law is a hallmark of symbolic reference [3].

They adopt the view that a communication system is shaped by both constraints
of the system and demands of a task: e.g., the system may be constrained by the
limitations of a sender (“speaker”) trying to encode a message that is easy-to-decode
by the receiver (“hearer”). In particular, speakers want to minimise articulatory effort
and hence encourage brevity and phonological reduction, while hearers want to min-
imise the effort of understanding and hence desire explicitness and clarity [3, 6, 7]. For
example, the speaker tends to choose ambiguous words (words with a high number
of meanings), and this increases the interpretation effort for the hearer. Zipf referred
to the lexical trade-off as the principle of least effort, leading to a well-known power
law: if the words within a sample text are ordered by decreasing frequency, then the
frequency of the k-th word, P (k), is given by P (k) ∝ k−α, with α ≈ 1.

The main findings of Ferrer i Cancho and Solé are that (i) Zipf’s law can be
found in the transition between referentially useless systems and indexical reference
systems, and (ii) arranging symbols according to Zipf’s law is the optimal solution
for maximising the referential power under the effort constraints.

Combining terminology of Woese and Ferrer i Cancho and Solé allows us to re-
phrase these observations as follows: (i) referentially useless systems are separated
from indexical reference systems by a coding threshold, and (ii) Zipf’s law maximising
the referential power under the effort constraints is the optimal solution that is a
feature observed at the coding threshold.

In this paper we apply the principle of least effort to genetic coding, by equating,
on the one hand, the ambiguity of signals used by “speakers” with codon usage, and,
on the other hand, the effort of “hearers” with demands of amino acid translation
mechanics. The re-interpreted model confirms that Zipf’s law can be found in the
transition (“coding threshold”) between ambiguous genetic coding (i.e., referentially
useless systems) and zero-redundancy genetic coding (indexical reference systems). As
with linguistic symbols, arranging genetic codes according to Zipf’s law is observed



to be the optimal solution for maximising the referential power under the effort con-
straints. In other words, the model identifies the origins of scaling in genetic coding
— via a trade-off between codon usage and needs of amino acid translation.

This application captures the case of the typical, vertical, gene transfer. We further
extend this case to multiple inputs, reaching out toward the case of horizontal gene
transfer (HGT) where multiple contributors may share the same genetic coding. We
observe that the extended model also leads to a sharp transition between ambiguous
HGT and zero-redundancy HGT, and that Zipf’s law is observed to be the optimal
solution again.

2 Horizontal and Stigmergic Gene Transfer

It is important to realize that during the early phase in cellular evolution the proto-
cells can be thought of as conglomerates of substrates, that exchange components
with their neighbours freely — horizontally [8]. The notion of vertical descent from
one “generation” to the next is not yet well-defined. This means that the descent with
variation from one “generation” to the next is not genealogically traceable but is a
descent of a cellular community as a whole. Thus, genetic code that appears at the
coding threshold is “not only a protocol for encoding amino acid sequences in the
genome but also an innovation-sharing protocol” [8], as it used not only as a part of
the mechanism for cell replication, but also as a way to encode relevant information
about the environment. Different proto-cells may come up with different innovations
that make them more fit to the environment, and the “horizontal” exchange of such
information may be assisted by an innovation-sharing protocol — a proto-code. With
time, the proto-code develops into a universal genetic code.

Such innovation-sharing is perceived to have a price: it implies ambiguous trans-
lation where the assignment of codons to amino acids is not unique but spread over
related codons and amino acids. [8]. In other words, accepting innovations from neigh-
bours requires that the receiving proto-cell is sufficiently flexible in translating the in-
coming fragments of the proto-code. Such a flexible translation mechanism, of course,
would produce imprecise copies. However, a descent of the whole innovation-sharing
community may be traceable: i.e., in a statistical sense, the next “generation” should
be correlated with the previous one. While any individual protein is only a highly
imprecise translation of the underlying gene, a consensus sequence for the various
imprecise translations of that gene would closely approximate an exact translation
of it. As noted by Polani et al. [9], the consensus sequence would capture the main
information content of the innovation-sharing community.

Moreover, it can be argued that the universality of the code is a generic conse-
quence of early communal evolution mediated by horizontal gene transfer (HGT), and
that thus HGT enhances optimality of the code [8]:

HGT of protein coding regions and HGT of translational components ensures
the emergence of clusters of similar codes and compatible translational ma-
chineries. Different clusters compete for niches, and because of the benefits of
the communal evolution, the only stable solution of the cluster dynamics is
universality.

The work of Piraveenan et al. [10] and Polani et al. [9] investigated particular HGT
scenarios where certain fragments necessary for cellular evolution begin to play the



role of the proto-code. For example, stigmeric gene transfer was considered as an HGT
variant. SGT suggests that the proto-code is present in an environmental locality, and
is subsequently entrapped by the proto-cells that benefit from such interactions. In
other words, there is an indirect exchange of information among the cells via their local
environment, which is indicative of stigmergy: proto-cells find matching fragments, use
them for coding, modify and evolve their translation machinery, and exchange certain
fragments with each other via the local environment. SGT differs from HGT in that
the fragments exchanged between two proto-cells may be modified during the transfer
process by other cells in the locality.

SGT studies concentrated on the information preservation property of evolution in
the vicinity of the “coding threshold”, considering a communication channel between
a proto-cell and itself at a future time point, and posing a question of the channel
capacity constrained by environmental noise. By varying the nature and degree of
the noise prevalent in the environment within which such proto-cells exist and evolve,
the conditions for self-organization of an efficient coupling between the proto-cell
per se and its encoding with “proto-symbols” were identified. It was shown that the
coupling evolves to preserve (within the entrapped encoding) the information about
the proto-cell dynamics. This information is preserved across time within the noisy
communication channel. The studies verified that the ability to symbolically encode
nucleic acid sequences does not develop when environmental noise ϕ is outside a
specific noise range (an error interval).

In current work we depart from the models developed by Piraveenan et al. [10]
and Polani et al. [9], and rather than considering proto-cell dynamics defined via
specific dynamical systems (e.g., logistic maps) subjected to environmental noise, we
focus on constraints determined by (i) ambiguous codon usage, and (ii) the demands
of amino acid translation mechanics. This allows us to abstract away the specifics
of the employed dynamical systems [10, 9], and explain the emergence of a coding
threshold from another standpoint that takes into account codon usage and amino
acid translation. This, in turn, allows us to extend the model to HGT/SGT scenaria
with multiple inputs. Both types of models — dynamical systems based [10, 9] and
the one presented here — are able to identify an (order) parameter corresponding
to the coding threshold: the environmental noise ϕ [10, 9] or the effort contribution
λ [3]. Both types of models formulate objective functions information-theoretically,
following the guidelines of information-driven self-organisation [11–13, 10, 14–17]. The
main difference from the dynamical systems based models lies, however, in the ability
to detect a power law in the codon usage (lexicon) at the threshold.

3 Model

The Ferrer i Cancho and Solé model [3] is based on an information-theoretic approach,
where a (single) set of signals S and a set of objects R are used to describe signals
between a speaker and a hearer, and the objects of reference the signals are referring
to. The relation between S and R are modelled using a binary matrix. As mentioned
above, the effort for the speaker is low with a high amount of ambiguity, i.e. if the
signal entropy is low. Hn(S) expresses the effort of the speaker as a number between
0 and 1:

Hn(S) = −
n∑

i=1

p(si) logn p(si)



The effort for the hearer to decode a particular signal si is small if there is little
ambiguity, i.e. the probability of a signal si referring to one object rj is high. In [3],
this is expressed by the conditional entropy

Hm(R|si) = −

m∑

j=1

p(rj |si) logm p(rj |si)

The effort for the hearer is then dependent on the probability of each signal and the
effort to decode it, that is

Hm(R|S) =
n∑

i=1

p(si)Hm(R|si)

A cost function Ω(λ) is introduced to combine effort of speaker and hearer, with
0 ≤ λ ≤ 1 trading off the effort between speaker and hearer as follows:

Ω(λ) = λHm(R|S) + (1 − λ)Hn(S)

To consider the effect of different combinations of speaker and hearer effort, dif-
ferent λ from 0 to 1 are used to compute the accuracy of the communication as the
mutual information,

In(S,R) = Hn(S) − Hn(S|R),

using matrices evolved, with a simple mutation-based genetic algorithm, for a minimal
cost Ω(λ).

3.1 Extension of the model and “readout” modeling

To model codon usage by several neighbours, we extend the original approach that
was using one matrix S, to several matrices, which represent different sets of signals
Si for one set of objects R. In the extended model, a separate matrix Ai is created
and evolved to encode different communication channels. The cost Ω(λ) is computed
for a matrix Â that is obtained by averaging over all individual matrices Ai. During
evolution, each Ai is mutated if the cost of Â is higher than the cost of Â of the
previous generation. Averaging captures SGT between different sources (variables),
and is a specific case of “readout”, motivated below.

Shannon information between two variables X and X ′ is determined as an opti-
mum of knowledge extracted from the state of X about the state of X ′ under the

assumption that both variables and their joint distribution have been identified before-

hand. In our model, however, the transfer of a message fragment from one proto-cell
to another does not, in general, enjoy that advantage, because there are multiple
candidates for the source of the message. The stigmergic nature of the message trans-
mission in the HGT scenario does not allow for a priori assumptions of who the sender
is and who the receiver is. This implies that there might emerge a pressure to “ho-
mogenize” the instantiations of sender and the receiver variables in the sense that,
where information is to be shared, an instantiation x in the sender variable X evokes
to some extent the same instantiation in the receiver variable X ′.

To formalize this intuition, we model the sending (and analogously the receiving)
proto-cells as mixtures of probabilities, endowed with the “readout” interpretation
suggested in [13] which we sketch in the following. Assume a collection of random



variables Xk, indexed by an index k ∈ K, where all Xk assume values xk ∈ X in the
same sampling set X . For a fixed, given k ∈ K, one can now determine informational
quantities involving Xk in the usual fashion; however, if, as in the HGT case, the
sender is not known in advance, one can model that uncertainty as a probability
distribution over the possible indices k ∈ K, defining a random variable K with
values in K. If nothing else is known about the sender, one can for instance assume
an equidistribution on K.

The readout of the collection (Xk)k∈K is then denoted by XK which models the
random selection of one k ∈ K according to the distribution of K which selects
one of the Xk, followed by a random selection of an instance x ∈ X according to the
distribution of Xk. Formally, the probability distribution of the readout XK assuming
a value x ∈ X is given by

Pr(XK = x) =
∑

k∈K

Pr(K = k) · Pr(Xk = x) (1)

For a Bayesian network interpretation of the readout, see [13].

4 Results

The average mutual information as a function of λ is shown in Fig. 1 and 2. Figure
1 traces the average mutual information for a single 150x150 matrix (staying within
Ferrer i Cancho and Solé model [3], and studying a typical vertical gene transfer), while
Figure 2 contrasts the dynamics with the case of HGT, simulated with four 40x40
matrices. In both cases, there are three domains distinguishable in the behavior of
In(S,R) versus λ.

For small values λ < λ∗, In(S,R) grows smoothly, before undergoing a sharp
transition in the vicinity λ ≈ λ∗. Following Ferrer i Cancho and Solé, we observe
that single-signal systems (L ≈ 1/n) dominate for λ < λ∗: “because every object has
at least one signal, one signal stands for all the objects” [3]. Low In(S,R) indicates
that the system is unable to convey information in this domain (totally ambiguous
genetic code). Rich vocabularies (genetic codes with some redundancy), L ≈ 1, are
found after the transition, for λ > λ∗. Full vocabularies (zero-redundancy genetic
codes) are attained for very high λ. The maximal value of In(S,R) indicates that the
associations between signals (codons) and objects (amino-acids) are one-to-one maps,
removing any redundancy in the genetic code. In the HGT case, this case is harder
to achieve, while the overall tendency is retained.

To investigate transition around λ ≈ λ∗, we focus on the lexicon’s ranked distribu-
tion, and consider the signal’s normalised frequency P (k) versus rank k, for different λ.
As expected, Ferrer i Cancho and Solé model shows that “Zipf’s law is the outcome of
the nontrivial arrangement of word-concept associations adopted for complying with
hearer and speaker needs” [3]: contrasting the graphs in Fig. 3 reveals the presence of
scaling for λ ≈ λ∗, and suggests that a phase transition is taking place at λ∗ = 0.41
in the information dynamics of In(S,R).

Similar phenomenon is observed for HGT, as shown by Fig. 4. The scaling at
λ∗ = 0.4 results in the power law (i.e., P (k) = 0.2742/k1.0412, with R2 = 0.9474,
consistent with α ≈ 1 in the power law reported by Ferrer i Cancho and Solé [3]).

Thus, the trade-off between codon usage and needs of amino acid translation in
HGT results in a nontrivial but still redundant genetic code.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ

I n(S
,R

)

Fig. 1: Single 150x150 matrix. The aver-
age mutual information as a function of
λ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

λ

I n(S
,R

)

Fig. 2: HGT with four 40x40 matrices.
The average mutual information as a
function of λ.

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

k

P
(k

)

 

 

lambda = 0.41
lambda = 0.05
lambda = 0.40
lambda = 0.50

Fig. 3: Single 150x150 matrix. Signal
normalised frequency, P (k), versus rank,
k, for different lambdas.

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

k

P
(k

)

 

 

lambda = 0.05
lambda = 0.4
lambda = 0.5

Fig. 4: HGT with four 40x40 matrices.
Signal normalised frequency, P (k), ver-
sus rank, k, for different lambdas.

5 Conclusions

We applied the principle principle of least effort in communications and the (ex-
tended) information-theoretic model of Ferrer i Cancho and Solé to genetic coding.
The ambiguity of signals used by “speakers” was equated with codon usage, while
the effort of “hearers” provided an analogue for the needs of amino acid translation
mechanics. The re-interpreted model captures the case of the typical (vertical) gene
transfer, and confirms presence of scaling in the transition between referentially use-
less systems (i.e., ambiguous genetic coding) and indexical reference systems (i.e.,
zero-redundancy genetic coding). Arranging genetic codes according to Zipf’s law is
observed to be the optimal solution for maximising the referential power under the
effort constraints. Thus, the model identifies the origins of scaling in genetic coding
— via a trade-off between codon usage and needs of amino acid translation. The ex-
tended model includes multiple inputs, representing horizontal gene transfer where
multiple contributors may share the same genetic coding. The extended model also
leads to a sharp transition: between ambiguous HGT and zero-redundancy HGT, and
scaling is observed to be the optimal solution in the HGT case as well.
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