Computer Science

Technical Report

REGISTER BYPASSING IN AN ASYNCHRONOUS
SUPERSCALAR PROCESSOR

S J Davis, C J Elston, P A Findlay

Report No: 328

March 99

Register Bypassing in an Asynchronous Superscalar Processor

S. 1. Davis', C. J. Elston, P. A. Findlay’

Abstract

Register bypassing, universally provided in synchronous processors, is more difficult to implement
in an asynchronous design. Asynchronous bypassing requires synchronization between the forwarding
and receiving units, with the danger that the advantages of asynchronous operation may be nullified by
reintroducing the lock-step operation of synchronous processors. We present a novel implementation of
register bypassing in an asynchronous processor architecture. Our technique of Decoupled Operand
Forwarding provides centralized control over the bypassing operation, yet allows multiple execution
units to function asynchronously. Our ideas are presented within the context of the development of
Hades, a generic asynchronous processor architecture. We employ single-issue and dual-issue
simulations of Hades to quantify the benefits of Decoupled Operand Forwarding and conclude that
Decoupled Operand Forwarding yields significant speedups because of its success in removing register
files from the critical timing path.

1. Introduction

In recent years there has been renewed interest in the asynchronous model of processor design.
Asynchronous operation offers a number of potential advantages, including: low power, typical instead
of worst case execution time, and the avoidance of clock skew through local communication. This
latter advantage of asynchronous processors leads to the view that they will scale with technology far
better than synchronous processors. Charles Seitz argues along these lines convincingly in [1], where
he shows that as the scale of integration increases, the problems of clock skew will increase because
propagation delays remain constant. Hence, at some time in the future it is likely to become too costly
and difficult to increase the performance of synchronous processors by simply increasing the frequency
of the clock. Asynchronous processors have no such asymptotic performance limitation and so in the
medium term are likely to become an increasingly attractive proposition.

However, fundamental differences between synchronous and asynchronous operation make it
undesirable to re-map a synchronous processor onto an asynchronous control framework. Designing
asynchronous processors involves new problems that require novel solutions. In particular, operand
forwarding or bypassing is recognized as problematic within asynchronous processor design. In
Section 2, we give brief details of a number of recent asynchronous processor designs. Our own
project [2] concentrated on the performance potential of asynchronous processors and developed Hades
(Hatfield Asynchronous DESign) a generic asynchronous processor design. We present an overview of
the Hades architecture in Section 3, including details of the asynchronous communication mechanisms
investigated and the register file organization. We then reconsider operand forwarding in the light of
asynchronous operation, in order to develop a scheme that will work harmoniously and efficiently
within an asynchronous processor. In Section 4, we present our technique of Decoupled Operand
Forwarding.

In Sections 5 and 6, we present simulation results based on the Stanford Integer Benchmark Suite.
A single-instruction-issue (SII) version of Hades is simulated and used to assess the effectiveness of
Decoupled Operand Forwarding. Hades is then extended to provide dual-instruction-issue.
Comparisons are made with the SII versions and the effectiveness of Decoupled Operand Forwarding is
assessed in a superscalar environment. Finally, the performance of various MII configurations is
evaluated.

! Corresponding author. Department of Computer Science, University of Hertfordshire, College Lane,
Hatfield, Hertfordshire, AL10 94B, England. Fax: (01707) 284303, Email: S.J.Davis@herts.ac.uk

% Now at: [Details to follow].

* ERDC, University of Hertfordshire, College Lane, Hatfield, Hertfordshire, AL10 9AB, England. Email:
P.A Findlay@herts.ac.uk

Register Bypassing in an Asynchronous Superscalar Processor 1

2. Related Work

We present a brief overview of related work on asynchronous processors which has resulted in the
development of novel asynchronous architectures.

The AMULET Group at the University of Manchester has given a major impetus to asynchronous
processor design by demonstrating the feasibility of complex asynchronous processors. AMULET]1 is
based on the Acorn ARM architecture [3] and Sutherland’s Micropipeline Methodology [4].
Limitations to the performance of AMULET] include the lack of a bypassing mechanism, the length of
time taken to resolve a branch, and the slow speed of the building blocks employed by the
Micropipeline Methodology. These limitations appear to have been overcome in AMULET? [5].

The CounterFlow Pipeline Processor (CFPP) architecture is the product of work by a team from the
Sun Microsystems Laboratories [6]. It consists of a bi-directional pipeline, with instructions and data
flowing in opposite directions. Instructions and data interact in each stage of the pipeline. If an
instruction encounters a register value that it requires for execution, it copies that data. Once an
instruction has obtained all the operands that it needs, it is able to execute in the next appropriate stage.
Both instructions and data interact with the contents of each stage through which they pass. An
instruction will encounter the results of all earlier instructions before the register operands that it has
requested, which obviates the need for traditional operand forwarding. The drawback of this scheme is
that an asynchronous arbiter is required to handle the synchronization that allows instructions and data
to counterflow. Also, it is not clear how the counterflow pipeline can be generalized to multiple
pipelines.

The Rotary Pipeline Processor Project, of the Computer Laboratory at Cambridge University, has
resulted in the design and simulation of a generic, superscalar architecture that is particularly suited to
asynchronous operation [7]. This processor consists of execution units arranged in a circular structure,
with the inputs of each execution unit connected to the outputs from the preceding unit. The instruction
fetch and decode mechanism, which delivers each instruction to an appropriate functional unit, is
situated outside the ring. Functional units that require operands to execute an instruction, inspect the
data circulating the ring, which includes register values. The data is then passed on, possibly after
modification. Thus, synchronization is only required in one direction, overcoming the synchronization
problems encountered by CFPP.

The SCALP architecture was developed at the University of Manchester to investigate the low
power potential of MII asynchronous architectures [8]. Based on the idea of a Transport-Triggered
Architecture [9] [10], it has multiple functional units that operate on data in FIFO queues that are
visible to the compiler. The contribution of SCALP to asynchronous processor design is its simple
model of complex superscalar execution.

3. Architectural Overview of Hades

Hades is a generic asynchronous processor architecture that was developed to explore the
performance potential of asynchronous operation. Hades has a RISC instruction set comprising a small
number of simple instructions. A generalized overview of the Hades architecture is shown in Fig. 1.
Two register files are included, one for integer operands and one for Boolean values. The Boolean
Register File stores conditions generated by integer comparisons that are used to resolve branches. The
provision of multiple Boolean registers in a separate register file allows a number of conditions to be
computed in advance of the instructions that will use them and reduces the number of accesses to the
Integer Register File. ’

The Hades pipeline has four asynchronous modules, which have been named by analogy with the
stages of a synchronous processor pipeline: Instruction Fetch (IF), Instruction Decode (ID), Execution
(EX) and Writeback (WB). Separate instruction and data caches are provided to reduce memory
contention, The pipeline can be instantiated for either SII or MII. All instantiations issue instructions
in-order, but allow out-of-order instruction completion. The IF module supplies instructions to the
pipeline; multiple instructions are fetched in multiple issue models.

Register Bypassing in an Asynchronous Superscalar Processor 2

|

The task of the ID module is twofold. Firstly, the ID module decodes instructions for the EX
module. This includes providing control information, allocating resources and sign extending
immediate data. Secondly, the ID module initiates register file accesses including those for subroutine
return addresses. Initiating all register reads in the ID module avoids any need for arbitration before
accessing the register file.

While non-branch instructions trigger a straightforward sequential fetch, branch instructions trigger
control flow resolution. The ID module issues the branch instruction to the Address Generator and
initiates a read for the branch condition from the Boolean Register File. Hades implements a delayed
branch mechanism, but the number of sequential instructions that are executed after each branch
instruction is not fixed by the architecture. Instead, this number is encoded directly into the branch
instruction as a delay count. The Address Generator reacts initially by fetching the number of
sequential instructions indicated by the delay count for this particular branch. The Address Generator
then uses the Boolean value obtained from the Boolean Register File to determine the address of the
next instruction to fetch.

The EX module performs the operations specified by the instructions. It is composed of a number
of Execution Units or functional units each of which executes a subset of the instruction set. The
minimum set of Execution Units consists of an Arithmetic, a Shift, a Multiply, a Relational and a
Memory Unit. The operation of Execution Units depends only on the supply of instructions and data.
Each Execution Unit can therefore process a separate instruction in parallel. Relational operations are
carried out in a separate Relational Unit. This arrangement decouples the Execution Units that produce
Boolean results from those that produce Integer results, so each Execution Unit is less complex [11].
Additionally, unlike the Arithmetic Units, the Relational Units do not take up result or bypass bus
bandwidth.

The WB module updates the Integer Register File with results produced in the Execution Units.
Results are routed to the Integer Register File across one or more shared result buses that require
arbitration for exclusive access. However, because Boolean results are only one-bit wide, dedicated
connections are provided between Relational Units and the Boolean Register File.

The base model just described was extended using a variety of techniques, including Decoupled
Operand Forwarding which is the main topic of this paper.

3.1 Optimized Communication

In asynchronous systems, synchronization is achieved explicitly through the exchange of signals,
rather than implicitly via the global clock. This communications overhead is one disadvantage
commonly associated with asynchronous processors. Hades attempts to reduce this overhead by
employing an optimized form of asynchronous communication.

Hades uses a four-phase, bounded delay protocol. This option offers the best performance
potential, the lowest silicon area overhead and the ability to use the absolute state of control lines.
However, because control and data are separate, only half of the events in the protocol are necessary
for communication, the remaining events simply return the REQ and ACK signals to their initial state.
When one communication initiates another the situation shown in Fig. 2 therefore arises; four phases of
the first communication are followed by the four phases of the second even though the data transfer is
complete after the rising portion of the protocol. Such a situation arises many times in the operation of
a processor, for example, a buffer inputs a datum and then outputs it, or an Arithmetic Execution Unit
inputs an instruction and then inputs the required operands.

Performance can be improved by overlapping the data transfer and recovery portions of
communication (Fig. 3). The falling edges of the first communication are effectively overlapped with
the rising edges of the second. This optimization significantly reduces the latency of asynchronous
communication by overlapping the various stages of the protocol with other operations.

Register Bypassing in an Asynchronous Superscalar Processor 3

3.2 Asynchronous and Optimized Register Files

The Hades register file organization allows concurrent read and write accesses whenever possible.
Correct operation is ensured in the presence of Read-After-Write (RAW) and Write-After-Write
(WAW) hazards by a register locking mechanism. Similar mechanisms have been used in other
asynchronous projects [12] [13].

All read accesses are initiated by the ID module which sends the source and destination register
fields of an instruction to the register file. A lock is associated with each register and is set,
concurrently with the read access for source operands, on the register that is specified as the destination
for the instruction. Once set, this lock stalls read and subsequent lock accesses to this particular
register. The lock is reset when data is written to the register. Register locking resolves RAW hazards
by stalling reads until the data is available and WAW hazards by stalling lock accesses to registers that
are already locked. This relatively simple scheme for dealing with WAW hazards was considered
sufficient because of the low frequency of WAW hazards in typical code [14].

In a synchronous processor, a major justification for bypassing is that if data is not available from
the register file at the beginning of a clock cycle, a read must be stalled for a complete clock cycle. In
contrast, in an asynchronous processor an instruction need only be stalled until the data is actually
available from the register file, It therefore seemed reasonable to explore the impact of register file
optimizations on versions of Hades that did not support bypassing. In particular, we attempted to
reduce the impact of RAW hazards by minimizing the time taken for data to be communicated between
instructions via the Integer and Boolean Register Files. The critical path was reduced by overlapping
the resetting of the destination register lock with the completion of the protocol mediating the write to
the destination register. Furthermore, if a read encountered a lock, a path through the register file was
preset to allow arriving data to pass straight through and to remove the delay of resetting the lock.

The use of an Optimized Register File is intended to tune the design so that register file access is
less of a performance bottleneck. Optimized Register Files have a very low overhead in terms of
additional hardware requirements. It is therefore natural to combine asynchronous operation with an
Optimized Register File to reduce the performance-sapping effects of RAW hazards in a pipelined
environment.

4. Decoupled Operand Forwarding

Bypassing is one of the most troublesome aspects of asynchronous processor design because the
synchronization implicitly available in a synchronous pipeline is not present in an asynchronous
pipeline. Furthermore, introducing the same level of synchronization in an asynchronous pipeline
would dramatically degrade performance by re-introducing lockstep operation. It is therefore extremely
difficult to design an effective bypassing mechanism that does not compromise performance in some
manner, The intractability of the problem has led some projects to alter the structure of the pipeline
drastically, in order to eliminate the need for bypassing, or to allow radically different forms of
bypassing [3] [7].

Hades provides an unconventional bypassing mechanism called Decoupled Operand Forwarding.
Although a register locking mechanism has the appeal of simplicity, RAW hazards occur so frequently
that simply stalling instruction issue severely degrades performance [15]. An Optimized Register File
will reduce the performance penalty but not remove it. Decoupled Operand Forwarding aims to reduce
the frequency of stalls, by removing the register file from the critical path when two dependent
instructions are executed. WAW hazards continue to be detected using the register file lock bits, since
an instruction must still not be issued to an Execution Unit if the destination register lock is set.
Decoupled Operand Forwarding is a fully general scheme that works for any combination of Execution
Units in both SII and MII environments. The central idea is to avoid performance-sapping high-level
synchronization by separating the forwarding from other pipeline operations.

Register Bypassing in an Asynchronous Superscalar Processor 4

4.1 Centralized Control

Decoupled Operand Forwarding can be viewed as a form of distributed register caching in which the
most recently generated results are retained locally within the Execution Units. The functionality
required by Decoupled Operand Forwarding comprises Forwarding Registers (FRs) and the associated
data paths (Fig. 1), together with Forwarding Tags in the ID module. Each Execution Unit has an
individual FR that holds a copy of the most recent result produced by that unit. These results are
forwarded to subsequent instructions under the explicit control of the ID module.

Instructions are allocated to Execution Units by the ID module which can therefore track the
contents of the FRs. The ID Unit maintains a Forwarding Tag for each FR that uniquely identifies the
logical contents of the corresponding FR. When an instruction is issued, the appropriate Forwarding
Tag is updated and an Overwrite signal is sent to the relevant FR, which invalidates the existing data
and allows the register to be updated with the next result generated by its associated Execution Unit.

During ID, each instruction compares its source register fields with all the Forwarding Tags. If
there is no match, the source operand is obtained from the register file. If a match does occur,
Decoupled Operand Forwarding is initiated by sending a Forward Request signal to the appropriate
FR, which then makes data available for input by an Execution Unit. Only valid contents will be
output by the FR; once the register has received an Overwrite signal, it will wait until a valid result has
been loaded from its Execution Unit before forwarding it.

Communication between the ID module, which provides central control, and each FR is sequential.
There is only one channel for both the Overwrite signal and the Forward Request signal. In general, an
instruction may receive a forwarded result from a particular FR and also use the same FR to hold its
own result. In this case, a Forward Request signal initiates bypassing and a subsequent Overwrite
signal allows the FR to load the result from the instruction. The single communication channel ensures
that these events occur in the correct sequence, that is, they are synchronized. At the same time, the
inherent delay through the Execution Unit will ensure that the execution of an instruction is not held up
by the Overwrite signal. A more detailed discussion of Decoupled Operand Forwarding may be found
in [2].

4.2 A Decoupled Operand Forwarding Example

The Decoupled Operand Forwarding example (Fig. 4) illustrates the role of the ID module in
tracking the logical contents of the FRs and in controlling their operation with the Overwrite and
Forward Request signals. In the diagram, thick lines denote data paths and thin lines denote
communication channels. The following sequence of instructions is being executed in the example.

ADD RI1,R2,R3
SUB R4,R3,R1
ADD R6,R5,R4

In Fig. 4(a), the ID module is decoding the ADD R1,R2,R3 instruction. The instruction is about to
be allocated to EU1, so FT1 is set to indicate that FR1 will receive a copy of the result destined for R1.
An Overwrite signal has also been sent to FR1. That this has been received, is indicated by
‘OVERWRITE =YY",

In Fig. 4(b), EUl is executing the ADD R1,R2,R3 instruction and will pass the result to FRI.
Meanwhile, the ID module has decoded the next instruction, SUB R4,R3,R1, and, by comparing the
Forwarding Tags with its source register fields, has determined that one of its source operands, R1, will
be available from FR1. A Forward Request signal has therefore been sent to FR1. ‘FOR. REQ. =Y’
shows that this signal has been received.

In Fig. 4(c), EUI has completed the first ADD operation and has output the result to the Result Bus
and to FR1, ‘DATA = ADD Result’. In response to the Forward Request, FR1 places the result on a
dedicated bypassing bus, for input by the Execution Unit that is waiting for an operand. In this case,
the SUB R4,R3 R1 instruction has been allocated to the same Execution Unit, EUl, so FT1 is set to
indicate that FR1 will receive a copy of the result for R4, An Overwrite signal has also been sent to
FR1; ‘OVERWRITE = Y’ shows that it has been received.

Register Bypassing in an Asynchronous Superscalar Processor 5

In Fig. 4(d), EUI accepts the data placed on the bypassing bus as the source operand, ‘R1’, for the
SUB R4,R3,R1 instruction, The ID module is decoding the following instruction, ADD R6,R5,R4 and,
after checking the Forwarding Tags, sends a Forward Request signal to FR1. This has been received,
as shown by ‘FOR. REQ.=Y".

In a single instruction issue processor, two dedicated forwarding buses are provided, one for each
instruction source operand. When a Forwarding Register performs a forwarding operation, data is
simply driven onto the appropriate forwarding bus that serves all Execution Units. If an Execution
Unit is waiting for a first or second source operand, it will therefore use the next data sent across the
relevant bus. As a result, the forwarded data does not require any associated address information and
Execution Units do not have to examine each data item to determine its origin.

With the Decoupled Operand Forwarding bypassing mechanism, the last result produced by each
Execution Unit is always saved for possible forwarding. There are three possibilities for the state of
the processor when Decoupled Operand Forwarding is initiated. Firstly, the operand required is
available from both the Integer Register File and from one of the FRs. In this case, the operand will be
obtained directly from the FR. Since the forwarding operation is faster than a register access,
performance will be improved provided that a register access is not required for a second register
operand. Secondly, the operand is present in one of the FRs, but not in the Integer Register File. An
attempt to read from the Integer Register File would therefore cause a stall. In this case, Decoupled
Operand Forwarding provides the operand directly from the FR, thereby increasing performance.
Thirdly, the operand is still being produced and is therefore not available from either the Integer
Register File or from one of the FRs. Once again, Decoupled Operand Forwarding will provide the
operand directly from the FR and boost performance because the operand will be forwarded as soon as
it is produced.

5. SII Simulations and Results

Hades has been designed as a generic processor architecture using CSP [16]. Detailed design has
been carried out on two specific versions of Hades, an SII instantiation and an MII instantiation that
decodes and issues two instructions concurrently. Simulations of these designs have been constructed
using VHDL [17]. To quantify performance a reliable estimate of the execution time for a benchmark
program is required. VHDL simulations are composed of elements that react to various events by
generating further events. A delay occurs between the original event and the generated events. These
delays were estimated and introduced into the simulations so that performance could be estimated. All
delays are expressed in terms of a generalized gate delay and execution times in the results section are
also expressed as generalized gate delays.

The SII simulations are referred to as Hadesl. Hades1 nov is the most basic, as it incorporates no
optimizations at all. Hadesl ov differs only in the communication protocol employed and yet
Optimized Asynchronous Communication increases performance by 59%. Because of the
overwhelming performance benefits of Optimized Asynchronous Communication, it is employed by all
subsequent Hades simulations and Hadesl ov is used as the base model for all subsequent
comparisons. The techniques of Optimized Register Files and Decoupled Operand Forwarding were
simulated separately and in combination. The various SII simulations developed are shown in Table 1.

Our results are based on simulated runs of the Stanford Integer Benchmark Suite, which comprises
eight programs that are illustrative of real-world, non-numeric applications. The programs are easy to
understand and manipulate, at both source and assembly levels, because the static code size is
reasonably small. At the same time, many of the programs are recursive and computationally intensive
and are suitable for obtaining comparative performance figures. The programs (Fig. 5) are written in C
and compiled using a GNUCC compiler originally developed for HSA [18]. All the instructions
generated fall within the subset supported by Hades.

Register Bypassing in an Asynchronous Superscalar Processor 6

5.1 Results for SII Hades

SII results are shown in Fig. 6 and summarized in Table 2. We were particularly interested in
quantifying the benefits of Optimized Register Files and Decoupled Operand Forwarding. All the
speedups are relative to the baseline simulation, Hadesl ov, with Optimized Asynchronous
Communication.,

The first comparison was between Hadesl, with Optimized Register Files (Hadesl orf), and the
baseline simulation. Optimized Register Files improve performance, by overlapping independent
operations, and reduce the latency of passing data between instructions via the Integer or Boolean
Register Files. WB has a reduced latency and the duration of stalls is reduced. The relatively modest
performance increase of 4% achieved with Optimized Register Files will be considered further in
relation to Decoupled Operand Forwarding.

Next Hades1 with Decoupled Operand Forwarding, Hades1_dof, was compared with the baseline
simulation. Decoupled Operand Forwarding provides a significant performance increase of 22%. It
would therefore appear that in an SII model, Decoupled Operand Forwarding offers an attractive and
successful method of bypassing, appreciably improving performance at a reasonable cost.

In an SII environment, the performance increase due to Decoupled Operand Forwarding is over five
times greater than for Optimized Register Files. Two possibilities exist for the differing degrees of
success of these two schemes. Firstly, the Integer and Boolean Register Files are bottlenecks to
performance that cannot be addressed successfully merely by optimization; the very nature of the
operations performed dictates a minimum latency that will adversely affect performance. Secondly,
delays in the path from the output of an Execution Unit to the input of an Execution Unit dominate
register file delays. These path delays could include asynchronous arbitration for Integer Result Buses
and the cumulative effects of several communications protocols. Based on an examination of the
behaviour of Hades, it is suggested that the register file is a bottleneck to performance that can only be
improved, and not solved, by optimization. Decoupled Operand Forwarding increases performance
because it removes register file delays in performance critical situations.

Decoupled Operand Forwarding and Optimized Register Files are combined in Hades1_orf dof. A
comparison with the baseline simulation yields a speedup of 22%, which is the same as that for
Decoupled Operand Forwarding alone. No further performance benefit has therefore been gained from
combining Optimized Register Files with Decoupled Operand Forwarding. This suggests that
Decoupled Operand Forwarding negates the benefits of register file optimization. - In the majority of
cases where a register read access would encounter a locked register, Decoupled Operand Forwarding
provides the operand. Hence, the register file has been successfully removed from the critical path for
dependent instructions.

6. MII Simulations and Results

Fig. 7 shows a generalized diagram of the Hades architecture, with extensions to provide for MIL.
Resources are duplicated to allow two instructions to be issued in parallel. The IF module is now
configured to fetch instructions in groups of two and the ID module is configured to operate on and
issue two instructions concurrently. The Integer and Boolean Register Files are also required to
provide operands for two instructions concurrently. The Interconnection Network already provided two
dedicated forwarding buses between FRs and Execution Units to implement Decoupled Operand
Forwarding. Four dedicated buses must now be provided to handle the bypassing requirements of two
instructions. The MII models, collectively known as Hades2, are shown in Table 3.

6.1 MII Hades versus SII Hades

To investigate the benefits of multiple instruction issue, comparisons were made between various
versions of Hadesl (Table 1) and Hades2 (Table 3). Firstly, the baseline versions were compared.
This comparison between Hadesl_ov and Hades2_ov is shown in Fig. 8. The 32% speedup obtained,
in the absence of Decoupled Operand Forwarding and Optimized Register Files (Table 4), illustrates
the potential of MII to increase the performance of asynchronous processors. Since no additional
Execution Units were provided in the dual issue model, the Execution Units were clearly under-utilized
by the single issue model.

Register Bypassing in an Asynchronous Superscalar Processor 7

Secondly, a comparison was made using both Optimized Register Files and Decoupled Operand
Forwarding, Hades!_orf dof and Hades2_orf dof. These results are shown in Fig. 9. The speedup of
11% (Table 4) again indicates that MII can be applied successfully to asynchronous processors.
However, this is a substantial reduction from the 32% speedup achieved with the baseline models.
Since Hades2_orf dof has only a single Arithmetic Execution Unit and a single Integer Result Bus,
these results suggest that Hades2 does not include sufficient resources to exploit the parallelism in the
benchmark programs fully.

A second Arithmetic Unit and a second Result Bus were therefore added to Hades2 to give the
Hades2_res_rsc model. The results for a comparison of Hades! orf dof and Hades2 res_rsc are
shown in Fig. 9. The speedup of 21% obtained confirms that the performance of the previous MII
model was constrained by the lack of Execution Units. Further improvements could be achieved
through static instruction scheduling, although variable execution times make it more difficult to
schedule code for an asynchronous processor than for a synchronous one.

6.2 Results for M1l Hades

In this section we examine the performance of various dual-issue Hades processor models. The
baseline model, Hades2_ov has only one instance of each Execution Unit and includes no optimizations
apart from the standard Optimized Asynchronous Communication.

Firstly, an Optimized Register File was added to the baseline model to give Hades2_orf. Optimized
Register Files improve dual-issue performance by 4% (Table 5), an identical speedup to that obtained
in the SII simulations (Table 2). Decoupled Operand Forwarding and Optimized Register Files were
then combined in Hades2_orf dof. The speedup against the baseline MII simulation was still only 5%
(Table 5). This disappointing result suggests that the basic dual-issue model had insufficient resources
to exploit Decoupled Operand Forwarding.

Various enhanced MII architectures were therefore explored to see if performance could be
improved by providing additional resources. Execution times for these variants are shown in Fig. 11.

The ID module in Hades2 operates on instructions in pairs, rather than singly. This in turn
introduces greater concurrency into the Execution Units. The obvious corollary is that there is greater
potential for concurrency in the WB module. To assess the impact of an additional Integer Result Bus,
and dual write ports on the Integer Register File, an instance of Hades2 was simulated with two Integer
Result Buses, Hades2 _res. The two buses were available to all Execution Units and asynchronous
arbitration was required to gain exclusive access. ' ‘

An additional Integer Result Bus increases performance by a modest 1%. The small size of the
increase can be accounted for by a number of factors. In a synchronous processor, the number of
Integer Result Buses can be related to the instruction issue rate because the number of integer
instructions issued equals, on average, the number of integer results written back. However, in an
asynchronous processor the situation is less precise because the execution latency of an instruction is
variable and depends on many non-deterministic factors. Therefore, in general, asynchronous
processors require less resource duplication, because demand is not as regulated as in a synchronous
system and tends to be smoothly spread over time rather than fixed around a clock edge.

The benchmark programs frequently contain pairs of arithmetic operations that could execute
concurrently. To exploit this, a version of Hades2 with two Arithmetic Execution Units, Hades2_rsc,
was simulated. Providing two Arithmetic Units increases performance by 6% even though a single
Result Bus is retained. If a second Integer Result Bus is reintroduced to give Hades2 res_rsc, the
speedup over the current baseline is increased to 8%. A MII version of Hades with duplicate
Arithmetic Execution Units therefore requires duplicate Integer Result Buses if it is to achieve its full
potential. It is this enhanced version that achieves a 21% speedup over SII Hades (Fig. 9). The overall
result from a comparison of a MII Hades having both optimizations and additional resources,
Hades2_res_rsc, with the baseline MII simulation, Hades2_ov, yields an overall speedup of 13%.

Register Bypassing in an Asynchronous Superscalar Processor 8

]
|

6.3 Additional Resources and Decoupled Operand Forwarding

We now return to the benefits of Decoupled Operand Forwarding. With a minimal dual-issue
configuration, the performance improvement was only 5%. In this section we quantify the benefits of
Decoupled Operand Forwarding in a fully resourced system, by comparing a Hades2 model with two
Arithmetic Units and two Result Buses, Hades2_res_rsc, against a cut-down model without Decoupled
Operand Forwarding (Fig. 12). The speedup for Hades2 with more available resources is now 11%,
over double that obtained in the previous comparison. Even so the speedup in a dual-issue environment
attributable to Decoupled Operand Forwarding is still only half the speedup achieved with single
instruction issue.

One possible reason for the reduction in the speedup may concern the nature of asynchronous
operation; MII Hades works more efficiently than SII Hades. Superficially, MII exposes more RAW
hazards in programs, suggesting that a mechanism reducing the impact of these hazards should have a
greater affect in a MII environment than in a SII environment. However, in a SII environment,
instructions following a RAW hazard are also stalled because a stall in the ID module affects not only
the dependent instruction but also any following instructions. In a MII environment this restriction is
relieved to some extent because an instruction in the same group as the stalled instruction can still be
issued. It may be that a MII version of Hades that issues two instructions concurrently is, in this
respect, a special case because the benefit provided by concurrent issue to some extent overshadows the
benefits of Decoupled Operand Forwarding. With higher issue rates Decoupled Operand Forwarding
may have a greater effect in a MII environment than in a SII environment, mirroring the situation
encountered in synchronous processor design [15]. Further work on Hades, concentrating on instances
that issue a greater number of instructions concurrently, would provide a more definitive answer.

A feature of the operation of Decoupled Operand Forwarding in Hades is that instructions from the
following instruction groups are prevented from issuing until all bypassing for the previous instruction
group has been initiated. This was a conscious design decision rather than a requirement of
asynchronous operation. A request from the ID module to a Forwarding Register in the EX module has
the form “Forward Data”, which constitutes only a single bit of information. Two other elements of the
architecture allow the request to be fulfilled. Firstly, there are dedicated connections to communicate
each operand in the ID module to the EX module for each instruction in the ID module. An instruction
arriving at an Execution Unit in the EX module consumes the operands offered to it without verifying
that they are correct; this is controlled by the ID module. Secondly, to ensure that an instruction does
not have to verify its operands before execution, a second instruction cannot be issued from the same
instruction slot in the ID module until the preceding instruction has obtained all its operands.
Otherwise the two instructions could attempt to input the same operands leading to non-deterministic
effects. The configuration described provides the minimum hardware and functionality required to
realize both MII and bypassing in an asynchronous environment. Furthermore, the effects on
performance have been minimized because it is not necessary for an instruction to have actually
obtained its operands before a further instruction can be issued; it is sufficient if a Forwarding Register
has indicated that data is ready for transfer, and an Execution Unit has indicated its readiness to receive
it. It is not necessarily the case that the data will have been communicated, only that both parties
involved in the data transfer be committed to that transfer.

The next stage in the development of Hades would be to remove the restriction that an instruction
must be committed to all its operands before a further instruction can be issued from the same slot in
the ID module. However, this demands extra resources and functionality that were not considered
essential to the initial stage of Hades’ development. The restriction can be removed in two ways: either,
each instruction can be given sufficient information to vet each operand offered to it and can take only
the operands it requires, or more information can be given to the Integer Register File and the
Forwarding Registers so that they can target the data to a specific Execution Unit rather than to a slot
in ID. Increasing the amount of information given to an instruction and allowing it to choose the
operands it inputs is non-trivial because each item of data communicated to an Execution Unit must be
uniquely tagged. It is not sufficient to use the Integer Register tags, because multiple instructions may
require data from the same register and data from different sources may yield different values (i.e. the
present state of the register and a result destined for the register). This means that the ID module must

Register Bypassing in an Asynchronous Superscalar Processor 9

allocate and maintain unique tags for data in the pipeline and that the Execution Units must be able to
check for correct tags.

Giving more information to the Integer Register File and the Forwarding Registers, to allow them to
target a specific Execution Unit does not imply any additional operation latency because an instruction
would again take the first operands offered to it, and the ID module already has all the required
information when an instruction is issued. However, this scheme has a very high cost in additional
hardware requirements. At present the Integer Register File and the Forwarding Registers each have
dedicated, shared connections that can support each slot in the ID module. These connections
broadcast data to all Execution Units in response to signals from ID. The data is broadcast over a one-
to-many bus from the Integer Register File to the Execution Units in the EX module and a many-to-
many connection from the Forwarding Registers to the Execution Units. The reason that these
interconnections are guaranteed to work is that only one instruction, and hence Execution Unit, can be
waiting for data at any time. Therefore, an instruction must be committed to its operands before a
subsequent instruction can be issued. Removing this restriction with the present connection scheme
would mean that two instructions could potentially accept the same data. For example, suppose an
instruction is issued which then has to wait for bypassed data and, subsequently, a second instruction is
issued from the same ID slot requiring data from the Integer Register File. Both instructions arrive at
their respective Execution Units prepared to accept the first operands offered. Because of the non-
determinism introduced by asynchronous operation it is not possible to predict which data will arrive
first, so both instructions will attempt to accept the first data offered. The only alternative, if
Execution Units are still to accept whatever data is offered, is to provide dedicated connections between
the Integer Register File, Forwarding Registers and Execution Units to ensure that data can be targeted
to the correct Execution Unit. Providing dedicated connections quickly inflates the number of buses
required to unacceptable levels.

Hence, the next step in the development process for Hades would be to remove the restriction that
all bypassing must occur in order, either by uniquely tagging each piece of data in the pipeline, or by
informing the source of the data for which Execution Unit it is destined. In either case the introduction
of shared data buses and arbitration for exclusive access would be required.

7 Conclusions

In this paper we consider performance issues in the asynchronous model, through the design and
simulation of the Hades processor. ' _

Communication was optimized for use in an asynchronous environment and was implemented in all
subsequent simulations. Our experience with SIT Hades showed that Optimized Register Files go some
way towards reducing the impact of the register file. However, bypassing in the form of Decoupled
Operand Forwarding is far more effective and improves performance by 22% regardless of whether an
Optimized Register File is provided. This result suggests that Decoupled Operand Forwarding removes
the register file from the critical path when dependent instructions are executed. The key to the success
of Decoupled Operand Forwarding is to centralize control in the ID module without forcing
synchronization on the Execution Units, which continue to operate asynchronously.

We began to investigate MII in an asynchronous environment with Hades2, a dual-instruction-issue
version of Hades. An encouraging performance gain of 32% was achieved when the SII and MII
baseline cases were compared. As this gain was reduced to 11% in the presence of both Optimized
Register Files and Decoupled Operand Forwarding, we simulated other MII variants of Hades with
additional resources. Results of a further comparison with SII Hades show a 21% speedup, indicating
that some earlier resource constraints had been removed. Nonetheless, our results indicate that the
speedup attributed to Decoupled Operand Forwarding is less in a MII environment than in a SII
environment. Overall, Decoupled Operand Forwarding was found to be a very successful technique to
improve the behaviour and performance of Hades.

Register Bypassing in an Asynchronous Superscalar Processor 10

References

(1]
[2]
[3]

[4]
[5]

[6]
[7]

[8]
[9]

[10]
[11]
[12]

[13]

[14]
[15]
[16]

[17]
[18]

C. Seitz, System timing, in: Mead, C., Conway, L., (Eds), Introduction to VLSI systems,
Addison-Wesley, 1980, pp. 218-262.

C. J. Elston, Hades: an asynchronous superscalar processor, Ph.D. Thesis, University of
Hertfordshire, 1996,

S. B. Furber, P. Day, J. D. Garside, N. C, Paver, J. V. Woods, AMULET1: a micropipelined
ARM, Proceedings of CompCon’94, IEEE, San Francisco, March 1994, pp. 476-485.

1. E. Sutherland, Micropipelines, Communications of the ACM, 32 (6) (1989) 720-738.

S. B. Furber, P. Day, J. D. Garside, N, C. Paver, S. Temple, AMULET2¢, EMSYS °96 - OMI
Sixth Annual Conference, 10S, Berlin, 23-25 September, 1996.

R. F. Sproull, I. E. Sutherland, C. E. Molnar, CounterFlow Pipeline Processor architecture,
Technical Report SMLI TR-94-25, Sun Microsystems Laboratories, 1994,

S. Moore, P. Robinson, S. Wilcox, Rotary pipeline processors, IEE Proceedings Computers and
Digital Techniques, 143 (5) (1996) 259-265.

P. B. Endicott, SCALP, Ph.D. Thesis, University of Manchester, 1996.

H. Corporaal, H. Mulder, Move: a framework for high-performance processor design,
Supercomputing, 7 (1991) 692-701.

J. Hoogerbrugge, H. Corporaal, Register file port requirements of transport triggered
architectures, Micro27, ACM, San Jose, California, November 1994, pp. 191-195.

G. B. Steven, F. L. Steven, ALU design and processor branch architecture, Microprocessing and
Microprogramming, 36 (1993) 259-278.

A. Martin, S. Burns, T. Lee, D. Borkovic, P. Hazewindus, The Design of an asynchronous
microprocessor, Technical Report CS-TR-89-02, Caltech, 1989.

N. Paver, P. Day, S. B. Furber, J. D. Garside, J. V. Wood, Register locking in an asynchronous
microprocessor, ICCD 92: IEEE International Conference on Computer Design, October 1992,
pp. 351-355.

J. L. Hennessy, D. A. Patterson, Computer architecture: a quantitative approach, Morgan-
Kaufmann, 1990, pp. 236-245.

M. Franklin, G. S. Sohi, Register traffic analysis for streamlining inter-operation communication
in fine-grain parallel processors, Micro25, ACM, Portland, Oregon, December 1992, pp.236-
245. C

C. A. R. Hoare, Communicating sequential processes, Prentice Hall, 1985.

IEEE Standard VHDL reference manual, IEEE Std 1076-1987.

G. Steven, B. Christianson, R. Collins, R. Potter, F. Steven, A Superscalar architecture to
exploit instruction level parallelism, Microprocessors and Microsystems 20 (1997) 391-400.

Register Bypassing in an Asynchronous Superscalar Processor 11

INSTRUCTION
FETCHSTAGE

INSTRUCTION CACHE

:‘ PROGRAM

ADDRESS GENERATO!
COUNTER E R

INSTRUCTION
DECODE STAGE

BOOLEAN REGISTER FILE INSTRUCTION DECODER INTEGER REGISTER FILE

RELATIONAL ¥
ExecutioN UNIT

EXECUTION
STAGE

‘ RESULT BUS ARBITRATION & WRITEBACK
‘ STAGE

Fig. 1. The Hades Processor Architecture. |

Ack1l

REQ2

AcCk2

) Fig. 2. Non-Overlapping Four-Phase Communication

Register Bypassing in an Asynchronous Superscalar Processor

Ack1

REQ2 ’ \

ACK2

Fig. 3. Overlapping Four-Phase Communication

Table 1
S1I simulations.
Hades1_nov SII Hades, no Decoupled Operand Forwarding, no Optimized Register Files,
Unoptimized Asynchronous Communication.
Hades1_ov Hades1_nov, Optimized Asynchronous Communication.
Hades1_orf Hadesl ov, Optimized Register Files.
Hades1_dof Hades1_ov, Decoupled Operand Forwarding.
Hades1_orf_dof | Hadesl_ov, Optimized Register Files, Decoupled Operand Forwarding.

Permute
Matrix
Queens
Puzzle
Quicksort
Tower
Bubble
Tree

Recursively computes permutations of a number of integer elements.
Multiplies two integer matrices.

Solves the queens chess problem recursively.

Recursively solves a cube packing problem.

Recursive quicksort of a number of integer elements.

Solves the Towers of Hanoi problem recursively.

Bubble sort of a number of integer elements,

Binary tree sort of a number of integer elements.

Fig. 5. The Stanford Integer Benchmark Suite

Please note

figure four is over the page

Register Bypassing in an Asynchronous Superscalar Processor

SUB R4,R3R1 ,,.E?

1D

(ADD R1,R2,R3]

FT1=RI1
FT2 =~

+—OVERWRITE

EU1

v

(a) To Result bus

ADD R6,R5R4 |
:
‘eéo

D
(SUB R4,R3,R1 J

FT1=R4
FT2 =~

«—OVERWRITE

EU1

DATA = ADD
Result
OVERWRITE =Y

el [nstructions
===y Data paths : physical and logical
———— Control

ADD R6,R5,R4 %
i

ID

[SUB R4,R3,R1]

FT1=R1
FT2 =~

+«—FOR. REQ.

EUl
ADD R1,R2,R3

DATA =~
FOR. REQ. =Y

(b)

D
EADD R6,R5,R4]

v

DATA = ~
FOR. REQ. =Y

SUB R4,R3,R1

(d)

* Bypassing bus
~ Don’t care
FOR. REQ. Forward Request

Fig. 4. An example of Decoupled Operand Forwarding, illustrating the use of a FR.

(gates x 10“)

(=]

Permute

B Hadesl_ov

Fig. 6. Execution times for all SII simulations.

Table 2

Speedups in SII simulations when compared with Hades1_ov.

Hadesl_orf Hadesl_dof Hadesl_orf dof

Permute
Quicksort
Bubble
Tower
Matrix
Queens
Tree
Puzzle

Geometric Mean

1.02
1.05
1.04
1.04
1.04
1.03
1.05
1.04

1.04
(4%)

1.13
1.24
1.21
1.21
1.25
1.23
1.23
1.25

1.22
(22%)

1.13
124
123
121
125
1.23
124
126

1.22
(22%)

Register Bypassing in an Asynchronous Superscalar Processor

RELATIONAL
 EXECUTION UNIT

ARITHMETIC

FORWARDIN
REGISTER

INSTRUCTION

FETCH MODULE
PROGRAM
DDRESS
INSTRUCTION
DECODE MODULE
BOOLEAN REGISTER FILE INSTRUCTION DECODER INTEGER REGISTER FILE
MuLTIPLY EXECUTION
EXECUTION UNIT MODULE
REGISTER
i

WRITEBACK
RESULT BUS ARBITRATION MODULE

Fig. 7. The MII Hades Processor Architecture.

Table 3

MII simulations.
Hades2_ov MII Hades, no Decoupled Operand Forwarding, no Optimized Register Files.
Hades2_orf Hades2_ov, Optimized Register Files.
Hades2_orf_dof | Hades2_ov, Optimized Register Files, Decoupled Operand Forwarding,.
Hades2 res Hades2_orf dof, two Integer Result Buses.
Hades2_rsc Hades2_orf_dof, two Arithmetic Execution Units.
Hades2_res_rsc Hades2_orf_dof, two result buses, two Arithmetic Execution Units,

Register Bypassing in an Asynchronous Superscalar Processor

] 12
10 Hades!_ov
~ @ Hades2 ov

- 8

54

2

0

Tree
Puzzle

Permute
Quicksort
Bubble
Tower
Matrix
Queens

Fig. 8. Execution times for baseline SII and MII Hades.

Table 4
Speedups of MII over the equivalent SII simulations.

| Hades2_ov Hades2_orf_dof

over over
Hadesl_ov Hadesl_orf_dof
i Permute 1.29 1.17
| Quicksort 131 1.12
Bubble 1.27 1.06
Tower 1.35 1.17
Matrix 1.37 1.13
Queens 1.26 1.07
| Tree 1.28 1.10
| Puzzle 1.35 1.09
| Geometric Mean 1.32 1.11
(32%) (11%)

Register Bypassing in an Asynchronous Superscalar Processor

B Hadesl_orf_dof
B Hades2_orf_dof
C1Hades2_res rsc

(gates x 10™)

DWW HAE LY RO

Tree
Puzzle

Permute
Bubble
Tower
Matrix

Queens

Fig. 9. Execution Times for a comparison of Hades2_orf dof and Hades2_res_rsc with
Hades1 orf dof.

Hades2_ov

B Hades2_orf
O Hades2_orf _do

(gates x 10“)

O =~ N WO b OO O N
R T

R
g .ﬁ "g o < g H a
5 é: & = = &

Fig. 10. Execution times for MII Hades simulations.

Register Bypassing in an Asynchronous Superscalar Processor

Table 5
Speedups from the MII base model, Hades2 ov.

Hades2_orf Hades2_orf_dof

Permute 1.05 1.08
Quicksort 1.05 1.06
Bubble 1.04 1.02
Tower 1.04 1.05
Matrix 1.06 1.03
Queens 1.04 1.04
Tree 1.05 1.06
Puzzle 1.04 1.05
Geometric Mean 1.04 1.05

(4%) (5%)

BHades2 _orf_do

B Hades2_res
O I
3
=]]
A =

O Hades2_rsc
Fig. 11. Execution times for Hades2 variants.

(gatesxlOu)
O = N W kA NN

L E N ——

Matrix

Quicksort FEE====

Permute S

8 -
7 {|EHades2 res_rsc|
¢ | (cut-down) :
~ [lmHades2 res_rsc |
'—E -4 ::
i
8
<
N

S = N W AW

Queens
Tree
Puzzle

Permute
Quicksort
Bubble
Tower
Matrix

Fig. 12. Execution Times for a comparison of Hades2 res_rsc and a cut-down Hades2 res_rsc.

Register Bypassing in an Asynchronous Superscalar Processor

