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An electrodynamic balance (EDB) of the double ring double disc type has been 

designed for studying single microparticles. It allows electrostatic particle injection 

and recovery as well as alignment of elongated particles. The stability characteristics 

of cylindrical fibers and their alignment in this EDB are investigated. Angular as well 

as translational oscillations are observed, each associated with separate but analogous 

stability criteria. 
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1. INTRODUCTION   

 

The electrodynamic balance (EDB) has been used in a wide range of single particle studies, e.g. mass 

and charge measurements, evaporation / condensation studies, light scattering measurements, and 

photoemission experiments on both liquid and solid particles (Davis, 1997).  

 For these purposes various designs of the actual trap as well as particle injection devices have 

been developed. In most of these applications large numbers of particles are available. For example, 

droplets are produced by vibrating orifice aerosol generators or by using a hypodermic needle. Solid 

sodium chloride or sodium sulfate particles were formed by allowing larger aqueous solution droplets 

to evaporate, thereby forming a solid residue (Aardahl et al., 1997). Graphite particles of ca. 3 m size 

were injected into an EDB by pushing a pin through a cone shaped reservoir (Arnold and Hessel, 

1985). Sasse et al. (1996) trapped carbon and quartz spheres of 100-200 m diameter by bringing them 

into contact with an electrostatically charged plastic rod which, when moved close to the middle rings 

of a four-ring EDB and vibrated, released some particles causing them to levitate in the EDB. 

 These techniques are less suitable for experiments in which only small numbers of particles are 

available or when individual, unique particles must be investigated. Likewise, when dealing with single 

particles it is often desirable to recover particles from the trap so that further examination, for example 

by SEM, can be carried out. Arnold and Folan (1986) collected 10 m glycerol droplets from an EDB 

by inserting a 1 mm quartz fiber into the trap and adjusting the dc voltage so that the particle collided 

with the fiber and stuck to it. Ejecting a particle upward through an aperture in the top plate of an EDB 

and onto a flat quartz disk was considered by Vedder (1963). In the study presented here, a method for 

single particle injection using a fine tungsten needle is developed. The same needle is also used to 

recover single solid particles after the levitation experiment. 

 Once the particle is trapped, it should be kept stable, by which we mean that after an initial 

period of damping due to the aerodynamic drag force it should cease to oscillate. The existence of 

stability boundaries, i.e. certain values of ac amplitude and frequency, specific to the balance geometry 

as well as mass, charge and size of the particle, at which the suspended particle starts to oscillate, was 

already described in the early works of Straubel (1956), and Wuerker et al. (1959). Wuerker et al. 

(1959) introduced the hyperboloidal trap and solved the equations of motion for the drag-free case, 

which are homogeneous Mathieu-equations. Frickel et al. (1978) inserted a drag term and solved the 

equations of motion numerically, as Ataman and Hanson (1960) did when modeling Straubel’s balance 

consisting of a ring electrode and two flat endcap electrodes. Equations of motion were solved 

exclusively for translational motion, mostly for spherical particles. Recently, ellipsoidal particles were 

investigated (Zheng et al., 2000; Laucks et al., 2000). A general theory for translational motion 

stability of electrodynamic balances, which have a non-vanishing quadrupole field term, was derived 

by Hartung and Avedisian (1992). Generalized equations of motion were given, which allow the 

calculation of stability boundaries for particle motion in axial and radial direction for any EDB, if two 

constants characterizing the balance are known. In the case of elongated particles, which is investigated 

here, an additional stability boundary exists. This boundary marks the onset of angular oscillations. In 

the later sections of this paper the stability boundaries of cylindrical particles are investigated by 

solving the equations of motion and comparing them to experimental results obtained for glass fibers.  

 

 

2. THE SET-UP of the EDB 

 

A diagram of the electrodynamic balance is shown in Fig. 1. It is a modified double ring-

double disc EDB consisting of two truncated cones as ac electrodes and two disks made of thin glass 

with a semi-transparent conducting coating and metallic cylindrical extensions as dc electrodes. The dc 

electrodes have cylindrical extensions in order to reach a high levitation strength constant as well as to 

shield the chamber from external fields, especially from the ac supply lead. The size of the chamber is 

kept small in order to allow particle observation through high-resolution objectives with a working 

distance of 14 mm. The endcaps of the dc electrodes have a distance of 11.5 mm from the balance 

center. The upper endcap has a central aperture 1.5 mm in diameter for particle injection. The levitation 

strength constant c0 = 33.58 m
-1

 was determined from numerical calculation of the field strength Edc at 

the center of the balance at a certain dc voltage Vdc (c0=Edc/Vdc). For the alignment of nonspherical 

particles, the ac electrodes can be rotated around an axis perpendicular to the trap axis and intersecting 

it in the balance center. The ac electrodes have inner and outer diameters of 8 and 14 mm, respectively, 

and an inclination of 18 . The broad shape was chosen in order to reduce field distortions, especially 

due to the ring supports, while keeping the stabilization strength constant of the EDB high. The conical 
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shape of both surfaces of each ac electrode minimizes the range of scattering angles obscured by the ac 

electrodes. Near the trap center the potential can be approximated by 
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where Vac is the amplitude of the ac voltage applied to the electrodes,  is the angular frequency of the 

ac voltage, and c-1 and c1 are constants. The stabilization strength constant c1 = -1.625 10
4
 m

-2
 was 

determined by numerically calculating the potential along the trap axis for the given geometry and 

fitting to it a polynomial of second order for distances up to 1 mm from the trap center. The parameters 

c0 and c1 correspond to the values C0 = 0.77 and C1 = -2.15 of the dimensionless constants for levitation 

strength and stabilization strength introduced by Hartung and Avedisian (1992). Particles for injection 

are picked up from a metal surface using a tungsten needle with 125 m diameter and 5 m radius of 

curvature at the tip, mounted on a 3-axis translation stage. Particle collection can be made easier by 

applying to the needle a small positive voltage of 2 to 5 V. For ejection the needle with the particle is 

positioned just above the aperture. The particle is contact charged by applying to the needle a voltage 

positive with respect to the aperture. This voltage is increased until the electrostatic force on the 

particle exceeds the adhesion force (which is large in comparison with gravity) and the particle is 

released. Using this method, single 5 m silica spheres are ejected at ~ 100 V and they obtain charges 

of typically ~ 10 fC. For particle injection the voltages on the ring electrodes (frequency and 

amplitude) and the dc electrodes (sign and amplitude) have to be adjusted carefully taking into 

consideration the size and material of the particle to be injected (see sections 3A and 4C). Once the 

particle is trapped in the EDB, it can be moved to the center by adjusting the dc voltage. By applying 

suitable voltages it is possible to recover the particle back onto the needle for further investigation by 

other methods, such as SEM. 

 

 

3. PARTICLE INJECTION AND RECOVERY 

A. Particle injection 

 

When contact charged, particles leaving the needle are exposed to the combined ac and dc fields, the 

aerodynamic drag force and gravity: 

D2

2

),(
d

d
FerE

r
zmgtq

t
m         (2) 

In this equation m, q and r are the particle mass, charge and position, respectively, E is the electric 

field, g the acceleration due to gravity, ez the unit vector parallel to the force of gravity and FD the drag, 

which is parallel but opposite in direction to the velocity of the particle with respect to the medium, 

defined by 
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where D is the drag coefficient, A is the projected area of the particle on the plane normal to the 

direction to its movement, m is the density of the medium, and dr/dt is the velocity of the particle (the 

air in the EDB is assumed to be stationary).  

For low Reynolds numbers Re, the drag coefficient can be approximated by Stokes law, and the drag 

coefficient is 
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where lc is the characteristic length of the particle (e. g. the diameter of a sphere or a cylinder), and  is 

the viscosity of the surrounding medium. 

 Graph a) in Fig. 1 shows the numerically calculated field distribution Eac(Z) at t=n2 / , n 

integer, for a voltage Vac(t)=1000V cos( t) applied to the ring electrodes. This graph has a nearly linear 

range between –0.4 and 0.4 cm which is antisymmetric with respect to Z = 0. In this range the 

sinusoidally time varying electric force is approximately proportional to the distance from the center, 

and an injected particle would oscillate with a damped motion towards the center, if gravity was 
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compensated and starting velocity small. However, due to the ac field a particle entering the chamber 

through the aperture in the top electrode at Z = -1.15 cm experiences a force directed towards the top 

electrode in the range down to Z = -0.5 cm. If the mass and starting velocity of the particle from the tip 

are not high enough, the particle can be prevented from entering the trap region around the center of the 

EDB. This problem can be overcome by increasing the ac frequency or decreasing the ac amplitude. In 

the case of very light particles it may be necessary to apply an accelerating voltage between the dc 

electrodes. Curves a) to d) in Fig. 2 show calculated trajectories for 5 m silica spheres with a charge 

of 10 fC for different potentials of the dc electrodes. The ac voltage at the ring electrodes was set to 

1000 V amplitude. An acceleration voltage of ~ 30 V is necessary to transfer the particle into the 

central trap region (trajectory c). At higher acceleration voltages (~ 40 V) the ac field is too weak to 

trap the particle, which will leave the trap at the opposite side (trajectory d). The particle can be trapped 

by switching the acceleration field off after the particle entered the trapping region. 

 

 

B. Particle recovery 

 

Particles can be recovered from the trap by the following procedure. A voltage is applied to the dc 

electrodes which is about twice as high as the voltage which is necessary to keep the particle in the trap 

center, so that the particle oscillates below the upper ring electrode. The needle is then slowly inserted 

into the trap until the distance between needle tip and trap center is reduced to 6.5 mm, while keeping 

the needle near ground potential. Before releasing the particle from the trap by switching the ac voltage 

off, the needle tip has to be aligned exactly on the axis of the balance (this can be checked by a 

comparison with the position of the particle), and a suitable dc voltage has to be applied to the needle. 

The ratio between potentials at the needle and at the dc electrodes is chosen in such a way that the field 

at larger distances from the tip (> 2.5 mm) is identical with the field in absence of the needle (Fig. 1, 

graphs b,c). Needle potentials of lower absolute value would cause repulsion of the particle from axis. 

In order to prevent particle bouncing or damage during impact the final velocity of the particle should 

not be too high. On the other hand, the particle should move to the needle in a reasonable, not too long 

time, and 1 to 2 seconds was found to be satisfactory. Fig. 2e) shows the particle position Z(t) for a 5 

m silica sphere with a charge of 6 fC. If necessary, the final acceleration of the particle could be 

further reduced by using a needle for particle launching different from the one for particle recovery, the 

latter needle having a larger radius of tip curvature.  

 

4. STABILITY CHARACTERISTICS OF CYLINDRICAL FIBERS IN THE EDB  

 

Levitation of nonspherical particles is of interest for several applications, e.g. light scattering 

measurements, and particle orientation and stability are important in this context. In this work, the 

stability of levitated cylindrical fibers is investigated. Apart from translational (vibrational) 

instabilities, angular (rotational) instabilities are observed. Usually, angular instabilities appear first 

when changing ac parameters of a stable levitated cylindrical particle. In the following, the equations of 

angular and translational motion are derived and solved numerically, and the results are compared with 

experiments. 

 

 

A. Angular stability boundary 

 

The torque exerted on a fiber positioned in the balance center (which means that the dc field 

compensates gravity) is: 

DEl MMM          (6) 

where MEl is a torque due to electrostatic forces, and MD is a reduction of torque due to aerodynamic 

drag forces. 

For calculating the torque due to the electrostatic forces, the fiber charge q is assumed to be 

uniformly distributed along the fiber length Lp. While this is a simplifying assumption, numerical 

calculations show that the oscillations of the ring voltage do not significantly alter the charge 

distribution along the fibers and the charge density near the ends of the fiber is only slightly higher than 

in the center. This is because for sufficiently large charges on the fibres, which was the case for the 

experiments reported here, the distribution is determined mainly by Coulomb repulsion on the fiber 

surface. Also, the polarization charge induced by the ac field is expected to be about three orders of 

magnitude lower than the charge introduced to the fiber by contact charging. A length element dl of the 

fiber placed in the electric potential V and at a distance l from the pivot at Lp/2 experiences a torque 
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where e = sin  eR + cos  eZ  is a unit vector parallel to the fiber, with eR and eZ being the unit vectors of 

the radial and axial cylindrical coordinates, respectively, and  is the angle between the fibre and the 

axis of the trap (Z axis).  

The dc field is neglected as it is comparatively weak and, furthermore, it is symmetric near the EDB 

center and does not therefore exert a torque on the fiber (in the absence of polarization). After the 

substitution of the ac potential (1), the magnitude of the torque element described by Eq. (7) becomes  
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A particle subjected to a constant torque Mc due to external forces as well as to viscous drag will attain 

an equilibrium angular velocity  
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where B  is the angular mobility (Fuchs, 1964; Lilienfeld, 1985). Eq. (9) can be considered to be an 

angular motion equivalent of the Stokes law. The angular mobility for a fibrous particle can be 

approximated by that of a prolate ellipsoid (Fuchs, 1964) 
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where  is the ellipsoid aspect ratio, assumed to be equal to that of the cylinder (i.e.  = Lp/2Rp) and 

C ( ) is a function of  only. The ellipsoid and the cylinder are also chosen to have equal volumes, 

hence the minor semi-axis of the ellipsoid Re = (3/2)
1/3

Rp.  

Since at equilibrium Mc + MD = 0, we can rewrite Eq. (9) as 
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We use this term as an approximation for the torque due to viscous drag. Newton’s second law for 

angular motion, using the expression for the torque given by Eq. (6), then yields the following 

differential equation: 
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where p is the fiber density. The left-hand side of this equation is the moment of inertia of a slender 

fiber (approximated for >>1). The first term on the right-hand side is the torque MEl due to the 

electrostatic forces, obtained by integrating Eq. (8) along the length of the fiber. The second term, the 

torque reduction due to the aerodynamic drag forces on the entire fiber, is obtained from Eq. (11). 

After introducing a generalized time variable T=  t the following equation of motion for the 

orientation angle of the fiber is obtained: 
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By introducing a stabilizing field strength parameter for angular stability   
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and a drag parameter  
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which include all characteristics of the particle and the balance, a generalized equation is obtained: 
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This equation, which is similar to Mathieu’s equation, describes the angular motion of any cylindrical 

fiber positioned in the center of an EDB. It is analogous to the equations derived by Hartung and 

Avedisian (1992) for the vertical and radial movement of a particle in an EDB.  

Eq. (14) allows numerical calculation of stability boundaries for a cylindrical particle in an 

EDB. A generalized stability diagram is shown in Fig. 3. Due to damping, angular movement of a 

cylindrical particle should be absent for all values [ , ] within a stable region. When entering an 

“instability region”, the particle starts to oscillate around its stable orientation at an angular frequency 

/2. The oscillation is restricted to one plane, which occasionally rotates slowly around the trap axis. 

The oscillation amplitude will increase when moving deeper into the instability region, until the 

orientation switches irregularly by multiples of /2. When moving further into the instability region, 

switching becomes more frequent, and at certain values of ac amplitude and frequency axial 

instabilities occur (see next section).  

According to Eq. (13) a reduction of the drag parameter will cause the angular stability limit 

to be reached at lower ac amplitudes and higher ac frequencies. For particles of equal mass to charge 

ratio  

))(/(1
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 is obtained. With increasing aspect ratio the factor 1/ C ( ) will increase. On the other hand,  will 

decrease with increasing particle length. For particles which have equal mass and charge the 

proportionality  
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is obtained. Rp can be expressed by the particle volume V and the aspect ratio: 
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Inserting Eq. (17) into Eq. (16) gives 
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Since this expression varies slowly with  the drag term depends only weakly on the aspect ratio. 

 

 

B. Axial and radial stability boundaries 

 

Apart from angular instabilities, the cylindrical fibers show also instabilities due to translational 

oscillations parallel to the axis of the EDB, similar to those observed for spherical particles (see e.g. 

Hartung and Avedisian, 1992). Radial instabilities do not occur due to the smaller gradient of the radial 

field component: to induce radial instability, higher voltages or lower frequencies are needed than for 

the axial direction. Once the particle reaches the axial stability boundary, it will oscillate with /2 in 

the axial direction. When moving further into the instability region, the amplitude of the oscillations 

will increase until the particle escapes. We have found that an elongated particle originally aligned 

parallel to the trap axis might become axially unstable at certain values of ac voltage and frequency and 

flick into the horizontal orientation, where it will be stable due to the larger projected area 

perpendicular to the trap axis. 

The motion of the particle is assumed to be confined in one plane parallel to the axis of the 

EDB, which is chosen to be the Z-axis. In cylindrical coordinates, the axial component of Eq. (2) is 
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where FDz is the axial component of the viscous drag. The drag experienced by an ellipsoid is 

uRF sD 6  

where u is the velocity of the ellipsoid and Rs is the radius of a sphere which would experience the 

same drag. For estimating drag the fiber is assumed to be aligned perpendicularly to the trap axis and 
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angular oscillations are neglected. The radius of the “equivalent sphere” for a prolate ellipsoid which is 

moving perpendicularly to its major axis is  
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Where  is the ellipsoid aspect ratio (Happel and Brenner, 1983). When approximating the cylinders by 

ellipsoids, the same assumptions concerning ellipsoid aspect ratio and volume are made as in section 

4A.  

By rearranging Eq. (19), inserting Eqs. (7) and (20) and introducing again the generalized time T we 

obtain the following equation for a fiber for which gravity is compensated by the dc field 
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The drag parameter z and the stabilizing field strength parameter z for axial stability are, respectively: 
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where Cz( ) is a function of the aspect ratio only. Fig. 4 shows the axial stability boundary calculated 

from Eq. (21). A reduction of the drag term in Eq. (21) will cause the axial stability limit to be reached 

at lower ac amplitudes and higher frequencies. Considering particles of equal mass to charge ratio  
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 is obtained. With increasing aspect ratio the factor Cz( )/  will decrease. The drag parameter z will 

decrease with increasing cylinder radius. For particles which have equal mass as well as charge  
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is obtained. In this expression the drag term increases with aspect ratio. 

 

 

C. Experimental investigation of angular and axial stability boundaries 

 

Angular and axial stability boundaries were investigated experimentally for levitated cylindrical glass 

fibers. The fibers were selected from a sample of crushed glass fiber loft insulation using a fine 

tungsten needle mounted on a 3-axis translation stage and deposited initially on a 1000 mesh copper 

TEM grid. Single fibers were injected into the trap using a method similar to that described in sections 

2 and 3A. A fiber was picked up from the grid using a tungsten needle so that it was attached with one 

end to the needle tip and aligned parallel to the trap axis when it was positioned just above the aperture. 

Prior to injection its dimensions were measured by optical microscopy. An ac voltage of about 900 V 

rms and 400 Hz was applied to the ac electrodes. An accelerating voltage of about 20 V was applied to 

the dc electrodes. In order to obtain high particle charges, the dc voltage at the needle was slowly 

increased until the particle was ejected. For the fibers used in the experiments described below, the 

maximum needle voltage varied between 140 and 520 V. When the particle passed the trap centre, the 

acceleration voltage at the dc electrodes was switched off, and the ac voltage and frequency were 

increased and decreased, repectively, in order to increase particle stabilization by the trap. The stability 

limits were determined by a method analogous to the Sprungpunkt technique described for spherical 

particles (e.g. Hartung and Avedisian, 1992), as follows. The fibers were stably levitated and gravity 

was compensated by the dc voltage, which means that the fiber was aligned at the trap center either 

perpendicular or parallel to the trap axis and it was not oscillating axially or rotationally. In the next 

step the ac amplitude was increased to the maximum available value while keeping the ac frequency 

reasonably high in order to sustain particle stability. Then the ac frequency was decreased until angular 

oscillations started, and the onset values were determined. Subsequently, the ac frequency was further 
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decreased. The angular oscillations became stronger, and at a certain ac frequency value axial 

instabilities started. To find further points on the stability boundaries, the ac amplitude was decreased 

and new frequency values determined. Fig. 5 shows an image of a 136 m long fiber undergoing 

angular oscillations with an amplitude of about 38 . 

Experimental values for the angular stability boundary for cylindrical glass fibers of 40, 83, 89 

and 144 m length are given in Fig. 3. The particle diameter varied between 8.1 and 11.2 m. The 

frequency and voltage values [f, Vac] for the angular stability limit for the different fibers as well as 

individual fiber stability boundaries corresponding to the calculated graph in Fig. 3 are shown in Fig. 6. 

The parameters of the investigated particles are listed in Table 1. The particle mass was determined 

from the particle dimensions using the density value of 2.2 g/cm
3
, and the particle charge was 

calculated from the dc voltage Vdc necessary to compensate for gravity using the equation 

q=mg/(c0·Vdc).  

Fig. 3 shows that, apart from slightly higher  values for the 40 m fiber, the data points for 

the fibers of different length are aligned along the same curve, which has the same slope as the 

calculated graph. Most data points lie within experimental error of the calculated graph, which is also 

true for the 40 m fiber. For this fiber the experimental error of the field strength parameter is largest 

due to the high particle charge, which results in the smallest value of Vdc and therefore the highest 

relative error of measurement. For the 83 and 89 m fibers, which have approximately equal mass but 

a charge ratio of 1.83:1, the angular stability limit was found to be at adjacent frequency ranges (300 to 

170 Hz and 170 to 120 Hz, respectively) for the investigated ac voltage ranges (1700 to 700V rms and 

1530 to 1080 V rms, respectively). The 83 and 144 m fibers, which have approximately equal mass 

and charge but aspect ratios of 7.38 and 17.14, respectively, show nearly identical values [f, Vac] for the 

angular stability limit. This agrees with Eq. (18), which predicts only a small increase of the drag term 

with aspect ratio.  

In Fig. 4 the data points for the axial stability limit of cylinders of different length are aligned 

along a curve which is parallel to the calculated graph, although the measured field strength parameter 

values and/or drag parameter values are slightly higher than the calculated ones. The values [f, Vac] for 

the axial stability limit for the different fibers as well as frequency-voltage curves obtained using the 

values [ z, z] from the calculated graph in Fig. 4 are shown in Fig. 6. For each fiber a linear dependence 

between ac frequency and amplitude is observed in the investigated parameter range. Like for the 

angular stability limit, the [f, Vac] values for the 83 and 144 m fibers are aligned nearly along the same 

line. This is consistent with Eq. (23) which predicts only a slight change in the drag with the aspect 

ratio. For the 83, 89 and 144 m fibers the slope of the experimental data is slightly steeper for the 

axial stability limit than for the angular stability limit. This means that at the onset of axial instabilities 

angular oscillations are becoming stronger with increasing ac amplitude. It can be expected that for 

certain low values of ac frequency and amplitude the angular and axial stability limits will occur 

simultaneously and that below these points axial instabilities will appear first. In principle, this agrees 

with the calculated curves in Fig. 6, although the intersections of the calculated stability boundaries for 

the different fibers and the intersection locations extrapolated from experimental data are different due 

to experimental errors. 

 

 

5. CONCLUSIONS  

 

An EDB for single particle injection, levitation and recovery has been developed. The particle is 

contact charged on the tip of a sharp tungsten needle. Especially for the injection of small (and 

therefore light) particles, amplitude and frequency of the ac voltage applied to the ring electrodes and 

the dc voltage applied to the end-cap electrodes have to be chosen carefully in order to allow the 

particle to reach the trapping region of the EDB. After levitation experiments the particle can be 

recovered from the trap by applying suitable dc potentials to the needle tip and the end caps and 

switching the ac voltage off. 

Stability characteristics of cylindrical fibers in this EDB have been investigated, including 

angular as well as translational motion. Because axial and angular instabilities are not independent, it is 

difficult to predict the onset of angular and/or axial instabilities for a particle of given mass, charge and 

shape. One possible application of angular oscillations in an electrodynamic trap might be for the 

characterization of particles by light scattering, for example shape determination. Furthermore, particle 

instabilities can be used for switching between vertical and horizontal particle orientation, either by 

inducing strong angular oscillations and moving back into a stable region when the particle is 

oscillating around the required orientation, or by passing through axial instabilities of relatively large 

amplitude. For a completely rotationally symmetric trap the orientation of the particle in the plane 
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parallel to the ring electrodes would not be defined. However, in the trap used in the experiments 

described here, the particle will align perpendicularly to the supports for the ring electrodes. In this way 

observation and measurement at two orthogonal particle orientations is possible. The particle can be 

aligned in a direction approximately perpendicular to these two orientations if the rings are rotated by 

90 . Then the particle can be switched between an alignment parallel to the axis of the rings, which is 

now horizontal, and a direction in the plane of the rings. In a perfectly rotationally symmetric trap a 

particle of perfect cylindrical symmetry would align horizontally. However, irregularities and/or 

inhomogeneities may cause the particle to be slightly tilted. Intermediate angles of inclination of the 

particle can be achieved by corresponding tilting of the ring electrodes. 
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Table 1. Parameters of levitated glass fibers 

Particle No Length Lp 

( m) 

Diameter 2Rp 

( m) 

Lp/(2Rp) Mass m 

(ng) 

Charge q 

(pC) 

q/m 

(pC/ng) 

1 40 8.1 4.94 4.53 0.35 0.279 0.036 0.0616 

2 83 11.2 7.41 18.2 0.54 0.347 0.039 0.0191 

3 89.2 11.2 7.96 19.5 0.54 0.152 0.009 0.0078 

4 144 8.4 17.14 17.6 1.26 0.356 0.028 0.0202 

 

 

 

 

 
 

Fig. 1. Diagram of the EDB and electric field strength distributions along the trap axis: a) ac field 

amplitude Eac(Z) for an ac voltage of 1000 V amplitude applied to the ring electrodes, b) field strength 

of the dc field Edc(Z) along the trap axis for –10 V and +10 V w. r. t. ground potential at the top and 

bottom dc electrode, respectively, c) Edc(Z) along trap axis for needle position at 0.65 cm above the trap 

center for particle recovery, Vneedle = -7 V, with dc electrodes at the same potential as in b).  
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Fig. 2. Calculated launching trajectory of a 5 m silica sphere (q = 10 fC) for a ring electrode voltage 

Vac= 1000 V amplitude, f = 800 Hz and an accelerating voltage Vdc between the dc electrodes of a) 0 V, 

b) 20 V, c) 30 V, d) 40 V. Graph e) shows the calculated trajectory for recovery of a 5 m sphere (q = 

6 fC) at the needle tip positioned at –0.65 cm (Vneedle = -7 V), potentials at top and bottom dc electrode 

were set to –10 V and 10 V, respectively. 

  

 

Fig. 3. Calculated angular instability boundary (Eq. (14)), and experimental results for glass fibers 40, 

83, 89, and 144 m in length.  
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Fig. 4. Calculated axial instability boundary (Eq. (21)), and experimental results for glass fibers 40, 83, 

89, and 144 m in length.  

 

 

Fig. 5. Angular oscillations of a 136 m long fiber. 

 

Fig. 6. Experimental values [f, Vac] for angular and axial instability boundaries for glass fibers 40, 83, 

89, and 144 m in length and frequency-voltage curves calculated using the values [ , ] and [ z, z] of 

the calculated graphs in Figs. 4 and 5, respectively. 


