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Abstract. - Many real systems are made of strongly interacting networks, with profound conse-
quences on their dynamics. Here, we consider the case of two interacting social networks and, in
the context of a simple model, we address the case of political elections. Each network represents
a competing party and every agent, on the election day, can choose to be either active in one of the
two networks (vote for the corresponding party) or to be inactive in both (not vote). The opinion
dynamics during the election campaign is described through a simulated annealing algorithm. We
find that for a large region of the parameter space the result of the competition between the two
parties allows for the existence of pluralism in the society, where both parties have a finite share
of the votes. The central result is that a densely connected social network is key for the final
victory of a party. However, small committed minorities can play a crucial role, and even reverse
the election outcome.

Introduction. – Interacting and interdependent net-
works have recently attracted great attention [1–10]. Here,
the function of a node in one network depends on the oper-
ational level of the nodes it is dependent on in the other
networks. Investigated examples range from infrastruc-
ture networks as the power-grid and the Internet [1] to
interacting biological networks in physiology [10]. Under-
standing how critical phenomena [11, 12] are affected by
the presence of interactions or interdependent networks
is crucial to control and monitor the dynamics of and on
complex systems. In this context it was shown that inter-
dependent networks are more fragile than single networks,
and that the percolation transitions can be first order [1].

Interesting, but so far less explored, is the case of inter-
acting social networks, describing individuals that man-
age their personal relationships in different social contexts
(e.g., work, family, friendship, etc.). Taking into account
these multiple layers is crucial, as proven recently for com-
munity detection methods in social networks [13–15], but
the effect of their presence is still not understood in many
respects. For example, there is considerable current inter-
est in opinion models [16], among which we cite the the
Sznajd model [17], the voter model [18], the naming game
[19, 20] and Galam models [21, 22]. But the influence of

more than one network has gathered less attention [23].

Here we propose a simple model for opinion dynamics
that describes two parties competing for votes during a
political campaign. Every opinion, i.e., party, is modeled
as a social network through which a contagion dynamics
can take place. Individuals, on the other hand, are repre-
sented by a node on each network, and can be active only
in one of the two networks (vote for one party) at the mo-
ment of the election. Each agent has also a third option
[19, 20, 24–26], namely not to vote, and in that case she
will be inactive in both networks. Crucially, agents are
affected by the opinion of their neighbors, and the nodes
tend to be active in the networks where their neighbors
are also active. Moreover, the chance of changing opin-
ion decreases as the decision moment approaches, in line
with the observation that vote preferences stabilize as the
election day comes closer [27].

Our aim is to provide insights in the role of multiple
social networks in the voting problem through a simple
and clear mathematical model, in the spirit, for example,
of recent work concerning the issue of ideological conflict
[26]. We describe the dynamics of social influence in the
two networks, and we model the uncertainty reduction
preceding the vote through a simulated annealing process.
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Long before the election the agents change opinions and
can sustain a small fraction of antagonistic relations, but
as the election approaches their dynamics slows down, un-
til they reach the state in which the dynamics is frozen, at
the election day. At that moment, the party winning the
elections is the one with more active nodes. Finally, we
focus on the case in which the networks sustaining each
party are represented by two Poisson graphs, and address
the role of different average connectivities. This choice is
consistent for example with the data on social networks of
mobile phone communication, which are characterized by
a typical scale in the degree (being fitted with a power-law
distribution of exponent γ = 8.4) [28].
We observe a rich phase diagram of the opinion dynam-

ics. The results are that in the thermodynamic limit the
most connected network wins the election independent of
the initial condition of the system, in agreement with re-
cent results on the persuasive role of a densely connected
social network [29]. However, for a large region of the
parameters the voting results of the two parties are very
close and small perturbations could alter the results. In
this context, we observe that a small minority of commit-
ted agents can reverse the outcome of the election result,
thus confirming the results obtained in very recent and
different models [20, 26].

Parties as antagonistic social networks. – We
consider two antagonistic networks A,B representing the
social networks of two competing political parties. Each
agent i is represented in each network and can choose to
be active in one of the networks. In particular σA

i = 0
if agent i is inactive in network A and σA

i = 1 if agent i
is active in network A. Similarly σB

i = 0, 1 indicates if a
node is active or inactive in network B. Since ultimately
the activity of an individual in a network corresponds to
the agent voting for the corresponding party, each agent
can be active only on one network on the election day (i.e.
if σA

i = 1 then σB
i = 0 and if σB

i = 1 then σA
i = 0). Nev-

ertheless we leave to the agent the freedom not to vote,
in that case σA

i = σB
i = 0. Moreover agents are influ-

enced by their neighbors. Therefore, we assume that, on
the election day, if at least one neighbor of agent i is ac-
tive in network A, the agent will be active in the same
network (network A) provided that it is not already active
in network B. We assume that a symmetrical process is
occurring for the opinion dynamics in network B. Hence,
the mathematical constraints that our agent opinions need
to satisfy at the election day are:

σA
i =



1−
∏

j∈NA(i)

(1 − σA
j )



 (1− σB
i )

σB
i =



1−
∏

j∈NB(i)

(1 − σB
j )



 (1− σA
i ), (1)

where NA(i) (NB(i)) are the set of neighbors of node i
in network A (network B). Therefore at the election day

Fig. 1: (Color online) The two competing political parties are
represented by two networks. Each agent is represented in both
networks but can either be active (green node) in only one of
the two or inactive (red node) in both networks. Moreover the
activity of neighbor nodes influences the opinion of any given
node.

people cannot anymore change their opinion. On the con-
trary before the election we allow for some conflicts in the
system, and in general the constraints provided by Eqs. 1
will not be satisfied.

Evolution dynamics during the election cam-

paign. – To model how agents decide on their vote dur-
ing the pre-election period we consider the following algo-
rithm. We consider a Hamiltonian that counts the number
of the constraints in Eq. (1) that are violated. Therefore
we take a Hamiltonian H of the following form

H =
∑

i







σA
i −



1−
∏

j∈NA(i)

(1 − σA
j )



 (1− σB
i )







2

+

∑

i







σB
i −



1−
∏

j∈NB(i)

(1− σB
j )



 (1− σA
i )







2

.(2)

The terms in the brackets can take on the values ±1, 0,
therefore a natural choice of Hamiltonian to count the
number of constraint violations involves squares of these
terms.
We start from an initial condition where the active

nodes in networks A and B are distributed uniformly ran-
domly, and we consider the fact that long before the elec-
tion the agents are free to change opinion. Therefore we
model their dynamics as a Monte Carlo dynamics which
equilibrates following the Hamiltonian H starting from a
relatively high initial temperature, i.e. initially some con-
flicts are allowed in the system. Therefore, initially the
active nodes in networks A and B are distributed accord-
ing to the high temperature Gibbs measure, mimicking an
effectively “unbiased” population at the beginning of the
campaigning process. Moreover we note here that since
we start with a sufficiently high temperature, the dynam-
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ics is not affected by the specific initial conditions of the
system. As the election day approaches, the effective tem-
perature of the opinion dynamics decreases and the agents
tend to reduce to zero the number of conflicts with their
neighbors. The opinion dynamics described in this way is
implemented with a simulated annealing algorithm. We
start at a temperature T = 1 and we allow the system
to equilibrate by 2N Monte Carlo steps where a node is
picked randomly in either one of the networks with equal
probability and is changed from active to inactive or vice
versa. Subsequently, the Hamiltonian, or the number of
conflicts, is recalculated. If the opinion flip results in a
smaller number of conflicts, it is accepted. Else, it is ac-
cepted with probability e−∆H/kT . This Monte Carlo pro-
cess is repeated by slowly reducing the temperature by a
multiplicative factor of 0.95 until we reach the tempera-
ture state T = 0.01 where the Hamiltonian is H = 0, there
are no more conflicts in the network, and the probability
of one spin flip is about e−1/0.01

≃ 10−44. The choice
of increment in the temperature reduction is such that
the overall simulation time is compatible with the dynam-
ics of social systems. The Monte Carlo sweeps that are
performed, each of which corresponds to one campaign-
ing day, span a total number of log 0.01/ log 0.95 ≈ 90
days. It turns out that the Hamiltonian H has in general
multiple fundamental states and the simulated annealing
algorithm always find one of these states. The final config-
uration for the model just described is depicted in Figure
1. In Figure 2 we report the result of this opinion dynam-
ics for two antagonistic networks A, B with Poisson degree
distributions and different average connectivities zA, zB,
respectively. In particular we plot the size SA of the giant
component of the percolating cluster in network A, i.e. the
largest connected component of active nodes in network A.
Additionally we have characterized the finite size effects
(see Figure 3) and concluded that the phase diagram of
the model is consistent with the following scenario valid
in the limit of large network sizes:

• Region (I): zA < 1, zB < 1 . In this region both giant
components in network A (SA) and network B (SB)
are zero, SA = 0, SB = 0, and therefore essentially
agents never vote.

• Region (II) in Figure 2: In this region the giant
component in network B emerges, SB > 0, SA = 0.

• Region (III) in Figure 2: In this region the giant
component in network A emerges, SA > 0, SB = 0.

• Region (IV) in Figure 2 In this region we have the
pluralism solution of the opinion dynamics and both
giant component in networks A and B are different
from zero, SA > 0, SB > 0.

In Regions II (III) the active agents in party B (party A)
percolate the system while agents in party A (party B)
remain concentrated in disconnected clusters. Neverthe-
less, if the average connectivity of the two antagonistic

A

B

Fig. 2: (Color online) (Panel A) The size of the largest con-
nected component SA in network A at the end of the simulated
annealing calculation as a function of the average connectivity
of the two networks: zA and zB respectively. The data is sim-
ulated for two networks for N = 500 nodes and averaged 60
times. The simulated annealing algorithm is independent of
initial conditions. The white line represent the boundary be-
tween the region in which network A is percolating and the
region in which network A is not percolating. (Panel B) The
schematic representation of the different phases of the proposed
model. In region I none of the networks is percolating, in re-
gion II network B is percolating, in region III network A is
percolating, in region IV both networks are percolating.

parties is comparable (Region IV), the system can sustain
an effective pluralism of opinions with both parties per-
colating in the system. Therefore, we find the interesting
result that if the connectivity of the two parties is large
enough,i.e. we are in region IV of the phase diagram (Fig-
ure 2B) the pluralism can be preserved in the model and
there will be two parties with a high number of votes. In
order for a party to win the election, it is necessary that
the active agents percolate in the corresponding network.
The election outcome, nevertheless, depends crucially on
the total number of votes in network A, mA and the total
number of votes in network B, mB. In Figure 4 we plot
the difference between the number of votes in network A
and the number of votes in network B. Very interestingly,
we observe that the more connected party (network) has
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Fig. 3: (Color online) We represent the fraction of nodes in the
giant component SA of network A and in the giant component
SB of network B in different regions of the phase space. In
region II (zA = 1.5, zB = 4) the giant component in network A
(SA ) disappears in the thermodynamic limit while in region IV
(zA = 2.5, zB = 4) it remains constant. The giant component
in network B remains constant in the thermodynamic limit
both in region II and in region IV. Each data point is simulated
for the two networks for N nodes and averaged 200 times.

the majority of the votes. It is also worth noting that the
final outcome of the election does not depend on the initial
conditions. Overall, this result supports the intuition that
if a party has a supporting network that is more connected
it will win the elections, and is coherent with recent results
concerning the role of densely connected social networks
on the adoption of a behavior [29].

Committed agents. – Different opinion-dynamics
models have recently considered the role of committed
agents [20,26,30]. Here we explore the effect of committed
individuals during the election campaign by considering a
situation in which a fraction of the nodes always remain
active in one of the two networks, never changing their
opinion. Figure 5 shows that in Region IV a small frac-
tion of agents f ≃ 0.1 in the less connected network can
reverse the outcome of the election. Indeed the probabil-
ity distribution P = P (mA −mB) in different realization
of the dynamics is shifted towards the party supported
by the committed minority. Remarkably, this finding fits
perfectly with the results of the radically different models
proposed in [20, 26], and generalizes them to the case of
political elections. The crucial role potentially played by
committed minorities is thus suggested by different mod-
els in different aspects of social dynamics, suggesting the
need for future work exploring these findings.

Conclusions. – In conclusion, we have put forth a
simple model for the opinion dynamics taking place dur-
ing an election campaign. We have modeled parties (or
opinions) in terms of a social networks, and individuals
in terms of nodes belonging to these social networks and
connecting them. We have considered the case of antag-
onistic agents who have to decide for a single party, or
for none of them. We have described the quenching of
the opinions preceding the voting moment as a simulated
annealing process where the temperature is progressively
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Fig. 4: (Color online) The contour plot for the difference be-
tween the total number of votes mA in party A (total number
of agents active in network A) and the total number of votes
mB in party B (total number of agents active in network B).
The data is simulated for two networks for N = 500 nodes
and averaged 90 times. It is clear that the larger the differ-
ence in average connectivity of the two networks, the larger
the advantage of the more connected political party.
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Fig. 5: (Color online) We represent the role of a fraction f of
committed agents in reverting the outcome of the election. In
particular we plot the histogram of the difference between the
fraction of agents mB/N voting for party B and the fraction of
agents mA/N voting for party A for a fraction fA of committed
agents to party A, with fA = 0 and fA = 0.1 and average
connectivities of the networks zA = 2.5, zB = 4. The histogram
is performed for 1000 realizations of two networks of size N =
1000. In the inset we show the average number of agents in
network A (mA) and agents in network B (mB) as a function
of the fraction of committed agents fA. A small fraction of
agents (fA ≃ 0.1) is sufficient to reverse the outcome of the
elections. The data in the inset is simulated for two networks
for N = 1000 nodes and averaged 10 times.
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lowered till the voting moment, when the individuals min-
imize the number of conflicts with their neighbors. We
have shown that there is a wide region in the phase di-
agram where two antagonistic parties survive gathering
a finite fraction of the votes, and therefore the existence
of pluralism in the election system. Moreover, we have
pointed out that a key quantity to get a finite share of
the overall votes is the connectivity of the networks corre-
sponding to different parties. Nevertheless connectivity is
not sufficient to win the elections, since a small fraction of
committed agents is sufficient to invert the results of the
voting process.

Though deliberately basic, the model provides insights
into different aspects of the election dynamics. More-
over, from a broader perspective, our work proposes a gen-
eral framework for the description of any opinion forma-
tion process involving different contexts/networks, where
opinions are frozen at some point in time, and where
the agents’ behavior reflects the approach of that point
such that they are initially less susceptible to influence
from their neighborhoods (high initial temperatures) and
attempt to reduce the level of frustration/conflict more
strongly later (low temperatures). In future works we plan
to generalize the model by studying antagonistic networks
with different topologies, such as competing scale-free and
Poisson networks or two competing scale-free networks.
Other extensions of this model could describe several com-
peting parties, consider a threshold dynamics as the one
triggering the opinion formation of the agents in [29], or
relax the hypothesis of purely antagonistic interactions,
thus allowing the agents to express multiple preferences in
a multi-layered opinion space.
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