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Abstract  The processes and mechanisms of biological

neural development provide many powerful insights for

the creation of artificial neural systems.  Biological

neural systems are, in general, much more effective in

carrying out tasks such as face recognition and motion

detection than artificial neural networks.  An important

difference between biological and (most) artificial

neurons is that biological neurons have extensive tree-

shaped neurites (axons and dendrites) that are

themselves capable of active signal transduction and

integration.  In this paper we present a model, inspired

by the processes of neural development, which leads to

the growth and formation of neuron-to-neuron

connections.  The neural architectures created have tree-

shaped neurites and contain spatial information on

branch and synapse positions.  Furthermore, we have

prototyped a simple but efficient way of simulating

signal transduction along neurites using a finite state

automaton (FSA).  We expect that the combination of

our neuronal development method with the FSA that

mimics signal transfer, will provide an efficient and

effective tool for exploring the relationship between

neural form and network function.

Index Terms artificial neural networks, biological

modelling, developmental models.

I. INTRODUCTION

Biological neural systems are, in general, much more

effective in carrying out tasks such as face recognition

and motion detection than artificial neural networks

(ANNs) [9]. An important difference between

biological and (most) artificial neurons is that

biological neurons have extensive tree-shaped neurites

(axons and dendrites) that are themselves capable of

active signal transduction and integration [7], [8]. It

has been shown [11], [12] that axonal spike patterns

generated by so-called 'bursting' neurons are strongly

dependent on the shape and extension of the dendrites.

Although it is unclear whether and how such spike

patterns relate to neuronal function, it is widely

assumed that there is such a relationship [8].

In conventional ANNs, nodes integrate instantaneous

pre-synaptic input, and fire if the accumulated input

exceeds a threshold. Nodes in spiking neural networks

(SNNs), integrate input over a finite period of time,

and their output depends on their current input as well

as on their input history. Time is introduced through

the use of delays between input and output. SNNs

have been found to be particularly useful for dynamic

pattern recognition of temporally encoded data [4],

[23], and seem at least to be as powerful as traditional

ANNs. They even require fewer neurons than

conventional neural network models for the

computation of certain functions [12]. Thus, the study

and application of SNNs offers glimpses into the

possible function of spiking and spike patterns in

biological neural systems, but, as SNNs have no

spatial components, they cannot provide information

on the relationship between network growth, form,

and function.

The performance of neural networks, whether

biological or artificial, is determined by their

architecture, and their potential to learn and adapt.

The architecture of an ANN is largely determined by

its design procedure, which is, therefore, of great

importance in the selection of ANNs for specific

tasks. A number of automatic design procedures exist,

some constructive, building the network gradually,

and some involving a pruning process [3], [14].

However, all of these procedures tend to produce

relatively rigid ANNs with stereotyped architectures.

Our approach to ANN design is to simulate the

development of biological neural systems, with the
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aim to produce ANNs that are more dynamic and

adaptive, and have a wider application range than

current ANNs.  In this paper we propose a scheme to

integrate the computational potential of SNNs with a

model of automatic ANN architecture design, in

which function is related to the structure of the ANN.

Therefore, we have developed a procedure for

generating three-dimensional neural networks and

creating inter-neuron connections that mimics

embryonic neural network development [15], [17].

Furthermore, we have prototyped a simple but

efficient way of simulating signal transduction along

neurites.

The rest of this paper is organised as follows.  Section

2 gives an overview of our developmental model,

section 3 discusses the evolutionary mechanism for

producing specific neural morphologies, section 4

gives some of our results and section 5 is a discussion

and conclusion.

Figure1.  Examples of neuron morphologies generated with the neuronal development method.

II. ANN DEVELOPMENT PROCEDURE

In the ANN development procedure, neurons grow

within a 3-dimensional artificial 'embryonic

environment', and neuron-to-neuron connectivity is

created through interactive self-organisation. The

embryonic environment consists of local 'chemical'

gradients that are emitted by neurons. These chemical

gradients affect neural outgrowth according to a small

set of rules. The precise operation of these rules is

controlled by a set of parameters, which are encoded

into a 'genome'. Some rules specify the mechanisms

that directly affect the morphology of the developing

neurons (e.g. branching and pruning rules), whereas

other rules specify the sequence in which genes are

activated, and dictate gene-gene interaction. As a

result, neurons with an identical 'genotype' can have

completely different 'phenotypes', as interactions

between individual neurons create differences in local

chemical environment, which, in turn, lead to

different patterns of growth, branching, and synapse

formation.

Together these rules can be grouped into classes or

phases of development:

• Neurite Outgrowth Rules. These rules enable

neurites to extend and explore their local

environments within the simulation. Rules encode

how the growing tips branch in response to sensed

gradient conditions. Growth is based on a simple

attraction/repulsion model. The gradients of chemicals

produced by dendrites attract axons and vice versa. At

the same time, dendrites repel other dendrites and

axons repel other axons.  Synapses form when

growing axons and dendrites ‘collide’.

Two principle mechanisms of neurite branching have

been implemented. Intrinsic branches are ones that

occur at genetically determined times, but where the

directions taken post-branching can be mediated by



the local chemical gradients. Interactive splitting of a

neurite is induced solely by the local environment, for

example, a neurite may branch in response to

chemical sources being emitted at right-angles to its

current direction of growth.

• Spontaneous Neural Activity Rules. Once

connections have formed between neurons, phases of

spontaneous neural activity are used to regulate the

growth rate in subsequent time steps. These particular

rules are inspired by mechanisms observed during

development of the mammalian retina and visual

system [20].

• Pruning Rules. Once growth has been completed,

extraneous connections and neurons are removed

based on the cumulative affects of the interspersed

activity phases. Overgrowth and the creation of too

many initial synapses is a common phenomenon in

development, representing a built in mechanism for

error correction through the removal of redundant

neural circuitry [1]. The model seeks to mimic such

characteristics.

Whilst the developmental rules have been sub-divided

into different phases, it should be stressed that the

mapping from the specification of the rules (genotype)

to the resulting neurons/networks (phenotype) is a

complex, non-linear process due to self-organising

interactions between the rules.  A more detailed

mathematical description of the rules can be found in

[18].

A wide variety of neuron and network morphologies

can be achieved by varying these parameters, some

examples of which are illustrated in Figure1.  The

creation of individual neuron morphologies or

networks does not however, have to be the result of a

single phase of growth.  The example in Figure 1 in

the middle of the bottom row was created by growing

the initial parallel fibres in the lower plane of the

figure. These parallel fibres then acted as static

gradient sources which attracted the descending

dendrites to create the final complex structure.

III. EVOLUTIONARY NEURAL DEVELOPMENT

Given the wide range of potential morphologies which

the simulator can develop, the next step was to

evaluate whether it was possible to direct the model to

grow specific target morphologies with possible

desired functionality.  Essentially the capability of the

model to create varieties of structure derives from the

way in which the developmental rules are governed

by changes in parameter values. Therefore, the task of

using the developmental simulator to achieve

particular architectures or functionality becomes

equivalent to searching for optimal sets of

developmental parameters.

The optimisation process involves searching a multi-

dimensional space of all developmental parameters.

The size of the search space is determined by the

number of parameters under investigation and the

range of values that these parameters can take.

Within this space there is a hoped for region, or

possibly regions, where for a given task, a set of

suitable parameter values may be found. For one

particular application this will be one region, whilst

for another application it may be another different

region. If the number of parameters is large and their

potential ranges great, then the potential search space

is large. The larger and more complex the search

space, the longer an optimisation method will run for.

Figure2. An overview of a typical evolutionary development

scenario. A population of genotypes, or sets of different

developmental parameters, specifying the creation of networks or

neurons, exists within an artificial developmental environment.

Under the control of the developmental rules, the genotypes are

decoded to form 3D neuron architectures. Each developed network,

or phenotype, is then measured against a target, possibly based on a

specific architecture or a desired functionality.  In this example, the

target architecture is a model inspired by edge-detection circuitry

within the mammalian retina. This assessment of the performance

of the developmental programme, provides feedback to the

evolutionary process which subsequently modifies the population of

genotypes. Those genotypes, or sets of developmental parameters,

that produce networks with the best performances are said to be the

fittest and are retained. This subset of genotypes are then bred using

algorithms akin to crossover and mutation, to form a new

population of prospective genotypes. The evolutionary cycle is then

repeated until the evolved phenotypes hopefully meet the desired

target, in this case the target retina architecture.

The genetic algorithm (GA) was chosen over other

optimisation techniques (such as simulated annealing,



hill climbing and conjugate gradient) as the tool with

which to search the developmental parameter space.

GAs are thought to offer the best results when search

spaces are large and real-valued [13]. The

developmental search space can also be extremely

rugged, containing many discontinuities. Other

optimisation techniques are less likely to be able to

traverse such spaces.  The GA is incorporated into the

developmental process as described and illustrated in

Figure2.

An off-the-shelf GA implementation, GENESIS [6],

was used in the evolutionary  experiments. By current

standards GENESIS is a simple implementation of the

GA but it does include the principle evolutionary

mechanisms of crossover and mutation. We

specifically chose a simplistic GA to verify that it was

the in-built capabilities of the developmental model

which would lead to desired architectures and that it

was not due to a critical reliance on the optimisation

model.  In essence, the GA was simply being used to

fine-tune the self-organising mechanisms.

IV RESULTS

A. Evolution of Network Architectures

Our first test application was an edge-detecting retina.

Two separate approaches were used to evolve a fully

functional, large-scale artificial neural network

capable of performing (static) edge detection [17],

[18]. Since the (biological) retina has a stereotypical

structure, the fitness function used by the GA

rewarded correct structure in the first approach. In the

second approach, the fitness function rewarded ability

to detect edges on a set of sample images.

As the number of parameter values that must be

evaluated in the optimization process is very large, it

is necessary to evolve the genome in stages. The start

of a new stage is, in many respects, comparable to the

emergence of new species in the 'punctuated

equilibrium' model of biological evolution [2].

'Speciation' is achieved by the (manual) addition of

new genes to a genome that is deemed close to its

peak fitness. Thus, evolution starts with a genome that

specifies a set of simple rules. When this genome has

been adequately optimised, genes that specify more

complex behaviour are added, and so on.

This modelling in stages was used in both fitness

function approaches described above, as was the

method of using a small-scale version of the neural

network in the optimisation process to save on

computational effort. The model used was a 6 by 6

grid of cone cells with correspondingly smaller test

images. After evolving a small model of the retina, the

resulting rules were then successfully applied to grow

a retinal model capable of performing edge detection

that was considerably larger (a 32 by 32 grid of cones)

than the one used in the evolution [16].  Figure3

illustrates the results of the optimisation.

Figure3. An illustration of the neural structure grown to illustrate

edge detection in a retina.  This is the small retina version used in

the optimisation process rather than the much larger version used as

a final test.  The first diagram gives the input image and the second

gives the target output.  The lower two diagrams illustrate the actual

network produced and its output.  The actual output is not an exact

match for the target above as the optimisation was performed on a

retina where the initial positions of the neurons are perturbed.  This

example demonstrates that the development process is robust to

noise and adaptive to perturbations.

B. Evolution of Multi-Compartment Neurons

In the evaluation of the edge-detecting retina, all the

individual neurons have dendrites (signal receivers)

and a branched axon (signal transmitters), all of which

have certain lengths. However, only the connectivity

of the neurons was considered, not their length. In

more biologically realistic models, the physical

extension and signal transduction characteristics of

neuronal membrane need to be taken into account as

well. Using classical compartmental simulation

techniques, involving multiple simultaneous ordinary

differential equations (ODEs) to evaluate dendritic

and axonal signal transfer, we have also been able to

generate functionally realistic single bursting neurons

[10].  In fact the spiking behaviour of the grown

neurons was remarkably similar to that of the given

stellate and pyramidal neurons, even though the

artificial dendrites had shapes that were ostensibly

quite different from their biological examples [16].



The process involved growing individual neurons,

mapping an ODE model into the neurons, based on

Mainen and Sejnowski’s compartmental model [11]

and then evaluating the resulting response to an

induced activity pulse. In this scenario the fitness of

evolved neurons was determined by analysing  the

frequency and spacing of generated spikes against

those pulse trains measured in biological neurons.

An example of the use of the developmental simulator

to evolve neurons with specific spike trains, is

illustrated in Figure4.

Figure4.  An example of the evolution of activity spike trains in

single compartmental neurons.  On the left is a superposition of a

required spike train (from a Pyramidal Neuron) and the spike train

produced by the final evolved neuron shown on the right.  The two

spike trains are very similar.

V. DISCUSSION AND CONCLUSION

During the development of the artificial bursting

neurons, we found that the computational cost of

network evaluation using classical modelling

techniques (all based on numerical solution of ODEs)

forms a major bottleneck. Therefore, we have

developed a discrete finite state automaton (FSA)

model of neural signal transduction, which is, in

important respects, behaviourally equivalent to the

current models, and that, we hope, will permit faster

evaluation of 3-dimensional neuronal networks [21].

The FSA neuron model consists of many

compartments, arranged in tree structures (dendrites,

axons) which are connected at their roots to a 'soma',

and via synapses to neighbouring neurons (see

Figure5).  Passive signal transduction along the trees

is modelled as a diffusional process; active signal

transduction occurs in compartments that mimic the

dynamic behaviour of classic two-equation models of

excitable media. The FSA model can emulate the

most important characteristics of both passive as well

as active neurites [19].

Figure5. A diagram of a FSA model of the tree structure of the

compartments of a neuron.  The next state of the black compartment

is determined by the accumulated excitation of its neighbourhood.

The shaded region illustrates a radius 3 neighbourhood.

In passive dendrites, a brief excitatory pulse

administered to a single unit distributes itself over the

whole structure, whereas in active neurites it

generates two excitation waves ('action potentials')

that move in opposite directions. Pulse propagation

along a branched structure is generally secure for

waves spreading towards distal regions, but tends to

be blocked for waves travelling in the opposite

direction.

An important aspect of active wave propagation in

extended tree-like structure is that the waves interact

when they coincide at a junction of two branches.

Waves may annihilate or reinforce each other,

dependent on their phase. Upon sustained excitation

of the synapses connected over their branches,

dendrites will produce complex spiking patterns that

are typical for the dendrite structure, and the exact

position of the synapses on the branches [5].

In a system in which branching patterns and spatial

distribution of synapses affect the timing of, and

interaction between signals, the morphology of a

developed neural network will determine the delays

(and hence arrival time) of the input signals.  The

smaller the difference between the arrivals, the larger

the resulting post-synaptic signal and the earlier firing

occurs.

By feeding the output back to the synaptic efficacy,

this type of spike-timing-dependent synaptic plasticity

(STDP) increases the likelihood that different synaptic

inputs arrive together in a cluster [22]. Therefore,

their ability to evoke post-synaptic signals is increased

as well and by cooperatively generating post-synaptic

signals, such a cluster can grow stronger, while

weakening other synapses that are not part of the

cluster. In other words, different synapses are



automatically forced to compete for control of the

timing of post-synaptic signals. Besides being a

desirable property in itself (it forestalls the instability

inherent to Hebbian learning), this and other self-

organising features will be exploited in further work

to create artificial neural networks for improved

dynamic pattern recognition (as prerequisites for

motion detection and time series prediction).

We have shown that our neuron development method

can be used to create single neurons, as well as neural

networks with functional characteristics akin to

biological examples. We have also demonstrated that

our signal transfer FSA reproduces the key

characteristics of signal transfer in biological neurons.

However, the signal transfer FSA method still needs

further evaluation and testing, and the development

method has not yet been combined with the signal

transfer FSA.

We expect that the combination of our neuronal

development method with the FSA that mimics signal

transfer will provide an efficient and effective tool for

exploring the relationship between neural form and

network function. Such a tool could be used for

statistical investigations on neural spiking

characteristics as a function of neuronal shape,

synapse positions, and excitation patterns, as well as

for rapid evolution of networks that perform specific

functions. Thus, we aim to use the combined

methodologies to investigate the principles that

govern the functioning of biological neural networks,

and also to design artificial neural networks with

novel functions. In this last respect, we shall focus on

networks that can deal with time-dependent processes.
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