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Abstract – This paper investigates the choice of spatial weighting matrix in a spatial lag model framework. In the empirical 

literature the choice of spatial weighting matrix has been characterized by a great deal of arbitrariness. The number of possible 

spatial weighting matrices is large, which until recently was considered to prevent investigation into the appropriateness of the 

empirical choices. Recently Kostov (2010) proposed a new approach that transforms the problem into an equivalent variable 

selection problem. This article expands the latter transformation approach into a two-step selection procedure. The proposed 

approach aims at reducing the arbitrariness in the selection of spatial weighting matrix in spatial econometrics. This allows for a 

wide range of variable selection methods to be applied to the high dimensional problem of selection of spatial weighting matrix. 

The suggested approach consists of a screening step that reduces the number of candidate spatial weighting matrices followed by 

an estimation step selecting the final model. An empirical application of the proposed methodology is presented. In the latter a 

range of different combinations of screening and estimation methods are employed and found to produce similar results. The 

proposed methodology is shown to be able to approximate and provide indications to what the ‘true’ spatial weighting matrix 

could be even when it is not amongst the considered alternatives. The similarity in results obtained using different methods 

suggests that their relative computational costs could be primary reasons for their choice. Some further extensions and 

applications are also discussed. 
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1. Introduction 

Models of ‘spatial’ dependence have recently become 

increasingly popular in the regional science literature. In 

spatial econometrics the spatial dependence is typically 

represented via either spatial lag or spatial error specification. 

The potential underlying causes and reasons for these two 

distinct forms of spatial dependence are rather different and in 

many cases explicitly distinguishing between them is of major 

interest, particularly when a substantive understanding of the 

underlying processes generating the spatial dependence 

patterns is desired. Technically speaking however the spatial 

lag representation is much more interesting for two main 

reasons. First, ignoring spatial lag dependence has more 

serious implications when inference is concerned. The 

resulting estimates are typically inconsistent and biased. In 

contrast, ignoring spatial error dependence leads to consistent, 

though inefficient estimates, in the same manner as in any 

other heteroscedastic model. Second, the spatial lag 

representation nests within itself both spatial lag and spatial 

error dependence in the sense that the spatial error model can 

have an alternative representation that technically resembles 

the spatial lag representation. In a linear model the spatial 

error representation is a (testable) restriction on the spatial lag 

model.  

This paper looks at the choice of spatial weighting matrix. 

When this is the focus of analytical attention, the question 

about exact nature of spatial dependence is of secondary 

importance and both forms can be subsumed in a spatial lag 

type of specification (strictly speaking one may want to use 

the more general so called spatial Durbin model specification, 

but here we will ignore such technical issues and focus on the 

spatial lag representation only). This is by no means 

restrictive, since once the precise type of spatial weighting 

matrix has been determined, one can go further into 

investigating which form of spatial dependence is present, if 

this is of interest. Why is the choice of spatial weighting 

matrix important? If existing spatial lag dependence is 

ignored the resulting parameter estimates will in general be 

biased (see e.g. Anselin, 2002). But similarly if spatial lag 

dependence is included when the true model does not exhibit 

it, it is accounting for a general model misspecification, which 

could also result in erroneous inference (McMillen, 2003).  

One can also have the case where spatial dependence is 

existing, but the wrong spatial weighting matrix is used. In 
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such cases Griffith and Lagona (1998) show that the mean 

estimates could be consistent (although under non-trivial 

conditions), while the variance estimates will be typically 

biased and inefficient thus impeding inference.  

The paper proceeds as follows. The next section briefly 

reviews the issues surrounding the spatial weighting matrix in 

terms of significance, alternative specifications etc. Then the 

general background of the proposal is discussed. This 

describes the motivation and the philosophical basis for the 

proposed methodology. The actual methodology is then 

presented clarifying the technical details and the reason 

behind their choices. An empirical application of the proposed 

methods is presented. Finally the obtained results are 

presented and interpreted and some conclusions and possible 

future extensions are briefly outlined. 

2. The Spatial Weighting Matrix  

The specification of spatial dependence via a spatial 

weighting matrix is a convenient way to describe theoretical 

or a priori knowledge and understanding of the underlying 

structure generating the ‘spatial’ dependence between 

different economic agents and units of analysis. There are 

different approaches to specifying a spatial weighting matrix 

(see Getis, 2009 for an overview). In simple words defining a 

spatial weighting matrix involves two choices, namely a 

neighbourhood scheme and spatial weights. The 

neighbourhood scheme involves determination of which units 

of analysis are linked and which are not. When units are 

economic agents this means the decisions of which agents are 

to be included in the objective functions of other agents. A 

social network structure could for example be used to infer the 

neighbourhood scheme. The weighting scheme on the other 

hand defines the strength of these links. The weighting 

scheme is based on some distance metrics, which could be 

spatial, economic distance, or in the case of the social network 

example a social distance (e.g. family, close friends, 

acquaintances etc.). The weighting scheme takes the distance 

metrics and combines it in order to derive the strength of the 

impact each unit has on another unit. 

In some applications some of the above choices may be 

logically predetermined, e.g. the nature of the problem may 

suggest the neighbourhood scheme and/or equal weights 

could be a logical choice. In most cases however this choice is 

far from trivial. The choice of spatial weighting matrix in 

empirical applications has been subject to some arbitrariness. 

This arbitrariness presents a serious problem to the inference 

in such models since estimation results have been shown to 

often critically depend on the choice of spatial weighting 

matrix (Anselin, 2002; Fingleton, 2003). 

For identification purposes the spatial weighting matrix 

needs to be exogenous (Manski, 1993). One reason for the 

popularity of spatial weighting matrices based on 

geographical distances is the fact that their exogeneity is 

automatically ensured. Furthermore very often spatial 

distances may reasonably well approximate the underlying 

‘true’ metrics, which may be unobservable or unavailable. For 

example often spatial distance can approximate the strength of 

social relationships. Therefore in the absence of direct 

measurement of the underlying relationship, the spatial 

distances could be used. Note however that in such an 

approximation process even if one knows the exact form of 

the linkages, as expressed in the underlying unavailable 

metrics, translation into spatial distances (or any other 

alternative metrics system) changes matters. The translation 

may effectively break down the theoretical spillover 

definition. Hence the uncertainty about what the spatial 

distances measure introduces additional uncertainty in the 

process of specifying an appropriate spatial weighting matrix.  

The issue of spatial weighting matrix has been outstanding 

for considerable amount of time. There have been a number of 

proposals how to alleviate the problem. A major stumbling 

block in identifying an appropriate spatial weighting matrix is 

that the number of potential alternatives is extremely large. 

This puts a great computational burden on any method 

designed to deal with it.  

Kooijman (1976) proposed to choose the spatial weighting 

matrix by maximizing Moran’s coefficient. In a more general 

vein this has led to the practice of choosing spatial weighting 

matrix maximising alternative spatial dependence statistics. 

Research into reducing the degree of arbitrariness in spatial 

weighting matrix choice has been particularly active in recent 

years. One could classify this strand of research into two main 

types. First, new and more flexible ways to specify the 

neighbourhood and/or the weighting schemes have been 

proposed. The second type of proposals deals with essentially 

selecting the spatial weighting matrix either implicitly or 

explicitly from a pre-defined set of candidates. This paper 

falls in this second category. Bhattacharjee and Jensen-Butler 

(2005) proposed estimating spatial weighting matrix 

consistent with the data distribution, but their approach only 

applies to the spatial error model. Lima and Macedo (1999) 

proposed an interesting procedure dealing with estimating the 

weights decay and thus the spatial weights matrix with a 

predefined ‘soft’ neighbourhood (soft in the sense that the 

weight decay can exclude some observations from the 

neighbourhood definition).  When we have an explicit set of 

competing spatial weighting matrices, LeSage and Parent 

(2007) proposed a Bayesian model averaging procedure for 

spatial model which incorporates the uncertainty about the 

correct spatial weighting matrix while LeSage and Fischer 

(2008) expanded this approach to select a spatial weighting 

matrix.  Holloway and Lapar (2007) used a Bayesian marginal 

likelihood approach to select a neighbourhood definition 

(cut-off points for the neighbourhood), but one can consider 

their approach as a general model selection approach, which 

could be applied to any other set of competing models. 

Recently Kostov (2010) proposed applying a 

component-wise boosting algorithm to a reformulated spatial 

weighting matrix selection problem. Kostov’s (2010) 

proposal is computationally efficient in that it can deal with 
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thousands of alternatives. We build upon Kostov’s (2010) 

proposal and extend it by applying alternative variable 

selection methods. The paper is organised as follows. The 

next section reviews the proposal of Kostov (2010). Then we 

outline our method and its justification. Finally we apply the 

proposed methods to the same data as in Kostov’s (2010) 

original application in order to compare the results. 

3. Background and Motivation 

Kostov’s (2010) approach implements a component-wise 

boosting counterpart to the spatial two-stage least squares 

approach of Kelejian and Prucha (1998). The latter uses the 

spatially lagged independent variables as instruments for the 

spatially lagged dependent variable. Thus one can simply 

project the spatially lagged dependent variable in the vector 

space of the instruments and use the transformed in this way 

variable instead of the original one. The novelty of Kostov’s 

(2010) approach consists in applying a variable selection 

method in the second step. In simple words the first step in the 

spatial two-stage least squares approach (Kelejian and Prucha, 

1998) can be viewed as instrumental variables transformation 

applied to a spatially lagged dependent variable. Kostov 

(2010) proposes applying the above transformation to all 

candidates for spatial weighting matrices to be considered in 

an empirical application.  Then treating the first step as given, 

the spatial weighting matrix selection problem becomes 

equivalent to a variable selection problem, defined with 

regard to the transformed spatially dependent variables. In a 

parametric modelling framework, the latter variable selection 

problem can be dealt with standard tools. Kostov (2010) 

further proposes component-wise boosting for this particular 

purpose, partly motivated from the fact that the potential set of 

spatial weighting matrices can be very large thus requiring 

methods able to carry out variable selection in an ultra high 

dimensional case at a low computational cost. As already 

noted the essence of Kostov’s (2010) proposal is not so much 

the component-wise boosting method, but rather the 

transformation of the spatial weighting matrix selection into a 

variable selection problem. Therefore any other variable 

selection methods could be used in the second step. A popular 

class of variable selection methods are penalisation methods, 

such as the nonnegative garrote (Breiman, 1994), LASSO 

(Tibshirani, 1996), SCAD (Fan and Li, 2002), LARS (Efron, 

et al. 2004), the bridge estimator (Huang et al., 2007) and the 

Dantzig selector (Candes and Tao, 2007). See Kostov (2010) 

for a brief overview of these methods. 

In this paper we will consider the penalisation approaches. 

The reasons for this are briefly outlined below. A desirable 

property of any variable selection method is the so called 

‘oracle property’ (Fan and Li, 2001, 2006). In simple words 

an estimator is said to possess the oracle property when it is 

both consistent in terms of variable selection and efficient in 

estimation in the sense that the estimator’s asymptotic 

variance matrix is essentially the same as this of the ‘oracle’ 

estimator (i.e. the estimator obtained by knowing which 

variables have to be selected). Fan and Li (2001, 2006) 

provide detailed technical discussion on the oracle property 

and we will not discuss it here in any detail. Kostov (2010) 

claims that the oracle property is not necessary in justifying 

his approach. The reason for this seems rather intuitive. The 

proposed method is a two-step equivalent to the spatial 

two-stage least squares. It is however computationally 

complicated to obtain covariance estimates for the overall 

approach. Owing to this Kostov (2010) suggested that the 

methodology has to be used to obtain the final model that will 

need to be estimated by the standard spatial two-stage least 

squares approach. Hence by differentiation between the 

consistency (in terms of variable selection) and efficiency (in 

the oracle sense) it looks like only consistency is required, 

since the results will after all be obtained by applying the 

‘oracle’ estimator. 

Unfortunately the above logic suffers from an important 

drawback. A variable selection method that does not possess 

the oracle property may fail do identify the oracle model. 

Being consistent in terms of variable selection means that the 

variables that belong to the model will be retained. 

Nevertheless this does not guarantee that a number of 

irrelevant variables would not be retained too. In order to 

better explain the intuition behind this, consider the following. 

The variable selection methods would typically need a 

criterion to define how to select a crucial parameter (the 

number of boosting iterations in boosting or the value of the 

penalty parameter in penalisation approaches). This is 

designed to avoid over-fitting. Conventional methods, such as 

e.g. cross-validation would typically select 

over-parameterised models (see e.g. James and Radchenko, 

2009). The reason for this is that such methods are constructed 

with fixed designs in mind while in variable selection 

problems this is no longer the case. As a result the basic 

variable selection algorithms need to be modified to account 

for this. The SCAD method uses two penalty parameters to 

correct for this problems, the adaptive lasso (Zou, 2006) 

applies adaptive weighting to the classical lasso estimates, the 

relaxed lasso (Meinshausen, 2007) interpolates between two 

estimates to attenuate the problem and the double Dantzig 

(James and Radchenko, 2009) applies similar logic. Since we 

are interested in correctly identifying the important variables 

in such setting, it is desirable that our variable selection 

methods possess the oracle property. To be more precise, in 

this particular setting we are not interested in the oracle 

property, but in the rather weaker ‘persistency’ property 

(Greenshtein and Ritov 2004). Nonetheless the oracle 

property would be desirable. Another argument for it would 

be the fact that the set of candidate spatial weighting matrices, 

that needs to be constructed by the researcher is not 

guaranteed to contain the ‘true’ one. In this case the results 

would approximate the unknown ‘true’ spatial weighting 

matrix. When such approximations are involved, the 

prediction properties of the model become important and 

therefore the stronger oracle property could be useful in 
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achieving efficient approximation. 

4. Methodology  

The discussion above does not imply that methods that do not 

possess the oracle property are not useful. Even without the 

oracle property, the variable selection consistency ensures 

that the relevant variables are retained within the set of 

predictors. Therefore any consistent variable selection 

methods can still be employed as screening methods to greatly 

reduce the set of candidate variables. When the latter set is 

very large, as it is in the case of spatial weighting matrix 

choice, this is an advantageous development. Another 

important point of consideration is that the rate of 

convergence of variable selection algorithms depends on the 

dimension of the problem. It is therefore advantageous if the 

initial problem is pre–screened in eliminating irrelevant 

variables to reduce its dimensionality. Such a strategy will 

bring two distinct types of advantages. The first is the 

improvement in the rate of convergence of the employed 

variable selection algorithm, which will improve the results. 

The second is more practical. Whenever the screening method 

is a simple and computationally fast, reducing the 

dimensionality of the problem will considerably speed up 

estimation when compared to a direct application of variable 

selection to the larger problem. Therefore we suggest 

implementing the variable selection task in two steps, namely 

a screening step that eliminates (most of the) irrelevant 

variables (in this case candidates spatial weighting matrices) 

followed by a variable selection procedure that obtains the 

final model. Below we briefly discuss what particular 

methods could be implemented at each of these steps. 

Without entering into too much technical detail we can 

state that most of the variable selection algorithms mentioned 

in the previous section can be used as screening methods. 

From a practical point of view however it is advisable to use 

simple and computationally cheap methods. The screening is 

to be applied to the whole problem and more complicated 

methods could be computationally demanding. The general 

idea behind screening is rather simple. Screening methods 

reduce the dimensionality of the problem and then a variable 

selection method possessing the oracle property can be used 

to infer the final structure. This approach has several 

important advantages. First, the dimension reduction allows 

one to be able to use methods that would otherwise have been 

infeasible with the original problem. Take for example the 

adaptive lasso method. It is not applicable when the number of 

variables exceeds the sample size, but when screening that 

reduces the number of candidate variables so that it is lower 

than the sample size is carried out, it can be implemented. The 

other advantage is that once irrelevant variables have been 

filtered out, the resulting estimator will have better 

convergence rate compared to being applied to the original 

unrestricted problem. Take for example the Dantzig selector, 

the convergence of which is a function of the relative (with 

regard to the sample) size of the problem. Screening will 

drastically increase its converge rate and hence result in more 

reliable inference (see Fan and Lv, 2008 for detailed 

discussion). Finally, since most consistent variable selection 

methods possess screening power, irrespective of whether 

they are characterised by the oracle property or not, it would 

be advantageous to combine different types of such methods 

in a consecutive matter. 

The screening idea originates from Fan and Lv (2008) 

who proposed and justified (by establishing its theoretical 

properties) the so called Sure Independence Screening 

method designed to reduce the dimensionality of the variable 

selection problem. The ISIS method of Fan and Lv (2008) 

which is an iterative version of the basic SIS is numerically 

similar to component-wise boosting, but is less greedy. Wang 

(2009) established the screening properties of the classical 

forward regression, which can be viewed as limiting greedy 

learning case of the boosting algorithm (achieved with the 

maximum updating factor of unity). Taking the above 

connections into considerations, as well as the general links 

amongst different variable selection algorithms (see e.g. 

Meinshausen et al, 2007) it would be advantageous to 

combine different screening and variable selection methods. 

A particular concern in the present application is the fact that 

by construction the variables created using a set of candidate 

spatial weighting matrices, following the proposal of Kostov 

(2010) will exhibit considerable correlation. The other 

possible complication is that we cannot be sure that the ‘true’ 

spatial weighting matrix is in the set of alternatives that is 

constructed to investigate the problem. This means that often 

our search for an appropriate spatial weighting matrix will 

yield an approximation. This suggests that the estimation 

problem we are solving is likely to be characterised by a 

relatively low signal to noise ratio, which will impact 

negatively on the performance of most screening methods. 

Wang (2009) presents some extensive numerical simulations 

comparing SIS, ISIS, LARS (least angle regression) and 

forward regression implemented alone or followed by a 

consistent variable selection method (adaptive lasso or 

SCAD). Their results show that no method clearly dominates 

the others.  

Another important consideration is that by their nature 

screening methods have to be very simple (see the discussion 

on the paper by Fan and Lv, 2008 in the same issue). There is 

obviously some trade-off here since ‘better’ methods should 

be able to achieve a greater reduction in the dimension of the 

initial problem (i.e. to eliminate more irrelevant variables) and 

hence reduce the computational requirements for the 

consequent variable selection methods, as well as improve its 

(theoretical) convergence rate. In highly correlated designs 

that will typically characterise the spatial weighting matrix 

selection problem as reformulated in Kostov (2010) too 

simple methods or methods that are not ‘robust’ with regard to 

the correlated design, could be inconsistent. Hence it could be 

useful to compare the relative performance of different such 

methods. Typically such comparisons are carried out on 
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simulated datasets. In this case we will take a slightly different 

approach and implement such comparison on a real dataset. 

We will consider the following candidates for screening 

methods. First we will use the component-wise boosting 

method. Since this is the method that have been implemented 

in the original proposal of Kostov (2010) it should allow 

direct comparison with his results, particularly if the same 

dataset is employed. Following Kostov (2010) we will use the 

g-prior Minimum Description Length (gMDL) of Hansen and 

Yu (2001) as stopping criterion. Kostov (2010) shows that it 

compares favourably to different forms of cross-validation at 

a fraction of their computational costs and hence this choice 

allows us to obtain a fast and reliable screening method. We 

could have used a more traditional criteria, such as AIC 

resulting in larger models to be submitted to the second step in 

our approach, but we felt that ensuring direct correspondence 

with Kostov’s (2010) approach which we are building upon is 

desirable. The next screening method is the forward 

regression with AIC as stopping criterion. This is the best 

known classical method for dimensionality reduction and as 

shown in Wang (2009) it possesses screening power. The 

other screening methods we consider include the LASSO 

(Least Absolute Sum of Squares Operator, see Tibshirani, 

1996), forward stagewise regression and LARS (Least Angle 

Regression, see Efron et al., 2004)) with Mallow’s Cp as 

stopping rule. The full regularisation path for the latter three 

methods can be easily computed by modifications to the 

computationally efficient lars algorithm (Efron et al., 2004) 

and therefore these are all fast and suitable for variable 

screening purposes. Finally mainly for comparison purposes 

we will also implement a more complicated screening method, 

mainly the relaxed lasso (Meinshausen, 2007) with 

cross-validation used to select the regularisation (i.e. penalty 

and relaxation parameter) parameters. This is obviously a 

more demanding method both in terms of complexity and 

computational requirements. Since however it is a 

generalisation of the lasso it can be useful to consider it in 

comparative perspective and see whether the simplicity in the 

proposed screening methods does not come at a price. 

Furthermore we consider the methods to be used on the 

screened data. Firstly, we use two generalisations of the 

Dantzig selector, namely the Gauss-Dantzig (Candes and Tao, 

2007) and the Double Dantzig (James and Radchenko, 2009). 

The other method is the adaptive lasso (Zou, 2006). Finally 

we implement two non-convex penalisation methods namely 

SCAD (smoothly clipped absolute deviation, Fan and Li, 

2001) and MCP (minimax concave penalty, Zhang 2007).  All 

the above methods possess the oracle property and therefore 

are suited for implementation in the second step of our 

approach. 

5.  Study Design and Implementation 
Details 

For comparative purposes we follow closely the design 

outlined in Kostov’s (2010) study. This involves using the 

same dataset, model specification as well as set of competing 

alternative spatial weighting matrices. Since all these are 

discussed in some detail in Kostov (2010) we will only briefly 

sketch them here. 

The corrected version of the popular Boston housing 

dataset (Harrison and Rubinfeld, 1978) is used. It consists of 

506 observations and incorporates some corrections and 

additional latitude and longitude information, due to Gilley 

and Pace (1996). This dataset contains one observation for 

each census tract in the Boston Standard Metropolitan 

Statistical Area. The variables comprise of proxies for 

pollution, crime, distance to employment centres, 

geographical features, accessibility, housing size, age, race, 

status, tax burden, educational quality, zoning, and industrial 

externalities. A detailed description of the variables, to be 

used in this study is presented in table 1. 

Table 1. Description of variables 

Variable Description 

MEDV  
Median values of owner-occupied housing in thousands 

of USD  

LON  Tract point longitude in decimal degrees  

LAT  Tract point latitude in decimal degrees  

CRIM  Per capita crime  

ZN  
Proportion of residential land zoned for lots over 25,000 

sq. ft per town  

INDUS  Proportion of non-retail business acres per town  

CHAS  An indicator: 1 if tract borders Charles River; 0 otherwise  

NOX  
Nitric oxides concentration (parts per 10 million) per 

town  

RM  Average number of rooms per dwelling  

AGE  Proportions of owner-occupied units built prior to 1940  

DIS  Weighted distance to five Boston employment centres  

RAD  Index of accessibility to radial highways per town  

TAX  Property-tax rate per USD 10,000 per town  

PTRATIO  Pupil-teacher ratio per town  

B  
Calculated as 1000*(Bk - 0.63)^2 where Bk is the 

proportion of blacks  

LSTAT  Percentage of lower status population  

 

The basic model as implemented in Kostov (2010) is as 

follows: 

log(MEDV)= f {CRIM, ZN, INDUS, CHAS, NOX^2, 

RM^2, AGE, log(DIS), log(RAD), TAX, PTRATIO, B, 

log(LSTAT)} 

A linear functional form specification is used and the latter 

is augmented with alternative candidate spatial weighting 

matrices, constructed using the longitude and latitude 

information. The set of alternative spatial weighting matrices 

is constructed using inverse distance raised on a power 
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weights specification and nearest neighbours definition of the 

neighbourhood scheme 

We will adopt the naming conventions used in Kostov 

(2010) combining the codes for the neighbourhood definition 

and the weighting scheme to refer to the corresponding spatial 

weighting matrix and the resulting additional variables to be 

included in the boosting model. All these variables are named 

using the following convention: nxwy, where x is the number 

of neighbours and y is the weighting parameter (which is the 

inverse power of the weight decay). For example the spatial 

weighting matrix with the nearest 50 observations as 

neighbours and inverse squared distance weights as well as 

the resulting transformed variable will be denoted as n50w2. 

We employ all values for number of neighbours from 1 to 50 

and evaluate w in the interval [0.4, 4] using increments of 0.1. 

In simple words this means that we are combining 50 possible 

neighbourhood definitions with 37 alternatives for the 

weighting parameter resulting in 1,850 alternative spatial 

weighting matrices to be considered simultaneously. 

Kostov (2010) projects the spatially weighted dependent 

variable into the column vector space of the spatially 

weighted independent variables, by taking the fitted values 

from a least-squares regression to obtain the transformed 

variables, named according to the above convention. Here we 

built upon that strategy and instead of applying a single 

variable selection method in the second step we use 

consecutive application of two such methods. The first is to be 

used as a screening method while the second (which in this 

case would be a method possessing the ‘oracle’ property) will 

fine tune the selection results.  

Table 2. Screening and estimation methods used 

Code Method 

Screening step 

BS Component-wise boosting 

FR Forward regression 

LR LARS 

LS LASSO 

RL Relaxed LASSO 

FS Forward stagewise 

Estimation step 

GD Gauss-Dantzig 

DD Double Dantzig 

ALASSO Adaptive lasso 

MCP MCP 

SCAD SCAD 

 

To simplify discussion from here on, unless specified 

otherwise, under first and second step we will understand the 

screening and the consequent estimation step. Given the large 

number of combinations of different estimation methods, for 

labeling purposes, it is convenient to adopt the following 

convention. We will use short codes to denote each of the 

used methods. Then each combination will be referred to as 

X_Y, where X will be the code for the screening method and 

Y the code for variable selection method implemented on the 

dataset reduced by the corresponding screening method. The 

corresponding codes are shown in Table 2. The regularisation 

parameters for all estimation step methods and for the relaxed 

lasso are chosen by 5-fold cross-validation. The non-convex 

penalty approaches (MCP and SCAD) involve two penalty 

parameters. In order to reduce the computational load 

(particularly due to the non-convexity of the optimization 

problem) we follow a commonly used in empirical 

applications convention and fix the second penalty parameter 

to 3.7. See e.g. Fan and Li (2001) for discussion on the 

theoretical reasons for this particular choice. 

6. Results 

Before we proceed to the detailed results, we will briefly 

review the results of Kostov (2010) who’s design we follow. 

Table 3 shows the coefficients corresponding to the spatial 

weighting matrices retained in the model implementing the 

boosting approach of Kostov (2010), which in essence is our 

BS screening method, with gMDL stopping rule and updating 

parameter of 0.3, which is in the middle of the commonly used 

range of [0.1, 0.5].  

Table 3.  Boosting estimation results for the spatial weighting 

matrices 

Variable  Coefficient 

n3w1.2 0.0374 

n3w1.3 0.0061 

n6w0.4 0.1877 

n6w0.5 0.0109 

n6w0.6 0.0100 

n6w0.7 0.0091 

n6w0.8 0.0099 

n6w0.9 0.0113 

n6w1 0.0069 

 

Kostov (2010) only presents a list of the retained spatial 

weighting matrices and notes that since all spatial weighting 

matrices from n6w0.4 to n6w1 are selected, using a single 

spatial weighting matrix by centring over the range should 

reasonably well approximate the true underlying structure. 

Taking into account the actual contributions of the retained 

spatial weighting matrices however suggests that n6w0.4 

should have been the preferred option, since on one hand it 
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has by far the largest (in magnitude) coefficient and on the 

other it is actually at the centre of the ‘mass’ distribution for 

the retained spatial weighting matrices.  

Another notable feature of the present analysis is that 

following the discussion of Kostov (2010) one could from the 

very outset suspect that the ‘true’ spatial weighting matrix is 

not in the set of alternatives included in the study design. This 

however provides a further insight into this how the proposed 

approach can approximate this unknown spatial weighting 

matrix. Kostov (2010) speculated that a spatial weighting 

matrix based on contiguity definition of the neighbourhood 

and some form of common border weighting (using the tracts) 

is what is probably most consistent with the obtained results. 

Although as we show above the original results of Kostov 

(2010) need to be reconsidered, the modified results (i.e. 

using n6w0.4) are still consistent with this conjecture.  

Another important point to address is why did not we try 

the original screening approach, i.e. the SIS and ISIS methods 

of Fan and Lv (2008). We actually implemented the latter, but 

the results were disappointing. In simple words the resulting 

models excluded virtually all main variables (i.e. variables 

other than the transformed spatial weighting matrices) and 

correspondingly the results yielded an approximation to the 

correlation structure over transformed spatial weighting 

matrices. Furthermore the exclusion of the main variables 

occurred during the screening step and therefore the 

consequent estimation methods could not recover meaningful 

model. The implicit simplicity of the SIS and ISIS methods in 

this case could not deal with the highly correlated nature of 

the study design. 

Table 4. Number of retained variables by screening 

method 

Code Method Number of retained variables 

BS Component-wise boosting 21 

FR Forward regression 43 

LR LARS 332 

LS LASSO 144 

RL Relaxed LASSO 20 

FS Forward stagewise 1164 

 

We now describe the results. Table 4 presents the size of 

the reduced set of covariates (i.e. counting both ‘main’ 

variables and ‘transformed’ spatial weighting matrices), 

following the implementation of a particular screening 

method. One should note that the degree to which different 

methods reduce the dimensionality of the original problem 

depends on the stopping rule and hence the results in table 4 

should not be viewed as comparison between different 

screening methods in general, but rather as a setting in which 

to evaluate the performance of the consequent estimation step 

methods. Furthermore the main purpose of the screening step 

is not maximum reduction, but considerable reduction that 

avoids as much as possible the danger of falsely omitting 

important variables. For this reason for example the AIC is 

implemented to stop the forward regression, rather than e.g. 

the gMDL which would have yielded greater reduction in the 

size of the problem. The greater reduction however could 

have risked dropping the most appropriate spatial weighting 

matrix. 

Both boosting (see also Kostov 2010 for an indication 

about the relative number of selected variables under 

alternative stopping rules) and forward regression have 

managed to considerably reduce the size of the problem. The 

only other screening method that achieved similar reduction is 

the relaxed lasso, but it is considerably more demanding in 

computational terms, particularly since cross-validation is 

needed to select the regularisation parameters. LARS and 

LASSO also reduce the dimensionality below the sample size 

(of 506) and hence can be useful as screening methods. At 

first sight it looks like LARS and LASSO are retaining too 

many variables and hence might impede the consequent 

estimation methods. Note however that in this particular case 

the cross-validated relaxed lasso chose a relaxation parameter 

of 1 (see Meinshausen, 2007 for details), which effectively 

reduces the relaxed lasso to the conventional LASSO 

estimates. Therefore we can view in this particular instance 

the relaxed lasso as LASSO, where cross-validation is used 

(instead of the Mallow’s Cp) to select the penalty. Moreover 

here the cost of omitting a relevant variable in the screening 

step is higher that the potential advantages in speeding 

estimation in the next step. Furthermore avoiding costly 

cross-validation in the first step (when the dimensionality is 

considerably higher) more than offsets the additional 

computational cost incurred when dealing with a larger 

problem in the second step. Finally the forward stagewise 

regression only achieves moderate reduction in the size of the 

problem, which remains above the sample size. As above a 

different stopping rule could have been employed but this 

would have compromised the speed of the proposed 

methodology. 

We now proceed to the actual estimation results. These are 

presented in Tables 5-7. To facilitate discussion we have 

adopted the following ordering for the results. The results 

from non-convex second step (i.e. estimation) methods are 

presented separately in Table 7 with results ordered by 

estimation (i.e. second step) method.  Table 5 and 6 present 

the results from the other methods, ordered by screening 

method. To simplify the presentation we have omitted the 

intercept from all results.  Each of the above tables contains 

the main variables in the same order followed by n6w0.4. 

Three of the main variables, namely ZN, INDUS and AGE are 

not chosen by any of the applied methods and for this reason 

we do not include them in the result tables. The rest of the 

tables contain other spatial weighting matrices retained by the 
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corresponding method. The latter are specific to each table, 

for reasons to become clear during the discussion.  

First of all, the results obtained by the different methods 

are broadly speaking comparable. The spatial weighting 

matrix that best fits the model is n6w0.4, conforming to the 

conjecture of Kostov (2010). Moreover in about half of the 

methods used this is the only spatial weighting matrix, while 

in most other cases the additional retained spatial weighting 

matrices have rather small contributions.  There are some 

small differences between different methods in that some of 

them deselect some of the main variables. We will not 

explicitly comment on these differences unless they are 

essential in explaining what is happening with regard to the 

main focus of the study, namely the choice of spatial 

weighting matrix. Hereafter we will refer to the model with 

n6w0.4 as the only spatial weighting matrix as the default 

model. 

Boosting performs very well as screening method, 

producing results which are consistent amongst the different 

second step methods. This should come as no surprise since 

the boosting application has resulted in a rather small set of 

candidate spatial weighting matrices. The only deviation from 

this rule is BS_MCP case which selects n6w0.9 instead of the 

n6w0.4 spatial weighing matrix. Interestingly the MCP 

algorithm selects n5w0.8 or n6w0.9 in four out of the six 

pre-screened sets (see table 7), which suggest that this 

‘preference’ for slightly higher weighting parameter could 

have something to do with the algorithm itself. The 

non-convex nature of the algorithm which can have at least 

three distinct implementations as well as the issue what type 

of cross-validation would be most appropriate for the problem 

in hand are some issues that may require some additional 

attention. Nevertheless even with the  slight difference in the 

BS_MCP result, the results obtained using boosting as 

screening method conform to the expectations. 

Forward regression also performs very well. Similar 

results are obtained across the whole range of second step 

methods (see tables 5 and 7). The only two methods that 

deviate from the default model are FR_ALASSO which 

selects n16w0.7 in addition to n6w0.4, and FR_MCP, where 

n6w0.8 is selected instead. These deviations can be viewed as 

‘spreading’ the spatial dependence in comparison to the 

default model because they imply in simple terms an 

additional effect characterized by more neighbours but also 

larger weight decay. In this way such effects could be 

consistent with additional (possibly of non-spatial origin) 

heteroscedasticity present in the default model. We will 

revisit this point later. 

The application of LARS as screening method yields very 

similar results. The LR_GD ‘augments’ the default model 

with a very small contribution from n9w0.4, while 

LR_ALASSO drastically increase the additional 

‘contributions’ by including n16w08 and n33w0.4.  The 

SCAD and MCP replace n6w0.4 with respectively n6w0.8 

and n6w0.9. Again this suggests some ‘spreading’ of the 

pattern of spatial dependence. 

As explained earlier in this particular application the 

relaxed lasso reduces to ordinary lasso (with cross-validation 

for penalty choice rather than Mallow’s Cp).  The use of 

cross-validation in place of simple selection criterion, does 

not seem to affect the results too much. LS_DD and LS_DD 

do not select the default spatial weighting matrix but choose 

n5w0.4 which is virtually the same.  The difference amongst 

the lasso and relaxed lasso screened models are essentially 

due to the second step methods. Although such difference do 

not change the conclusions about the nature of the spatial 

weighting matrix, they are somewhat more substantive with 

regard to the main variables and this is certainly an issue that 

deserves more thorough investigation. Perhaps surprisingly 

SCAD and MCP produce identical estimates for the lasso and 

relaxed lasso screened model essentially coinciding with the 

default model, which may prompt closer look at these. 

Forward stagewise regression did not manage to 

sufficiently reduce the problem size. This means that 

FS_ALASSO cannot be implemented because the number of 

variables retained by the FS exceeds the sample size and 

consequently initial weights for the adaptive lasso algorithm 

cannot be computed. For other second step methods however 

the corresponding algorithms can be implemented and the 

results are not substantively different from those obtained 

using the other methods.  

It is worth mentioning that the application of SCAD and 

MCP in the second step produces remarkably similar results 

regardless of the screening method used. This could be a 

property of the methods themselves, but given the implicit 

difficulties in optimizing non-convex objective functions and 

the already mentioned fact that we fixed the second penalty 

parameter, it could also be due to the particular application. 

In order to elaborate on the earlier point about ‘spreading’ 

of the spatial dependence, consider Table 8 that lists the 

estimation results from spatial two stage least squares 

estimation of the default model (excluding the three main 

variables that are not selected by any of the used methods). 

Standard errors produced without and with heteroscedasticity 

correction are shown together with their ratio. These results 

are indicative of considerable residual heteroscedacticity. We 

will not elaborate on the possible reasons for this, since it may 

be due to the approximation that the default spatial weighting 

matrix provides for the ‘true’ one. Furthermore it may also be 

due to the functional form assumptions employed here. The 

presence of such heteroscedasticity however can and as 

already discussed does to some extent affect the results, which 

is to be expected since all methods considered in this study, 

whether used for screening or estimation purposes are 

ultimately based on least squares and hence will be affected 

by the presence of heteroscedasticity. Note furthermore that 

the relative effect of the heteroscedacity is larger for the 

spatial dependence parameter, which in this particular case is 

also to be expected given that it can be viewed as an 

approximation. 
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Table 5.  Estimation results (part 1) 

 
BS_DD BS_GD BS_ALASSO FR_DD FR_GD FR_ALASSO LR_DD LR_GD LR-ALASSO 

          
CRIM -0.0098 -0.0101 -0.0076 -0.0098 -0.0101 -0.0086 -0.0098 -0.0101 -0.0087 

CHAS 0.0283 0.0332 
 

0.0283 0.0332 
 

0.0282 0.0329 
 

NOX^2 -0.3561 -0.4059 
 

-0.3561 -0.4059 -0.2295 -0.3551 -0.4060 -0.2863 

RM^2 0.0069 0.0065 0.0066 0.0069 0.0065 0.0067 0.0069 0.0065 0.0067 

log(DIS) -0.1495 -0.1580 -0.0940 -0.1495 -0.1580 -0.1497 -0.1493 -0.1584 -0.1564 

log(RAD) 0.0307 0.0334 0.0057 0.0307 0.0334 0.0542 0.0306 0.0333 0.0663 

TAX 
  

0.0000 
  

-0.0002 
  

-0.0003 

PTRATIO -0.0124 -0.0152 
 

-0.0124 -0.0152 -0.0090 -0.0123 -0.0152 -0.0115 

B 
  

0.0001 
  

0.0003 
  

0.0003 

log(LSTAT) -0.2643 -0.2765 -0.2733 -0.2643 -0.2765 -0.2759 -0.2641 -0.2768 -0.2725 

n6w0.4 0.5003 0.4655 0.5376 0.5003 0.4655 0.3770 0.5011 0.4544 0.2873 

n9w0.4 
       

0.0120 
 

n16w0.7 
     

0.1056 
   

n16w0.8 
        

0.2690 

n33w0.4 
        

-0.1037 

          

Tabale 6. Estimation Results (part 2) 

 
LS_DD LS_GD LS-ALASSO RL_DD RL-GD RL_ALASSO FS_DD FS_GD 

         
CRIM -0.0093 -0.0095 -0.0082 -0.0094 -0.0096 -0.0083 -0.0100 -0.0101 

CHAS 0.0283 0.0326 
 

0.0248 0.0291 
 

0.0317 0.0323 

NOX^2 -0.2565 -0.2826 -0.0678 -0.2481 -0.2743 -0.1286 -0.3714 -0.4109 

RM^2 0.0078 0.0075 0.0069 0.0074 0.0071 0.0068 0.0069 0.0065 

log(DIS) -0.1348 -0.1412 -0.1130 -0.1372 -0.1436 -0.1268 -0.1507 -0.1601 

log(RAD) 0.0173 0.0175 0.0250 0.0196 0.0198 0.0389 0.0309 0.0331 

TAX 
  

-0.0001 
  

-0.0002 
  

PTRATIO 
  

-0.0040 
  

-0.0055 -0.0132 -0.0154 

B 
  

0.0002 
  

0.0002 
  

log(LSTAT) -0.2530 -0.2655 -0.2709 -0.2570 -0.2693 -0.2739 -0.2689 -0.2793 

n6w0.4 
  

0.5107 0.5125 0.4982 0.4693 0.4789 0.4765 

n1w0.4 
       

-0.0263 

n2w0.4 0.0613 0.0521 
 

0.0454 0.0353 
   

n5w0.4 0.4785 0.4635 
      

n9w0.4 
      

0.0009 0.0104 

n16w0.6 
     

0.0272 
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Tabale 7. Estimation results (part 3) 

 
BS_SCAD FR_SCAD LR_SCAD LS-SCAD RL_SCAD FS_SCAD BS_MCP FR_MCP LR_MCP LS_MCP RL_MCP FS_MCP 

CRIM -0.0092 -0.0092 -0.0091 -0.0092 -0.0092 -0.0092 -0.0091 -0.0091 -0.0091 -0.0092 -0.0092 -0.0091 

CHAS 
 

0.0023 
          

NOX^2 -0.3140 -0.3145 -0.3172 -0.3140 -0.3140 -0.3140 -0.3192 -0.3172 -0.3192 -0.3140 -0.3140 -0.3300 

RM^2 0.0067 0.0067 0.0068 0.0067 0.0067 0.0067 0.0068 0.0068 0.0068 0.0067 0.0067 0.0068 

log(DIS) -0.1630 -0.1639 -0.1605 -0.1630 -0.1630 -0.1630 -0.1601 -0.1605 -0.1601 -0.1630 -0.1630 -0.1658 

log(RAD) 0.0741 0.0743 0.0755 0.0741 0.0741 0.0741 0.0759 0.0755 0.0759 0.0741 0.0741 0.0766 

TAX -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 

PTRATIO -0.0135 -0.0134 -0.0138 -0.0135 -0.0135 -0.0135 -0.0139 -0.0138 -0.0139 -0.0135 -0.0135 -0.0145 

B 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 

log(LSTAT) -0.2722 -0.2720 -0.2690 -0.2722 -0.2722 -0.2722 -0.2686 -0.2690 -0.2686 -0.2722 -0.2722 -0.2750 

n6w0.4 0.4426 0.4422 
 

0.4426 0.4426 0.4426 
   

0.4426 0.4426 
 

n6w0.8 
  

0.4397 
    

0.4397 
    

n6w0.9 
      

0.4375 
 

0.4375 
  

0.5148 

n1w2.2 
           

-0.0931 

 

7. Conclusions and Possible Extensions 

This paper considered the choice of spatial weighting matrix 

in a spatial Durbin model framework. Building upon the 

transformation approach of Kostov (2010) we propose a 

two-step selection approach with a screening step reducing 

the number of candidate spatial weighting matrices and 

estimation step selecting the final model. In an empirical 

application of the proposed methodology a range of different 

combinations of screening and estimation methods are found 

to produce similar results. We also demonstrate the ability of 

the proposed methodology to approximate and provide 

indications to what the ‘true’ spatial weighting matrix could 

be even when it is not amongst the considered alternatives. 

The similarity in results obtained using different methods 

suggests that their relative computational costs could be 

primary reasons for their choice. Note however that there are 

some numerical and algorithmic issues still to be resolved that 

can affect the comparative performance of different methods, 

which is to be subject of further research. Another unresolved 

issue refers to the presence of heteroscedacticity in the 

estimated models, something that may prompt search of more 

robust alternatives of the proposed methods. Finally, another 

important issue that we have not discussed here is this of 

functional form. Since non-parametric estimators are still 

consistent, although inefficient under the presence of (ignored) 

spatial dependence, the proposed methods could still be 

applied to non-parametrically filtered data, although the 

question of potential interplay of simultaneous selection of 

main variables (in non-parametric setup) and spatial 

weighting matrices is something that would require much 

more careful consideration.  
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