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 model for the prompt and high latitudeemission in GRBsF. Genet1⋆ and J.Granot1
1 Center for Astrophysi
s Resear
h, University of Hertfordshire, UK.Submitted De
ember 2008. ABSTRACTMost gamma-ray bursts (GRBs) observed by the Swift satellite show an early steepde
ay phase (SDP) in their X-ray light
urve, whi
h is usually a smooth 
ontinuationof the prompt gamma-ray emission, strongly suggesting that it is its tail. However, theme
hanism behind it is still not 
lear. The most popular model for this SDP is HighLatitude Emission (HLE), in whi
h after the prompt emission from a (quasi-) spheri
alshell stops photons from in
reasingly large angles relative to the line of sight still rea
hthe observer, with a smaller Doppler fa
tor. This results in a simple relation betweenthe temporal and spe
tral indexes, α = 2 + β where Fν ∝ t−αν−β . While HLE isexpe
ted in many models for the prompt GRB emission, su
h as the popular internalsho
ks model, there are models in whi
h it is not expe
ted, su
h as sporadi
 magneti
re
onne
tion events. Therefore, testing whether the SDP is 
onsistent with HLE 
anhelp distinguish between di�erent prompt emission models. In order to adequatelyaddress this question in a 
areful quantitative manner we develop a realisti
 self-
onsistent model for the prompt emission and its HLE tail, whi
h 
an be used for
ombined temporal and spe
tral �ts to GRB data that would provide stri
t tests forthe HLE model. We model the prompt emission as the sum of its individual pulseswith their HLE tails, where ea
h pulse arises from an ultra-relativisti
 uniform thinspheri
al shell that emits isotropi
ally in its own rest frame over a �nite range of radii.Analyti
 expressions for the observed �ux density are obtained for the internal sho
k
ase with a Band fun
tion emission spe
trum. We �nd that the observed instantaneousspe
trum is also a Band fun
tion. Our model naturally produ
es, at least qualitatively,the observed spe
tral softening and steepening of the �ux de
ay as the peak photonenergy sweeps a
ross the observed energy range. The observed �ux during the SDPis initially dominated by the tail of the last pulse, but the tails of one or more earlierpulses 
an be
ome dominant later on. A simple 
riterion is given for the dominantpulse at late times. The relation α = 2 + β holds also as β and α 
hange in time.Modeling several overlapping pulses as a single wider pulse would over-predi
t theemission tail.Key words: Gamma-rays: bursts � methods: analyti
al.1 INTRODUCTIONBefore the laun
h of the Swift satellite (Gehrels et al. 2004), Gamma Ray burst (GRB) X-ray afterglows were dete
tedat least several hours after the burst (So�tta et al. 2004 and referen
es therein). They typi
ally displayed a power law de
ay
∼ t−1− t−1.5 around their dete
tion time (De Pasquale et al. 2006). Swift's ability to rapidly and autonomously slew when theBurst Alert Teles
ope (BAT, observing in the energy range 15 − 350 keV; Barthelmy et al. 2005) instrument dete
ts a GRBenables it to point its other instruments - the X-Ray Teles
ope (XRT, observing in the energy range 0.2− 10 keV; Burrows et
⋆ E-mail: f.genet�herts.a
.uk;
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2 F. Genet and J.Granotal. 2005a) and UV/Opti
al Teles
ope (UVOT, observing at wavelengths 170 − 650 nm, i.e. from the opti
al to the near UV;Roming et al. 2005) - toward the GRB within tens of se
onds from the GRB trigger time.The XRT thus �lled the observationalgap between the end of the prompt emission and the beginning of the pre-Swift afterglow observations several hours later.It revealed a 
omplex behaviour usually 
onsisting of three phases, followed by most GRBs, and referred to as a 
anoni
allight 
urve (Nousek et al. 2006), 
onsisting of three distin
t power-law segments where Fν ∝ t−α: an initial (at t < tbreak,1,with 300 s . tbreak,1 . 500 s) very steep de
ay with time t (with a power-law index 3 . α1 . 5; see also Bartherlmy etal. 2005; Tagliaferri et al. 2005); a subsequent (at tbreak,1 < t < tbreak,2, with 103 s . tbreak,2 . 104 s) very shallow de
ay(0.2 . α2 . 0.8); and a �nal steepening (at t > tbreak,2) to the familiar pre-Swift power-law behaviour (1 . α3 . 1.5). Inmany 
ases there are X-ray �ares superimposed on this underlying smooth 
omponent (typi
ally during the �rst two phases,at t < tbreak,2; Burrows et al. 2005b; Fal
one et al. 2006; Krimm et al. 2007), and in some 
ases there is a later (at tj > tbreak,2)further steepening due to a jet.The third de
ay phase (Fν ∝ t−α3) is the afterglow emission that was observed before Swift and is well explained bysyn
hrotron radiation from the forward sho
k that is driven into the external medium as the GRB eje
ta are de
elerated,where the energy in the afterglow sho
k is 
onstant in time (no signi�
ant energy gains or losses). The plateau (or shallowde
ay) phase 
an be explained either by pre-Swift models or by later models that have been developed espe
ially for thispurpose (Nousek et al. 2006; Panaites
u et al. 2006; Granot 2007). It 
ould be due to energy inje
tion, either by a tail ofde
reasing Lorentz fa
tors at the end of the eje
tion phase (Rees & Mészaros 1998; Sari & Mészaros 2000; Ramirez-Ruiz,Merloni & Rees 2001; Granot & Kumar 2006) or by a relativisti
 wind produ
ed by a long lasting sour
e a
tivity (Rees &Mészaros 2000; M
Fadyen et al. 2001; Lee & Ramirez-Ruiz 2002; Dai 2004; Ramirez-Ruiz 2004), by an in
reasing e�
ien
y ofX-ray afterglow emission due to time dependen
e of the sho
k mi
rophysi
s parameters (Granot, Königl & Piran 2006), by aviewing angle slightly outside the region of prominent afterglow emission (Ei
hler & Granot 2006), by a 
ontribution from thereverse-sho
k (Genet, Daigne & Mo
hkovit
h 2007) or by a two 
omponent jet model (Peng, Königl & Granot 2005; Granot,Königl & Piran 2006).The steep de
ay phase is observed in most bursts, and is in the great majority of 
ases a smooth 
ontinuation of theprompt emission, both temporally and spe
trally (O'Brien et al. 2006). This strongly suggests that it is the tail of the promptemission. Several explanations for this phase have been suggested in the 
ontext of previously existing models (Tagliaferri etal. 2005; Nousek et al. 2006), su
h as emission from the hot 
o
oon in the 
ollapsar model (Mészaros & Rees 2001, Ramirez-Ruiz et al. 2002). The most popular model, by far, is High Latitude Emission (HLE) originally referred to as emission froma �naked� GRB (Kumar and Panaites
u 2000a). In this model the prompt GRB emission is from a (quasi-) spheri
al shell,and after it turns o� at some radius then photons keep rea
hing the observer from in
reasingly larger angles relative to theline of sight, due to the the added path length 
aused by the 
urvature of the emitting region. Su
h late arriving photonsexperien
e a smaller Doppler fa
tor. This leads to a simple relation between the temporal and spe
tral indexes, α = 2 + βwhere Fν(t) ∝ t−αν−β, that holds at late times when t− t0 ≫ ∆t, where t0 and ∆t are the start time and width of the pulse,respe
tively. The steep de
ay phase also shows a softening of the spe
trum with time (see Zhang et al. 2007 and referen
estherein).The 
onsisten
y of the steep de
ay phase with HLE has been studied by several authors (Nousek et al. 2006; Liang etal. 2006; Butler & Ko
evski 2007; Zhang et al. 2007; Qin 2008). However, some simplifying assumptions were usually made,whi
h may a�e
t the 
omparison between this model and the observations. One su
h assumption is the 
hoi
e of the referen
etime t0 for the steep de
ay, espe
ially when the prompt emission 
onsists of several pulses. Liang et al. (2006) �nd that whenassuming the HLE relation α = 2 + β and �tting for t0 its derived value is 
onsistent with the onset of the last pulse of theprompt emission (or of the individual spike or �are whose tail is being �t). Zhang et al. (2007) �nd that the HLE 
annotexplain the steep de
ays a

ompanied by a spe
tral softening, but 
an explain the 
ases with no observed spe
tral evolution.Barniol Duran and Kumar (2008) �nd that only 20% of their sample is 
onsistent with HLE. Butler & Ko
evski (2007) �ndthat for a (physi
ally motivated) time independent soft X-ray absorption (�xed NH) the spe
trum during the steep de
ayphase, is mu
h better �t by an intrinsi
 Band fun
tion spe
trum (Band et al. 1993) rather than by a power-law, and that thepeak photon energy shifts to lower energies with time. Qin (2008) �nds that su
h a behavior 
an, at least qualitatively, beprodu
ed for a delta fun
tion emission in radius with a Band fun
tion spe
trum. It is therefore still a largely open questionwhether the temporal and spe
tral properties of the steep de
ay are 
onsistent with HLE. Moreover, it appear that a physi
allymotivated model for the prompt emission with realisti
 assumptions about the emission (e.g. over a �nite range of radii with aBand fun
tion emissivity) is needed in order to address this question in a more quantitative and fully self 
onsistent manner.The nature of the prompt GRB emission is what ultimately determines the properties of its tail. HLE is expe
ted onlyin models where the prompt emission is from a quasi-spheri
al shell and turns o� rather abruptly at some �nite radius (orlab frame time). The best example for this type of model is internal sho
ks (Rees & Mészaros 1994; Sari & Piran 1997)where variability in the Lorentz fa
tor of the relativisti
 GRB out�ow 
auses faster shells of eje
ta to 
ollide with slower sellsresulting in sho
ks going into the shell over a �nite range of radii (typi
ally ∆R ∼ R). On the other hands, there are modelsin whi
h HLE is not expe
ted, su
h as in the 
ase of isolated sporadi
 magneti
 re
onne
tion events within a Poynting �uxdominated out�ow (e.g. Lyutikov & Blandford 2003) in whi
h ea
h spike in the GRB light 
urve is from a distin
t small and
 2009 RAS, MNRAS 000, 1�23



Model for the prompt and high latitude emission in GRBs 3well lo
alized region. Therefore, testing whether the steep de
ay phase is 
onsistent with HLE would help distinguish betweenthese two types (or 
lasses) of prompt GRB models. This 
an be an important step toward identifying the basi
 underlyingme
hanism for the prompt emission, whi
h is still one the the most striking open questions in GRB resear
h more than fourde
ades after the dis
overy of GRBs.In order to address this question, we develop a model for the prompt and its HLE tail that is physi
ally motivated,realisti
, and easy to use (fully analyti
 in its simplest version) in global joint �ts (to all of the available data at all times andphoton energies) of the prompt GRB and its SDP tail. Su
h global �ts 
an provide a stringent and fully self-
onsistent testof HLE model for the SDP in GRBs.The prompt emission is modeled as the sum of a �nite number of pulses. Ea
h pulse 
orresponds to a spike in theprompt GRB light 
urve and has its own HLE tail. An individual spike is modeled as arising from a thin uniform spheri
alrelativisti
 shell that emits isotropi
ally in its own rest frame over a �nite range of radii, while the observed �ux is 
al
ulatedby integrating over the equal arrival time surfa
e (Granot, Piran & Sari 1999; Granot 2005; Granot, Cohen-Tanugi & doCouto e Silva 2008) of photons to a distant observer. Our model is parti
ularly suitable for internal sho
ks, whi
h we fo
us onin this paper. For the emitted spe
trum we 
onsider the phenomenologi
al Band fun
tion, whi
h provides a good �t the theprompt emission spe
trum of the vast majority of GRBs. We point out that our model 
an also be used for X-ray �ares, whi
happear to have temporal and spe
tral properties similar to the spikes of the prompt GRB emission. The main text providesthe most useful results in an easy to use form, while the full derivations of these results are provided in appendixes in orderto help understand their origin and make it easier to extend or generalize our model. We stress here that our main aim is notne
essarily to uniquely determine all of the model parameters, whi
h may be subje
t to various degenera
ies and may provehard when �tting to real data, but instead to test whether our model 
an provide a good �t to the data for any set of physi
alparameters. While su
h a good �t would still not prove that the HLE must be at work, it would de�nitely support HLE as aviable and arguably most plausible model. Our model for an individual pulse is des
ribed in � 2, and results for the �ux inthe 
ase for internal sho
ks with a Band fun
tion spe
trum are given in � 3. The dependen
e of a single pulse on the modelparameters is then investigated in � 4, while � 5 dis
usses how to 
ombine several pulses in order obtain to the total promptemission and its tail. Both are intended to help the reader when using our model to �t data, whi
h is one of the main aims ofour paper. Our 
on
lusions are dis
ussed in � 6. This paper des
ribes in detail our theoreti
al model and its main properties,and stresses some important 
aveats that one should keep in mind when using it to �t data in order to test the HLE model.In subsequent work we intend to 
onfront it with Swift BAT+XRT data.
2 DESCRIPTION OF THE MODEL2.1 The Basi
 Physi
al ModelWe 
onsider an ultra-relativisti
 (Γ ≫ 1) thin (of width ≪ R/Γ2) spheri
al expanding shell that emits over a rangeof radii R0 6 R 6 Rf ≡ R0 + ∆R. The emission turns on at radius R0 and turns o� at radius Rf > R0. The Lorentzfa
tor of the emitting shell is assumed to s
ale as a power-law with radius, Γ2 = Γ2

0(R/R0)
−m where Γ0 ≡ Γ(R0). Theemission is assumed to be isotropi
 in the 
omoving frame of the shell, and uniform over the shell, i.e. the 
omoving spe
tralluminosity depends only on the radius of the shell, L′

ν′ = L′

ν′(R). As the main purpose of this work is to 
he
k the 
onsisten
yof the tail of the prompt emission with HLE, we need to model the prompt emission. We therefore use for the emissionspe
trum the phenomenologi
al Band fun
tion (Band et al. 1993) spe
trum that provides a good �t to the observed promptemission spe
trum of the vast majority of GRBs. In the following we mainly 
onsider emission over a �nite range of radii,
R0 6 R 6 Rf = R0 + ∆R. The 
omoving luminosity is then:
L′

ν′ = L′

0

„

R

R0

«a

S

„

ν′

ν′
p

«

, S(x) = e1+b1

(

xb1e−(1+b1)x x 6 xb ,

xb2xb1−b2
b e−(b1−b2) x > xb ,

(1)where ν′

p(R) ≡ ν′

0(R/R0)
d is the frequen
y where ν′L′

ν′(R) peaks, with ν′

0 ≡ ν′

p(R0); xb = (b1 − b2)/(1 + b1), while b1 and b2are the high and low energy slopes of the spe
trum. For b1 > −1 > b2 the Band fun
tion has a peak in the νFν spe
trum, at
x = 1, and therefore sin
e S(x) is normalized su
h that S(x) = xS(x) = 1 at x = 1, it will not a�e
t normalization of νFν atits peak. The two fun
tional forms used in the band fun
tion are mat
hed at ν′

b = xbν
′

p. The peak luminosity L′

ν′

p
evolve as apower-law with radius, L′

ν′

p
= L′

0(R/R0)
a where L′

0 = L′

ν′

p
(R0) is a normalization fa
tor.Throughout the paper, primed quantities are quantities measured in the 
omoving frame (i.e. the lo
al rest frame of theemitting shell), unprimed quantities are measured either in the sour
e rest frame (the lab frame, i.e. the 
osmologi
al frameof the GRB; this in
ludes Γ, R, θ and t) or the observer frame (this refers to observed quantities, su
h as Fν , ν and T ).
 2009 RAS, MNRAS 000, 1�23



4 F. Genet and J.Granot2.2 Cal
ulating the Observed FluxThe observer is assumed to be lo
ated at a distan
e from the sour
e that is mu
h larger than the sour
e size, so thatthe angle extended by the sour
e as seen by the observer is very small and the observer e�e
tively at �in�nity�. In order to
al
ulate the �ux density Fν that rea
hes the observer at an observed time T we integrate the luminosity L′

ν′ over the EqualArrival Time Surfa
e (EATS; see Figure 1), i.e. the lo
us of points from whi
h photons that are emitted by the shell at aradius R, angle θ relative to the line of sight, and a lab frame time t, rea
h the observer simultaneously at an observed time
T (for full derivation see Appendix A).2.3 Expe
ted parameters values for internal sho
ksThe internal sho
ks model is the most popular model for the prompt GRB emission. Moreover, our model is very suitablefor internal sho
ks. Therefore, we 
onsider it in the following. Here we 
al
ulate the s
alings of the various quantities withradius, that are expe
ted for the internal sho
ks model. First, when di�erent shells (i.e. parts of the out�ow with di�erentLorentz fa
tors) 
ollide, they are expe
ted to be in the 
oasting phase, 
orresponding to m = 0. Moreover, for the simplest
ase of uniform shells, the strength of the sho
ks going into the two shells, as 
hara
terized by the relative upstream todownstream Lorentz fa
tor, Γud, is expe
ted to be roughly 
onstant with radius while the sho
k are 
rossing the shells. Theele
trons are expe
ted to be fast 
ooling, i.e. 
ool signi�
antly on a times
ale mu
h shorter than the shell 
rossing time of thesho
k, and therefore most of the emission is expe
ted to arise from a thin 
ooling layer behind the sho
k. Therefore our thinshell approximation is expe
ted to be reasonably valid. Admittedly, we use one emitting thin shell, 
orresponding to a singlesho
k front, while the sho
k going into the other shell is not expli
itly modeled. One 
ould always model su
h a se
ond sho
kby adding another thin emitting shell that turns on and o� at the same radii (R0 and Rf , respe
tively) but has a slightlysmaller or larger Lorentz fa
tor. This will not introdu
e a big di�eren
e in the overall result, so for the sake of simpli
ity wedo not in
lude this here.Now we turn to �nd the expe
ted s
aling of L′

ν′

p
and ν′

p with radius, under the assumption that the observed softgamma-ray range is dominated by syn
hrotron emission. For fast 
ooling, the peak frequen
y ν′

p of the νFν spe
trum is
ν′

m ≈ (eB′γ2
m)/(2πmec

2) where dNe/dγe ∝ γ−p
e for γe > γm where γm = (p − 2)/(p − 1)(ǫe/ξe)(mp/me)(Γud − 1), while

ǫe is the fra
tion of the internal energy behind the sho
k in the power law distribution of the relativisti
 ele
tron, and ξeis the fra
tion of all ele
trons taking part in this power energy distribution (and an ele
tron-proton plasma is assumed forthe 
omposition of the out�ow). As mentioned above, Γud is expe
ted to be roughly 
onstant during the shell 
rossing (forroughly uniform 
olliding shells), and therefore γm would also be approximately 
onstant, so that ν′

p ∝ B′. The magneti
�eld is expe
ted to be predominantly normal to the radial dire
tion, so that B′ ≈ B/Γ ∝ B for m = 0. Moreover, B ∝ R−1is expe
ted both for a magneti
 �eld 
onve
ted from the 
entral sour
e, and for a �eld generated at the sho
k that holdsome 
onstant fra
tion (ǫB) of the internal energy behind the sho
k. Therefore, one expe
ts the peak frequen
y to evolveas ν′

p ∝ R−1. We have also assumed L′

ν′

p
∝ (R/R0)

a. For syn
hrotron emission L′

ν′,max ∝ NeB
′ ∝ R0 as the numberof emitting ele
tron is proportional to the radius, Ne ∝ R. Sin
e the 
ooling break frequen
y s
ales as ν′

c ∝ R, we have
L′

ν′

p
≈ L′

ν′,max(ν
′

m/ν′

c)
−1/2 ∝ R1, implying a = 1.More generally (without spe
ifying the emission me
hanism) for roughly uniform shells with 
onstant Γud both the rateat whi
h parti
les 
ross the sho
k and the average energy per parti
le are 
onstant with radius, implying a 
onstant rate ofinternal energy generation (dE′

int/dt′ ∝ R0), and therefore for fast 
ooling this also applies for the total 
omoving luminosity,
L′ ∼ ν′

pL′

ν′

p
∝ R0, and therefore d + a = 0. This is indeed satis�ed for syn
hrotron emission for whi
h d = −1 and a = 1, andholds more generally for other emission me
hanisms in the fast 
ooling regime.For now on the values m = 0 and d = −1 derived in this part will be used throughout the paper. However, sin
e theexpressions do not be
ome mu
h simpler by spe
ifying the value of a, we leave a in the simpler expressions, and use the valueof a = 1 for �gures only. In parti
ular, all the �gures showing light
urves in this paper use these parameter values, as well asthe mean BATSE values for the Band fun
tion spe
tral slopes: b1 = −0.25 and b2 = −1.25 (Pree
e et al., 2000).2.4 Relevant Times and Times
alesA photon emitted from the sour
e (at the origin) when the shell is eje
ted from it (i.e. at a lab frame time tej when theshell radius is R = 0) arrives at the observer at an observer time Tej whi
h 
an be thought of as the observed eje
tion timeof the shell. We de�ne T0 the initial radial time by T = Tej + T0 being the time at whi
h the �rst photons emitted rea
hthe observer (that is, photons emitted at a radius R0 along the line of sight). We also de�ne Tf the �nal angular time by

T = Tej + Tf being the time at whi
h the last photons that are emitted along the line of sight (from Rf and θ = 0) rea
h theobserver.For a 
onstant Lorentz fa
tor with radius (m = 0), as expe
ted for internal sho
ks, the expressions for T0 and Tf are
 2009 RAS, MNRAS 000, 1�23



Model for the prompt and high latitude emission in GRBs 5simple:
T0 =

(1 + z)R0

2cΓ2
0

, Tf = T0

„

1 +
∆R

R0

«

. (2)We also de�ne two normalized times (and their 
orresponding values at Tf ) that will be used in the following:
T̃ ≡ 1 + T̄ ≡

T − Tej

T0
, T̃f ≡ 1 + T̄f ≡

Tf

T0
= 1 +

∆R

R0
, (3)where T̃ = 1 (or T̄ = 0) 
orresponds to the onset of the spike � the very �rst photon that rea
hes the observer (emitted at

R0 on the line of sight). The main motivation for de�ning these two times is that they 
orrespond to the two most natural
hoi
es for the zero to, T̃ = 0 
orresponding to the eje
tion time of the shell, and T̄ = 0 
orresponding to the onset of thespike in the light
urve. The 
hoi
e of the zero time is important for the de�nition of the temporal index in � 4.1, where weexplore these two 
hoi
es in detail. Moreover, it is more 
onvenient to use T̄ in some expressions and T̃ in others.3 RESULTS FOR INTERNAL SHOCKS WITH A BAND FUNCTION SPECTRUM3.1 Emission from a single radiusBefore to turn to the more generi
 
ase of emission from a range of radii, we �rst 
onsider the limiting 
ase of emissionfrom a single radius R0. The peak frequen
y is then ν′

p = ν′

0, and the luminosity is
L′

ν′ = L′

0S

„

ν′

ν′
p

«

R0δ(R − R0) , (4)whi
h after some algebra (see appendix A for details, and in parti
ular se
tion A3) we obtain the �ux:
Fν(T̃ > 1) =

(1 + z)

4πd2
L

L0T̃
−2S

„

ν

ν0
T̃

«

, (5)where dL and z are the luminosity distan
e and 
osmologi
al redshift of the sour
e, L0 ≡ 2Γ0L
′

0 and ν0 ≡ 2Γ0ν
′

0/(1 + z).Denoting Fs ≡ L0(1 + z)/(4πd2
L) and using the expli
it expression for the Band fun
tion (eq. [1℄), the observed �ux reads

Fν(T̃ > 1)

Fs
=

8

>

<

>

:

T̃ b1−2(ν/ν0)
b1e(1+b1)[1−T̃ ν/ν0] T̃ 6 xbν0/ν ,

T̃ b2−2(ν/ν0)
b2xb1−b2

b e1+b2 T̃ > xbν0/ν .

(6)3.2 Emission from a �nite range of radiiIntegrating the luminosity (eq. (1)) over the Equal Arrival Time Surfa
e (for details of the 
al
ulation see appendix A,and in parti
ular its se
tion A4) leads to the following expression for the �ux:
Fν(T̃ > 1) = F0T̃

−2

»

min
“

T̃ , T̃f

”2+a

− 1

–

S

„

ν

ν0
T̃

«

, (7)where F0 ≡ (1 + z)L0/[(2 + a)4πd2
L]. This 
an be expli
ited as:

Fν(T̃ > 1)

F0
=

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

(ν/ν0)
b1 T̃ b1−2

“

T̃ 2+a − 1
”

e(1+b1)(1−T̃ ν/ν0) T̃ < min
h

T̃f , xbν0/ν
i

,

(ν/ν0)
b1 T̃ b1−2

h

T̃ 2+a
f − 1

i

e(1+b1)(1−T̃ ν/ν0) T̃f < T̃ < xbν0/ν ,

(ν/ν0)
b2 T̃ b2−2

“

T̃ 2+a − 1
”

xb1−b2
b e1+b2 xbν0/ν < T̃ < T̃f ,

(ν/ν0)
b2 T̃ b2−2

h

T̃ 2+a
f − 1

i

xb1−b2
b e1+b2 T̃ > max

h

T̃f , xbν0/ν
i

.

(8)Note that the observed fun
tion has exa
tly the same shape as the lo
al spe
tral emissivity � a pure Band fun
tion. Thiso

urs only for m = 0 and d = −1.In terms of number of photons N per unit photon energy E, area A and observed normalized time T (whi
h is simplyequal to Fν/hE), this 
an be expressed as
dN

dEdAdT
(E, T̃ > 1) = T̃−1

»

min
“

T̃ , T̃f

”a+2

− 1

–

B

„

E

E0
T̃

«

, (9)where
B(z) = Bnorm

(

zb1−1e−z z 6 b1 − b2

zb2−1(b1 − b2)
b1−b2e−(b1−b2) z > b1 − b2

(10)
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6 F. Genet and J.Granotis the familiar Band fun
tion with a normalization 
onstant Bnorm, where z = (E/E0)T̃ = (1 + b1)x, while E = hν and
E0 = hν0 are the 
orresponding photon energies (the more 
ommon notation is αBand = b1 − 1 and βBand = b2 − 1).4 PROPERTIES OF THE SINGLE PULSE EMISSIONNow that we have derived the observed �ux for a single emission episode (or single pulse in the light 
urve), we studyits temporal and spe
tral behaviour for any radial width ∆R > 0 of the emitting region. We remind the reader that we
onsider only internal sho
ks, and use the 
orresponding model parameter values (a = 1, m = 0 and d = −1) for fast 
oolingsyn
hrotron emission, with a Band fun
tion emission (and observed) spe
trum (ex
ept in some 
ases where the dis
ussion 
anstay general without mu
h 
ompli
ation). Some of the results may not hold for more general parameter values of m or d, andwe point this out when relevant. For all �gures showing light
urves (throughout the whole paper), the panels or �gures witha linear s
ale show Fν/Fmax where Fmax ≡ Fν(T̃f ), while panels or �gures with a logarithmi
 s
ale show Fν/F0 where weremind the reader that F0(a = 1) = (1 + z)L0/(12πd2

L). All �gures showing temporal evolution of parameters or light
urveswith a logarithmi
 time axis in this se
tion use T̄ , as this shows the early behaviour mu
h more 
learly than for T̃ .From eq. (7), for reasonable values of the parameters T̃f , b1, b2, ν/ν0, and a, the pulse peaks at T = Tej + Tf (T̃ = T̃f ).While this is generally the 
ase, for some 
ombinations of parameters (often involving relatively large values of T̃f ) the pulsehas a round peak and starts de
aying before T̃f .For T̃ < 1, the Equal Arrival Time Surfa
e (EATS) does not interse
t the emission region and no photons rea
h theobserver (its outermost radius RL is smaller than R0): Fν(T̃ < 1) = 0. When 1 6 T̃ 6 T̃f (R0 6 RL 6 Rf ), the EATSinterse
ts the emission region but does not yet en
ounter its outer edge (in parti
ular the observed �ux is independent of theradial extension ∆R of the emission region); the fra
tion of the EATS within the emission region in
reases with time, as doesthe maximal angle θmax relative to the line of sight from whi
h photons rea
h the observer, (θmaxΓ0)
2 = (T̃ −1). When T̃ > T̃f(RL > Rf ), the front part of the EATS is outside the emission region, and its parts inside the emission region are at in
reasingangles from the line of sight. In parti
ular, photons rea
h the observers from θmin 6 θ 6 θmax where (θminΓ0)

2 = (T̃ − T̃f )T̃−1
f .Note that at T̃ ≫ T̃f , well into the tail of the pulse, θmax/θmin ≈ T̃

1/2
f , so that the emission 
omes from a rather narrowrange of angles θ, whose typi
al value in
reases linearly with T̃ . Moreover, for T̃ > T̃f , the �ux ratio for two identi
al sets ofemission parameters that di�er only in their T̃f (denoted by subs
ripts 1 and 2), is 
onstant in time and equal to

Fν(T̃ > T̃f,2 > 1)

Fν(T̃ > T̃f,1 > 1)
=

T̃ 2+a
f,2 − 1

T̃ 2+a
f,1 − 1

,
Fν(T̃ > T̃f,2 > 1)

Fν(T̃ > T̃f,1 = 1)
=

T̃ 2+a
f,2 − 1

2 + a
. (11)The �rst ratio approa
hes ∆R2/∆R1 for ∆R1,2 ≪ R0, sin
e this 
orresponds to the thin shell limit, while the overall emittedenergy is proportional to ∆R, sin
e L′

ν′ (R) ≈ L′

ν′(R0) is almost independent of R within the very thin emission region. Forthe se
ond ratio, the denominator is the �ux for a delta fun
tion emission with radius, for whi
h the total emitted energyis held �xed, and therefore the ratio approa
hes ∆R2/R0 ≪ 1 in the limit of a thin emission region. The fa
t that the �uxratio is 
onstant in time at T̃ > T̃f holds only for m = 0 and d = −1, and means that the �ux at these late times (typi
allyafter the peak of the spike, whi
h is usually at T̃f ) has the same time dependen
e regardless the width of the emitting region(∆R). This 
an simplify the 
al
ulation of the �ux for a family of pulses that di�er only in ∆R: one 
an 
al
ulate the �uxfor ∆R = 0 (T̃f = 1) and apply it to T̃ > T̃f , multiplied by a fa
tor [T̃ 2+a
f − 1]/(2 + a) for any value ∆R > 0 (T̃f > 1).Moreover, it is also su�
ient to 
al
ulate the �ux for ∆R → ∞ and apply it to T̃ 6 T̃f (this holds mu
h more generally;Granot, Cohen-Tanugi & do Couto e Silva 2008).Figure 2 shows light 
urves for a single pulse in both linear and logarithmi
 s
ales, for di�erent values of the normalizedfrequen
y ν/ν0. The peak time is at T̃f = 2 (equivalent to T̄f = 1). The light 
urves sample the two parts of the Bandfun
tion both before and after the peak time. The di�eren
es between the light 
urves for di�erent frequen
ies re�e
t thespe
tral evolution, and in parti
ular the evolution of the spe
tral break frequen
y νp. At higher observed frequen
ies ν the
hange in the spe
tral and temporal indexes asso
iated with the passages of νp o

urs earlier. The shape of a pulse (left panelof �gure 2) 
an vary from being very spiky (dotted line) to a rounder peak (dot-dashed line), depending on the frequen
y. Itmay thus provide some latitude in the �tting of a
tual observed pulses.Figure 3 shows the dependen
e of the same pulse on T̄f for three values of the normalized frequen
y ν/ν0 (0.01, 0.1 and

1). It is evident from the logarithmi
 s
ale �gures that at T̄ 6 T̄f the �ux is independent of ∆R (and therefore of T̄f ), andthat at T̄ > T̄f all the light 
urves have the same time dependen
e (i.e. their �ux ratio is 
onstant in time). At any given timethe spe
trum is independent of ∆R (this is valid only for m = 0 and d = −1). The bottom right panel of this �gure showslinear s
ale to help visualise a 
ase where the peak of the pulse is before T̃f .Figure 4 shows the dependen
e of the same pulse on the parameter a for three values of the normalized frequen
y ν/ν0(0.01, 0.1 and 1). We 
an see that, 
ompared to the 
ase for a = 1, when a in
reases the peak is at T̄f and be
omes sharper.When a de
reases the pulse be
omes larger, the slope for T̄ > T̄f be
oming 
loser to zero up to a point where is is zero. For
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Model for the prompt and high latitude emission in GRBs 7values of a even smaller, the peak of the pulse o

urs before T̄f and be
omes rounder; in this 
ase at T̄f only a sharp breakis observed.4.1 Lo
al temporal and spe
tral indexesIt is natural to de�ne the lo
al values of the spe
tral and temporal indexes as the logarithmi
 derivatives of the �ux densitywith respe
t to frequen
y and time, respe
tively. For the spe
tral index, there is no ambiguity and β ≡ −d log Fν/d log ν. Forthe temporal index, however, we must 
hoose a referen
e time, and the 
hoi
e is not obvious. for this reason we 
onsider twoalternative de�nitions: αej ≡ −d log Fν/d log T̃ , that uses the eje
tion time as the referen
e time, and αon ≡ −d log Fν/d log T̄that uses the onset of the spike as the referen
e time. The �gures in this subse
tion use the observed frequen
y ν instead of itsnormalized value ν/ν0, in order to provide a more realisti
 example that 
ould be at least qualitatively 
ompared with data,and in
lude the BAT and XRT energy ranges. For these �gures we 
onsider E0 = 2Γ0E
′

0/(1 + z) = 300 keV, whi
h 
ould forexample 
orrespond to E′

0 = 1 keV, Γ0 = 300 and z = 1.Figure 5 shows the evolution of the temporal indexes αej and αon during a pulse (See appendix B for the detailedevolution of the temporal and spe
tral slopes). The temporal index αej starts at very negative values and gradually in
reases,until at T̄f it makes an abrupt jump to its value during the de
aying part of the pulse, whi
h is exa
tly 2 + β (see eq. [B7℄).The temporal index αon starts at early times, T̄ ≪ 1, either at −1 for T̄f > 0 and T̄ < T̄f , or from 0 for T̄f → 0. Moreover,for 0 < T̄f ≪ 1, αon ≈ −1 for T̄ < T̄f and αon ≈ 0 for T̄f < T̄ ≪ 1 (see eqs. [B2℄ and [B4℄). Note that when αon jumps fromits negative value to a positive value at T̄ = T̄f (i.e. at the peak of the spike), it rea
hes the same fun
tion of T̄ , independentof the time of the jump, T̄f , and therefore the same fun
tion also holds for T̄f = ∆R/R0 = 0 (see eqs. [B2℄ and [B4℄). At latetimes, T̄ ≫ 1 and T̄ > T̄f , the HLE relation is approa
hed, αon ≈ 2 − b2.The left panel of �gure 6 shows the evolution of 2 + β (where β is the spe
tral index) with the temporal indexes αej and
αon. The spe
tral index naturally softens (β in
reases with time), similar to what is typi
ally observed (at least qualitatively),until it rea
hes −b2 at late times (T̄ > xbν0/ν − 1). The 
hange in β o

urs earlier at higher photon energies. At T̄ > T̄f ,
αej = 2 + β while αon only approa
hes 2 + β at late times.In order to get a better idea of how the observed spe
tral index β is expe
ted to behave in Swift XRT observations, we
al
ulate its average values over the XRT energy range (0.2�10 keV). We de�ne two average values, by integrating over eitherthe frequen
y ν or its logarithm log ν:
〈β〉ν ≡

1

(νmax − νmin)

Z νmax

νmin

dν β(ν) , 〈β〉log ν ≡
1

log(νmax/νmin)

Z νmax

νmin

dν

ν
β(ν) = −

log(Fνmax/Fνmin)

log(νmax/νmin)
. (12)The middle panel of �gure 6 shows the evolution of these two averages as well as the values of β at νmin = 0.2 keV,

νmax/2 = 5 keV and νmax = 10 keV. As expe
ted, 〈β〉ν gives a larger weight to higher frequen
ies 
ompared to 〈β〉log ν , andits value it is usually very 
lose to the spe
tral slope at νmax/2 (5 keV), ex
ept when the break frequen
y νp of the Bandspe
trum passes through the XRT range, and the 
hange in β within this range is the largest. Therefore, 〈β〉log ν appears tobetter re�e
t the spe
tral slope measured over a �nite frequen
y range.4.2 Spe
trumThe lo
al spe
tral emissivity in the 
omoving frame is taken to be a Band fun
tion. We have seen previously that forthe parameter values relevant for internal sho
ks (m = 0, d = −1), the observed spe
trum is also a pure Band fun
tion.This is evident in the right panel of �gure 6, whi
h shows the temporal evolution of the observed spe
trum in our model. Itresults from the fa
t that for these parameter values the observed peak frequen
y νp is 
onstant along the EATS. We have
νp/ν0 = Ep(T )/E0 = 1/T̃ = 1/(1 + T̄ ) (see eq. (A18)) whi
h is independent of T̄f . This behaviour is evident in the rightpanel of �gure 6, where Ep/E0 is 1 at the onset of the spike (T̄ = 0), Ep/E0 = 1/2 at the peak of the spike (T̄ = T̄f = 1),and Ep/E0 de
reases roughly linearly with T̄ at later times, during the tail of the pulse.5 COMBINING PULSES TO OBTAIN THE PROMPT EMISSIONThere is good observational eviden
e that the steep de
ay phase is the tail of the prompt emission (O'Brien et al. 2006).Within our model, the prompt emission is the sum over a �nite number of pulses, and therefore the steep de
ay phase is thesum of their tails. In this se
tion we provide examples of 
ombining several pulses to model the prompt emission, and studythe e�e
t of varying the di�erent pulse parameters. To this end, we start with a simple prompt emission model 
onsistingof six pulses that are identi
al ex
ept for their eje
tion time Tej (see Fig. 7a). Ea
h pulse 
orresponds to a single emissionepisode of a parti
ular shell that was eje
ted at Tej,i (for i'th pulse), has an initial radial time T0,i, and a �nal angular time of
Tf,i. Then, we study the e�e
t of 
hanging the other model parameters one by one among the pulses. All light
urves in this
 2009 RAS, MNRAS 000, 1�23



8 F. Genet and J.Granotse
tion are drawn against T , as the eje
tion time is di�erent for ea
h pulse (and then the de�nition of a T̃ T̄ would di�er forea
h pulse). In Fig. 7b the peak �ux Fpeak is varied. Next, we vary T0 and/or Tf . In Fig. 7
, T0 is varied while Tf/T0 remains
onstant. In Fig. 7d, Tf and ∆R/R0 vary while T0 and R0 remain 
onstant. In Fig. 7e, T0 and ∆R/R0 vary while Tf and Rfremain 
onstant. Ea
h of these panels show the light 
urve in logarithmi
 s
ales, T = 0 is set to the onset time of the �rstpulse, whi
h means that Tej,1 = −T0,1, thus showing the modeled prompt from a time 
lose to what would be the trigger timefor an observed burst. The red solid line represents the total prompt emission (the sum of all the pulses), while the bla
k nonsolid lines are the individual underlying pulses. All the examples shown here of the prompt emission are for ν/ν0 = 0.1.In the 
ase of six equal pulses (Fig. 7a), later pulses appear to de
ay mu
h more steeply just after their peak in alogarithmi
 s
ale with the zero time near the beginning of the �rst pulse. At very late times the relative 
ontribution fromthe di�erent pulses be
omes almost the same. As the only parameter that varies between pulses is the eje
tion time, Tej, this
hange in slope must depend only on it. Noting that the temporal slope is α ≡ −d log Fν/d log T = αej/(1− Tej/T ), and thatthe value of αej just after the peak is independent of Tej (it depends only on T̃f ; see eq. [B6℄), we 
an see that the value of αjust after the peak s
ales as αpeak = αej,peak(1 + Tej/Tf ), sin
e T = Tej + Tf is the time of the peak of the pulse. Sin
e thepulses are equal they have the same Tf and αej,peak, it is 
lear that αpeak in
reases with Tej. At late times when T ≫ Tej, αapproa
hes αej = 2 + β.When varying Fpeak while �xing the other parameters (see Fig. 7b), the relative �ux from ea
h pulse at very late timesis proportional to its Fpeak, so that the largest 
ontribution is from the pulse with the largest Fpeak.At late times the observed �ux density of a single spike s
ales as Fν ∝ T̃ b2−2 (see, e.g., eq. [8℄). If at the peak time ofthe spike, whi
h for simpli
ity is assumed here to be at T = Tej + Tf (as is usually the 
ase), the observed photon energy isat the high-energy part of the Band fun
tion, E > E∗ ≡ E0(T0/Tf )xb or ν > ν∗ ≡ ν0(T0/Tf )xb, then (using eq. [8℄) the �uxfrom the peak onwards is simply given by
Fν>ν∗

(T > Tej + Tf ) = Fν,peak

„

T − Tej

Tf

«b2−2

, (13)while for E/E∗ = ν/ν∗ < 1 the expression is slightly more 
ompli
ated,
Fν<ν∗

Fν,peak
=

8

>

>

<

>

>

:

“

T−Tej

Tf

”b1−2

e−(1+b1)(ν/ν0)(T−Tej−Tf )/T0 Tf 6 T − Tej 6 T0xbν0/ν ,

“

T0xbν0
Tf ν

”b1−b2
eb2−b1+(1+b1)(Tf /T0)(ν/ν0)

“

T−Tej

Tf

”b2−2

T − Tej > T0xbν0/ν ,

(14)but the qualitative behaviour is still rather similar. Therefore, the �ux ratio of two pulses with eje
tion times Tej,1 6 Tej,2and a 
omparable Ep(T̄f ) = (T0/Tf )E0 (as is usually the 
ase for di�erent pulses in the prompt emission of the same GRB),at late times (T > max(Tej,1 + Tf,1, Tej,2 + Tf,2) and T − Tej,2 ≫ Tej,2 − Tej,1) is approximately
Fν,1(T )

Fν,2(T )
∼

Fpeak,1

Fpeak,2

„

Tf,1

Tf,2

«2+β

, for min[T̄f,1, T̄f,2] > 1 and T − Tej,2 ≫ Tej,2 − Tej,1 , (15)where β = −b2 for ν > ν∗ while β is generally intermediate between −b2 and −b1 for ν < ν∗.Fig. 7
 demonstrates this ni
ely for a series of six pulses with the same Fpeak but de
reasing Tf , so that the later pulseswith a smaller Tf de
ay faster and be
ome sub-dominant at late times. At the latest times the �rst spike, whi
h has the largest
Tf , dominates the observed �ux in the tail emission. A similar behaviour is also seen in Fig. 7d. In Fig. 7e both Fpeak and Tfare the same between the di�erent pulses, and therefore their tail �uxes at late times are similar. In Fig. 7
, T0 and Tf arevaried while Tf/T0 is 
onstant, and it 
an be seen that this 
orresponds to a res
aling of the pulse width (its typi
al duration)without e�e
ting its shape. In Fig. 7d, Tf and Tf/T0 are varied while T0 is 
onstant, and this ni
ely demonstrates how theshape of the pulse depends on Tf/T0. Typi
ally, the rise time of a pulse is Tf −T0 while its de
ay time is Tf , so that the ratioof the rise and de
ay time is 1 − T0/Tf . In Fig. 7e, T0 and Tf/T0 are varied while Tf is 
onstant. In this 
ase the rise timevaries 
onsiderably between the di�erent pulses while the de
ay times
ale and the late time tail of the pulses are pra
ti
allythe same. This arises sin
e the tail is dominated by emission from R ∼ Rf , that in this 
ase is very similar for all the pulses.Moreover, for the parti
ular 
hoi
e of parameters in Fig. 7e, where Ep(T̄f ) = (T0/Tf )E0 and E∗ = xbEp(T̄f ) remain 
onstantfor all the pulses, their late time tails have the same �ux normalization. This 
an be understood from eq. (14), where the �uxfor T̃ > max(T̃f , xbν0/ν) 
an be written as Fν/Fν,peak = (E/E∗)

b2−b1 exp[(b1 − b2)(E − E∗)/E∗]T̃
b2−2.Fig. 7f shows a more realisti
 example of the prompt emission, in whi
h a larger number of model parameters is variedbetween the di�erent pulses. This example 
ontains only three pulses in order to be 
learer. It 
an be seen that the �uxduring the de
aying phase is initially dominated by the last pulse just after its peak (T > 27 s), but the se
ond peak be
omesdominant (even if only by a small fa
tor) as early as T ∼ 37 s, and �nally at T ∼ 140 s the �rst pulse be
omes the dominantone. This demonstrates that di�erent pulses 
an dominate the observed �ux during the 
ourse of the steep de
ay phase. Whi
hpulses would 
ontribute more to the steep de
ay phase 
an be estimated a

ording to their typi
al width (or duration), peak�ux, and peak time. The peak time is most important at the beginning of the steep de
ay phase, where the last spike alwaysdominates just after its peak if its peak is above the �ux from the other spikes. Later on the relative 
ontribution of thedi�erent spikes 
an be estimated a

ording to eq. (15). Sin
e the late time �ux s
ales as FpeakT

2+β
f and usually 0 . β . 2,
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Model for the prompt and high latitude emission in GRBs 9the power of Tf (whi
h 
orresponds to the typi
al width of the spike) is higher than that of Fpeak, so that wider spikes tendto dominate over narrower spikes, even if their peak �ux is somewhat lower.One should be very 
areful when �tting a
tual data with su
h a model. Fig. 8 shows what 
an happen if be
ause of noisydata or 
oarse time bins, a prompt emission (red solid line) whi
h is a
tually 
omposed by several pulses (three, six or twelvein the 
ases shown; bla
k non-solid lines) is �tted by a single broad pulse (green solid line). In this 
ase the tail of the promptemission 
an be signi�
antly overestimated at late times, by a fa
tor that tends to in
rease with the true number of underlyingpulses. This 
an be understood by the simple example of 
omparing a single spike with N identi
al spikes with the same peak�ux but a duration smaller by a fa
tor of N , for whi
h the sum of their late time tail �ux would be smaller than that of thesingle pulse by a fa
tor of ∼ N1+β . However, in more realisti
 examples, the late time �ux would often be dominated by thewidest underlying pulse, so that its width would be more important than the total number of narrower underlying spikes. Itis important to keep this e�e
t in mind when 
onfronting su
h a model with a
tual data.6 DISCUSSION AND CONCLUSIONSWe have presented and explored a model for the prompt GRB emission and its high latitude emission (HLE) tail. Thismodel is physi
ally motivated and realisti
: it 
onsists of a �nite number of emission episodes, ea
h of whi
h 
orresponds toa single spike in the prompt light 
urve, and is modeled by a relativisti
ally expanding thin spheri
al uniform shell emittingisotropi
ally in its own rest frame within a �nite range of radii. Our model thus des
ribes the prompt emission and the steepde
ay pahse as a whole from its very start to its late tail. Yet this model is easy to use (fully analyti
 in its simplest formdes
ribed here), making it parti
ularly suitable for detailed 
ombined temporal and spe
tral global �ts to the prompt GRBemission and the following steep de
ay phase (SDP). Su
h �ts 
an provide a stri
ter test of the HLE model for the SDP
ompared to most previous models, sin
e we use a single self-
onsistent model to �t both the prompt emission and the SDP,while most previous models �t only the SDP and are largely de
oupled from the details of the prompt emission. Moreover,our model is also physi
ally motivated, and more realisti
 than previous models. We have derived analyti
 expressions for the�ux in the realisti
 
ase of a Band fun
tion spe
trum (eqs. [7℄ and [8℄), whi
h 
onsists of two power laws that smoothly joinat some typi
al photon energy.The temporal evolution of the instantaneous values of the temporal (α) and spe
tral (β) indexes for a single emissionepisode was studied, 
orresponding to a single observed pulse in the light 
urve. The de�nition of α is not unique as it dependson the 
hoi
e of referen
e time. We explored two options for the referen
e time, either the eje
tion time (αej) or the onsettime of the spike (αon), and found that for the former the HLE relation (αej = 2 + β) is satis�ed from immediately after thepeak of the spike (T̄ > T̄f ), while for the former it is only approa
hed at late times (αon ≈ 2 + β at for T̄ > T̄f and T̄ ≫ 1).We have intentionally 
hosen a simple model to des
ribe the pulses, in order to redu
e the number of free parameters. Fora single emission episode (or pulse), in the most generi
 
ase there are ten free parameters: the power m = −2d log Γ/d log R,
d = d log ν′

p/d log R, a = d log L′

ν′

p
/d log R, the normalization fa
tor F0 (or L0), three additional parameters for the Bandfun
tion (the two spe
tral slopes, b1 and b2, as well as the peak energy at the onset of the pulse E0), the two times
ales T0and Tf , and the eje
tion time Tej. We have the general 
onstraint ∆R > 0, whi
h implies T̃f = 1 + ∆R/R0 > 1. Fo
usingon the internal sho
ks model �xes some of these parameters: as the out�ow is typi
ally in the 
oasting phase, m = 0, whilefor syn
hrotron emission from fast 
ooling ele
trons d = −1 and a = 1. Sin
e we expe
t ∆R/R0 = T̄f ∼ 1 we 
an �x T̄f ∼ 1(although a wider range, su
h as 0.2∆R/R0 . 5, may still be 
onsidered as plausible). Fixing m, d, a, and Tf/T0 in thismanner would leave only six free parameters. For a prompt emission with several pulses, one may be able in some 
ases tonegle
t the spe
tral evolution and use the same values of b1, b2, and E0 for all the di�erent pulses (or at least two of them,e.g. b1 and b2), whi
h leads to a total number of free parameter of 3(Npulses + 1) (or 4Npulses + 2 if E0 
annot be �xed for allthe pulses) for a burst with Npulses pulses.The shape of the pulses in our model 
an vary 
onsiderably, from very spiky peaks to rounder ones, from a very sharprise to shallower rise, and so on (see Figs. 2 � 4). This 
an help reprodu
e some of the observed diversity in the shape of spikein the prompt light 
urve. This appears to be a promising feature of our model. However, we have an abrupt 
hange in thetemporal index at T̄f , that usually 
orresponds to a sharp peak of the spike. This is 
aused by our model assumption thatthe emission abruptly shuts o� at the outer emission radius Rf . Therefore, we also 
onsider an alternative and more realisti
assumption, whi
h leads to a rounder peak for the spikes, where the emission more gradually turns o� at R > Rf . This isdone by introdu
ing and exponential turn-o� with radius of the 
omoving spe
tral luminosity, L′

ν′ (R), and is examined inAppendix C. The more gradual the turn-o� of the emission with radius the rounder the peak of the pulse in the light 
urve.This 
an help �t the observed variety of pulse shapes even better (at the 
ost of adding an additional free parameter).In the parti
ular 
ase of syn
hrotron emission from internal sho
ks, we �nd that the observed spe
trum has the sameshape as the emitted one, whi
h in our 
ase is modeled as a Band fun
tion. The observed peak photon energy of the Bandfun
tion de
reases with time, Ep(T̃ ) = E0/T̃ , naturally leading to a softening of the spe
trum with time, similar to what isobserved by Swift. Thus, our model 
an at least qualitatively reprodu
e the main temporal and spe
tral features observed by
 2009 RAS, MNRAS 000, 1�23



10 F. Genet and J.GranotSwift. The spe
tral index β evolves from its value below Ep (β = −b1) to its value above Ep (β = −b2), where the transitionthat 
orresponds to the passage of Ep through the observed energy band o

urs at earlier times for higher observed photonenergies (or frequen
ies).When modeling the prompt emission by 
ombining several pulses, the SDP is initially dominated by the last pulse (justafter its peak, if it is above the �ux fro the other pulses), but 
an later be dominated by the tail of other pulses. The relative
ontribution of a pulse to the late time �ux s
ales as ∼ FpeakT 2+β
f , and therefore wider pulses (with a larger Tf ), and to alesser extent pulses with a larger peak �ux (Fpeak), tend to dominate the late time �ux, deep into the SDP. Moreover, oftenthe 
ontribution to the total �ux from the tails of several pulses 
an be 
omparable, so it 
annot be adequately modeledusing a single pulse model. Therefore, we 
aution here that modeling the steep de
ay phase using the HLE of a single pulse,

Fν ∝ (T − Tref)
−(2+β), may lead to wrong 
on
lusions, and all the more so if the referen
e time Tref is arbitrarily set to theGRB trigger time. Even if Tref is set to the onset time of the last spike, this may still be a bad approximation in many 
asessin
e (i) we �nd that αej = 2 + β (with Tref = Tej) rather than αon (with Tref = Tej + T0, 
orresponding to the onset of thespike) while αon approa
hes αej = 2 + β only at late times well after the peak of the last pulse, and (ii) at su
h late timesthe �ux often be
omes dominated by the tails of earlier pulses.Our model 
an produ
e di�erent shapes for the tail of the prompt emission, from 
lose to a power law (whi
h 
an havea di�erent temporal index than its asymptoti
 late time value) to a 
urved shape with de
reasing temporal index α. Thisis qualitatively 
onsistent with observations, where these type of behaviour are observed. We have demonstrated that justafter the peak of the last pulse, the de
ay index of the prompt emission tail 
an rea
h very large values, far greater than thetypi
al average value observed during the SDP by Swift, of 3 . α . 5 (Nousek et al. 2006). Larger values for the temporalindex, however, are sometimes observed 
lose to the end of the prompt emission (for example in GRB050422, GRB050803 orGRB050916; see �gure 2 from O'Brien et al. 2006), in a

ord with our model.Be
ause of the large number of free parameters, the �tting of a
tual data should be handled with 
are, and there may bevarious degenera
ies involved. The results of su
h �ts to data should also be taken 
autiously be
ause of the di�
ulty in prop-erly resolving distin
t pulses in the prompt emission. For di�erent reasons (su
h as noisy data, 
oarse time bins, pulse overlap,et
.), a group of distin
t pulses may be �tted by a single broader pulse, resulting in an over-predi
tion of the �ux during theSDP, as well di�erent spe
tral and temporal evolution, whi
h might lead to a misinterpretation of the SDP. Nevertheless, whenhandled with 
are, a �t of our model to a good 
ombined data set of the prompt GRB emission and its SDP tail 
an serve as apowerful test of the HLE model for the SDP, and thus help distinguish between di�erent models for the prompt GRB emission.J. G. gratefully a
knowledges a Royal So
iety Wolfson Resear
h Merit Award.
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12 F. Genet and J.Granot pulse number 1 2 3 broad pulse
Tej [s℄ -2 15 35 -4
T0 [s℄ 2 4 5 4
Tf 16 16 25 36
Fpeak/F0 0.85 1 0.12 1.03Table 1. Parameters of the pulses for �gure 8 (top panels)pulse number 1 2 3 4 5 6 broad pulse

Tej [s℄ -2 1 16 26 36 46 -4
T0 [s℄ 2 2 2 1.5 2 2 4
Tf 6 10 6 6 8 8 36
Fpeak/F0 0.25 0.8 0.9 1 0.4 0.2 1.03Table 2. Parameters of the pulses for �gure 8 (middle panels)pulse number 1 2 3 4 5 6 7 8 9 10 11 12 broad pulse

Tej [s℄ -2 -1 5 11 19 20 26 31 36 44 51 66 -4
T0 [s℄ 2 2 2 2 1 2 2 2 3 2 2 3 4
Tf 4 6 6 6 2 5 6 6 7.5 8 6 6 36
Fpeak/F0 0.25 0.5 0.75 0.85 0.75 0.85 0.95 0.55 0.35 0.25 0.11 0.11 1.03Table 3. Parameters of the pulses for �gure 8 (bottom panels)
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Model for the prompt and high latitude emission in GRBs 13

Figure 1. Illustration of Equal Arrival Time Surfa
es (EATS). The parti
ular EATS shown here are for a 
oasting shell (m = 0), andare ellipsoids (Rees 1966) with an ellipti
ity ǫ = β and a semi-major to semi-minor axis ration of Γ (whi
h for display purposes is only3 here). The red solid lines 
orrespond to the inner (R0) and outer (Rf ) radii of the emission region. We 
all RL(T ) the outermostradius of the EATS at observed time T . Shown are the EATS for the limiting 
ases 
orresponding to RL = R0 (T = Tej + T0; thi
kshort-dashed line) and RL = Rf (T = Tej +Tf ; thi
k long-dashed line) as well as representative 
ases for RL < R0, R0 < RL < Rf and
RL > Rf (dotted lines). For RL < R0 the EATS does not interse
t the emission region, and therefore the �rst photons start rea
hingthe observer only at T = Tej + T0 from R = R0 along the line of sight. At R0 < RL < Rf the �ux typi
ally rises (for ∆R . R0). At
T = Tej + Tf the last photons from the line of sight (at R = Rf ) rea
h the observer, while for T > Tej + Tf the front part of the EATS,whi
h would otherwise 
ontribute the most to the observed �ux, sti
ks outside of the emission radius resulting in a sharp de
ay in theobserved �ux, whi
h is then dominated by emission from large angles relative to the line of sight (HLE).

Figure 2. Light
urves of a single pulse at di�erent normalized frequen
ies, ν/ν0. The low and high energy slopes of the spe
trum are
b1 = −0.25 and b2 = −1.25, while a = 1. ∆R/R0 = 1, so that T̃f = 2 and T̄f = 1. Left: Normalized �ux density shown as a fun
tionof T̃ in linear s
ale. Right: Flux density shown as a fun
tion of T̄ in logarithmi
 s
ale.
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14 F. Genet and J.Granot

Figure 3. The same pulse as in �gure 2 is shown for di�erent values of T̄f for (ν/ν0) = 0.01, 0.1, and 1 in the �rst, se
ond and thirdpanel respe
tively (in logarithmi
 s
ale). The fourth panel shows the 
ase (ν/ν0) = 1 in linear s
ale in order to show the shape of a pulsehaving its peak before T = Tf . The normalized �ux density is shown as a fun
tion of T ×T0,i/Tfi
where the subs
ript i denotes the i'thpulse, so that all the Tf,i would appear to 
oin
ide, and the de
ay times of the di�erent pulses would appear to be the same.
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Model for the prompt and high latitude emission in GRBs 15

Figure 4. E�e
t of the variation of a on the shape of a pulse for (ν/ν0) = 0.01, 0.1, and 1 in the �rst, se
ond and third panel respe
tively(in logarithmi
 s
ale). We 
an see that in
reasing a makes the pulse sharper. The 
onstant parameters are T0 = 1 s and Tf = 2 s andthe low and high energy spe
tral slopes are b1 = −0.25 and b2 = −1.25.

Figure 5. Evolution of the temporal indexes αej = −d log Fν/d log T̃ (left panel) and αon = −d log Fν/d log T̄ (right panel) withnormalized observed time T̄ , at di�erent observed photon energies (for E0 = 300 keV). Di�erent line styles are used for the di�erentenergies. The 
olor 
oding shows the temporal indexes for several values of T̄f = ∆R/R0: 0 (green), 0.1 (blue), 1 (bla
k) and 10 (red).The low and high energy spe
tral slopes are b1 = −0.25 and b2 = −1.25, while a = 1.
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16 F. Genet and J.Granot

Figure 6. Left panel: Comparison of the evolution of the spe
tral (β � thin lines) and temporal (αej � thi
k lines � and αon � verythi
k lines) indexes at di�erent photon energies (E0 = 300 keV). The low and high energy spe
tral slopes are b1 = −0.25 and b2 = −1.25,while a = 1. Middle panel: Evolution of spe
tral index β over the Swift XRT energy range (νmin < ν < νmax with νmin = 0.2 keVand νmax = 10] keV. Shown are the lo
al values of β at νmin (short dashed line), νmax/2 (dotted line) and νmax (long dashed line),as well as the average values of β over the XRT range, taken either over ν (thin solid line) or over log ν (thi
k solid line). The lowand high energy spe
tral slopes are b1 = −0.25 and b2 = −1.25, while a = 1. Right panel: Evolution of the observed spe
trum withtime. The spe
trum, νFν/(ν0F0), is shown as a fun
tion of the normalized frequen
y, ν/ν0, for di�erent values of the normalized time,
log10(T̄ /T̄f ), where we have used T̄f = 1. The red thin lines 
orrespond to the rising stage of the pulse (T̄ < T̄f ), while the bla
k thi
klines are for its peak (T̄ = T̄f ) and de
aying stage (T̄ > T̄f ). The low and high energy spe
tral slopes of the spe
trum are b1 = −0.25and b2 = −1.25, while a = 1.
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Figure 7. For all panels, The bla
k lines show the individual pulses, while the red line shows the total prompt emission. The normalizedobserved frequen
y is ν/ν0 = 0.1 (a): Prompt emission with six pulses, all having the same following parameters: m = 0, d = −1, a = 1,
b1 = −0.25, b2 = −1.25, T0 = 2 s, T̄f = ∆R/R0 = 3 and Fpeak/F0 = 1. The eje
tion times Tej are (from the �rst to the last pulse):
−2 s, 8 s, 18 s, 28 s, 38 s and 48 s. (b): Same as top left panel, ex
ept for varying Fpeak/F0, whi
h is from the �rst to the last pulse:
0.1, 0.5, 1, 0.8, 0.3, and 0.2. (
): Same as top left panel ex
ept for varying T0 while ∆R/R0 = 3 remains 
onstant, whose values are(from �rst to last pulse): 6 s, 5 s, 4 s, 3 s, 2 s, 1 s, whi
h 
orrespond to Tf = 24 s, 20 s, 16 s, 12 s, 8 s, 4 s. To keep tej,1 = −T0,1 theeje
tion times in this 
ase are: −6 s, 4 s, 14 s, 24 s, 34 s and 44 s. (d): Same as top left panel ex
ept for varying ∆R/R0 while keeping
R0 and therefore T0 
onstant. The values of ∆R/R0 are (from �rst to last pulse): 5, 4, 3, 2, 1, 0. Sin
e T0 = 2 s, this 
orrespondsto Tf = (1 + ∆R/R0)T0 = 12 s, 10 s, 8 s, 6 s, 4 s, and 2 s, respe
tively. (e): Same as top left panel ex
ept for varying ∆R/R0 whilekeeping Rf 
onstant and therefore Tf and T0/R0 also remain 
onstant, while both R0 and T0 vary. From �rst to last pulse, ∆R/R0 =
10, 3, 1, 0.3, 0.1, and 0.03, and sin
e Tf = 8 s this 
orresponds to T0 = 0.727 s, 2 s, 4 s, 6.15 s, 7.27 s, and 7.77 s. The �nal peakfrequen
y νp(T̃f ) = (T0/Tf )ν0 at Tf is also kept 
onstant, so that from the �rst to the last pulse ν/ν0 = 0.0091, 0.025, 0.05, 0.0769,
0.0909, 0.0971. (f): example of a more realisti
 prompt emission 
onsisting of three pulses with Tej = −1 s, 13 s, 21 s, T0 = 2 s for allthree pulses, ∆R/R0 = 3, 2, 1, and Fpeak/F0 = 0.7, 1, 0.7.
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Figure 8. Comparison between the emission from several partially temporally overlapping pulses (individual pulses are in non-solidbla
k lines, while the total prompt emission is in a solid red line), and a tentative �t to these pulses using a single broad pulse (thi
k solidgreen line). The same single broad pulse is used as a tentative �t for three di�erent prompt emissions, with 3 (top panels), 6 (middlepanels) and 12 (bottom panels) pulses. The parameters of the pulses are shown tables 1, 2 and 3. The normalized observed frequen
y is
ν/ν0 = 0.1 Left panels: linear s
ale. Right panels: Logarithmi
 s
ale.
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Model for the prompt and high latitude emission in GRBs 19APPENDIXAPPENDIX A: DETAILED CALCULATION OF THE FLUXIn order to 
al
ulate the �ux density Fν that rea
hes the observer at an observed time T , we 
losely follow Granot,Cohen-Tanugi and DoCouto e Silva 2008: we integrate over the Equal Arrival Time Surfa
e (EATS), i.e. the lo
us of pointsfrom whi
h photons that are emitted by the shell at a radius R, angle θ relative to the line of sight, and a lab frame time t,rea
h the observer simultaneously at an observed time T . The lab frame time and the shell radius are related by
t − tej =

Z R

0

dr

βc
≈

R

c
+

R

2(m + 1)cΓ2
. (A1)From simple geometri
al 
onsiderations, the EATS is given by

T − Tej

(1 + z)
= t − tej −

R cos θ

c
≈

R

c

»

1 − cos θ +
1

2(m + 1)Γ2

–

, (A2)Sin
e Γ ≫ 1 we 
an 
onsider only small emission angles θ ≪ 1, for whi
h cos θ ≈ 1 − θ2/2, so that the EATS reads
T − Tej

(1 + z)
≈

RL

2(m + 1)cΓ2
L

ˆ

ym+1 + y(m + 1)(ΓLθ)2
˜

, (A3)where we have introdu
ed the normalized radius y ≡ R/RL, as well as RL = RL(T ) that is the largest radius on the EATSat time T , and ΓL ≡ Γ(RL). Sin
e RL is always obtained along the line of sight (at θ = 0),
RL = 2(m + 1)cΓ2

L
T − Tej

(1 + z)
= R0

„

T − Tej

T0

«

1
m+1

, T0 =
(1 + z)R0

2(m + 1)cΓ2
0

. (A4)Substituting eq. (A4) into eq. (A3) implies
1 − µ ≈

θ2

2
=

y−1 − ym

(m + 1)Γ2
L

,
dµ

dy
=

y−2 + mym−1

2(m + 1)Γ2
L

, (A5)where µ ≡ cos θ. The Doppler fa
tor between the 
omoving frame and the lab frame is given by
δ ≡ (1 + z)

ν

ν′
=

1

Γ(1 − βµ)
≈

2Γ

1 + (Γθ)2
=

2(m + 1)ΓLy−m/2

m + y−m−1
. (A6)Remembering the reader that T = Tej + Tf is the time at whi
h the last photons that are emitted along the line of sight(from Rf and θ = 0) rea
h the observer (whi
h 
an be de�ned here by RL(Tej + Tf ) ≡ Rf ), from equation (A4) its generalvalue is

Tf = T0

„

Rf

R0

«m+1

= T0

„

1 +
∆R

R0

«m+1

. (A7)In the limit ∆R → 0, Tf → T0.The observed �ux is then obtained by integration over the EATS (Sari 1998; Granot 2005),
Fν(T ) =

(1 + z)

4πd2
L

Z

dLν =
1 + z

4πd2
L

Z

δ3dL′

ν′ =
1 + z

8πd2
L

Z ymax

ymin

dy
dµ

dy
δ3(y)L′

ν′(y) , (A8)where dL′

ν′ = L′

ν′ (R)dνdφ/4π → L′

ν′(r)dµ/2 = 1
2
L′

ν′(R)(dµ/dy)dy due to symmetry around the line of sight (no dependen
eof the emission on the azimuthal angle φ), L′

ν′(R) is the total 
omoving spe
tral luminosity of the shell (the emitted energyper unit time and frequen
y), ν′ = ν(1 + z)/δ, and dL(z) is the luminosity distan
e of the sour
e. The limits of integrationover y are
ymin = min

„

1,
R0

RL(T )

«

=

8

<

:

1 T 6 Tej + T0 ,
“

T−Tej

T0

”

−1/(m+1)

T > Tej + T0 ,
, (A9)

ymax = min

„

1,
R0 + ∆R

RL(T )

«

=

8

<

:

1 T 6 Tej + Tf ,
“

T−Tej

Tf

”

−1/(m+1)

T > Tej + Tf .
.For T 6 Tej + T0 we have RL(T ) 6 R0 and therefore ymin = ymax = 1 and Fν(T ) = 0. This is sin
e the EATS does notinterse
t the emission region for RL < R0, and only tou
hes it at one point, (R, θ) = (R0, 0), for RL = R0 (T = Tej +T0). Theobserved �ux be
omes non-zero for RL > R0, 
orresponding to T > Tej + T0. Substituting eqs. (A5) and (A6) into eq. (A8)
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20 F. Genet and J.Granot�nally gives
Fν(T ) =

(1 + z)

2πd2
L

Γ0

„

T − Tej

T0

«

−m/[2(m+1)] Z ymax

ymin

dy y−1−m/2

„

m + 1

m + y−m−1

«2

L′

ν′(y) . (A10)A1 Power-law spe
trumWhile a single power law emission spe
trum is not very realisti
, it already shows many important properties that alsoappear for a Band fun
tion emission spe
trum (
onsidered in the main text). This is the reason why this 
ase is des
ribedhere. The luminosity is then
L′

ν′ = L′

0

„

R

R0

«a „

ν′

ν′

0

«b

= L′

0T̃
(2a+mb)/[2(m+1)]

„

ν

ν0

«b

ya+mb/2

„

m + 1

m + y−m−1

«

−b

, (A11)where the 
omoving spe
tral luminosity also s
ales as a power law with radius when the emission is over a �nite range ofradii, ν′

0 is a �xed frequen
y in the 
omoving frame.A1.1 Emission from an in�nitely thin shell at radius R0We �rst study the 
ase where the whole emission 
omes from a single radius R0,
L′

ν′ = L′

0

„

ν′

ν′

0

«b

R0δ(R − R0) = L′

0

„

ν

ν0

«b „

y

ymin

«mb/2 „

m + 1

m + y−m−1

«

−b

yminδ(y − ymin)

= L′

0

„

ν

ν0

«b „

m + 1

m + y−m−1
min

«

−b

yminδ(y − ymin) , (A12)where this is valid only for T̃ > 1 that 
orresponds to RL > R0, for whi
h ymin = R0/RL = [(T −Tej)/T0]
−1/(m+1). Eq. (A10)then implies

Fν(T > Tej + T0) =
(1 + z)

4πd2
L

L0

„

ν

ν0

«b »

T − Tej + mT0

(m + 1)T0

–b−2

. (A13)There are two times of parti
ular relevan
e here: the radial time Tr(R0) = T0 = (1 + z)R0/[2c(m + 1)Γ0], whi
h is the timepast Tej when the �rst photons start rea
hing the observer, and the angular time Tθ(R0) = (1+ z)R0/(2cΓ0) = (m+1)Tr(R0)that sets the time-s
ale for the width of the pulse. One 
an rewrite the expression for the observed �ux density as
Fν(T > Tej + T0) =

(1 + z)

4πd2
L

L0

„

ν

ν0

«b »

T − Ts

Tθ(R0)

–b−2

, (A14)where Ts = Tej + T0 − Tθ(R0) = Tej − mT0 is the referen
e time for the power-law �ux de
ay of the pulse, and is exa
tly
Tθ(R0) before the onset of the pulse. Sin
e the emission itself o

urs at one parti
ular radius (R0) it depends only on theLorentz fa
tor at that radius radius, and is independent of m. In parti
ular, Tθ(R0) = (m + 1)T0 and the pulse peak �ux areindependent of m. The value of m a�e
ts only the onset time of the pulse (T = Tej +T0) and the referen
e time for the powerlaw �ux de
ay. For internal sho
ks we expe
t a 
oasting shell (m = 0) for whi
h Ts = Tej and Tθ(R0) = T0. It 
an easily beseen that the HLE relation, α = 2 + β where Fν ∝ T−αν−β, is satis�ed here as β = −b and α = 2 − b = 2 + β.A1.2 Emission from a region of �nite widthWe now turn to the 
ase where the emission 
omes from a range of radii between R0 and Rf = R0 + ∆R > R0. The
omoving spe
tral luminosity in this 
ase is L′

ν′ = L′

0 (R/R0)
a (ν′/ν′

0)
b, and the �ux density is given by (Granot, Cohen-Tanugi& do Couto e Silva 2008):

Fν(T ) =
(1 + z)

4πd2
L

L0

„

ν

ν0

«b

T̃
2a−m(1−b)

2(m+1)

Z ymax

ymin

dy ya−1−m(1−b)/2

„

m + 1

m + y−m−1

«2−b

, (A15)whi
h, for internal sho
ks (m = 0) be
omes:
Fν(T > Tej + T0) =

(1 + z)

4πd2
L

L0(ν/ν0)
b

(2 + a − b)
T̃ b−2

h

min(T̃ , T̃f )2+a−b − 1
i

. (A16)It is therefore obvious that for T > Tej + Tf the HLE relation is valid, where the referen
e time is the eje
tion time Tej, asin this 
ase the spe
tral slope is β = −b and the temporal slope is α = 2 − b = 2 + β. In this sense a �nite range of emissionradii with m = 0 is similar to emission from a single radius, as in both 
ases the HLE relation α = 2 + β is stri
tly validimmediately from T > Tej + Tf , for some referen
e time, though in the latter 
ase the referen
e time for whi
h this is valid isequal to the observed eje
tion time only for m = 0. For emission from a �nite range of radii with m 6= 0 the relation α = 2+βis approa
hed asymptoti
ally at T − Tej ≫ Tf . 
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Model for the prompt and high latitude emission in GRBs 21A2 Band fun
tion spe
trum: general 
ase and late time dependen
eIn the main text we have given the �ux in the spe
i�
 
ase of internal sho
ks, m = 0 and d = −1. We derive here the�ux for any values of the parameters m and d.A3 Emission from a single radiusWhen the whole emission 
omes from a single radius R0, the peak frequen
y is ν′

p = ν′

0, and the luminosity is thus
L′

ν′ = L′

0S

„

ν′

ν′
p

«

R0δ(R − R0) = L′

0S

„

ν′

ν′
p

«

yminδ(y − ymin) , (A17)Using this luminosity (eq. [A17℄) in the integral for the �ux (eq. [A10℄) results in
Fν(T > Tej + T0) =

(1 + z)

4πd2
L

L0

»

T − Ts

Tθ(R0)

–

−2

S

„

ν

νp(T )

«

,
νp(T )

ν0
=

Ep(T )

E0
=

»

T − Ts

Tθ(R0)

–

−1

, (A18)where as in � A1, Ts ≡ Tej − mT0 is the referen
e time for the power-law �ux de
ay of the pulse, Tθ(R0) = (m + 1)T0 =

(1 + z)R0/2cΓ2
0 is the angular time at R0, and Ep(T ) = hνp(T ) is the photon energy 
orresponding to the peak of the Bandfun
tion spe
trum. Note that for m = 0, Ts = Tej. One 
an express the argument of S as

ν

νp(T )
=

E

Ep(T )
=

ν

ν0

»

T − Ts

Tθ(R0)

–

,
ν

ν0
=

E

E0
=

(1 + z)ν

2Γ0ν′

0

. (A19)Reminding that Fs ≡ L0(1 + z)/(4πd2
L), we then use the expli
it expression for the Band fun
tion (eq. [1℄) to express theobserved �ux as:

Fν(T > Tej + T0)

Fs
=

8

>

>

>

<

>

>

>

:

h

T−Ts

Tθ(R0)

ib1−2 “

ν
ν0

”b1
e
(1+b1)[1− ν

ν0
(T−Ts)/Tθ(R0)] T−Ts

Tθ(R0)
6 xb

ν
ν0

,

h

T−Ts

Tθ(R0)

ib2−2 “

ν
ν0

”b2
xb1−b2

b e1+b2 T−Ts

Tθ(R0)
> xb

ν
ν0

.

(A20)
A4 Emission from a range of radiiIn the 
ase of emission with a Band fun
tion spe
trum over a �nite range of radii, R0 < R < Rf = R0 + ∆R, we remindthat the 
omoving luminosity is:

L′

ν′ = L′

0

„

R

R0

«a

S

„

ν′

ν′
p(R)

« (A21)Introdu
ing (A21) into (A10) we obtain the general expression of the �ux:
Fν

Fs
= y

−a+m/2
min

Z ymax

ymin

dy ya−1−m/2

„

m + 1

m + y−m−1

«2

S

„

ν′

ν′
p

« (A22)
=

Z ỹmax

1

dỹ ỹa−1−m/2

„

m + 1

m + y−m−1
min ỹ−m−1

«2

S

„

ν′

ν′
p

«

,where ỹ = y/ymin, ỹmax = min[y−1
min, (Tf/T0)

1/(m+1)], and
ν′

ν′
p

=
ν

ν0

„

y

ymin

«m/2−d „

m + y−m−1

m + 1

«

=
ν

ν0
ỹm/2−d

„

m + y−m−1
min ỹ−m−1

m + 1

«

, (A23)and the expression for ν′/ν′

p assumes that ν′

p = ν′

0(R/R0)
d = ν′

0(y/ymin)
d. At late times, T − Tej ≫ Tf , we have y ≪ 1,

ỹmax = Tf/T0, and ν′/ν′

p ≈ (ν/ν0)ỹ
−1−d−m/2y−m−1

min /(m + 1) in
reases with time so that S(ν′/ν′

p) ∝ (ν′/ν′

p)b2 and Fν ∝

(ν/ν0)
b2y

(m+1)(2−b2)
min = (ν/ν0)

b2 [(T − Tej)/T0]
b2−2, i.e. the HLE relation α = 2 + β is satis�ed.In the 
ase for internal sho
ks, with m = 0 and d = −1, ν′/ν′

p be
omes independent of y and 
an be taken outside theintegral (ν′/ν′

p = (ν/ν0)/ymin = (ν/ν0)T̃ ), leading to the mu
h simpler expression of the �ux seen in the main text (eq. 7).
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22 F. Genet and J.GranotAPPENDIX B: EVOLUTION OF THE TEMPORAL AND SPECTRAL INDEXESThis appendix expli
its the evolution of the temporal and spe
tral indexes with time.B0.1 Single emission radiusWhere the luminosity is a delta fun
tion with radius at radius R0, we obtain
β =

8

>

<

>

:

−b1 + T̃ (1 + b1)ν/ν0 T̃ 6 xbν0/ν

−b2 T̃ > xbν0/ν

(B1)
αon =

8

>

<

>

:

(2 − b1)T̄ /(1 + T̄ ) + T̄ (1 + b1)ν/ν0 T̄ 6 xbν0/ν − 1

(2 − b2)T̄ /(1 + T̄ ) T̄ > xbν0/ν − 1

(B2)
αej =

8

>

<

>

:

2 − b1 + T̃ (1 + b1)ν/ν0 T̃ 6 xbν0/ν

2 − b2 T̃ > xbν0/ν

(B3)We then have a very simple relation between αej and β: αej = 2 + β, as expe
ted at asymptoti
ally late times for HLE,just that for αej it is satis�ed all along for the lo
al values of the temporal and spe
tral indexes. At late times αon approa
hes
αej and a similar relation approximately holds between αon and β (αon ≈ 2 + β).B0.2 Emission from a �nite range of radii: R0 < R < RfIn this 
ase, the spe
tral index β is still given by eq. (B1), while the two temporal indexes are:
αon =

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

(2 − b1)
T̄

(1+T̄ )
+ T̄ (1 + b1)

ν
ν0

− (2 + a) T̄ (1+T̄ )1+a

(1+T̄ )2+a−1
T̄ < min(∆R/R0, xbν0/ν − 1) ,

(2 − b1)
T̄

(1+T̄ )
+ T̄ (1 + b1)

ν
ν0

∆R/R0 < T̄ < xbν0/ν − 1 ,

(2 − b2)
T̄

(1+T̄ )
− (2 + a) T̄ (1+T̄ )1+a

(1+T̄ )2+a−1
xbν0/ν − 1 < T̄ < ∆R/R0 ,

(2 − b2)
T̄

(1+T̄ )
T̄ > max(∆R/R0, xbν0/ν − 1) ,

(B4)whi
h limits at very early and very late times are
αon ≈

8

>

<

>

:

−1 T̄ ≪ 1 ,

2 − b2 T̄ ≫ 1 ,

(B5)and
αej =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

2 − b1 − (2 + a)/(1 − T̃−a−2) + T̃ (1 + b1)ν/ν0 T̃ < min(Rf/R0, xbν0/ν) ,

2 − b1 + T̃ (1 + b1)ν/ν0 Rf/R0 < T̃ < xbν0/ν ,

2 − b2 − (2 + a)/(1 − T̃−a−2) xbν0/ν < T̃ < Rf/R0 ,

2 − b2 T̃ > max(Rf/R0, xbν0/ν) .

(B6)A

ording to equations (B1) and (B6) αej has a simple relation with β:
αej =

8

>

<

>

:

β + 2 − (2 + a)/(1 − T̃−a−2) T̃ < Rf/R0 (T̄ < T̄f ) ,

β + 2 T̃ > Rf/R0 (T̄ > T̄f ) .

(B7)Note that in the limit T̄ → 0 (T̃ → 1), at very early times, just after the onset of the spike, αej → −∞ while αon → −1.Moreover, the simple HLE relation, αej = 2 + β, is valid as soon as T̃ > T̃f , for any value of T̃f . This is a relation betweenthe lo
al values of αej and β, that hold as both 
hange with time, and is stri
tly valid from T̃ > T̃f only for m = 0 and
d = −1. For general values of m or d this lo
al HLE relation would be valid only at late times, T̄ ≫ T̄f . Note, however, thatfor alternative other de�nitions of the temporal index, su
h as αon, this relation is only approa
hed at late time: αon ≈ 2 + βfor T̄ > T̄f and T̄ ≫ 1. 
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Model for the prompt and high latitude emission in GRBs 23APPENDIX C: EXPONENTIAL TURN-OFF OF THE EMISSION WITH RADIUSThroughout the paper we have assumed that the emission abruptly turns o� at Rf . This results in a sharp 
hange in thetemporal index at T̄f , whi
h usually 
orresponds to a sharp peak for the pulses in the prompt GRB light 
urve. Observationssometimes show pulses with a round peak, whi
h may be hard to �t with spiky theoreti
al spikes. Su
h rounder peaks for thepulses may be obtain within the framework of our model by introdu
ing a more gradual turn-o� of the emission at R > Rf .For 
onvenien
e, we parameterize this here by assuming that the luminosity starts de
reasing exponentially with radius at
R > Rf . For simpli
ity we 
onsider here only ∆R > 0, but the results are similar for ∆R = 0. Similarly, only the 
ase forinternal sho
k (m = 0, d = −1) is 
onsidered here. Thus, we introdu
e the following 
omoving spe
tral luminosity:
L′

ν′ =

8

>

>

<

>

>

:

L′

0

“

R
R0

”a

S
“

ν′

ν′

p

”

R0 6 R 6 Rf

L′

0

“

R
R0

”a

S
“

ν′

ν′

p

”

e−
q(R−Rf )

∆R R > Rf

(C1)where q is the de
ay 
onstant (a larger q 
orresponds to a sharper turn-o� of the emission).For 1 6 T̃ 6 T̃f the observed �ux is identi
al to that without introdu
ing the gradual emission turn-o�, and is thereforegiven by eq. (7),
Fν(T̃ > T̃f ) = F0T̃

−2

»

“

min(T̃ , T̃f )
”2+a

− 1

–

S

„

ν

ν0
T̃

«

. (C2)The �ux for T̃ > T̃f is obtained by 
al
ulations very similar to those of se
tion 3.2, and reads
Fν(T̃ > T̃f ) = F0T̃

−2S(T̃ ν/ν0)
h

T̃ 2+a
f − 1 + J(T̃ )

i

, (C3)
J(T̃ ) ≡ (2 + a)

Z T̃

T̃f

dỹ ỹa+1e−(ỹ−T̃f )/Q , (C4)were Q ≡ ∆R/(qR0), and we remind the reader that ỹ = T̃ y for m = 0. The expression for the �ux is thus very similar its formfor an abrupt turn-o� of the emission at Rf , but with the additional term J(T̃ ) that adds some �ux at T̃ > T̃f (representingthe added 
ontributions from R > Rf ). For a = 1 we have
J(T̃ , a = 1) = 6Q3 + 6Q2T̃f + 3QT̃ 2

f − e−(T̃−T̃f )/Q
“

6Q3 + 6Q2T̃ + 3QT̃ 2
”

. (C5)At late times J(T̃ , a = 1) approa
hes a 
onstant value,
J∞ ≡ 6Q3 + 6Q2T̃f + 3QT̃ 2

f ∼

8

<

:

6
“

∆R
qR0

”3

q ≪ ∆R/R0
1+∆R/R0

3 ∆R
qR0

“

1 + ∆R
R0

”2

q ≫ ∆R/R0
1+∆R/R0

(C6)where we have repla
ed Q and T̃f by their dependen
e on q and ∆R/R0. Sin
e J(T̃ ) appears in eq. (C3) in a sum with T̃ 2+a
f −1,it will dominate the observed �ux at late times if J∞ > T̃ 2+a

f − 1 or equivalently if q < qcrit where J∞(qcrit) ≡ T̃ 2+a
f − 1.The left panel of �gure C1 shows qcrit as a fun
tion of T̄f = ∆R/R0 for a = 1, and it 
an be seen that the limiting valuesof qcrit are 1 for T̄f ≪ 1, and (7 + 221/2)1/3 + 1 + 3/(7 + 221/2)1/3 ≈ 4.59 for T̄f ≫ 1, so that qcrit is always of order unity.Therefore, for q ≪ qcrit ∼ 1 the late time �ux is dominated by 
ontributions from R > Rf , the peak of the pulse is rounderand the peak �ux is higher 
ompared to an abrupt turn-o� of the emission with radius, whi
h is approa
hed in the oppositelimit of q ≫ qcrit ∼ 1. This 
an ni
ely be seen in the right panel of �g. C1, whi
h shows the shape of a pulse for di�erentvalues of q, in
luding the limiting 
ase of q → ∞, whi
h 
orresponds to an abrupt turn-o� of the emission at Rf .Su
h an exponential turn-o� 
ould therefore be useful when �tting our our model with data, in order to reprodu
eround-peaks pulses. Of 
ourse, one should be aware that this adds a free parameter (q or Q), and might thus in
reases thedegenera
y between the di�erent �t parameters. Therefore, adding this extra model parameter should be done only when itis required by the data.
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24 F. Genet and J.Granot

Figure C1. Left: Dependen
e of the 
riti
al de
ay index qcrit of the exponential 
ut-o� on T̄f = ∆R/R0, in semi-logarithmi
 s
ale. Itis de�ned by J∞(qcrit) = T̃ 3
f − 1, i.e. at late time, the 
ontribution to the �ux from the exponential 
ut-o� is equal to the 
ontributionfrom the emitting region between R0 and Rf . Right: Comparison of the shape of pulses with and without the exponential turn-o� of theluminosity for a ratio ∆R/R0 = 1 in logarithmi
 s
ale. The solid line shows the shape of the pulse for an abruptly stopping luminosity(no exponential turn-o�), the other lines show the pulse shape for di�erent values of the de
ay 
onstant q = 0.1 of the exponentialturn-o�.
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