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LETTER TO THE EDITOR

Effects of mobility on ordering dynamics

Andrea Baronchelli and Romualdo Pastor-Satorras

Departament de F́ısica i Enginyeria Nuclear, Universitat Politècnica de Catalunya,

Campus Nord B4, 08034 Barcelona, Spain

Abstract. Models of ordering dynamics allow to understand natural systems in

which an initially disordered population homogenizes some traits via local interactions.

The simplest of these models, with wide applications ranging from evolutionary to

social dynamics, are the Voter and Moran processes, usually defined in terms of static

or randomly mixed individuals that interact with a neighbor to copy or modify a

discrete trait. Here we study the effects of diffusion in Voter/Moran processes by

proposing a generalization of ordering dynamics in a metapopulation framework, in

which individuals are endowed with mobility and diffuse through a spatial structure

represented as a graph of patches upon which interactions take place. We show that

diffusion dramatically affects the time to reach the homogeneous state, independently of

the underlying network’s topology, while the final consensus emerges through different

local/global mechanisms, depending on the mobility strength. Our results highlight the

crucial role played by mobility in ordering processes and set up a general framework

that allows to study its effect on a large class of models, with implications in the

understanding of evolutionary and social phenomena.
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Initially heterogeneous individuals in isolated groups often end up homogenizing

their characteristic traits: People tend to align their opinions (1), segregated populations

gradually lose their genetic diversity (2), different social groups spontaneously develop

their own seemingly arbitrary traits, such as distinctive styles of dress or jargons (3),

etc. In all these cases a global order emerges trough local interactions in a self-organized

way, without any central coordination. Several statistical models have been put forward

to capture the main features of this kind of ordering processes. Among the simplest ones

range the Voter model (VM) (4) and the Moran process (MP) (5), designed to address

issues of social (1) and evolutionary (6) dynamics, respectively. In the VM, individuals

hold one of two mutually exclusive opinions, and are subject to pairwise interactions in

which a randomly selected individual adopts the opinion of a nearest neighbor peer. In

the MP, on the other hand, individuals belong to one (out of two) species and reproduce

generating an equal offspring which replaces a randomly selected nearest neighbor. Due

to their abstraction and simplicity, both models are now well established paradigms of

ordering dynamics (1; 6).

Previous statistical studies of VM/MP dynamics have mainly considered the

randomly mixed (5) (mean-field) case or a static (fermionic) distribution of individuals,

identified with the sites of a lattice (1). More recently, after the discovery that the

topological environment of many social and ecological processes is highly heterogeneous

(7), fermionic dynamics on complex networks have also been considered (8; 9; 10).

While interesting results have been obtained in all these cases, the analysis of the effects

of the mobility of individuals has been mostly neglected, even thought it is a crucial

feature of many real biological and social systems. For example, human migration

guarantees cultural contamination (11), while small exchanges between separated groups

yield spatially synchronized population oscillations (12), and mobility of individuals

promotes biodiversity (13). In an evolutionary context, moreover, migration is the force

that increases the inter-population similarity reducing the intra-population homogeneity,

thus contrasting the effects of random drift and adaptation (14).

Here we explore the role of mobility in ordering dynamics by considering the

VM/MP within a generalized metapopulation (bosonic) framework (15; 16). As in

classical studies in population genetics (17), and recent generalizations (18), we consider

individuals of different species placed on a geographical substrate, represented for

generality in terms of a random graph or network (7), whose vertices can host a

population of any desired size. Individuals are endowed with mobility and at each time

step they can either interact with the local population or migrate to a nearest neighbor

vertex. To take mobility quantitatively into account, we introduce a species-specific

parameter, representing the ratio between the mobility and interaction strengths, that

determines the probability that an individual performs one of these two steps. We

present evidence that mobility can strongly affect the ordering process, determining the

onset of different mechanisms leading the system to the final homogeneous state and

dramatically affecting the average time needed to reach it. Our results imply that the

coupling between mobility and interactions leads to novel properties of the dynamics of
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ordering, and should be explicitly taken into account when aiming at realistic modeling

in general social or biological contexts.

In our metapopulation scheme, individuals interact inside the vertices of a network,

while they can diffuse along the edges connecting pairs of vertices. From a statistical

point of view, the underlying network is described by means of its degree distribution

P (k) (probability that a vertex has degree k—i.e. is connected to k other vertices) (7)

and its degree-degree correlations P (k′|k) (conditional probability that a vertex of degree

k is connected to a vertex of degree k′) (19). Individuals belong in general to S different

species, each defined by a given trait (opinion, genotype, etc.) α and characterized by a

parameter pα (the mobility ratio), representing the ratio between the mobility (diffusion

coefficient) and the propensity of species α to interact with other species. The dynamics

of the processes is defined in the spirit of discrete time stochastic particle systems (20):

At time t, one individual is randomly selected, belonging to class α. With probability

pα, the individual migrates, performing a random jump to a nearest neighbor vertex.

Otherwise, with probability 1− pα, the individual chooses a peer inside its same vertex

(the peer belonging to the species α′) and reacts with it according to the dynamical rules

describing the corresponding model: (i) Metapopulation VM (MVM): The individual

copies the trait of the peer and becomes of species α′. (ii) Metapopulation MP (MMP):

The individual reproduces, generating an offspring of the same species α, which replaces

the peer. In any case, time is updated as t → t + 1/N , where N is the (fixed) number

of individuals. For each species α the occupation number of any vertex is unbounded

and can assume any integer value, including zero ‡. When pα = pα′ ∀ α, α′ the MVM

and the MMP are obviously equivalent (21).

Both dynamics are characterized by the presence of S ordered states in which all

individuals belong to the same species, and interest lies in studying how the final ordered

state is reached (1; 6). The relevant quantities are thus the fixation probability (or exit

probability) φα and the consensus or fixation time t̄α, defined as the probability that a

population ends up formed by all α individuals and the average time until the eventual

fixation (1). To gain insight on these quantities, it is useful to first consider the time

evolution of the density of individuals. To do so, we consider as usual the partial densities

of individuals of species α in vertices of degree k, defined as (15) ρα
k (t) = nα

k (t)/[V P (k)],

where nα
k (t) is the number of individuals of species α in vertices of degree k, at time t,

and V is the network size. The total density of species α is then ρα(t) =
∑

k P (k)ρα
k (t),

satisfying the normalization condition
∑

α ρ
α(t) = N

V
≡ ρ, being ρ the total density of

individuals in the network. Let us focus on the simplest case in which only two species

are present in the system, +1 and −1, with mobility ratios p+1 and p−1, respectively.

Within a mean-field approximation (16), we can see that the quantities ρα
k (t) fulfill the

‡ We note that, with our definition, the occupation number of each vertex is not fixed, as in previous

metapopulation models (18), but it is in fact a stochastic variable whose average value depends in

general on the network structure.
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rate equations

∂tρ
α
k (t) = −pαρ

α
k (t)+pαk

∑

k′

P (k|k′)

k′
ρα

k′(t)+ε(p−α−pα)
ρα

k (t)ρ−α
k (t)

ρα
k (t) + ρ−α

k (t)
, (1)

where ε takes the values −1 and +1 for the MVM and the MMP, respectively. In Eq. (1),

the first two terms stand for the diffusion of individuals, while the third one accounts for

the interactions inside each vertex. Since the total number of individuals is conserved,

the latter disappear in the equation for the density of individuals, ρk(t) =
∑

α ρ
α
k (t),

that takes the form of a weighted diffusion equation for the different species (15; 16).

A quasi-stationary approximation, assuming that the diffusion process is so fast that it

can stabilize the particle distribution in a few time steps, leads to the functional form for

the partial densities, ρα
k (t) = kρα(t)/ 〈k〉. The existence of this diffusion-limited regime

(16), whose presence is confirmed in numerical simulations (see Fig. 1(a)), is expected

to hold for not too small values of pα. This approximation allows to write the equation

for the total species density

∂tρ
α(t) = ε(p−α − pα)ρα(t)[1 − ρα(t)/ρ], (2)

where we have used the normalization condition ρ+1(t) + ρ−1(t) = ρ. Remarkably, this

expression is valid for any degree distribution and correlation pattern.

When pα = p−α the total species density is conserved (∂tρ
α(t) = 0), and the

ordering process proceeds via density fluctuations (1), see Fig. 1(b). For pα 6= p−α,

if ε(p−α − pα) < 0 the ordered state corresponds to a population of the −α species.

The time evolution of the species α going extinct is given by an exponential decay,

ρα(t) ∼ ρα(0) exp(−t|p−α − pα|), see Fig. 1(c) and (d). Extinction becomes almost sure

when ρα takes its minimum value, namely N−1. Therefore, final ordering takes place in

a time of the order lnN/|p−α − pα|, independently of the network structure, for both

MVM and MMP.

In order to obtain information on the fixation probability, we can take advantage

of the topology independence of the MVM and MMP, evidenced in Eq. (2), and focus

on a fully connected network, in which the particle distribution is homogeneous in all

vertices. Both MVM and MMP can therefore be mapped to a biased one-dimensional

random walk, in which the transition probabilities pn′,n from n individuals of species +1

to n′ individuals take the form

pn+1,n = A+

n(N − n)

N2
, pn−1,n = A−

n(N − n)

N2
, (3)

all the rest being zero except pn,n = 1 − pn+1,n − pn−1,n, and where A± = 1 − [p+1 +

p−1 ± ε(p+1 − p−1)]/2. Applying standard stochastic techniques (23; 24) one recovers

the fixation probability

φ+1(ρ
+1) =

1 − r−V ρ+1

1 − r−V ρ
(4)

where r = A+/A−. This result yields a neat evolutionary interpretation for the MMP.

The fixation probability takes indeed the same form as in the fermionic MP in any
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Figure 1. (a) Density of +1 individuals as a function of the degree in MVM and MMP

on heterogeneous scale-free networks generated with the (uncorrelated) configuration

model (22) with degree distribution P (k) ∼ k−2.5 for different values of p = p+1 = p
−1

(curves ares shifted vertically for clarity). (b) Partial density of +1 individuals as

a function of time (p+1 = p
−1 = 0.5) in scale-free networks. (c, main) and (d)

Partial density of +1 individuals as a function of time for the MVM in scale-free and

fully connected networks, respectively. Dashed lines represent the theoretical slope

|p+1 − p
−1|

−1 (p
−1 = 0.7). Data from single runs with homogeneous initial conditions

ρ+1(0) = ρ−1(0) = 10, in networks of size V = 103. (c, inset) Also in the low mobility

case (p+1 = 0.05, p
−1 = 0.1) averaged curves for fully connected (empty circles) and

scale free networks (full circles) collapse well to an exponential decay.

undirected underlying network (9), provided the factor r = (1 − p+1)/(1 − p−1) is

interpreted as the relative selective fitness (6) of species +1 over species −1, defined

as the relative number of offspring contributed to the next generation by both species

§. In the case p+1 = p−1, corresponding to the limit r → 1, in which both species are

equivalent, we recover φ+1 = ρ+1 (6). For p+1 6= p−1, on the other hand, homogeneous

initial conditions (ρ+1 = 1/2) in the limit of large V yield φ+1 → Θ[ε(p−1 − p+1)] where

Θ[x] is the Heaviside theta function; that is, the population becomes, as expected from

the analysis of the density evolution, fixated to the species with the largest (smallest)

pα value for the MVM (MMP).

An analysis on general networks (24) confirms the results from fully connected ones,

and implies that the MMP represents therefore a rigorous generalization of the classical

evolutionary MP. Moreover, since the same fitness r can be achieved for different values

of the mobility ratios, the metapopulation framework allows to explore the independent

effects of mobility for a fixed selective advantage. This is particularly explicit in the form

§ An analogous interpretation can be made for a VM dynamics with fitness (21).
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of the fixation time. To compute it, we extend the backwards Fokker-Plank approach

presented in Refs.(10; 25; 21) to the bosonic case. Focusing for simplicity in the case of

p+1 = p−1 ≡ p ‖, we recast the stochastic processes defined by the MVM and MMP in

terms of a master equation. The state of the system can be described by the occupation

number vectors ~nα = {nα
q }, q = 1, . . . , kc, where kc is the largest degree in the network,

that allow to keep track of the actual occupation number of the vertices of different

degree. Transitions from one state to another can proceed therefore both when an

individual diffuses and when it changes its state. Thus, defining the vector ~δk = {δq,k},

the transitions rates due to the diffusion of an individual from vertex k′ to k take the

form

T (~nα + ~δk − ~δk′, ~n−α|~nα, ~n−α) = N
pα

ρ
P (k′)ρα

k′P (k|k′),

while the transitions rates due to reaction are

T (~nα ± ~δk, ~n
−α ∓ ~δk|~n

α, ~n−α) = N
1 − p

ρ
P (k)

ρα
kρ

−α
k

ρα
k + ρ−α

k

.

From these transition probabilities it is straightforward to write the corresponding

master equation, which can then be translated into a backwards Fokker-Planck equation,

by expanding it up to second order in the inverse network size V −1. Resorting again to

the quasi-stationary condition ρα
k = kρα/ 〈k〉, the backwards Fokker-Planck becomes a

function of the densities ρα only, and its different terms can be conveniently simplified.

From the backwards Fokker-Planck equation, finally, we obtain the consensus time,

which, as a function of the reduced initial density x = ρ+1/ρ, satisfies the equation (10)

4
1 − p

N
x(1 − x)

∂2 t̄+1(x)

∂x2
= −1, (5)

subject to the boundary conditions t̄+1(0) = t̄+1(1) = 0 (24). Strikingly, this equation

is the same for both MVM and MMP, and again independent of the topological details

of the network, that therefore turn out to be an irrelevant parameter as far as the

asymptotic results for fixation probability are concerned (provided that the diffusion

rates are not too small, and the quasi-stationary approximation assumed above is valid

(24)). The solution of Eq. (5) is

t̄+1(x) ∼ −
N

1 − p
[x ln x+ (1 − x) ln(1 − x)] . (6)

Therefore, for homogeneous initial conditions, x = 1/2, we obtain a fixation time scaling

as t̄+1(1/2) ∼ N/(1 − p). This result recovers the standard scaling linear in N of the

fermionic VM and MP in fully connected networks (1; 6), and is in opposition to the

topological dependent scaling shown by the VM in heterogeneous networks (21). The

most interesting feature of this fixation time, however, is that, even though it has been

computed for fixed r = 1, it shows a strong dependence on the individuals’ mobility p.

In particular, it is a growing function of p, which, in the limit p → 1 tends to infinity,

evidencing a dramatic slowing down in the ordering process, see Fig. 2. Numerical

‖ The general case p+1 6= p
−1 will be considered elsewhere (24).
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Figure 2. Left: Scaling of the fixation time for the MVM and MMP with mobility

p+1 = p
−1 = p, in the limit p → 0 (top) and p → 1 (bottom), in fully connected

networks. Right: Rescaled fixation time for the MVM and MMP with mobility

p+1 = p
−1 = p in fully connected (FC) and scale free (SF) networks of different

sizes. Dashed lines are nonlinear fits to the functional form Eq. (7), for A ≃ 0.70 and

B ≃ 0.72. Data refer to homogeneous initial conditions.

simulations of the fixation time in the full range of mobility values, Fig. 2 (right

panel), yield, however, an asymmetric concave form, in contrast with the hyperbolic

form predicted by the diffusion approximation. A detailed numerical analysis, see Fig. 2

(left panel), allows us to conjecture the functional form of the fixation time as a function

of the mobility p, t̄+1 = t̄−1 ≡ t̄(p), as given by

t̄(p) ≈ A
V

p
+B

V ρ

1 − p
, (7)

where A and B are constants, approximately independent the population size and

mobility ratio. The functional form in Eq. (7) is corroborated by the scaling analysis

performed in Fig. 2 (right panel), were we observe that curves for fully connected and

heterogeneous networks collapse, when properly scaled, for the same value of ρ. The

concave form of the fixation time implies additionally the presence a minimum for a value

pmin of the mobility ratio for which the systems orders more quickly. According with the

estimated functional form in Eq. (7), this minimum takes the form pmin ∼ ρ−1/2. This

indicates the striking presence of an optimum global level of mobility that maximizes

the speed at which an opinion consensus is reached or a neutral mutant dominates

a population (6). Possibly against intuition, moreover, according to Eq. (7) in the

thermodynamic limit the fastest fixation regime is associated to almost still particles

(pmin → 0 as ρ→ ∞).

The asymmetry of the fixation time for p+1 = p−1, Eq. (7), hints towards different

mechanisms in operation on the way in which convergence is reached in the two limits

p → 0 and p → 1 (26). To quantify this intuition it is helpful to consider the global

order parameter ψ(t) = |N+1(t)−N−1(t)|/N(t), measuring the global difference between
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Figure 3. Ordering mechanisms as a function of mobility. In the limit p → 0

(black curves) local order (φ(t)) grows in short time, while global order (ψ(t)) emerges

as a result of vertex-vertex competition. When p → 1 (red curves), on the other

hand, local order emerges only as a result of global ordering at late times. Data

refer to a fully connected network with V = 100 with homogeneous initial conditions

ρ+1(0) = ρ−1(0) = 10.

the number of individuals belonging to the two species, and the local order parameter

φ(t) given by the fraction of vertices in which a local convergence has been reached

and only one species is present. Fig. 3 shows the behavior of these quantities. When

p is small, intra-vertex order rapidly emerges but different species prevail in different

vertices, as reflected by the low value of the global order parameter. The process then

proceeds through a vertex-vertex competition leading in the end to global convergence

thanks to the successive contamination of different vertices. When particle mobility is

high, on the other hand, convergence emerges instead by the sudden prevalence of one

of the two species, so that local and global order rise almost simultaneously.

In conclusion, we have studied a metapopulation scheme that allows to consider

the effects of mobility in ordering dynamics. Focusing on the Voter/Moran processes as

simple yet paradigmatic examples, we have found expressions for the fixation probability

and time, which are independent from the topological details of the underlying network.

While the fixation probability takes the same form as in the usual fermionic counterparts,

the fixation time depends strongly on mobility when all species share the same mobility

ratio (actually diverging when the mobility tends to very large or small values).

Additionally, in this regime we have identified two different mechanisms leading to local

and global convergence in the limit of low and high diffusion ratios. Our work opens the

way to a better understanding of mobility in a wide class of models of ordering dynamics,

with consequences touching the broad spectrum of disciplines that have borrowed from

this field over time. In particular, a challenging task for future work will consider the

implementation of mobility in more complex and realistic models of social dynamics (1).
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