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Information technology has revolutionized the traditional structure of markets. The removal of geographical

and time constraints has fostered the growth of online auction markets, which now include millions of economic

agents worldwide and annual transaction volumes in the billions of dollars. Here, we analyze bid histories

of a little studied type of online auctions — lowest unique bid auctions. Similarly to what has been reported

for foraging animals searching for scarce food, we find that agents adopt Lévy flight search strategies in their

exploration of “bid space”. The Lévy regime, which is characterized by a power-law decaying probability

distribution of step lengths, holds over nearly three orders of magnitude. We develop a quantitative model for

lowest unique bid online auctions that reveals that agents use nearly optimal bidding strategies. However, agents

participating in these auctions do not optimize their financial gain. Indeed, as long as there are many auction

participants, a rational profit optimizing agent would choose not to participate in these auction markets.

Introduction

Animals searching for scarce food resources display move-

ment patterns that can be statistically classified as Lévy

flights [1–8]. Lévy flights [9] represent the best strategy that

can be adopted by a searcher looking for a scarce resource

in an unknown environment [10], and foraging animals seem

therefore to have learned the best strategy for survival. Lévy

flights describe also the movement patterns of humans in real

space [11] and the variability of economic indices [12], but

these observations do not correspond to search processes as

in the case of foraging animals. Surprisingly, there is no in-

dication of whether humans also use Lévy flight strategies

when searching for scarce resources. Analyzing apparently

unrelated data regarding online auctions, we address here this

question and show that, when searching for scarce resources,

humans explore the relevant space in the same class of strate-

gies as foraging animals do.

Lowest unique bid auctions are a new generation of online

markets [13–18]. Agents winning lowest unique bid auctions

may purchase expensive goods for absurdly low prices; cars,

boats and even houses can be bought for only hundreds of

dollars. The idea of the auction is strikingly simple. A good,

typically with a market value V of at least a thousand dollars,

is put up for auction. The auction duration is fixed a priori.

A bid can be any amount from one cent to a pre-determined

maximum value M , generally lower than one hundred dollars.

Each time an agent makes a bid on a value 1 ≤ b ≤ M , she

pays a fee c, which ranges from one to ten dollars depending

on the auction. During the bidding period, an agent knows

only the status of her new bid, that is, whether it is winning

or not. None of the agents knows on what values the other

agents have bid until the end of the auction. When the bidding

period expires, the agent who made the lowest unmatched bid

can purchase the good for the value of the winning bid (see

Fig. 1 for an illustration of the determination of the winning

bid).
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not unique not unique unique and not unique unique but
not lowestlowest
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1 bid

4¢
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Figure 1: Unique bid auctions. Illustration of the rules of a lowest

unique bid auction. At the end of the auction, the winner results

to be the agent who has bid 3¢, which represents the lowest unique

bid. All other bids are not unique apart from the one of 5¢, which is

not the lowest one. In highest unique bid auctions the mechanism is

reversed, and the winner is the agent making the highest unmatched

bid. Illustration of the rules of a lowest unique bid auction. At the

end of the auction, the winner results to be the agent who has bid 3¢,

which represents the lowest unique bid. All other bids are not unique

apart from the one of 5¢, which is not the lowest one. In highest

unique bid auctions the mechanism is reversed, and the winner is the

agent making the highest unmatched bid.

Lowest unique bid auction markets are competitive arenas.

Each agent performs a search for a single target whose po-

sition changes from auction to auction, as it is determined by

the bid history of the whole population of agents. Since the

cost of each bid is as much as 100 times larger than the natu-

ral unit of the bid, the number of bids that can be made by a

single agent is limited and allows only a partial exploration of

the bid space. Successful agents need to identify good strate-

gies in order to maximize their winning chances and thus limit

their risk.
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Figure 2: Individual activity. (A) Bid values explored by agent

1632 on auction 19 in the data set www.uniquebidhomes.com.

Bids are sorted chronologically, and the figure reports the value bt
of the t-th bid. The unit of the bid amount is one hundredth of

an Australian dollar. (B) Absolute value of the difference between

two consecutive bids. The exploration of the bid space is character-

ized by a bursty behavior, where many small movements are occa-

sionally followed by large jumps. (C) Cumulative distribution func-

tion of the change in bid value. The distribution is well fitted by

a power-law, with decay exponent consistent with α = 1.3 ± 0.1
(dashed line). The agent therefore explores the bid space using a

Lévy flight strategy. Notice that the curve bends down because of

the finiteness of the bid space. (D) Probability density function

of the Lévy-flight exponents adopted by agents in lowest unique

bid auctions (www.uniquebidhomes.com). The blue line in-

dicates the average value 〈α〉 ≃ 1.26 of the distribution, the red

line identifies the mode αb ≃ 1.21 of the distribution, the orange

lines bound the region within one standard deviation σ ≃ 0.23
from the average. (E) Probability density function of the Lévy-

flight exponents adopted by agents in highest unique bid auctions

(www.bidmadness.com.au). In this case we find 〈α〉 ≃ 1.36,

αb ≃ 1.35 and σ ≃ 0.23.

Lowest unique bid auctions are just a particular variant of on-

line pay-to-bid auctions, but other types of pay-to-bid auc-

tions are regularly hosted on the web. For example, in high-

est unique bid auction the mechanism of lowest unique bid

auction is inverted, and the winning bid is determined by the

highest value closest to a pre-determined upper bound value.

Since these auctions still involve a blind search of the win-

ning value, highest unique bid auctions are equivalent to low-

est unique bid auctions. Indeed, in this paper we analyze data

taken from both types of auctions.

Other online pay-to-bid auctions, however, can be very dif-

ferent from lowest unique bid auctions. For example, the so-

called penny auctions, which have acquired a great popularity

in recent years, appear quite similar to but are not. As in the

case of lowest unique bid auctions, the cost of the fee is at least

100 times larger of the bid increment, and as a consequence,

the final value of the winning bid is much lower than the real

value of the good up for auction. However, in penny auc-

tions the value of the winning bid is publicly known and can

only grow during the auction (i.e., the word “penny” is used

because, in penny auctions, bid increments are equal to one

cent). While escalation plays a very important role in penny

auctions, in this type of auctions agents do not need to explore

the bid space because the value of the winning bid is known.

Penny auctions have been the focus of some theoretical and

empirical studies [19–23].

Results

We collected data from three distinct web sites hosting low-

est unique bid auctions. We automatically downloaded and

parsed the content of the tables reporting the bid history of

closed auctions. These data sets contain all the information

on individual auctions, including the details of each bid: its

value, when it was made and who placed it. These data allow

us to keep track of all the movements performed on bid space

by a given agent bidding in a specific auction.

We show in Figure 2A a typical exploration of the bid space

performed by a single agent. The exploration of the bid space

is bursty: consecutive bid values are generally close to each

other, but from time to time the agent performs “long jumps”

in bid space. We first compute the jump lengths (Fig. 2B) and

estimate their probability distribution function (Fig. 2C). We

find a strikingly robust power-law scaling consistent with the

exploration of the bid space using a Lévy flight search strat-

egy [9]. Note that here we use the notion of discrete Lévy

flights. Time and space are in fact discrete, and the exploration

of the bid space is modeled as a discrete time Markov chain

[with transition probability defined in Eq. 8]. Our discrete

model converges to a standard Lévy flight only in the contin-

uum limit of space and time [24]. The power-law scaling can

be observed both at the level of single agents (whenever the

number of bids is sufficiently large for estimating the distribu-

tion; c.f. Figs. 2C and Supporting Information) and globally,

by aggregating the length of the jumps made by all agents in

all auctions (Figs. 3A and Supporting Information). The den-

sity distribution of the exponents calculated over single agents

is peaked around a mean value 〈α〉 ≃ 1.3 (Figs. 2D, 2E and

Supporting Information), the same exponent value we esti-

mate for the aggregated data. Significant variations around

the average value are anyway present, and reflect the hetero-

geneity of the agent strategies. The density distributions of

Figs. 2D and 2E are in fact calculated by considering different

agents bidding in different auctions.

The power-law scaling and its measured exponent are very

stable. Exponent estimates do not depend on the direction of

the jumps (Figs. 3B and Supporting Information) or the level

of activity of the agent (Figs. 3C and Supporting Information).

Surprisingly, performing Lévy flights does not appear to be

a learned strategy. Instead it appears to be an intrinsic fea-

ture of the mental search process: the jump lengths in the bid

space follow the same power-law at any stage of the auction
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(Figs. 3D and Supporting Information).

Our results represent the strongest empirical evidence for the

use of Lévy flight strategies in the search of scarce resources

reported in literature up to now. Differently from previous

studies where “two orders of magnitude of scaling can repre-

sent a luxury” [6], here the power-law decay can be clearly

observed even over four orders of magnitude. It is unlikely,

though, that adopting Lévy flight strategies is a deliberate

choice of the agents, just as it is not likely that animals search-

ing for food consciously follow a Lévy flight strategy. Nev-

ertheless, the data demonstrate that the changes in bid value

are statistically consistent with a power-law decaying distribu-

tion over several orders of magnitude (see and Supporting In-

formation) [25]. Simple correlation measurements show also

that the lengths of consecutive jumps are independent of each

other (see and Supporting Information). We believe that the

power-law is valid over such a broad regime because the space

is not strictly physical. That is, movements of tens of thou-

sands of cents can be performed for the same cost of those of

only one cent. Agents thus explore the bid space in an effec-

tively super-diffusive fashion, and steps are made with infinite

velocity.

Model

Next, we model the lowest unique bid auction process. Con-

sider N agents competing in a lowest unique bid auction.

We model the successive bids of these agents as Lévy flight

searches on bid space. Each agent moves in a bounded one-

dimensional lattice with an a priori chosen exponent value,

which may be regarded as the agent’s strategy in the auction.

In our formulation, every agent performs the same number T
of bids and may return to already visited sites. At the begin-

ning of the auction, every agent sits at the leftmost site on the

lattice and then performs T movements by changing, at each

step, her actual position by an amount randomly drawn from a

power-law distribution. If at stage t−1 the agent with strategy

α is sitting at position j, then at stage t she jumps to position

i with probability proportional to |i− j|
−α

. This model pro-

vides us with an independent way to determine the exponent

values of the Lévy flights and offers a strikingly good statisti-

cal description of the data (Fig. 2B and Supporting Informa-

tion).

We focus our attention on a generic agent bidding with strat-

egy β and on her chances to win auctions in which the rest of

the population is bidding with strategy γ. More complicated

situations may in principle be studied with the same formal-

ism.

Single bid

Consider first the case in which agents make a single bid. The

probability that a generic opponent, using bidding strategy γ,
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Figure 3: Bidding strategies of agents are Lévy flights. (A)

Probability density function of the bid change for all agents

in all auctions. We analyze data sets from three differ-

ent web sites hosting auctions: www.uniquebidhomes.com

(black circles), www.lowbids.com.au (red squares ) and

www.bidmadness.com.au (blue diamonds). (B) Probability

density function of positive (black circles) and negative (red squares)

bid changes. (C) Probability density function of the change amount

for data aggregated over agents with different levels of activity (T in-

dicates the total number of bids made by an agent in a single auction).

(D) Probability density function of the change amount at different

stages of the auctions (t stands for order of the bid change in the bid

history of an agent). In (A), (B) and (D) results have been obtained

for lowest unique bid auctions (www.uniquebidhomes.com).

All dashed lines stand for best power-law fits (least square) and all

exponent values are consistent with α = 1.4 ± 0.1. The unit of the

bid value change amount is one hundredth of an Australian dollar.

bids on value i is

pγ (i) = i−γ/m (γ) , (1)

with m (γ) =
∑M

j=1 j
−γ proper normalization constant. Here

we consider the simple case in which all agents adopt the same

bidding strategy γ. The probability of Eq. (1) can be anyway

made more general by assuming that agents chose strategies

from a density distribution g (α) and calculating the proba-

bility of Eq. 1 as p (i) =
∫

dα i−α/m (α) g (α). After all

agents have bid, there will be nk bids on the k-th bid value.

Such variables clearly obey the constraint N =
∑M

k=1 nk.

The probability to observe a particular configuration {n} =
(n1, n2, . . . , nk, . . . , nM ) is given by

Pγ ({n}) = N !
M
∏

k=1

[pγ (k)]
nk

nk!
, (2)

which is a multinomial distribution with weights given by

Eq. (1). In particular, the probability that only one bid (i.e.,
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Figure 4: Model predictions. Economic return rβ,γ [Eq. (7)], di-

vided by the number of bids T , of an agent bidding with strategy β
when competing, in a lowest unique bid auction with upper-bound

M = 1, 000 and for a good of value V = 10, 000, against N = 100
opponents bidding with strategy γ. Unless specified, the quantity

rβ,γ reported in this plots is computed by numerically solving the

equations of the model. (A) Case where each agent performs a sin-

gle bid in the auction, for three values of γ. Theoretical predictions

(lines) are compared with the results of numerical simulations (sym-

bols). In each simulation of the auction, we randomly extracted N
bid values j with probability proportional to j−γ , and a single bid

value v with probability proportional to v−β . For a given set of

parameters, we repeated the same simulation G = 10, 000 times,

and calculate the number of times g in which the bid value extracted

from the power-law distribution with exponent β was the winning

bid, and the sum I of these winning bid values. The economic re-

turn has been finally calculated as rβ,γ = (gV − I) /G. (B) Explo-

ration of parameter space reveals the existence of a saddle point at

βs = γs ≃ 1.27. (C) Case where each agent performs 10 bids in the

auction, for three values of γ. Numerical simulations have been car-

ried out as in the former case, but considering agents moving in the

bid space according to Eq. (8). (D) Exploration of parameter space

reveals the existence of a saddle point at βs = γs ≃ 1.38.

a unique bid) is made on value i is

uγ (i) = Pγ (ni = 1) =
∑

∑
k 6=i

nk=N−1 Pγ ({n})

= Npγ (i) [1− pγ (i)]
N−1 . (3)

Focus now on the agent with bidding strategy β. The proba-

bility that, making a bid on value v, she makes a lowest unique

bid can be calculated exactly by summing the multinomial dis-

tribution of Eq. (2) over all configurations for which there are

no bids on the value v and there is not a unique bid on a value

smaller than v, and finally multiplying this factor by the prob-

ability that the agent with bidding strategy β bids on the value

v. Such exact calculation is however unfeasible due to the ex-

tremely high number of possible combinations, and therefore

we approximate the probability that, making a bid on value v,

the agent with bidding strategy β makes a lowest unique bid

as

lβ,γ (v) = pβ (v) [1− pγ (v)]
N

∏

k<v

[1− uγ (k)] . (4)

The r.h.s. of Eq. (4) is the product of three terms: pβ (v) is

the probability that the agent bids on value v; [1− pγ (v)]
N

is the probability that none of the opponents have bid on

value v;
∏

k<v [1− uγ (k)] is the probability that none of

the bid values smaller than v are occupied by a single bid

made by one of the opponents. In spite of the fact that

Eq. (4) is just an approximation of the real lβ,γ (v), the ap-

proximation can be considered good because able to repro-

duce the results obtained from the direct simulation of the

process (see the section Results). Moreover in the simplest

case in which N = 1, it correctly reduces to the exact value

lβ,γ (v) = pβ (v)
∏

k≤v [1− pγ (k)].

Finally, the probability that the agent with bidding strategy β
wins the auction is

wβ,γ =

M
∑

v=1

lβ,γ (v) (5)

and, on average, the value of her winning bid is

〈v〉β,γ =

M
∑

v=1

v lβ,γ (v) . (6)

Repeated auctions

Imagine now to repeat the same auction G independent times.

The probability that the agent bidding with strategy β wins g
times out of G total auctions is given by a binomial distribu-

tion

Pβ,γ (g) =

(

G

g

)

(wβ,γ)
g
(1− wβ,γ)

G−g
.

If the agent with bidding strategy β wins g auctions, the sum

of her winning bids is a random variable I whose probability

is determined by

Rβ,γ (I |g ) =
∑

v1+v2+...+vg=I

lβ,γ (v1) lβ,γ (v2) · · · lβ,γ (vg) ,

where the sum runs over the integer indices v1, v2, . . . , vg
with the constraint that their sum should equal I . Excluding

bidding costs, the average return of the agent in g victories is

rβ,γ (g) = (gV − I) /G .

In general, the probability that the sum of the winning bids

is equal to I in an arbitrary number of auctions won by the

player with bidding strategy β can be calculated as

Rβ,γ (I) =
∑

g

Pβ,γ (g) Rβ,γ (I |g ) ,
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and a similar expression can be derived for the distribution

of rβ,γ (g). However, we are interested in the case in which

the number of auctions diverges (G ≫ 1). In this limit,

we can approximate the number of victories with its aver-

age 〈g〉 = Gwβ,γ as well as the sum of the winning bids

as I = 〈g〉〈v〉β,γ = Gwβ,γ 〈v〉β,γ . The return of the agent

with bidding strategy β is therefore

rβ,γ = wβ,γ (V − 〈v〉β,γ) . (7)

For rβ,γ > c, the agent has a positive return for participating

in the auction, whereas, for rβ,γ < c, her return is negative.

Multiple bids

Given a generic agent with bidding strategy α, her first bid is

placed on value i with probability q
(1)
α (i) = i−α/m (α). For

the subsequent bids, we need to define a transition matrix Qα,

whose generic element (Qα)ji gives the probability that the

agent bids on value i when her previous bid has been made on

value j. In our model, we have

(Qα)ji =
|i− j|

−α
[1− δ (i− j)]

mj (α)
, (8)

for all i and j in the interval [1,M ]. δ (·) is the Kronecker

delta, equal to one if its argument is equal to zero, and equal

to zero otherwise. The normalization constant mj (α) =
∑M

i=1,i 6=j |i− j|
−α

ensures the proper definition of the tran-

sition matrix. The matrix Q describes a random walker per-

forming uncorrelated Lévy flights with exponent α. Notice

that the agent has no memory of her previous bid values and

therefore she may place more than a bid on the same value. At

the generic step t, the probability that the agent with bidding

strategy α bids on the value i is

q(t)α (i) =

M
∑

j=1

(Qα)ji q(t−1)
α (j) .

The probability that this agent has bid, during her T bids, on

value i is then

s(T )
α (i) = 1−

T
∏

t=1

[

1− q(t)α (i)
]

.

The term 1− q
(t)
α (i) counts the probability that the agent has

not bid on value i at stage t. The probability that the agent has

not bid on value i at any stage is therefore the product of this

single step probabilities. Finally, the probability that the agent

has bid on value i at least once is calculated as the probability

to have bid on value i an arbitrary number of times minus the

probability to have never bid on value i.

Now go back to the situation in which an agent with bidding

strategy β is opposed to a population of N agents with bidding

strategy γ. The probability that the agent with bidding strat-

egy β has bid, in T steps, at least once on value i is s
(T )
β (i).

The probability that one of the N opponents, bidding with

strategy γ, makes a unique bid on value i is given by

u
(T )
β,γ (i) = N s(T )

γ (i)
[

1− s(T )
γ (i)

]N−1 [

1− s
(T )
β (i)

]

.

(9)

u
(T )
β,γ (i) is the product of two terms:

N s
(T )
γ (i)

[

1− s
(T )
γ (i)

]N−1

is the probability that a

bid on value i is unmatched by any of the other N − 1

opponents, while 1 − s
(T )
β (i) is the probability that also the

agent, with bidding strategy β, does not bid on value i. The

probability that the agent with strategy β wins the auction

with a bid on value v is

l
(T )
β,γ (v) = s

(T )
β (v)

[

1− s(T )
γ (v)

]N ∏

k<v

[

1− u
(T )
β,γ (v)

]

,

(10)

respectively standing for the product of the probabilities that:

she bids on value v; none of the other agents bids on value v;

none of the bids with value smaller than v is unique. Eqs. (9)

and (10) represent the generalization of Eqs. (3) and (4), re-

spectively. In Eq. (10) we made the same type of approxima-

tion as the one used for writing Eq. (4). The probability w
(T )
β,γ

that the agent with bidding strategy β wins the auction and

the average value 〈v〉
(T )
β,γ of her winning bids can be respec-

tively calculated using Eqs. (5) and (6). Finally, excluding

bidding costs, the return rβ,γ of the agent with strategy β over

an infinite number of auctions is again given by Eq. (7). For

rβ,γ > T c, the agent has a positive return for participating in

the auction, whereas, for rβ,γ < T c, her return is negative.

Model predictions

We show in Fig. 4 the results obtained with our analytical

model. The presence of a saddle point at γs = βs indicates

that βs is an optimal strategy or Nash equilibrium [26–28].

When the opponents do not bid rationally (i.e., γ 6= γs), it is

more convenient to use a strategy β 6= βs. On the other hand,

when the other agents bid rationally (i.e., γ = γs), there is no

better strategy than βs. The value of βs depends on the pa-

rameters N and T , but for realistic choices (see and Support-

ing Information and Fig. 4), βs is in the range 1.2 to 1.5, the

same range of the exponent values we estimated from the data.

Thus, despite its simplicity, our model captures the main fea-

tures of the real auctions. Performing Lévy flights with small

exponents (ballistic motion) yields unique bids that are un-

likely to be the lowest. On the other hand, performing prefer-

entially short jumps (high exponents, diffusive motion) guar-

antees to always bid on small values which are unlikely to be

unique. Intermediate values of the exponent (super-diffusive

motion) represent a compromise between staying low and be-

ing unique, and therefore lead to maximal winning chances.

These considerations are valid only for finite values of N and

T , which is the realistic case. Because the available positions

in the lattice are finite, when either N or T grow, the probabil-

ity to observe a unique bid progressively approaches zero [29].
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Figure 5: Economic return of agents. Auction winners

tend to pay half of the value of the good, while auctioneers

tend to earn twice the value of the good. We consider two

different data sets, one regarding lowest unique bid auctions

[www.uniquebidhomes.com, (A) and (C)] and the other highest

unique bid auctions [www.bidmadness.com.au, (B) and (D)].

The unit is one hundredth of an Australian dollar. (A) Relation be-

tween the relative cost (Tw c+ b∗) /V to the winner of an auction

and her income V . Tw indicates the number of bids made by the

winner of the auction, c is the cost of the fee, b∗ indicates the value

of the winning bid, and V is the value of the good put up for auc-

tion. Each point represents an auction. The gray area corresponds to

the region of negative return for winners of the auctions. The black

line indicates the average value of the relative cost to the winners.

Auctions are, on average, very profitable for the agent winning the

auction, but the probability of a specific agent winning the auction is

very low. Data refer to the data set www.uniquebidhomes.com.

(B) Relative income (B c+ b∗) /V of the auctioneers as a function

of their investment V . B is the number of bids placed by all agents.

The gray area denotes the region of negative return for the auction-

eers. The black line indicates the average value of the relative profit

of the auctioneers. On average, organizing auctions is very profitable.

Data refer to the data set www.uniquebidhomes.com. (C) Re-

lation between the relative cost to the winner of an auction and her

income for the data set www.bidmadness.com.au. (D) Relative

income of the auctioneers as a function of their investment for the

data set www.bidmadness.com.au.

Notice that at the saddle point γs = βs, all N + 1 agents are

using the same bidding strategy and therefore they all have the

same chances to win the auction. In particular, the probability

that a generic agent wins the auction is wβs,γs
≤ 1/ (N + 1),

where the inequality may arise because a unique and lowest

bid may not exist.

The value of the exponent, corresponding to the optimal Lévy

flight strategy in lowest unique bid auctions, is distinct from

the one found in the case of purely random searches [10], and

empirically observed in the movement patterns of foraging an-

imals [1–8]. The quantitative difference arises, we believe, as

a consequence of the anisotropy of the bid space (low values

are favored), the role of competition, and, more importantly,

the fact that the target is not “static” but moving according to

the actions of the whole population of agents.

Discussion

In lowest unique bid auctions, agents have the possibility to

win goods of high value for impossibly low prices (Figs. 5A

and 5C), However, these all-pay auction markets are designed

to be very profitable for the auctioneers [30–33], who, on aver-

age, double their investment (Figs. 5B, 5D and Supporting In-

formation). For auctioneers, the profitability of lowest unique

bid auctions is in fact guaranteed by the validity of the in-

equality V < B c, where B stands for the total number of

bids and equals (N + 1) T in our model. Under this con-

straint however, the payoff of a generic agent in a perfectly

rational population is always negative since

rβs,γs
< wβs,γs

V ≤
V

N + 1
< T c ,

and there is no expected economic gain to be obtained for par-

ticipating as a bidder in the auction markets. The rationality

of the economic agents in adopting optimal strategies seems,

therefore, in contrast with the ultimate irrationality that in-

duces agents to take part in these auction markets.

Competitive irrationality, based on rational choices, has been

investigated in economic theories [34–37], such as the dollar

auction game [38]. The decision to participate or not partici-

pate in lowest unique bid auctions presents a paradox for po-

tential bidders. If the number of agents participating in the

auction is not too high, then the auction would bring a posi-

tive economic return to the agents, but not to the auctioneers.

For example, in the case in which only one bidder participates

in the auction, this bidder would have the maximal economic

return by placing a single bid on the lowest value allowed. But

by this token, every agent will feel that participating is prof-

itable as long as not many other agents have bid yet. However,

no agent can know how many other agents will actually bid on

the good.

Our results raise a number of important research questions.

First, which brain regions are responsible for implementing

the search strategies used by agents? Since agents use similar

search strategies to bees or birds, it is likely that there is no

frontal cortex involvement. Using neuroimaging techniques

such as fMRI it should be possible to answer this question.

Second, does the economic paradox that the agents face reveal

itself in brain activity patterns? Specifically, do some of the

changes in brain activity observed for preference reversal [39,

40] occur also in this case? Additionally, our results suggest

that controlled lowest unique bid auction markets would offer

the possibility to run large-scale experiments at relatively low

cost [41]. These experiments could be used for monitoring

the behavior of agents in auction markets with tunable optimal
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search strategies, and see if (and how fast) agents are able to

adapt their behavior to optimality.

materials

Data have been collected from

three publicly accessible web sites:

www.uniquebidhomes.com, www.lowbids.com.au

and www.bidmadness.com.au. Also, we make available

a version of these data at the

web page filrad.homelinux.org/resources.
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S 1. “LOWEST UNIQUE BID” AND “HIGHEST UNIQUE BID” AUCTIONS

A. Description of the auction

Figure S1: Cumulative distribution of the relative return (B × c) /V for the auctioneers. For www.uniquebidhomes.com data set (black

line) the 95% of the auctions are in the gray region of positive return, where the relative return (B × c) /V > 1. On average, the relative

return of the auctioneers is 2.2. For www.bidmadness.com.au data set (red line) the 72% of the auctions have produced a positive relative

return and on average the relative return is 1.6.

Lowest Unique Bid (LUB) auctions are special on-line auctions which have reached a considerable success during last years.

Their peculiarity consists in the fact that they are reverse auctions: rather than the bidder with the highest bid (as in the case of

traditional auctions), the winner is the person who makes the LUB (see Figure 1a in the main text). The rules of a LUB auction

are very simple. At the beginning of each auction, the auctioneers put up for auction a good of value V . After the beginning of

the auction and for a certain period of time (in general of order of weeks), agents participate to the auction by making bids. The

natural unit of the auction is one hundredth of dollars, euros, etc (i.e., the currency depends on the country where the auction is

hosted). Bids may be any amount (in cents) between one cent and a maximal bid amount M (generally lower than ten hundreds

of cents). Sometimes, the value of M is not fixed, but the bid space is anyway naturally bounded since none of the agents wants

to bid more than V . The value of V depends on the auction, but generally its order of magnitude is of thousands of hundreds

of cents. Making a bid costs a fee c (typically from one hundred to ten hundreds cents). After each bid b, the agent receives an

automatic message, from the web site hosting the auction, saying whether that bid was the winning bid (i.e., the bid is the LUB)

or not. The agent is constantly informed about the status of her bids (i.e., whether one of them becomes the LUB or is not longer

the LUB). However, each agent knows only what she has bid, without any information on which values the other agents have

bid. In general, there is no restriction for the number of bids that the same agent may place. When the time dedicated to the

auction expires, the winner is the agent who made the LUB and can therefore purchase the good for the value of her winning bid.

If at the close of the auction a single lowest unique bid does not exist, the successful bid becomes the lowest one made by only

two agents and the winner is the one who has bid first on such value. In the case in which also a bid made by only two agents

does not exists, then the winning bid becomes the lowest one made by only three agents and so on. Again in these situations,

the winner is the agent who has first placed a bid on the winning value. In our data sets however, we always observe that the

winning bid is an unmatched bid.

There are several slight variations of this kind of auctions. Very often, the end of the auction is not determined by an expiration

time, but by a minimum required number of bids, a priori fixed by the auctioneers. In other variations called Highest Unique

Bid (HUB) auctions, the winning bid is the unique one closest to M .

Independently on the type of auctions, this kind of auctions are particularly profitable for both the auctioneers and the winners

of the auctions. Figure 5 of the main text and Figure S1 clearly show that there are only few exceptions in which auctioneers or

winners have lost money, but in the majority of the auctions their returns are positive.



9

Data set Tot. Auctions Tot. Agents Tot. Bids 〈M〉 〈c〉 〈N〉 〈B〉

UBH 189 3 740 55 041 362 437 50 6

LB 55 445 3 740 1 284 478 13 6

BM 336 3 719 127 275 504 174 40 14

Table S1: Summary table of the data sets analyzed in this paper. We report, from left to right, the name of the data set, the total number of

auctions, the total number of different agents, the total number of bids, the average value of the maximal bid value, the average amount of the

fee, the average number of agents involved in an auction and the average number of bids made by a single agent in a single auction. The unit

of the bid values is one hundredth of an Australian dollar.

B. Description of the data sets

We collected data from the web sites www.uniquebidhomes.com (UBH),

www.lowbids.com.au (LB) both hosting LUB auctions and

from www.bidmadness.com.au (BM) organizing HUB auctions. Data regard all auctions organized during 2007, 2008,

2009 and part of 2010 by these web sites. We collected detailed information concerning the auctions: the value of the goods, the

cost of the fee, the maximum bid amount, the duration of the auction or eventually the required number of bids. We report in

Table S1 some of these quantities calculated for our data sets. We were able also to keep track, for all data sets, of each single

bid, getting information about its value, the time when it was made and the agent who made it. Data sets were anonymised and

can be downloaded at the page filrad.homelinux.org. In the following, we focus our analysis mainly on the data sets

UBH and BM since, given their size, allow to perform much better statistics.
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C. Analysis

Figure S2: UBH data set. (a) In the top panel, the time series of bid values performed by agent u = 1632 in auction a = 19 is shown. In

particular we zoom into a region where “abnormal” movements are present. In the bottom panel, we plot the time series of the length of her

jumps dt = |bt+1 − bt|. (b) Same plots as those appearing in panel a, but for the cleaned version of the time series. The indices a and u refer

to the anonymised version of the UBH data set.

Fixed an auction a and an agent u, we consider the temporal series of her bids, whose total number is denoted by Ta,u. This

series is basically a list of integers b1, b2, . . . , bT , where we have suppressed the indices a and u for shortness of notation. Their

value is defined over the interval [1,M ]. All bs are different each other since no agent bids on a certain value more than once.

A typical example of these time series is reported in the top panel of Figure S2a. We calculate the gap or difference between

subsequent bid values and indicate it with dt = |bt+1 − bt|. Given a list of T bid values we can in fact extract a list of T − 1
differences between consecutive bids. In the bottom panel of Figure S2a, we plot the time series dt for the same agent whose

bid time series is plotted in the upper panel.
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D. Cleaning the data sets

Generally, more “professional” agents perform random searches followed by systematic coverages of intervals. A typical ex-

ample is shown in the inset of the upper panel of Figure S2a. Here a zoom of the time series appearing in the main plot is

reported. Systematic coverages are performed by selecting a range of bid values and then placing a bid on each single value in

that interval. This is an opportunity offered by the web site hosting auctions. Each bid in this case is characterized by the same

time stamp. Such occurrence is likely for agents who make a significant number of bids, but becomes less relevant for agents

who invest relatively small amount of money. We cleaned data by removing all pieces of the time series corresponding to this

“abnormal” behavior. It should be remarked that the gaps between consecutive bids which can be measured in these regions are

in the majority of the cases equal to one. Including these regions will influence only gaps equal to unity by overestimating their

presence. We decided to remove such systematic coverages in order to focus our attention only on “normal” bidding strategies.

The result, after the cleaning procedure of time series shown in Figure S2a, is reported in the upper panel of Figure S2b. The

gaps between consecutive bids in the cleaned time series are reported in the bottom panel of Figure S2b.

As additional information, in Figure S3, we measure the number of agents N (ρ) performing a ratio ρ of bids made using a

Figure S3: Number of agents N (ρ) performing “normal” search strategies at rate ρ.

normal strategy (i.e., after removing systematic coverages) and the total number of bids placed.

In the following analysis, we consider only cleaned time series, where systematic coverages have been deleted.
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E. Statistics of the length of the jumps

Figure S4: (a) Probability distribution function P (d) calculated over all agents and auctions in the data sets UBH (orange circles), LB (gray

squares) and BM (turquoise diamonds). Dashed lines stand for best power-law fits (least square). We find α = 1.54(2) [black], α = 1.54(3)
[red] and α = 1.54(5) [blue]. (b) Same as in panel a, but for cleaned time series. Dashed lines have slopes α = 1.49(2) [black], α = 1.52(2)
[red] and α = 1.51(5) [blue]. The data of this figure also reported in Figure 3A of the main text. Curves calculated for LB and BM data sets

have been vertically shifted for clarity.

We measure the probability distribution function (pdf) P (d) of the difference between subsequent bids made by single agents

in single auctions. Global (i.e., aggregated over all agents and auctions) pdfs of both data sets are plotted in Figure S4. For

agents with a sufficient number of bids in the same auction, we also compute individual pdfs. Some examples are reported in

the various panels of Figures S5, S6 and S7 for UBH data set and in Figures S8, S9 and S10 for BM data set. In each panel of

these figures, we explicitly indicate the id of the auction a and the id of the agent u as they appear in our anonymised version of

the data sets. In all cases, we find a behavior compatible with

P (d) ∼ d−α . (S1)

The search strategy adopted by agents is therefore given by Lévy flights with characteristic exponent α. The best fits with

power-laws are plotted in Figures S5, S6, S7, S8, S9 and S10 with black dashed lines and the value of α, plus the associated

error, corresponding to the best fit is reported at the top of each panel.

In order to calculate a pdf, we divide the range of possible values of d in bins equally spaced on the logarithmic scale. We then

drawn the pdf by associating to each bin the number of ds falling in that bin divided by the number of integers that could enter in

the bin (this because d can assume only integer values). Everything is then normalized by simply dividing by the total number of

points. We compute the best power-law exponent by performing a linear least square fit in double logarithmic scale. Despite the

binning procedure may introduce a certain amount of arbitrariness in the evaluation of the pdfs, we checked the consistency of

our results by varying the number of bins. Moreover, we additionally make use of a different fit method (maximum likelihood)

about which we will discuss later.
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Figure S5: UBH data set. Probability distribution function P (d) measured for agent u in auction a. We show several P (d)s for different pairs

u and a. Dashed lines denote the best power-law fit (least square) P (d) ∼ d−α obtained for the data.
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Figure S6: UBH data set. Same as Figure S5.



15

Figure S7: UBH data set. Same as Figure S5 and S6.
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Figure S8: BM data set. Probability distribution function P (d) measured for agent u in auction a. We show several P (d)s for different pairs

u and a.
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Figure S9: BM data set. Same as Figure S8.
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Figure S10: BM data set. Same as Figure S8 and S9.
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F. Independence of the direction of the jumps

Figure S11: (a) UBH data set. Probability distribution function P (d) calculated over all agents and auctions. We have separated positive from

negative variations. The measured decay exponents of the best fits with power-laws (dashed lines) are α = 1.53(2) [black] and α = 1.54(2)
[red], respectively. The curve corresponding to negative variation has been vertically shifted for clarity. This figure appears also in Fig. 3B of

the main text. (b) BM data set. here the best power-law fit are α = 1.61(8) [black] and α = 1.45(4) [red].

Since the rules of the auction naturally bring agents to move towards low bid values, it is important to stress any eventual

difference between the statistics associated with the length of gaps between consecutive bid values. We aggregated data from all

agents and auctions and separate positive (i.e., bt+1 > bt) from negative (i.e., bt+1 < bt) variations. In Figure S11 the pdfs of

positive and negative variations are plotted together. As one may notice, there is not a significant difference between them and

both show a clear power-law decay with compatible exponents.
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G. Independence of the agents’ activity

Figure S12: (a) UBH data set. Probability distribution function P (T ) of the number of bids T performed by single agents in single auctions.

We calculate P (T ) on the original data set (orange circles) and on the cleaned version of the same data set (gray squares). In both cases, the

distribution scales power-like with a decay exponent equal to 2.2(2). (b) BM data set. The exponent of the best fit is 2.0(4) [dashed line].

The evidence of Lévy flights for single agents in single auctions can be directly verified only for agents with a sufficient number

of bids T in the same auction. For values of T smaller than 50 is practically impossible to construct the histogram P (d) and

therefore no exponent can be measured. Unfortunately, this situation is very frequent in our data sets. We measure the number

of bids made each agent in each auction and plot the pdf of the number of bids in a single auction in Figure S12. The level of

activity is quite heterogeneous and decays power-like with an exponent close to 2.2. For completeness, we measure the same

pdf for both original and cleaned data sets without noticing appreciable differences.

Figure S13: (a) UBH data set. Probability distribution function P (d) of the length d of the jumps performed by agents in the bid space. All

auctions have been aggregated together. Different curves correspond to agents with different levels of activity. Their activity is measured as

the number of bids made in the same auction. We divide the population into four subsets: T < 10 (orange circles), 10 ≤ T < 40 (gray

squares), 40 ≤ T < 200 (blue diamonds) and T ≥ 200 (violet triangles). Dashed lines represent the best power-law fits. The value of the

measured exponents are: α = 1.55(2) (black), α = 1.62(4) (red), α = 1.53(2) (blue) and α = 1.54(3) (violet). Curves have been vertically

shifted for clarity. This figure is also reported in Fig. 3C of the main text. (b) BM data set. Best power-law fits (dashed lines) have exponents:

α = 1.43(4) (black), α = 1.44(5) (red), α = 1.7(1) (blue) and α = 1.7(1) (violet).

We divide the population in different ranges of activity. We aggregate the length of the jumps performed by all agents in a given
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bin and measure the resulting P (d). The results of this analysis are reported in Figure S13. Independently of the activity level,

the aggregated pdfs decay power-like and have similar exponents α. This means that the presence of Lévy flights is typical for

every agent independently of how many bids the agent has made.
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H. Independence of the bidding time

Figure S14: (a) UBH data set. Probability distribution function P (d) of the length d of the flights performed by agents in the bid space. All

auctions have been aggregated together. Different curves correspond to different periods of activity for agents: orange circles correspond to

the initial guess made by agents; bids gaps with t ≤ 2 (gray squares) and t ≤ 5 (blue diamonds) aggregate the data corresponding to the early

activity of agents; t ≥ T − 2 (violet up triangles) and t = T − 1 (green down triangles) corresponds to the jumps made by agents at the

end of their own activity. Dashed lines have been obtained as best power-law fits with data points. The value of the measured exponents are:

α = 1.55(4) (black), α = 1.54(3) (red), α = 1.59(4) (blue), α = 1.49(5) (violet) and α = 1.54(6) (green). Curves have been vertically

shifted for clarity. This figure is also reported in Fig. 2d of the main text. (b) BM data set. Best power-law fits (dashed lines) have exponents:

α = 1.3(1) (black), α = 1.50(5) (red), α = 1.47(4) (blue), α = 1.43(6) (violet) and α = 1.35(6) (green). For the initial bid b1, we compute

the length of the jump as d = M − b1 + 1, with M being the maximal bid value in the HUB auctions.

Another fundamental point is to understand whether the Lévy flight strategy is emergent or a priori given. We test these

hypotheses by measuring the pdfs P (d) corresponding to a certain range during the activity of the agents. The results are

reported in Figure S14. We consider ranges of activity periods corresponding to t ≤ 2, t ≤ 5, t ≥ T − 2 and t = T − 1.

Additionally, we consider the distribution of the initial bid values (i.e., the first bid made by all agents in all auctions). In every

case, we are able to fit the curves with power-laws and the resulting exponents are compatible each other. We can effectively

conclude that the strategy to adopt a Lévy flight is not an emergent property induced by the evolution of the auction. Instead the

strategy to follow Lévy flights is intrinsically present, in each agent, during the whole duration of the auction.
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I. Independence between jumps

Figure S15: UBH data set. Number of agents N (r) whose bid gaps at position t and t + τ have Pearson’s correlation coefficient equal to r.

Black curves are measured on real data, while the red ones are calculated over a reshuffled version of the same data. The reshuffling is made

by randomly exchange pairs of entries in the time series of the time gaps with the only prescription that the sum of them is not lower than one

and not larger than M . We consider different values of τ . In each plot only agents with at least 10+ τ bids in the same auction are considered.

We further study the correlations between jumps. Given an agent and an auction, we consider the list of all her jumps

d1, d2, . . . , dB−1 and calculate the Pearson’s correlation coefficient

rτ =
〈(dt − µt) (dt+τ − µt+τ )〉

σt σt+τ
, (S2)

where 〈·〉 stands for the average over the entire time series (i.e., over all values of t from 1 to T − 1− τ ). µt = 〈dt〉 and µt+τ =

〈dt+τ 〉 are the average values of the bid gaps along the time series, while σt =
√

〈d2t 〉 − 〈dt〉 and σt+τ =
√

〈d2t+τ 〉 − 〈dt+τ 〉

are the respective standard deviations. We measure such coefficient for every agent who has performed at least 10 + τ bids

in the same auction and show the number of agents N (r) with given value of r in Figures S15 and S16. The same quantity

is also calculated for a randomized version of the time series, where bid gaps are randomly reshuffled with the only constraint

that their partial sum cannot never be smaller than one and larger than M . We consider several values of τ . As one can clearly

notice, subsequent gaps (i.e., τ = 1) are slightly correlated. Such correlation, becomes negligible when τ grows and already for

τ = 2, N (r) is negligible. For τ = 5 and τ = 10, the curves corresponding to the original time series and those obtained over

randomly reshuffled time series are almost identical.

Such results show that agents perform almost uncorrelated Lévy flights. Once an agent makes a jump, the length of this jump

is slightly correlated with the one of the jump made before. However, after few jumps there is not longer memory of what

happened before. In good approximation, the walk of the agent in the bid space can be therefore modeled as the one followed
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Figure S16: Same as those appearing in Figure S15 but for BM data set.

by a random walker performing uncorrelated Lévy flights.
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J. Testing the model

1. Maximum likelihood fit and Goodness of fit

In this section, we compute the level of significance of our model for the description of real time series. Suppose that a time

series of T bid values b1, b2, . . . , bT describes a realization of our model. Fixed the exponent α, the bound M of the lattice and

the position bt−1 at stage t− 1, the probability that the random walker jumps at bt at stage t is given by the transition matrix of

Eq. (6) of the main text. The probability or likelihood that the whole sequence was extracted from our model is

p (b1, b2, . . . , bT |α ) = (Qα)0,b1 (Qα)b1,b2 (Qα)b2,b3 · · · (Qα)bT−1,bT
.

The value of α that maximizes the former equation represents the most likely exponent of our model that could have generated

our particular sequence. In order to find its maximum, it is convenient to take the logarithm of both sides and write the log-

likelihood

L (b1, b2, . . . , bT |α ) =
T
∑

t=1

ln
[

(Qα)bt−1,bt

]

= −α
T
∑

t=1

ln |bt − bt−1| −
T
∑

t=1

ln
[

mbt−1
(α)

]

, (S3)

where we set b0 = 0. The value α′ at which the maximum of Eq. (S3) occurs can be estimated numerically.

α′ is the best exponent fitting the data in the hypothesis that they were produced according to our model. The significance level

of the model for the description of the data can be calculated by estimating the p-value associated with our measurement. In this

respect, we first compute the distance between the theoretical distribution of the jump lengths

Pα′ (d) =





∑

i,j

(Qα′)ij δ (d− |i− j|)









∑

d

∑

i,j

(Qα′)ij δ (d− |i− j|)





−1

and the one obtained from our data P (d) by calculating

ηdata = max
t

|Pα′ (≥ dt)− P (≥ dt)| ,

where P (≥ d) =
∑

q≥d P (q) is the cumulative distribution of the jump lengths. Notice that the distance between cumulative

distributions is the same as the one adopted in the Kolmogorov-Smirnov test. We then generate artificial time series of length T
from our model with exponent α′ and compute their distance η with respect to the theoretical distribution. The p-value is finally

determined by the relative number of times in which we observe η ≥ ηdata.

Synthetic time series generated according to our model can be additionally used for the determination of the error associated

to the estimation of α′. The error associated to α′ is the standard deviation of the best exponents estimated, with maximum

likelihood, for the synthetic data sets.

A graphical comparison between the exponents α (least square method) and α′ (maximum likelihood method) is presented in

Figure S17. In general, the two methods produce consistent results. For completeness, we list the results obtained in Tables S2

and S3.

The p-values show also a general goodness of our model for the description of the data. Sometimes however, the value of p
is very small. This could be explained in a simple manner. In Figure S18 we plot for example the statistical test performed over

the same time series appearing in Figure S2. In that auction, the maximum bid amount was M = 13 000. However, this value

of M does not correspond to the “effective” bound felt by the agent. This bound seems to be around M ∼ 2 000 as the sudden

drop of P (≥ d) would suggest. By setting M = 2200 and running again the statistical test, as we did in Figure S18b, we see

clearly that the curve predicted by our model and the one measured on real data are in very good agreement.
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Figure S17: We consider only agents who have performed at least T = 50 bids in a single auction in UBH data set and those with at least

T = 100 in the BM data set. Our data set offers 39 agents that satisfy this constraint in the UBH data set and 52 in the BM data set. Panels

a (UBH) and b (BM) show the scatter plot α′ versus α for the best power-law exponents estimated by using maximum likelihood and least

square methods, respectively. The agreement between the two measurements is good as demonstrated by the fact that the majority of the points

fall on the diagonal (red line).

a u α α′ p

1∗ 23 1.6(1) 1.5(1) 0.00

1 81 1.2(1) 1.3(1) 0.17

100 1715 1.6(2) 1.1(1) 0.01

100∗ 81 1.5(2) 1.3(1) 0.00

104 3093 1.7(3) 1.1(1) 0.14

108 134 1.7(1) 1.3(1) 0.02

14 134 1.2(1) 1.1(1) 0.03

14∗ 81 1.9(2) 1.3(1) 0.00

15 423 1.6(4) 1.3(1) 0.3

179 3663 1.8(1) 1.4(1) 0.17

19 1 1.3(1) 1.3(1) 0.28

19 1313 1.2(1) 1.2(1) 0.14

19∗ 134 1.2(1) 1.1(1) 0.00

19 1433 1.1(1) 1.0(1) 0.06

19 1448 1.4(1) 1.2(1) 0.01

19 1558 1.1(1) 1.2(1) 0.63

19 1576 1.0(1) 0.9(1) 0.35

19 1601 1.4(1) 1.3(1) 0.01

19 1632 1.4(1) 1.2(1) 0.01

19∗ 1640 1.3(1) 1.2(1) 0.00

a u α α′ p

19 1642 1.3(1) 1.2(1) 0.13

19∗ 1644 1.4(1) 1.2(1) 0.00

19∗ 1645 1.4(1) 1.2(1) 0.00

19 3 1.2(1) 1.3(1) 0.9

19 363 1.2(1) 1.1(1) 0.02

19 434 1.1(1) 1.2(1) 0.35

19 438 1.5(1) 1.0(1) 0.02

20 617 1.6(2) 1.4(1) 0.01

22 134 1.2(1) 1.3(1) 0.95

44 433 1.1(1) 1.6(1) 0.07

46 2003 1.3(3) 1.5(1) 0.02

5∗ 128 1.6(1) 1.4(1) 0.00

62 2392 1.3(3) 1.4(1) 0.43

71∗ 324 1.6(2) 1.4(1) 0.00

73 1640 1.5(2) 1.4(1) 0.18

73 1715 1.5(1) 1.2(1) 0.34

79 134 1.6(2) 1.3(1) 0.11

91 1715 1.5(2) 1.3(1) 0.32

97 1715 1.6(2) 1.3(1) 0.09

Table S2: UBH data set. Each row corresponds to one of the 39 agents who have bid at least 50 times in the same auction. We report the id

of the auction a, the id of the agent u, the exponent α calculated with the least square method, the exponent α′ calculated with the maximum

likelihood method and the p-value. Entries with low p-values are marked with ∗. In the 77% of the cases we find a p-value larger than 0, which

indicates that our model well describe the time series.
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a u α α′ p

11 28 1.1(2) 1.3(1) 0.09

13∗ 48 1.5(1) 1.3(1) 0

13 28 1.3(1) 1.4(1) 0.04

15 11 1.8(3) 1.4(1) 0.05

15 36 2.0(1) 1.5(1) 0.03

28 28 1.4(1) 1.4(1) 0.58

32∗ 150 1.2(6) 1.0(1) 0

39∗ 48 1.3(1) 1.3(1) 0

47 28 1.1(1) 1.3(1) 0.48

50 48 1.5(1) 1.3(1) 0.27

52 28 1.2(2) 1.4(1) 0.01

55 15 1.3(1) 1.3(1) 0.38

55∗ 150 1.2(3) 1.1(1) 0

61 213 1.3(1) 1.2(1) 0.62

61 36 1.3(1) 1.2(1) 0.5

62 136 1.6(1) 1.5(1) 0.2

67 98 1.0(1) 1.1(1) 0.15

69 28 1.5(1) 1.4(1) 0.39

82∗ 36 1.2(2) 1.2(1) 0

89 72 1.4(1) 1.3(1) 0.15

89 48 1.5(1) 1.3(1) 0.2

89 28 1.2(1) 1.3(1) 0.16

91 15 1.4(1) 1.4(1) 0.65

92∗ 36 1.8(2) 1.3(1) 0

92 28 1.3(1) 1.3(1) 0.42

94∗ 48 1.6(1) 1.3(1) 0

a u α α′ p

94∗ 98 1.5(2) 1.0(1) 0

94 15 1.5(1) 1.5(1) 0.15

105 28 1.5(1) 1.5(1) 0.45

110 28 1.2(1) 1.4(1) 0.18

116 15 1.2(1) 1.3(1) 0.04

122 15 1.5(1) 1.4(1) 0.78

125 28 1.4(1) 1.4(1) 0.88

133 98 1.7(1) 1.2(1) 0.02

162 15 1.2(1) 1.3(1) 0.48

181 15 1.2(2) 1.1(1) 0.1

197 15 1.2(2) 1.2(1) 0.58

201∗ 15 1.3(2) 1.1(1) 0

262 150 1.3(8) 1.8(1) 0.04

264 1428 1.5(2) 1.7(1) 0.12

269 122 1.6(2) 1.7(1) 0.02

279 550 1.5(2) 1.5(1) 0.22

293∗ 3503 1.5(1) 1.5(1) 0

300 550 1.5(1) 1.6(1) 0.41

300 150 1.7(1) 1.7(1) 0.17

306∗ 150 1.5(1) 1.4(1) 0

317 150 1.8(2) 1.6(1) 0.22

318 150 1.5(2) 1.4(1) 0.04

327 1503 1.3(1) 1.4(1) 0.19

327 150 1.6(1) 1.6(1) 0.25

331 150 1.6(2) 1.6(1) 0.29

332 1574 1.6(2) 1.9(1) 0.15

Table S3: BM data set. Each row corresponds to one of the 52 agents who have bid at least 100 times in the same auction. We report the id

of the auction a, the id of the agent u, the exponent α calculated with the least square method, the exponent α′ calculated with the maximum

likelihood method and the p-value. Entries with low p-values are marked with ∗. In the 79% of the cases we find a p-value larger than 0, which

indicates that our model well describe the time series.
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Figure S18: Example of the maximum likelihood method for the determination of the exponent α′ of the Lévy flight. We consider the time

series of agent 1632 in auction 19 of the UBH data set (the same appearing in Figure S2). In panel a, we set M = 13 000 which is the value

of the maximum bid amount that was allowed in the auction. The best exponent α′ = 1.2(1) is obtained by looking at the maximum of the

log-likelihood as it is shown in the inset. The comparison between the cumulative distribution of the jump lengths expected from the model

(red line) and the one calculated over the time series (black) do not well agree. It seems that the “effective” bound is smaller than the real

one. In panel b, we set M = 2200 and consider only bid values smaller than this bound. On the new time series, we perform a maximum

likelihood fit finding α′ = 1.1(1). The theoretical expectation (red line) and the one obtained from the time series (black line) are now very

similar yielding a p-value equal to 0.1.
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2. Another maximum likelihood fit

Since the upper-bound M is agent dependent, we perform an additional analysis where the upper bound M is not directly taken

from the data, but used as a parameter for the fit. For each agent, we let the parameter M vary only in the range for which at

least the 90% of the bids values are below M . Indicate with T̃ the number of bids below the threshold M . We then find α′

identifying the maximum of the likelihood function and calculate the p-value as described so far. We consider the best value of

M as the one which maximizes the product T̃ × p. Figures S19, S20 and S21 report the best fit for the same agents analyzed in

Figures S5, S6 and S7 for UBH data set, while Figures S22, S23 and S24 are the analogous of Figures S8, S9 and S10 for BM

data set. For completeness, we report in Tables S4 and S5 the results obtained with the maximum likelihood fit where M is used

as parameter of the fit. The best exponents α′ are still consistent with those reported in Tables S2 and S3, but the p-values result

much increased.

a u α α′ M p

1∗ 23 1.6(1) 1.4(1) 490 0.00

1 81 1.2(1) 1.2(1) 2220 0.26

100 1715 1.6(2) 1.0(1) 150 0.15

100 81 1.5(2) 1.3(1) 480 0.01

104 3093 1.7(3) 1.0(1) 70 0.51

108 134 1.7(1) 1.3(1) 70 0.09

14 134 1.2(1) 1.1(1) 530 0.40

14 81 1.9(2) 1.3(1) 870 0.01

15 423 1.6(4) 1.2(1) 120 0.53

179 3663 1.8(1) 1.3(2) 70 0.35

19 1 1.3(1) 1.3(1) 3050 0.29

19 1313 1.2(1) 1.1(1) 1650 0.50

19 134 1.2(1) 1.0(1) 2320 0.19

19 1433 1.1(1) 0.9(1) 1840 0.99

19 1448 1.4(1) 1.1(1) 2480 0.08

19 1558 1.1(1) 1.2(1) 2290 0.93

19 1576 1.0(1) 0.9(1) 9580 0.34

19 1601 1.4(1) 1.2(1) 480 0.09

19 1632 1.4(1) 1.1(1) 2210 0.13

19∗ 1640 1.3(1) 1.2(1) 3080 0.00

a u α α′ M p

19 1642 1.3(1) 1.2(1) 3200 0.45

19∗ 1644 1.4(1) 1.2(1) 3010 0.00

19 1645 1.4(1) 1.1(1) 1750 0.03

19 3 1.2(1) 1.3(1) 3310 0.91

19 363 1.2(1) 0.9(1) 890 0.20

19 434 1.1(1) 1.1(1) 1750 0.77

19 438 1.5(1) 0.9(1) 2120 0.43

20 617 1.6(2) 1.3(1) 200 0.09

22 134 1.2(1) 1.3(1) 1000 0.96

44 433 1.1(1) 1.6(1) 3340 0.08

46 2003 1.3(3) 1.4(1) 110 0.03

5 128 1.6(1) 1.4(1) 1830 0.01

62 2392 1.3(3) 1.3(1) 130 0.52

71∗ 324 1.6(2) 1.4(1) 860 0.00

73 1640 1.5(2) 1.4(1) 1920 0.27

73 1715 1.5(1) 1.2(1) 140 0.68

79 134 1.6(2) 1.3(1) 120 0.21

91 1715 1.5(2) 1.3(1) 70 0.67

97 1715 1.6(2) 1.2(1) 80 0.19

Table S4: UBH data set. Each row corresponds to one of the 39 agents who have bid at least 50 times in the same auction. We report the id

of the auction a, the id of the agent u, the exponent α calculated with the least square method, the exponent α′ calculated with the maximum

likelihood method, the best value of the upper bound M and the p-value. Entries with low p-values are marked with ∗. In the 90% of the cases

we find a p-value larger than 0, which indicates that our model well describe the time series.
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Figure S19: UBH data set. Cumulative distribution function P (≥ d) measured for agent u in auction a (red full line) compared with the

theoretical distribution (black dashed line). We show several P (≥ d)s for different pairs u and a. We report also the best value of the upper

bound M and the p-value associated with our fit.
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Figure S20: UBH data set. Same as Figure S19.
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Figure S21: UBH data set. Same as Figure S19 and S20.

a u α α′ M p

11 28 1.1(2) 1.4(1) 1290 0.23

13∗ 48 1.5(1) 1.2(1) 570 0.00

13 28 1.3(1) 1.3(1) 310 0.15

15 11 1.8(3) 1.3(1) 180 0.23

15 36 2.0(1) 1.5(1) 200 0.19

28 28 1.4(1) 1.4(1) 530 0.53

32∗ 150 1.2(6) 1.0(1) 160 0.00

39 48 1.3(1) 1.3(1) 170 0.02

47 28 1.1(1) 1.2(1) 320 0.59

50 48 1.5(1) 1.3(1) 600 0.38

52 28 1.2(2) 1.4(1) 2790 0.11

55 15 1.3(1) 1.3(1) 250 0.68

55∗ 150 1.2(3) 1.1(1) 220 0.00

61 213 1.3(1) 1.3(1) 220 0.74

61 36 1.3(1) 1.2(1) 140 0.91

62 136 1.6(1) 1.5(1) 180 0.45

67 98 1.0(1) 1.0(1) 210 0.83

69 28 1.5(1) 1.4(1) 1840 0.37

82 36 1.2(2) 1.2(1) 360 0.01

89 72 1.4(1) 1.3(1) 330 0.30

89 48 1.5(1) 1.3(1) 230 0.42

89 28 1.2(1) 1.3(1) 1580 0.17

91 15 1.4(1) 1.4(1) 180 0.87

92 36 1.8(2) 1.3(1) 130 0.04

92 28 1.3(1) 1.4(1) 910 0.46

94 48 1.6(1) 1.2(1) 310 0.18

a u α α′ M p

94 98 1.5(2) 0.9(1) 280 0.03

94 15 1.5(1) 1.4(1) 290 0.28

105 28 1.5(1) 1.5(1) 1310 0.59

110 28 1.2(1) 1.4(1) 2870 0.36

116 15 1.2(1) 1.3(1) 3050 0.13

122 15 1.5(1) 1.4(1) 470 0.95

125 28 1.4(1) 1.4(1) 790 0.89

133 98 1.7(1) 1.2(1) 140 0.15

162 15 1.2(1) 1.4(1) 3270 0.54

181 15 1.2(2) 1.0(1) 250 0.34

197 15 1.2(2) 1.2(1) 180 0.79

201 15 1.3(2) 1.1(1) 110 0.43

262 150 1.3(8) 1.8(1) 1200 0.08

264 1428 1.5(2) 1.7(1) 1610 0.16

269 122 1.6(2) 1.7(1) 970 0.02

279 550 1.5(2) 1.6(1) 2600 0.32

293 3503 1.5(1) 1.5(1) 2030 0.01

300 550 1.5(1) 1.5(1) 290 0.68

300 150 1.7(1) 1.7(1) 1900 0.26

306∗ 150 1.5(1) 1.4(1) 740 0.00

317 150 1.8(2) 1.6(1) 260 0.38

318 150 1.5(2) 1.4(1) 610 0.05

327 1503 1.3(1) 1.4(1) 230 0.54

327 150 1.6(1) 1.5(1) 290 0.46

331 150 1.6(2) 1.6(1) 1500 0.42

332 1574 1.6(2) 1.9(1) 1140 0.15

Table S5: BM data set. Each row corresponds to one of the 52 agents who have bid at least 100 times in the same auction. We report the id

of the auction a, the id of the agent u, the exponent α calculated with the least square method, the exponent α′ calculated with the maximum

likelihood method, the best value of the upper bound M and the p-value. Entries with low p-values are marked with ∗. In the 92% of the cases

we find a p-value larger than 0, which indicates that our model well describe the time series.
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Figure S22: BM data set. Cumulative distribution function P (≥ d) measured for agent u in auction a (red full line) compared with the

theoretical distribution (black dashed line). We show several P (≥ d)s for different pairs u and a. We report also the best value of the upper

bound M and the p-value associated with our fit.
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Figure S23: BM data set. Same as Figure S22.
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Figure S24: BM data set. Same as Figure S22 and S23.
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3. Probability distribution of the Lévy flight exponents

Figure S25: The pdf g (α) of the exponents calculated with the three fitting methods. The pdfs corresponding to the maximum likelihood fit,

where M is a parameter of the fit, are the same as those appearing in Figs. 2D and 2E of the main text. The distributions are characterized

by the following values of the mode αb, average 〈α〉 and variance σ. UBH data set: for least square fit we have αb = 1.34, 〈α〉 = 1.40,

σ = 0.26; for maximum likelihood fit we have αb = 1.28, 〈α〉 = 1.29, σ = 0.20; for maximum likelihood fit with additional fitting parameter

M we have αb = 1.21, 〈α〉 = 1.26, σ = 0.23. BM data set: for least square fit we have αb = 1.46, 〈α〉 = 1.42, σ = 0.27; for maximum

likelihood fit we have αb = 1.34, 〈α〉 = 1.37, σ = 0.21; for maximum likelihood fit with additional fitting parameter M we have αb = 1.35,

〈α〉 = 1.36, σ = 0.23.

As a final result, we compute the distribution g (α) of the exponents measured for single agents in single auctions. We still

consider only agents who have performed at least T = 50 bids in a single auction in UBH data set and those with at least

T = 100 in the BM data set. Assuming that the best estimation of the exponent of agent u is αu and the associated error of the

measurement is ∆αu, the empirical distribution of the exponents is calculated as

g (α) = C−1
∑

u

1

∆αu
e−(αu−α)2 / [2 (∆αu)

2] , (S4)

where C =
∫

dα
∑

u
1

∆αu
e−(αu−α)2 / [2 (∆αu)

2] is the proper normalization constant. The resulting pdfs are reported in

Fig. S25.
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