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ABSTRACT

Most gamma-ray bursts (GRBs) observed by the Swift satellite show an early steep
decay phase (SDP) in their X-ray lightcurve, which is usually a smooth continuation
of the prompt gamma-ray emission, strongly suggesting that it is its tail. However, the
mechanism behind it is still not clear. The most popular model for this SDP is High
Latitude Emission (HLE), in which after the prompt emission from a (quasi-) spherical
shell stops photons from increasingly large angles relative to the line of sight still reach
the observer, with a smaller Doppler factor. This results in a simple relation between
the temporal and spectral indexes, o = 2 4+ 3 where F, o t~*v~”. While HLE is
expected in many models for the prompt GRB emission, such as the popular internal
shocks model, there are models in which it is not expected, such as sporadic magnetic
reconnection events. Therefore, testing whether the SDP is consistent with HLE can
help distinguish between different prompt emission models. In order to adequately
address this question in a careful quantitative manner we develop a realistic self-
consistent model for the prompt emission and its HLE tail, which can be used for
combined temporal and spectral fits to GRB data that would provide strict tests for
the HLE model. We model the prompt emission as the sum of its individual pulses
with their HLE tails, where each pulse arises from an ultra-relativistic uniform thin
spherical shell that emits isotropically in its own rest frame over a finite range of radii.
Analytic expressions for the observed flux density are obtained for the internal shock
case with a Band function emission spectrum. We find that the observed instantaneous
spectrum is also a Band function. Our model naturally produces, at least qualitatively,
the observed spectral softening and steepening of the flux decay as the peak photon
energy sweeps across the observed energy range. The observed flux during the SDP
is initially dominated by the tail of the last pulse, but the tails of one or more earlier
pulses can become dominant later on. A simple criterion is given for the dominant
pulse at late times. The relation a = 2 + 3 holds also as # and « change in time.
Modeling several overlapping pulses as a single wider pulse would over-predict the
emission tail.

Key words: Gamma-rays: bursts — methods: analytical.

1 INTRODUCTION

Before the launch of the Swift satellite (Gehrels et al. 2004), Gamma Ray burst (GRB) X-ray afterglows were detected
at least several hours after the burst (Soffitta et al. 2004 and references therein). They typically displayed a power law decay
~ t7! —¢71% around their detection time (De Pasquale et al. 2006). Swift’s ability to rapidly and autonomously slew when the
Burst Alert Telescope (BAT, observing in the energy range 15 — 350 keV; Barthelmy et al. 2005) instrument detects a GRB
enables it to point its other instruments - the X-Ray Telescope (XRT, observing in the energy range 0.2 — 10 keV; Burrows et
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al. 2005a) and UV /Optical Telescope (UVOT, observing at wavelengths 170 — 650 nm, i.e. from the optical to the near UV;
Roming et al. 2005) - toward the GRB within tens of seconds from the GRB trigger time.The XRT thus filled the observational
gap between the end of the prompt emission and the beginning of the pre-Swift afterglow observations several hours later.
It revealed a complex behaviour usually consisting of three phases, followed by most GRBs, and referred to as a canonical
light curve (Nousek et al. 2006), consisting of three distinct power-law segments where F, o< t~“: an initial (at ¢ < fbreak,1,
< 5; see also Bartherlmy et

~

with 300 s < tbreak,1 < 500 s) very steep decay with time ¢ (with a power-law index 3 < an

~ ~

al. 2005; Tagliaferri et al. 2005); a subsequent (at tbreak,1 < ¢ < tbreak,2, With 10% s < threak,2 S 10* s) very shallow decay

(0.2 £ a2 < 0.8); and a final steepening (at ¢ > tbreak,2) to the familiar pre-Swift power-law behaviour (1 < a3 < 1.5). In
many cases there are X-ray flares superimposed on this underlying smooth component (typically during the first two phases,
at t < toreak,2; Burrows et al. 2005b; Falcone et al. 2006; Krimm et al. 2007), and in some cases there is a later (at t; > tbreak,2)
further steepening due to a jet.

The third decay phase (F, o« t~3) is the afterglow emission that was observed before Swift and is well explained by
synchrotron radiation from the forward shock that is driven into the external medium as the GRB ejecta are decelerated,
where the energy in the afterglow shock is constant in time (no significant energy gains or losses). The plateau (or shallow
decay) phase can be explained either by pre-Swift models or by later models that have been developed especially for this
purpose (Nousek et al. 2006; Panaitescu et al. 2006; Granot 2007). It could be due to energy injection, either by a tail of
decreasing Lorentz factors at the end of the ejection phase (Rees & Mészaros 1998; Sari & Mészaros 2000; Ramirez-Ruiz,
Merloni & Rees 2001; Granot & Kumar 2006) or by a relativistic wind produced by a long lasting source activity (Rees &
Mészaros 2000; McFadyen et al. 2001; Lee & Ramirez-Ruiz 2002; Dai 2004; Ramirez-Ruiz 2004), by an increasing efficiency of
X-ray afterglow emission due to time dependence of the shock microphysics parameters (Granot, Konigl & Piran 2006), by a
viewing angle slightly outside the region of prominent afterglow emission (Eichler & Granot 2006), by a contribution from the
reverse-shock (Genet, Daigne & Mochkovitch 2007) or by a two component jet model (Peng, Konigl & Granot 2005; Granot,
Konigl & Piran 2006).

The steep decay phase is observed in most bursts, and is in the great majority of cases a smooth continuation of the
prompt emission, both temporally and spectrally (O’Brien et al. 2006). This strongly suggests that it is the tail of the prompt
emission. Several explanations for this phase have been suggested in the context of previously existing models (Tagliaferri et
al. 2005; Nousek et al. 2006), such as emission from the hot cocoon in the collapsar model (Mészaros & Rees 2001, Ramirez-
Ruiz et al. 2002). The most popular model, by far, is High Latitude Emission (HLE) originally referred to as emission from
a “naked” GRB (Kumar and Panaitescu 2000a). In this model the prompt GRB emission is from a (quasi-) spherical shell,
and after it turns off at some radius then photons keep reaching the observer from increasingly larger angles relative to the
line of sight, due to the the added path length caused by the curvature of the emitting region. Such late arriving photons
experience a smaller Doppler factor. This leads to a simple relation between the temporal and spectral indexes, « = 2 +
where F, (t) oc t~*v7# that holds at late times when ¢ — o >> At, where to and At are the start time and width of the pulse,
respectively. The steep decay phase also shows a softening of the spectrum with time (see Zhang et al. 2007 and references
therein).

The consistency of the steep decay phase with HLE has been studied by several authors (Nousek et al. 2006; Liang et
al. 2006; Butler & Kocevski 2007; Zhang et al. 2007; Qin 2008). However, some simplifying assumptions were usually made,
which may affect the comparison between this model and the observations. One such assumption is the choice of the reference
time to for the steep decay, especially when the prompt emission consists of several pulses. Liang et al. (2006) find that when
assuming the HLE relation o« = 2 + 8 and fitting for ¢ its derived value is consistent with the onset of the last pulse of the
prompt emission (or of the individual spike or flare whose tail is being fit). Zhang et al. (2007) find that the HLE cannot
explain the steep decays accompanied by a spectral softening, but can explain the cases with no observed spectral evolution.
Barniol Duran and Kumar (2008) find that only 20% of their sample is consistent with HLE. Butler & Kocevski (2007) find
that for a (physically motivated) time independent soft X-ray absorption (fixed Nu) the spectrum during the steep decay
phase, is much better fit by an intrinsic Band function spectrum (Band et al. 1993) rather than by a power-law, and that the
peak photon energy shifts to lower energies with time. Qin (2008) finds that such a behavior can, at least qualitatively, be
produced for a delta function emission in radius with a Band function spectrum. It is therefore still a largely open question
whether the temporal and spectral properties of the steep decay are consistent with HLE. Moreover, it appear that a physically
motivated model for the prompt emission with realistic assumptions about the emission (e.g. over a finite range of radii with a
Band function emissivity) is needed in order to address this question in a more quantitative and fully self consistent manner.

The nature of the prompt GRB emission is what ultimately determines the properties of its tail. HLE is expected only
in models where the prompt emission is from a quasi-spherical shell and turns off rather abruptly at some finite radius (or
lab frame time). The best example for this type of model is internal shocks (Rees & Mészaros 1994; Sari & Piran 1997)
where variability in the Lorentz factor of the relativistic GRB outflow causes faster shells of ejecta to collide with slower sells
resulting in shocks going into the shell over a finite range of radii (typically AR ~ R). On the other hands, there are models
in which HLE is not expected, such as in the case of isolated sporadic magnetic reconnection events within a Poynting flux
dominated outflow (e.g. Lyutikov & Blandford 2003) in which each spike in the GRB light curve is from a distinct small and
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well localized region. Therefore, testing whether the steep decay phase is consistent with HLE would help distinguish between
these two types (or classes) of prompt GRB models. This can be an important step toward identifying the basic underlying
mechanism for the prompt emission, which is still one the the most striking open questions in GRB research more than four
decades after the discovery of GRBs.

In order to address this question, we develop a model for the prompt and its HLE tail that is physically motivated,
realistic, and easy to use (fully analytic in its simplest version) in global joint fits (to all of the available data at all times and
photon energies) of the prompt GRB and its SDP tail. Such global fits can provide a stringent and fully self-consistent test
of HLE model for the SDP in GRBs.

The prompt emission is modeled as the sum of a finite number of pulses. Each pulse corresponds to a spike in the
prompt GRB light curve and has its own HLE tail. An individual spike is modeled as arising from a thin uniform spherical
relativistic shell that emits isotropically in its own rest frame over a finite range of radii, while the observed flux is calculated
by integrating over the equal arrival time surface (Granot, Piran & Sari 1999; Granot 2005; Granot, Cohen-Tanugi & do
Couto e Silva 2008) of photons to a distant observer. Our model is particularly suitable for internal shocks, which we focus on
in this paper. For the emitted spectrum we consider the phenomenological Band function, which provides a good fit the the
prompt emission spectrum of the vast majority of GRBs. We point out that our model can also be used for X-ray flares, which
appear to have temporal and spectral properties similar to the spikes of the prompt GRB emission. The main text provides
the most useful results in an easy to use form, while the full derivations of these results are provided in appendixes in order
to help understand their origin and make it easier to extend or generalize our model. We stress here that our main aim is not
necessarily to uniquely determine all of the model parameters, which may be subject to various degeneracies and may prove
hard when fitting to real data, but instead to test whether our model can provide a good fit to the data for any set of physical
parameters. While such a good fit would still not prove that the HLE must be at work, it would definitely support HLE as a
viable and arguably most plausible model. Our model for an individual pulse is described in § [2] and results for the flux in
the case for internal shocks with a Band function spectrum are given in § [8l The dependence of a single pulse on the model
parameters is then investigated in § @ while § [l discusses how to combine several pulses in order obtain to the total prompt
emission and its tail. Both are intended to help the reader when using our model to fit data, which is one of the main aims of
our paper. Our conclusions are discussed in §[6l This paper describes in detail our theoretical model and its main properties,
and stresses some important caveats that one should keep in mind when using it to fit data in order to test the HLE model.
In subsequent work we intend to confront it with Swift BAT+XRT data.

2 DESCRIPTION OF THE MODEL

2.1 The Basic Physical Model

We consider an ultra-relativistic (I' > 1) thin (of width < R/T'?) spherical expanding shell that emits over a range
of radii Ro < R < Ry = Ro + AR. The emission turns on at radius Ro and turns off at radius Ry > Ro. The Lorentz
factor of the emitting shell is assumed to scale as a power-law with radius, I'> = T3(R/Ro)™™ where Ty = T'(Ro). The
emission is assumed to be isotropic in the comoving frame of the shell, and uniform over the shell, i.e. the comoving spectral
luminosity depends only on the radius of the shell, L, = L!,(R). As the main purpose of this work is to check the consistency
of the tail of the prompt emission with HLE, we need to model the prompt emission. We therefore use for the emission
spectrum the phenomenological Band function (Band et al. 1993) spectrum that provides a good fit to the observed prompt
emission spectrum of the vast majority of GRBs. In the following we mainly consider emission over a finite range of radii,
Ro < R < Ry = Ro + AR. The comoving luminosity is then:

R\* v xbre(Itb1)z r<
ro_ ! _ _1+4b X Tb s
Ly, =Ly <R_0> S <V_z/z> , S(z)=e"" { x@gjgﬁbzef(blf@) €3>z, (1)

where v}, (R) = v)(R/Ro)? is the frequency where v'L, (R) peaks, with v = v, (Ro); x» = (b1 — b2)/(1 + b1), while by and bs
are the high and low energy slopes of the spectrum. For b1 > —1 > by the Band function has a peak in the vF, spectrum, at
x = 1, and therefore since S(z) is normalized such that S(z) = zS(x) = 1 at £ = 1, it will not affect normalization of vF}, at
its peak. The two functional forms used in the band function are matched at v, = zpv,. The peak luminosity Li,; evolve as a
power-law with radius, L'V; = Lo(R/Ro)® where Ly = LL; (Ro) is a normalization factor.

Throughout the paper, primed quantities are quantities measured in the comoving frame (i.e. the local rest frame of the
emitting shell), unprimed quantities are measured either in the source rest frame (the lab frame, i.e. the cosmological frame
of the GRB; this includes I', R, 6 and ¢) or the observer frame (this refers to observed quantities, such as F,, v and T)).
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2.2 Calculating the Observed Flux

The observer is assumed to be located at a distance from the source that is much larger than the source size, so that
the angle extended by the source as seen by the observer is very small and the observer effectively at “infinity”. In order to
calculate the flux density F, that reaches the observer at an observed time T we integrate the luminosity L/, over the Equal
Arrival Time Surface (EATS; see Figure [I), i.e. the locus of points from which photons that are emitted by the shell at a
radius R, angle 6 relative to the line of sight, and a lab frame time ¢, reach the observer simultaneously at an observed time
T (for full derivation see Appendix [A]).

2.3 Expected parameters values for internal shocks

The internal shocks model is the most popular model for the prompt GRB emission. Moreover, our model is very suitable
for internal shocks. Therefore, we consider it in the following. Here we calculate the scalings of the various quantities with
radius, that are expected for the internal shocks model. First, when different shells (i.e. parts of the outflow with different
Lorentz factors) collide, they are expected to be in the coasting phase, corresponding to m = 0. Moreover, for the simplest
case of uniform shells, the strength of the shocks going into the two shells, as characterized by the relative upstream to
downstream Lorentz factor, I',q, is expected to be roughly constant with radius while the shock are crossing the shells. The
electrons are expected to be fast cooling, i.e. cool significantly on a timescale much shorter than the shell crossing time of the
shock, and therefore most of the emission is expected to arise from a thin cooling layer behind the shock. Therefore our thin
shell approximation is expected to be reasonably valid. Admittedly, we use one emitting thin shell, corresponding to a single
shock front, while the shock going into the other shell is not explicitly modeled. One could always model such a second shock
by adding another thin emitting shell that turns on and off at the same radii (Ro and Ry, respectively) but has a slightly
smaller or larger Lorentz factor. This will not introduce a big difference in the overall result, so for the sake of simplicity we
do not include this here.

Now we turn to find the expected scaling of L'% and v, with radius, under the assumption that the observed soft
gamma-ray range is dominated by synchrotron emission. For fast cooling, the peak frequency v, of the vF, spectrum is
vl & (eB'v2)/(2rmec?) where dN./dye o< vz P for ye > vym where vm = (p — 2)/(p — 1)(ec/€)(mp/me)(Tua — 1), while
€. is the fraction of the internal energy behind the shock in the power law distribution of the relativistic electron, and &.
is the fraction of all electrons taking part in this power energy distribution (and an electron-proton plasma is assumed for
the composition of the outflow). As mentioned above, I'yq is expected to be roughly constant during the shell crossing (for
roughly uniform colliding shells), and therefore ~,, would also be approximately constant, so that v, o< B’. The magnetic
field is expected to be predominantly normal to the radial direction, so that B’ &~ B/I" o< B for m = 0. Moreover, B o R
is expected both for a magnetic field convected from the central source, and for a field generated at the shock that hold
some constant fraction (eg) of the internal energy behind the shock. Therefore, one expects the peak frequency to evolve
as v, < R™'. We have also assumed L'V],D o (R/Ro)®. For synchrotron emission L, ... o NeB' o R’ as the number
of emitting electron is proportional to the radius, N. oc R. Since the cooling break frequency scales as v, x R, we have
L, =~ L’V,max(u,'n/ué)fl/2 o« R', implying a = 1.

” More generally (without specifying the emission mechanism) for roughly uniform shells with constant I',,q both the rate
at which particles cross the shock and the average energy per particle are constant with radius, implying a constant rate of
internal energy generation (dFEj,/dt RO)7 and therefore for fast cooling this also applies for the total comoving luminosity,
L'~ V;,L,u; o R, and therefore d + a = 0. This is indeed satisfied for synchrotron emission for which d = —1 and a = 1, and
holds more generally for other emission mechanisms in the fast cooling regime.

For now on the values m = 0 and d = —1 derived in this part will be used throughout the paper. However, since the
expressions do not become much simpler by specifying the value of a, we leave a in the simpler expressions, and use the value
of a =1 for figures only. In particular, all the figures showing lightcurves in this paper use these parameter values, as well as
the mean BATSE values for the Band function spectral slopes: b1 = —0.25 and b2 = —1.25 (Preece et al., 2000).

2.4 Relevant Times and Timescales

A photon emitted from the source (at the origin) when the shell is ejected from it (i.e. at a lab frame time ¢.; when the
shell radius is R = 0) arrives at the observer at an observer time T¢; which can be thought of as the observed ejection time
of the shell. We define Ty the initial radial time by T' = T¢; + To being the time at which the first photons emitted reach
the observer (that is, photons emitted at a radius Ry along the line of sight). We also define T the final angular time by
T = T + Ty being the time at which the last photons that are emitted along the line of sight (from Ry and 6 = 0) reach the
observer.

For a constant Lorentz factor with radius (m = 0), as expected for internal shocks, the expressions for Ty and T are



Model for the prompt and high latitude emission in GRBs 5

simple:
(14+2)Ro AR
To = ———— Ty=To(1+— | . 2
0 2% 7 f o1+ Ro (2)
We also define two normalized times (and their corresponding values at Ty) that will be used in the following:
. T Ty . _ T AR
T=1+T= - Tr=1+T;=L =14+=2
+ TO ’ f + f TO + RO ) (3)

where T =1 (or T = 0) corresponds to the onset of the spike — the very first photon that reaches the observer (emitted at
Ro on the line of sight). The main motivation for defining these two times is that they correspond to the two most natural
choices for the zero to, T' = 0 corresponding to the ejection time of the shell, and T = 0 corresponding to the onset of the
spike in the lightcurve. The choice of the zero time is important for the definition of the temporal index in §[I] where we
explore these two choices in detail. Moreover, it is more convenient to use 7' in some expressions and T in others.

3 RESULTS FOR INTERNAL SHOCKS WITH A BAND FUNCTION SPECTRUM
3.1 Emission from a single radius

Before to turn to the more generic case of emission from a range of radii, we first consider the limiting case of emission
from a single radius Ro. The peak frequency is then v, = v, and the luminosity is

/
L, =LyS <Z—> RoS(R — Ro) (4)
P
which after some algebra (see appendix [Al for details, and in particular section [A3]) we obtain the flux:
~ 1+2), ~2 v~
v 2 = —_— s
FAT 2 1) = S T 28 (ST (5)

where dr, and z are the luminosity distance and cosmological redshift of the source, Lo = 20 L{ and vy = 2F01/6/(1 + 2).
Denoting Fs = Lo(1 4 2)/(47d3) and using the explicit expression for the Band function (eq. [I]), the observed flux reads

- j“bl*2(1//”0)171e(1+b1)[1*TV/V0] T <z /v,
= (6)

sz*Z(l//uo)beZl*b%Hb? T> Tolo/V .

3.2 Emission from a finite range of radii

Integrating the luminosity (eq. (1)) over the Equal Arrival Time Surface (for details of the calculation see appendix [A]
and in particular its section [A4]) leads to the following expression for the flux:

Fo(F > 1) = RyF? {min (7.7)"" - 1} s (ViT> 7 X

where Fy = (14 2)Lo/[(2 + a)4wd?]. This can be explicited as:

(v/vo)or TP 2 (T2+a - 1) e(Ho0O=Tv/vo) 7 < min [Th mbuo/u} ,
R > 1) (v/vo) " T2 [Tf*a - 1] (o0 (1=T v/vo) Ty <T < zywo/v ,
v = — 8
Fo bo fiba—2 (2 bi—bs 1+b 5 F ®
(v/v0)72T"2 (T +a—1):cb1 2eltbe oo /v <T < Ty,
(v/vo)b2 T2 2 [Tf*“ - 1] ayt P2 el th2 T > max [Tf7 acbl/o/l/] .

Note that the observed function has exactly the same shape as the local spectral emissivity — a pure Band function. This
occurs ounly for m =0 and d = —1.

In terms of number of photons N per unit photon energy E, area A and observed normalized time 7' (which is simply
equal to F, /hE), this can be expressed as

~ ~ ~ ~ a+2 ~
%(E,T >1)=T" [min (T, Tf) - 1] B <E£0T> , (9)
where

b1l 2z < by —bs

B(Z) = Bhorm { 25271(1)1 _ b2)b17b267(171*172) z>by — by
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is the familiar Band function with a normalization constant Bnorm, where z = (E/EO)T = (1 4 b1)x, while E = hv and
Eo = hvg are the corresponding photon energies (the more common notation is aanda = b1 — 1 and Bpana = b2 — 1).

4 PROPERTIES OF THE SINGLE PULSE EMISSION

Now that we have derived the observed flux for a single emission episode (or single pulse in the light curve), we study
its temporal and spectral behaviour for any radial width AR > 0 of the emitting region. We remind the reader that we
consider only internal shocks, and use the corresponding model parameter values (a =1, m = 0 and d = —1) for fast cooling
synchrotron emission, with a Band function emission (and observed) spectrum (except in some cases where the discussion can
stay general without much complication). Some of the results may not hold for more general parameter values of m or d, and
we point this out when relevant. For all figures showing lightcurves (throughout the whole paper), the panels or figures with
a linear scale show F,/Fmax where Fumax = F,(T}), while panels or figures with a logarithmic scale show F,/F, where we
remind the reader that Fo(a = 1) = (1 4 2)Lo/(12rd3). All figures showing temporal evolution of parameters or lightcurves
with a logarithmic time axis in this section use T, as this shows the early behaviour much more clearly than for T.

From eq. (), for reasonable values of the parameters T, b, b, v/vo, and a, the pulse peaks at T = Toj + Ty (T = Ty).
While this is generally the case, for some combinations of parameters (often involving relatively large values of Tf) the pulse
has a round peak and starts decaying before Tf.

For T < 1, the Equal Arrival Time Surface (EATS) does not intersect the emission region and no photons reach the
observer (its outermost radius Ry is smaller than Ro): F,(T < 1) = 0. When 1 < T < Ty (Ro < Ry < Ry), the EATS
intersects the emission region but does not yet encounter its outer edge (in particular the observed flux is independent of the
radial extension AR of the emission region); the fraction of the EATS within the emission region increases with time, as does
the maximal angle 0.« relative to the line of sight from which photons reach the observer, (Hmaxfo)2 = (T— 1). When T > Tf
(Rr > Ry), the front part of the EATS is outside the emission region, and its parts inside the emission region are at increasing
angles from the line of sight. In particular, photons reach the observers from Oumin < 0 < Omax Where (Ominl'o)? = (T—Tf)f;l.
Note that at T > Tf, well into the tail of the pulse, Omax/Omin ~ ~f1/2, so that the emission comes from a rather narrow
range of angles 6, whose typical value increases linearly with 7. Moreover, for T > Tf, the flux ratio for two identical sets of
emission parameters that differ only in their Tf (denoted by subscripts 1 and 2), is constant in time and equal to

F(T>Tp>1) T -1 F(T>Tpn>1) Ti5—1
FAT >Ts>1) Tji* -1’ F (T >Ts1 =1) 2+a

(11)

The first ratio approaches ARy /AR; for AR1,2 < Ro, since this corresponds to the thin shell limit, while the overall emitted
energy is proportional to AR, since L/, (R) ~ L!,(Ryp) is almost independent of R within the very thin emission region. For
the second ratio, the denominator is the flux for a delta function emission with radius, for which the total emitted energy
is held fixed, and therefore the ratio approaches ARy/Ro < 1 in the limit of a thin emission region. The fact that the flux
ratio is constant in time at 7' > Tf holds only for m = 0 and d = —1, and means that the flux at these late times (typically
after the peak of the spike, which is usually at Tf) has the same time dependence regardless the width of the emitting region
(AR). This can simplify the calculation of the flux for a family of pulses that differ only in AR: one can calculate the flux
for AR = 0 (Tf = 1) and apply it to T > T, multiplied by a factor [f”f*“ —1]/(2 4 a) for any value AR > 0 (Ty > 1).
Moreover, it is also sufficient to calculate the flux for AR — oo and apply it to T < Tf (this holds much more generally;
Granot, Cohen-Tanugi & do Couto e Silva 2008).

Figure [2] shows light curves for a single pulse in both linear and logarithmic scales, for different values of the normalized
frequency v/vo. The peak time is at Ty = 2 (equivalent to Ty = 1). The light curves sample the two parts of the Band
function both before and after the peak time. The differences between the light curves for different frequencies reflect the
spectral evolution, and in particular the evolution of the spectral break frequency v,. At higher observed frequencies v the
change in the spectral and temporal indexes associated with the passages of v, occurs earlier. The shape of a pulse (left panel
of figure 2)) can vary from being very spiky (dotted line) to a rounder peak (dot-dashed line), depending on the frequency. It
may thus provide some latitude in the fitting of actual observed pulses.

Figure B shows the dependence of the same pulse on T for three values of the normalized frequency v/vo (0.01, 0.1 and
1). It is evident from the logarithmic scale figures that at T < Ty the flux is independent of AR (and therefore of T}), and
that at 7' > T} all the light curves have the same time dependence (i.e. their flux ratio is constant in time). At any given time
the spectrum is independent of AR (this is valid only for m = 0 and d = —1). The bottom right panel of this figure shows
linear scale to help visualise a case where the peak of the pulse is before Tf.

Figure @ shows the dependence of the same pulse on the parameter a for three values of the normalized frequency v/
(0.01, 0.1 and 1). We can see that, compared to the case for a = 1, when a increases the peak is at Ty and becomes sharper.
When a decreases the pulse becomes larger, the slope for 7' > T becoming closer to zero up to a point where is is zero. For
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values of a even smaller, the peak of the pulse occurs before Ty and becomes rounder; in this case at Ty only a sharp break
is observed.

4.1 Local temporal and spectral indexes

It is natural to define the local values of the spectral and temporal indexes as the logarithmic derivatives of the flux density
with respect to frequency and time, respectively. For the spectral index, there is no ambiguity and 8 = —dlog F, /dlog v. For
the temporal index, however, we must choose a reference time, and the choice is not obvious. for this reason we consider two
alternative definitions: a.; = —dlog F, /dlog T, that uses the ejection time as the reference time, and aon = —dlog F,, /dlog T
that uses the onset of the spike as the reference time. The figures in this subsection use the observed frequency v instead of its
normalized value v /v, in order to provide a more realistic example that could be at least qualitatively compared with data,
and include the BAT and XRT energy ranges. For these figures we consider Fo = 2I'0Ej/(1 + z) = 300 keV, which could for
example correspond to E) = 1keV, I'p = 300 and z = 1.

Figure [Bl shows the evolution of the temporal indexes ae; and oo, during a pulse (See appendix [Bl for the detailed
evolution of the temporal and spectral slopes). The temporal index a.; starts at very negative values and gradually increases,
until at T} it makes an abrupt jump to its value during the decaying part of the pulse, which is exactly 2 + 3 (see eq. [BT]).
The temporal index a.,n, starts at early times, T < 1, either at —1 for Tf > 0 and T < T, or from 0 for Ty — 0. Moreover,
for 0 < Ty < 1, aon & —1 for T < T§ and awon ~ 0 for T < T < 1 (see egs. [B2] and [B4]). Note that when ao, jumps from
its negative value to a positive value at T = T} (i.e. at the peak of the spike), it reaches the same function of 7', independent
of the time of the jump, Ty, and therefore the same function also holds for Ty = AR/Ro = 0 (see egs. [B2] and [B4]). At late
times, T > 1 and T > T, the HLE relation is approached, aon = 2 — ba.

The left panel of figure [6l shows the evolution of 2+ 3 (where 3 is the spectral index) with the temporal indexes a.; and
Qon. The spectral index naturally softens (3 increases with time), similar to what is typically observed (at least qualitatively),
until it reaches —b2 at late times (T > xpv0/v — 1). The change in 3 occurs earlier at higher photon energies. At T > T,
ej = 2 + (0 while aon only approaches 2 + 3 at late times.

In order to get a better idea of how the observed spectral index ( is expected to behave in Swift XRT observations, we
calculate its average values over the XRT energy range (0.2-10 keV). We define two average values, by integrating over either
the frequency v or its logarithm log v:

1 Vmax 1 Vmax ), IOg(FV ) /Fu ) )

v =T~ d s ogy = ——— i [ max min/ 12
<B> (l/max - l/min) /anin V/g(]/) </6>1 ® IOg(Vmax/Vmin) /Vmin v B(V) 1Og(yn’)ax/yn')in) ( )
The middle panel of figure [6] shows the evolution of these two averages as well as the values of 8 at vmin = 0.2 keV,

Vmax/2 = 5 keV and vmax = 10 keV. As expected, (3), gives a larger weight to higher frequencies compared to (5)iog», and
its value it is usually very close to the spectral slope at vmax/2 (5 keV), except when the break frequency v, of the Band
spectrum passes through the XRT range, and the change in 8 within this range is the largest. Therefore, (3)iog. appears to
better reflect the spectral slope measured over a finite frequency range.

4.2 Spectrum

The local spectral emissivity in the comoving frame is taken to be a Band function. We have seen previously that for
the parameter values relevant for internal shocks (m = 0, d = —1), the observed spectrum is also a pure Band function.
This is evident in the right panel of figure [6] which shows the temporal evolution of the observed spectrum in our model. It
results from the fact that for these parameter values the observed peak frequency v, is constant along the EATS. We have
vp/vo = Ep(T)/Eo = 1)T = 1/(1 +T) (see eq. (A18)) which is independent of T;. This behaviour is evident in the right
panel of figure B where E,/FEo is 1 at the onset of the spike (T' = 0), E,/Eo = 1/2 at the peak of the spike (T = Ty = 1),
and E,/Eo decreases roughly linearly with T at later times, during the tail of the pulse.

5 COMBINING PULSES TO OBTAIN THE PROMPT EMISSION

There is good observational evidence that the steep decay phase is the tail of the prompt emission (O’Brien et al. 2006).
Within our model, the prompt emission is the sum over a finite number of pulses, and therefore the steep decay phase is the
sum of their tails. In this section we provide examples of combining several pulses to model the prompt emission, and study
the effect of varying the different pulse parameters. To this end, we start with a simple prompt emission model consisting
of six pulses that are identical except for their ejection time Te; (see Fig. [Th). Each pulse corresponds to a single emission
episode of a particular shell that was ejected at Tej,; (for ¢’th pulse), has an initial radial time Tp,;, and a final angular time of
Ty.;. Then, we study the effect of changing the other model parameters one by one among the pulses. All lightcurves in this
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section are drawn against 7', as the ejection time is different for each pulse (and then the definition of a T T would differ for
each pulse). In Fig. [ the peak flux Fpeax is varied. Next, we vary Tp and/or Ty. In Fig. [T, Ty is varied while Tt /To remains
constant. In Fig. [d, Tt and AR/Ry vary while Ty and Ro remain constant. In Fig. [Tk, To and AR/Ro vary while Ty and Ry
remain constant. Each of these panels show the light curve in logarithmic scales, 7" = 0 is set to the onset time of the first
pulse, which means that T¢;,1 = —70,1, thus showing the modeled prompt from a time close to what would be the trigger time
for an observed burst. The red solid line represents the total prompt emission (the sum of all the pulses), while the black non
solid lines are the individual underlying pulses. All the examples shown here of the prompt emission are for v/vy = 0.1.

In the case of six equal pulses (Fig. [Th), later pulses appear to decay much more steeply just after their peak in a
logarithmic scale with the zero time near the beginning of the first pulse. At very late times the relative contribution from
the different pulses becomes almost the same. As the only parameter that varies between pulses is the ejection time, T¢;, this
change in slope must depend only on it. Noting that the temporal slope is « = —dlog F,, /dlog T = a.;/(1 — Tsj/T), and that
the value of ae; just after the peak is independent of T¢; (it depends only on Tf; see eq. [Bf]), we can see that the value of o
just after the peak scales as apeak = Qtejpeak (1 + Tej/T), since T' = Te¢j + T is the time of the peak of the pulse. Since the
pulses are equal they have the same Ty and oej peak, it is clear that opeax increases with Tej. At late times when T > T, o
approaches aq; = 2+ 3.

When varying Fpeax while fixing the other parameters (see Fig. [fb), the relative flux from each pulse at very late times
is proportional to its Fpeak, so that the largest contribution is from the pulse with the largest Fpecak.

At late times the observed flux density of a single spike scales as F), T 22 (see, e.g., eq. []). If at the peak time of
the spike, which for simplicity is assumed here to be at T" = T¢; + T (as is usually the case), the observed photon energy is
at the high-energy part of the Band function, E > E. = Eo(To/T)x, or v > v« = vo(To/Ty)xs, then (using eq. [8]) the flux
from the peak onwards is simply given by

T\
Fuzu (T 2 Tej + Ty) = Fu,peax ( T J) ; (13)
while for E/E. = v/v. < 1 the expression is slightly more complicated,
\b1—2
- (T;_;ﬂcu) ! e~ (1+b1)(w/vo)(T=Te;=Ty)/To Ty < T —Tej < Toxzpvo/v
Fu<u* — (14)
v,peak by —b o\ b2—2
(%) T b2 —bit (1461)(Ty /To) (v/vo) (TT—fT‘”) : T —Tej = Toxpro /v

but the qualitative behaviour is still rather similar. Therefore, the flux ratio of two pulses with ejection times T¢;,1 < Tgj2
and a comparable E,(Tf) = (To/Ty)Eo (as is usually the case for different pulses in the prompt emission of the same GRB),
at late times (7" > max(Tej,1 + T#,1, Tej,2 + Tf,2) and T — Tej2 > Tej 2 — Tej,1) is approximately
Foa(T)  Fpearn (Tf,l
FV,Z(T) Fpeak,2 Tf,2

where 3 = —by for v > v, while ( is generally intermediate between —bs and —b; for v < vs.

2+8 B B
) , for min[Ty1,Ts2] >1 and T — Tij2 > Tej2 — Teji (15)

Fig. [l demonstrates this nicely for a series of six pulses with the same Fpeax but decreasing T, so that the later pulses
with a smaller T decay faster and become sub-dominant at late times. At the latest times the first spike, which has the largest
T, dominates the observed flux in the tail emission. A similar behaviour is also seen in Fig. [[d. In Fig. [Zk both Fjcak and T}
are the same between the different pulses, and therefore their tail fluxes at late times are similar. In Fig. [Tk, To and Ty are
varied while T’ /Ty is constant, and it can be seen that this corresponds to a rescaling of the pulse width (its typical duration)
without effecting its shape. In Fig. [[d, Ty and T /Ty are varied while Ty is constant, and this nicely demonstrates how the
shape of the pulse depends on T’y /Ty. Typically, the rise time of a pulse is Ty — Tp while its decay time is T, so that the ratio
of the rise and decay time is 1 — Ty /Ty. In Fig. [Tk, To and Ty /Ty are varied while T is constant. In this case the rise time
varies considerably between the different pulses while the decay timescale and the late time tail of the pulses are practically
the same. This arises since the tail is dominated by emission from R ~ Ry, that in this case is very similar for all the pulses.
Moreover, for the particular choice of parameters in Fig. [Tk, where E,(Tf) = (To/Ts)Fo and E. = x,E,(Tf) remain constant
for all the pulses, their late time tails have the same flux normalization. This can be understood from eq. (Id)), where the flux
for T > max(T}, zpvo/v) can be written as Fy, /F, peax = (E/E.)*2 7" exp|(b1 — bo)(E — E.)/E.|T %272,

Fig. [7f shows a more realistic example of the prompt emission, in which a larger number of model parameters is varied
between the different pulses. This example contains only three pulses in order to be clearer. It can be seen that the flux
during the decaying phase is initially dominated by the last pulse just after its peak (7" > 27 s), but the second peak becomes
dominant (even if only by a small factor) as early as T' ~ 37 s, and finally at 7" ~ 140 s the first pulse becomes the dominant
one. This demonstrates that different pulses can dominate the observed flux during the course of the steep decay phase. Which
pulses would contribute more to the steep decay phase can be estimated according to their typical width (or duration), peak
flux, and peak time. The peak time is most important at the beginning of the steep decay phase, where the last spike always
dominates just after its peak if its peak is above the flux from the other spikes. Later on the relative contribution of the
different spikes can be estimated according to eq. (I3]). Since the late time flux scales as chakTJ?Ha and usually 0 < 8 < 2,
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the power of T (which corresponds to the typical width of the spike) is higher than that of Fpecax, so that wider spikes tend
to dominate over narrower spikes, even if their peak flux is somewhat lower.

One should be very careful when fitting actual data with such a model. Fig. § shows what can happen if because of noisy
data or coarse time bins, a prompt emission (red solid line) which is actually composed by several pulses (three, six or twelve
in the cases shown; black non-solid lines) is fitted by a single broad pulse (green solid line). In this case the tail of the prompt
emission can be significantly overestimated at late times, by a factor that tends to increase with the true number of underlying
pulses. This can be understood by the simple example of comparing a single spike with N identical spikes with the same peak
flux but a duration smaller by a factor of N, for which the sum of their late time tail flux would be smaller than that of the
single pulse by a factor of ~ N8 However, in more realistic examples, the late time flux would often be dominated by the
widest underlying pulse, so that its width would be more important than the total number of narrower underlying spikes. It
is important to keep this effect in mind when confronting such a model with actual data.

6 DISCUSSION AND CONCLUSIONS

We have presented and explored a model for the prompt GRB emission and its high latitude emission (HLE) tail. This
model is physically motivated and realistic: it consists of a finite number of emission episodes, each of which corresponds to
a single spike in the prompt light curve, and is modeled by a relativistically expanding thin spherical uniform shell emitting
isotropically in its own rest frame within a finite range of radii. Our model thus describes the prompt emission and the steep
decay pahse as a whole from its very start to its late tail. Yet this model is easy to use (fully analytic in its simplest form
described here), making it particularly suitable for detailed combined temporal and spectral global fits to the prompt GRB
emission and the following steep decay phase (SDP). Such fits can provide a stricter test of the HLE model for the SDP
compared to most previous models, since we use a single self-consistent model to fit both the prompt emission and the SDP,
while most previous models fit only the SDP and are largely decoupled from the details of the prompt emission. Moreover,
our model is also physically motivated, and more realistic than previous models. We have derived analytic expressions for the
flux in the realistic case of a Band function spectrum (eqs. [7] and [§]), which consists of two power laws that smoothly join
at some typical photon energy.

The temporal evolution of the instantaneous values of the temporal (o) and spectral (3) indexes for a single emission
episode was studied, corresponding to a single observed pulse in the light curve. The definition of « is not unique as it depends
on the choice of reference time. We explored two options for the reference time, either the ejection time (ce;) or the onset
time of the spike (@on), and found that for the former the HLE relation (ae; = 2 4 () is satisfied from immediately after the
peak of the spike (T > T}), while for the former it is only approached at late times (on ~ 2+ 3 at for T > Ty and T > 1).

We have intentionally chosen a simple model to describe the pulses, in order to reduce the number of free parameters. For
a single emission episode (or pulse), in the most generic case there are ten free parameters: the power m = —2dlogI'/dlog R,
d = dlogv,/dlog R, a = dlog L’% /dlog R, the normalization factor Fo (or Lo), three additional parameters for the Band
function (the two spectral slopes, b1 and b2, as well as the peak energy at the onset of the pulse Eo), the two timescales To
and Ty, and the ejection time Te;. We have the general constraint AR > 0, which implies Tf =1+ AR/Ro > 1. Focusing
on the internal shocks model fixes some of these parameters: as the outflow is typically in the coasting phase, m = 0, while
for synchrotron emission from fast cooling electrons d = —1 and a = 1. Since we expect AR/Ro = Ty ~ 1 we can fix Ty ~ 1
(although a wider range, such as 0.2AR/Ry
manner would leave only six free parameters. For a prompt emission with several pulses, one may be able in some cases to

< 5, may still be considered as plausible). Fixing m, d, a, and Ty /Tp in this
neglect the spectral evolution and use the same values of b1, b2, and Ey for all the different pulses (or at least two of them,
e.g. b1 and b2), which leads to a total number of free parameter of 3(Npuises + 1) (0r 4Npuises + 2 if Eg cannot be fixed for all
the pulses) for a burst with Npuises pulses.

The shape of the pulses in our model can vary considerably, from very spiky peaks to rounder ones, from a very sharp
rise to shallower rise, and so on (see Figs. 2—[]). This can help reproduce some of the observed diversity in the shape of spike
in the prompt light curve. This appears to be a promising feature of our model. However, we have an abrupt change in the
temporal index at T, that usually corresponds to a sharp peak of the spike. This is caused by our model assumption that
the emission abruptly shuts off at the outer emission radius Ry. Therefore, we also consider an alternative and more realistic
assumption, which leads to a rounder peak for the spikes, where the emission more gradually turns off at R > Ry. This is
done by introducing and exponential turn-off with radius of the comoving spectral luminosity, L], (R), and is examined in
Appendix[Cl The more gradual the turn-off of the emission with radius the rounder the peak of the pulse in the light curve.
This can help fit the observed variety of pulse shapes even better (at the cost of adding an additional free parameter).

In the particular case of synchrotron emission from internal shocks, we find that the observed spectrum has the same
shape as the emitted one, which in our case is modeled as a Band function. The observed peak photon energy of the Band
function decreases with time, EP(T) = EO/T, naturally leading to a softening of the spectrum with time, similar to what is
observed by Swift. Thus, our model can at least qualitatively reproduce the main temporal and spectral features observed by



10 F. Genet and J.Granot

Swift. The spectral index 3 evolves from its value below E, (6 = —b1) to its value above E, (8 = —b2), where the transition
that corresponds to the passage of E, through the observed energy band occurs at earlier times for higher observed photon
energies (or frequencies).

When modeling the prompt emission by combining several pulses, the SDP is initially dominated by the last pulse (just
after its peak, if it is above the flux fro the other pulses), but can later be dominated by the tail of other pulses. The relative
contribution of a pulse to the late time flux scales as ~ FpeakT?+ﬁ, and therefore wider pulses (with a larger T%), and to a
lesser extent pulses with a larger peak flux (Fpeak), tend to dominate the late time flux, deep into the SDP. Moreover, often
the contribution to the total flux from the tails of several pulses can be comparable, so it cannot be adequately modeled
using a single pulse model. Therefore, we caution here that modeling the steep decay phase using the HLE of a single pulse,
F, o< (T = Tret)~ ™ may lead to wrong conclusions, and all the more so if the reference time T}t is arbitrarily set to the
GRB trigger time. Even if Ti¢ is set to the onset time of the last spike, this may still be a bad approximation in many cases
since (i) we find that ae; = 2 + 8 (with Tref = Tej) rather than aon (with Tier = Tej + To, corresponding to the onset of the
spike) while aon approaches ae; = 2 + 3 only at late times well after the peak of the last pulse, and (ii) at such late times
the flux often becomes dominated by the tails of earlier pulses.

Our model can produce different shapes for the tail of the prompt emission, from close to a power law (which can have
a different temporal index than its asymptotic late time value) to a curved shape with decreasing temporal index «. This
is qualitatively consistent with observations, where these type of behaviour are observed. We have demonstrated that just
after the peak of the last pulse, the decay index of the prompt emission tail can reach very large values, far greater than the
typical average value observed during the SDP by Swift, of 3 < a < 5 (Nousek et al. 2006). Larger values for the temporal
index, however, are sometimes observed close to the end of the prompt emission (for example in GRB050422, GRB050803 or
GRB050916; see figure 2 from O’Brien et al. 2006), in accord with our model.

Because of the large number of free parameters, the fitting of actual data should be handled with care, and there may be
various degeneracies involved. The results of such fits to data should also be taken cautiously because of the difficulty in prop-
erly resolving distinct pulses in the prompt emission. For different reasons (such as noisy data, coarse time bins, pulse overlap,
etc.), a group of distinct pulses may be fitted by a single broader pulse, resulting in an over-prediction of the flux during the
SDP, as well different spectral and temporal evolution, which might lead to a misinterpretation of the SDP. Nevertheless, when
handled with care, a fit of our model to a good combined data set of the prompt GRB emission and its SDP tail can serve as a
powerful test of the HLE model for the SDP, and thus help distinguish between different models for the prompt GRB emission.

J. G. gratefully acknowledges a Royal Society Wolfson Research Merit Award.



Model for the prompt and high latitude emission in GRBs 11

REFERENCES

Band D., et al., 1993, ApJ 413, 281

Barniol Duran R. & Kumar P., 2008, accepted by MNRAS, astro-ph/0806.1226v1
Barthelmy, S. D., et al. 2005, Space Sci. Rev. 120, 143

Burrows, D. B., et al. 2005a, Space Sci. Rev., 120, 164

Burrows D. N. et al. 2005b, Science, 309, 1833

Butler, N. R., & Kocevski, D. 2007, ApJ, 663, 407

Costa E., et al., 1997, Nature 387, 783

Dai Z.G., 2004, ApJ 606, 1000

De Pasquale M., et al., 2006, A & A 455, 813

Eichler D. & Granot J., 2006, ApJ, 641, L5

Falcone A. D., et al., 2006, ApJ, 641, 1010

Gehrels N.| et al., 2004, ApJ 611, 1005

Genet F., Daigne F. & Mochkovitch R., 2007, MNRAS 381, 732
Granot J., 2005, ApJ 631, 1022

Granot J., 2007, Il Nuovo Cimento B, 121, 1073

Granot J., Cohen-Tanugi J. & do Couto e Silva E., 2008, ApJ 677, 92
Granot J., Konigl A. & Piran T., 2006, MNRAS, 370, 1946

Granot J., Kumar P., 2006, MNRAS, 366, L.13

Granot J., Piran T. & Sari R., 1999, ApJ 513, 679

Krimm, H. A., et al. 2007, ApJ, 665, 554

Kumar P. & Panaitescu A., 2000a, ApJL 541, L51

Kumar P. & Piran T., 2000, ApJ 532, 286

Lee W.H., Ramirez-Ruiz E., 2002, ApJ 577, L893

Liang E.W. et al., 2006, ApJ 646, 351

Lyutikov M. & Blandford, R.D., 2003, astro-ph/0312347v1
MacFadyen A.I., Woosley S.E. & Heger A., 2001, ApJ 550, 410
Meészaros P. & Rees M.J., 2001, ApJ 556, L37

Nousek J.A., et al., 2006, ApJ 642, 389

O’Brien P.T., et al., 2006, ApJ 647, 1213

Panaitescu A., et al., 2006, MNRAS 366, 1357

Peng F., Konigl A. & Granot J., 2005, ApJ 626, 966

Preece R.D., et al., 2000, ApJS 126, 19

Qin Y.-P., 2008, ApJ 683, 900

Ramirez-Ruiz E., 2004, MNRAS 349, L38

Ramirez-Ruiz E., Celotti A & Rees M.J., 2002, MNRAS 337, 1349
Ramirez-Ruiz E., Merloni A. & Rees M.J., 2001, MNRAS 324, 1147
Rees M., 1966, Nature 211, 468

Rees M. & Meészaros P., 1994, ApJ 430, L93

Rees M. & Mészaros P., 1998 ApJ 496, L1

Rees M. & Mészaros P., 2000, ApJ 545, L73

Roming, P. W. A,/ et al. 2005, Space Sci. Rev., 120, 95

Sakamoto T., et al., 2007, ApJ 669, 1115

Sari, R. 1998, ApJ, 494, 149

Sari R. & Mészaros P., 2000, ApJ 535, L33

Sari R. & Piran T., 1997, ApJ 485, 270

Soffitta P., De Pasquale M., Piro L. & Costa E., 2004, proceedings of the Third Rome Workshop on Gamma-Ray Bursts in
the Afterglow Era, ASP Conferences series, Vol. 312, M.Feroci, F.Frontera, N.Masetti & L.Piro eds.
Tagliaferri G, et al., 2005, Nature 436, 985

vanParadijs J., et al., 1997, Nature 386, 686

Yamazaki R., Toma K., Ioka K. & Nakamura T., 2006, MNRAS 369, 311
Zhang B.B, Liang E.W. & Zhang B., 2007, ApJ 666, 1002


http://arxiv.org/abs/astro-ph/0312347

12 F. Genet and J.Granot

pulse number 1 2 3 broad pulse
T [s] -2 15 35 -4

To [s] 2 4 5 4

Ty 16 16 25 36
Fpeax/Fo 085 1 0.12  1.03

Table 1. Parameters of the pulses for figure[8 (top panels)

pulse number 1 2 3 4 5 6 broad pulse
Tej [s] -2 1 16 26 36 46 4

To [s] 2 2 2 15 2 2 4

Ty 6 10 6 6 8 8 36
Fyear/Fo 025 08 09 1 04 0.2 1.03

Table 2. Parameters of the pulses for figure [8 (middle panels)

pulse number 1 2 3 4 5 6 7 8 9 10 11 12 broad pulse
Tej [s] -2 -1 5 11 19 20 26 31 36 44 51 66 -4

To [s] 2 2 2 2 1 2 2 2 3 2 2 3 4

Ty 4 6 6 6 2 5 6 6 7.5 8 6 6 36
Fpeak/Fo 025 05 075 085 0.75 0.85 095 0.55 035 025 0.11 0.11 1.03

Table 3. Parameters of the pulses for figure[8 (bottom panels)
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Figure 1. Illustration of Equal Arrival Time Surfaces (EATS). The particular EATS shown here are for a coasting shell (m =0), and
are ellipsoids (Rees 1966) with an ellipticity € = 8 and a semi-magor to semi-minor azis ration of I' (which for display purposes is only
3 here). The red solid lines correspond to the inner (Ro) and outer (Ry) radii of the emission region. We call Rr(T) the outermost
radius of the EATS at observed time T. Shown are the EATS for the limiting cases corresponding to Ry, = Ro (T = Tej + To; thick
short-dashed line) and Ry, = Ry (T = Te; +Ty; thick long-dashed line) as well as representative cases for Ry, < Ro, Ro < R < Ry and
Rr > Ry (dotted lines). For Ry < Ro the EATS does not intersect the emission region, and therefore the first photons start reaching
the observer only at T = Tej + To from R = Ro along the line of sight. At Ro < Ry < Ry the flur typically rises (for AR < Rg). At
T = Tej + T the last photons from the line of sight (at R = Ry) reach the observer, while for T > Te; + Ty the front part of the EATS,
which would otherwise contribute the most to the observed fluz, sticks outside of the emission radius resulting in a sharp decay in the
observed fluz, which is then dominated by emission from large angles relative to the line of sight (HLE).
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Figure 2. Lightcurves of a single pulse at different normalizedjrequencies,_z//z/o. The low and high energy slopes of the spectrum are
b1 = —0.25 and ba = —1.25, while a = 1. AR/Ro = 1, so that Ty = 2 and Ty = 1. Left: Normalized fluz density shown as a function

of’f in linear scale. Right: Fluz density shown as a function of T in logarithmic scale.
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Figure 3. The same pulse as in figure[d is shown for different values of Tf for (v/vp) =0.01, 0.1, and 1 in the first, second and third
panel respectively (in logarithmic scale). The fourth panel shows the case (v/vo) = 1 in linear scale in order to show the shape of a pulse
having its peak before T = Ty. The normalized flur density is shown as a function of T x To,; /Ty, where the subscript i denotes the i’th
pulse, so that all the Ty ; would appear to coincide, and the decay times of the different pulses would appear to be the same.
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Figure 4. Effect of the variation of a on the shape of a pulse for (v/vg) = 0.01, 0.1, and 1 in the first, second and third panel respectively
(in logarithmic scale). We can see that increasing a makes the pulse sharper. The constant parameters are To =1 s and Ty =2 s and
the low and high energy spectral slopes are by = —0.25 and by = —1.25.
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Figure 5. Evolution of the temporal indexes ae; = —dlog F,/dlogT (left panel) and aon = —dlog F,/dlogT (right panel) with

normalized observed time T, at different observed photon energies (for Eo = 300 keV). Different line styles are used for the different
energies. The color coding shows the temporal indexes for several values of Ty = AR/Ro: 0 (green), 0.1 (blue), 1 (black) and 10 (red).
The low and high energy spectral slopes are by = —0.25 and by = —1.25, while a = 1.
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Figure 6. Left panel: Comparison of the evolution of the spectral (8 — thin lines) and temporal (ae; — thick lines — and aon — very
thick lines) indezxes at different photon energies (Eg = 300 keV). The low and high energy spectral slopes are by = —0.25 and by = —1.25,
while a = 1. Middle panel: Evolution of spectral index 8 over the Swift XRT energy range (Vmin < vV < Vmax With vymin = 0.2 keV
and vmax = 10] keV. Shown are the local values of B at vimin (short dashed line), vmax/2 (dotted line) and vmax (long dashed line),

as well as the average values of B over the XRT range, taken either over v (thin solid line) or over logv (thick solid line). The low
—0.25 and ba = —1.25, while a = 1. Right panel: Evolution of the observed spectrum with

and high energy spectral slopes are by =
time. The spectrum, vF, [(voFp), is shown as a function of the normalized frequency, v/vo, for different values of the normalized time,

log,o(T/Ty), where we have used Ty =1. The red thin lines correspond to the rising stage of the pulse (T < Ty), while the black thick
lines are for its peak (T = Ty) and decaying stage (T > Ty). The low and high energy spectral slopes of the spectrum are by = —0.25

and by = —1.25, while a = 1.
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Figure 7. For all panels, The black lines show the individual pulses, while the red line shows the total prompt emission. The normalized
observed frequency is v/vg = 0.1 (a): Prompt emission with siz pulses, all having the same following parameters: m =0,d=—1,a =1,
by = —0.25, bp = —1.25, Tp = 2 s, Tf = AR/Ro = 3 and Fyeax/Fo = 1. The ejection times Tej are (from the first to the last pulse):
—25,8s5, 185, 28 5, 38 s and 48 5. (b): Same as top left panel, except for varying Fpeqr/Fo, which is from the first to the last pulse:
0.1, 0.5, 1, 0.8, 0.3, and 0.2. (c): Same as top left panel except for varying To while AR/Ro = 3 remains constant, whose values are
(from first to last pulse): 6 s, 55, 45,3 s, 2 s, 1 5, which correspond to Ty = 24 5,20 s, 16 5, 12’5, 8 5, 4 5. To keep tcj1 = —To,1 the
ejection times in this case are: —6s, 4 s, 14 s, 24 s, 34 s and 44 s. (d): Same as top left panel except for varying AR/Ry while keeping
Ro and therefore Ty constant. The values of AR/Ro are (from first to last pulse): 5, 4, 3, 2, 1, 0. Since To = 2 s, this corresponds
toTy = (14+ AR/Ro)To = 12 5, 10 5, 8 5, 6 5, 4 5, and 2 s, respectively. (e): Same as top left panel except for varying AR/Ro while
keeping Ry constant and therefore Ty and To/Ro also remain constant, while both Ro and To vary. From first to last pulse, AR/Rq =
10, 3, 1, 0.3, 9.1, and 0.03, and since Ty = 8 s this corresponds to To = 0.727 s, 2 s, 4 5, 6.15 5, 7.27 5, and 7.77 s. The final peak
frequency vp(Ty) = (To/Ty)vo at Ty is also kept constant, so that from the first to the last pulse v/vo = 0.0091, 0.025, 0.05, 0.0769,
0.0909, 0.0971. (f): ezample of a more realistic prompt emission consisting of three pulses with To; = —1's, 13 s, 21 5, To = 2 s for all
three pulses, AR/Ro =3, 2, 1, and Fpeax/Fo = 0.7, 1, 0.7.
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Figure 8. Comparison between the emission from several partially temporally overlapping pulses (individual pulses are in non-solid
black lines, while the total prompt emission is in a solid red line), and a tentative fit to these pulses using a single broad pulse (thick solid
green line). The same single broad pulse is used as a tentative fit for three different prompt emissions, with 3 (top panels), 6 (middle
panels) and 12 (bottom panels) pulses. The parameters of the pulses are shown tables[ll [A and[A The normalized observed frequency is
v/vp = 0.1 Left panels: linear scale. Right panels: Logarithmic scale.
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APPENDIX

APPENDIX A: DETAILED CALCULATION OF THE FLUX

In order to calculate the flux density F, that reaches the observer at an observed time T, we closely follow Granot,
Cohen-Tanugi and DoCouto e Silva 2008: we integrate over the Equal Arrival Time Surface (EATS), i.e. the locus of points
from which photons that are emitted by the shell at a radius R, angle 0 relative to the line of sight, and a lab frame time ¢,
reach the observer simultaneously at an observed time 7". The lab frame time and the shell radius are related by

R
dr R R
t—to = Rl . Al
: o Bc ¢ + 2(m + 1)cl'? (A1)
From simple geometrical considerations, the EATS is given by
T — T Rcosf R 1
=t —tei — ~—|1— 0+ —-——1 , A2
(1+2) ! c c cost+ 2(m + 1)I'? (A2)
Since I > 1 we can consider only small emission angles 8 < 1, for which cos ~ 1 — 6?/2, so that the EATS reads
T — T R -
L~ s [y y(m+ 1)) (A3)

(1+2) " 2(m+1)I2
where we have introduced the normalized radius y = R/Ry, as well as Ry = Rr(T) that is the largest radius on the EATS
at time T, and I';, = T'(Ryr). Since Ry is always obtained along the line of sight (at 6 = 0),

1
T — T T — T\ ™+t (1+2)Ro
2 1 F2 ) = —a To=—7—"""+— . A4
R =2(m+Del G775 < To © 0T St el (A4)
Substituting eq. (A4) into eq. (A3) implies
92 -1 _ ,m d -2 m—1
TP e A T i . (A5)
2 (m+1I3 dy 2(m+ 1)I'7
where p = cos . The Doppler factor between the comoving frame and the lab frame is given by
v 1 2r 2(m 4+ 1)y~ ™/?
0=(1 — = ~ = . Al
(1+2) v T(1—-Bu) 14 (T06)2 m+y ™1 (AG)

Remembering the reader that T' = Te¢j + T is the time at which the last photons that are emitted along the line of sight
(from Ry and § = 0) reach the observer (which can be defined here by Rr(Te; + T¢) = Ry), from equation (&) its general

value is
B Rf m—+1 AR m—+1
Ty =To <R_o> =T |1+ Ro . (A7)

In the limit AR — 0, Ty — To.

The observed flux is then obtained by integration over the EATS (Sari 1998; Granot 2005),
_(1+z)/ 1+z/3 _1—&—2/”“"‘”‘ dp 3 /
FV(T) - 4ﬂ'd% v 4 d2 g dLV’ - 87Td% . dy dy 0 (y) LV’ (y) ) (A8)

where dL), = L.,,(R)dvd¢ /4w — L., (r)du/2 = $L,,(R)(du/dy)dy due to symmetry around the line of sight (no dependence
of the emission on the azimuthal angle ¢), L!,(R) is the total comoving spectral luminosity of the shell (the emitted energy
per unit time and frequency), v’ = v(1 + 2) /6, and d(z) is the luminosity distance of the source. The limits of integration

over y are
| R 1 T<Tej+To ,
Ymin = min <1, m) = (T;ch)il/(mﬂ) T>Ti+To, '
(A9)
| Ro+ AR 1 T<Ty+ Ty,
Ymax = min <17 Tm) = (%)71/(7n+1) T>Te+ Ty

For T' < Tej + To we have Rr(T) < Ro and therefore ymin = ymax = 1 and F,(7T) = 0. This is since the EATS does not
intersect the emission region for Rr < Ro, and only touches it at one point, (R, 0) = (Ro, 0), for Ry, = Ro (T' = T¢j+To). The
observed flux becomes non-zero for Ry > Ry, corresponding to T' > Te; + Tp. Substituting eqgs. (A5) and (A6) into eq. (AY)
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finally gives

—m/[2(m+1)] . 2
(1 + Z) T — Ty /ymdx —1-m/2 m+1 ’
F.(T) = T d — | L, . Al
( ) 27Td% 0 TO v vy + y,m,1 (y) ( 0)

min

Al Power-law spectrum

While a single power law emission spectrum is not very realistic, it already shows many important properties that also
appear for a Band function emission spectrum (considered in the main text). This is the reason why this case is described
here. The luminosity is then

a b b b
=y (Y (LY = pypeermu/eomn (LN jarmez (_mEL )T (A11)
Ro v 0 m+y-m-1

where the comoving spectral luminosity also scales as a power law with radius when the emission is over a finite range of
radii, v is a fixed frequency in the comoving frame.

Al.1 Emission from an infinitely thin shell at radius Ro

We first study the case where the whole emission comes from a single radius Ro,

v\° v\ [y \ ™2 S b
L/ v Rod(R — Ro) = L/ <_ <7 min0 (Y — Ymin
0 <V6> 0d( 0) = Lo ” p— mig1) Y (Y — Ymin)

b —-b
Lo <1> (%) Ymin6 (Y — Ymin) (A12)

Yo m+ Ymin

!
L,

where this is valid only for 7' > 1 that corresponds to Rz > Ro, for which ymin = Ro/Rr = [(T —Tv;)/To] ™Y™Y . Eq. (AI0)
then implies

(1+2) v\" [T - Te; + mTo b2
v > ej = —_— _— .
F, (T TJ + To) 4ﬂ'd2L Lo 7 (TTL T I)To (A13)

There are two times of particular relevance here: the radial time T.(Ro) = To = (1 4+ 2z)Ro/[2¢(m + 1)I'o], which is the time
past T¢; when the first photons start reaching the observer, and the angular time Ty(Ro) = (1+ 2)Ro/(2c'o) = (m+ 1)1 (Ro)
that sets the time-scale for the width of the pulse. One can rewrite the expression for the observed flux density as

' _ (1+2) v R AT
F (T > Tey 4+ To) = g Lo ) | T 7 (A14)

where Ts = Tej + To — To(Ro) = Tej — mTp is the reference time for the power-law flux decay of the pulse, and is exactly
Ty(Ro) before the onset of the pulse. Since the emission itself occurs at one particular radius (Ro) it depends only on the

Lorentz factor at that radius radius, and is independent of m. In particular, Ty (Ro) = (m + 1)To and the pulse peak flux are
independent of m. The value of m affects only the onset time of the pulse (7" = Te; + Tp) and the reference time for the power
law flux decay. For internal shocks we expect a coasting shell (m = 0) for which Ts = T¢; and Tp(Ro) = To. It can easily be
seen that the HLE relation, o = 2 + 3 where F,, & T~%v? | is satisfied here as 8= —band a =2 — b= 2+ 8.

A1.2 Emission from a region of finite width

We now turn to the case where the emission comes from a range of radii between Ro and Ry = Ro + AR > Ro. The
comoving spectral luminosity in this case is L', = Lj (R/Ro)® (v /1), and the flux density is given by (Granot, Cohen-Tanugi
& do Couto e Silva 2008):

(1+42) v\’ z2eomaob) /yma" a—1—m(1-b)/2 m+1 -t
F(T) =", (L) 777D d _mre , A15
(T) =z P\ - Yy T (A15)
which, for internal shocks (m = 0) becomes:
(14 2) Lo(v/v0)" ~b72[ o \24a—b ]
F, (T > T+ To) = T T,T -1 . Al

It is therefore obvious that for T' > Te; + Ty the HLE relation is valid, where the reference time is the ejection time Tej, as
in this case the spectral slope is § = —b and the temporal slope is @« =2 — b = 2 + . In this sense a finite range of emission
radii with m = 0 is similar to emission from a single radius, as in both cases the HLE relation a = 2 4 (3 is strictly valid
immediately from T > T¢; + T, for some reference time, though in the latter case the reference time for which this is valid is
equal to the observed ejection time only for m = 0. For emission from a finite range of radii with m # 0 the relation « = 2+ 3
is approached asymptotically at T — Te; > T.
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A2 Band function spectrum: general case and late time dependence

In the main text we have given the flux in the specific case of internal shocks, m = 0 and d = —1. We derive here the
flux for any values of the parameters m and d.

A3 Emission from a single radius

When the whole emission comes from a single radius Ro, the peak frequency is v, = 1, and the luminosity is thus

/ /
p p

Using this luminosity (eq. [AI7]) in the integral for the flux (eq. [AI0]) results in

e~ 2 B s(ph) . MBI [Eon)”

where as in § [AI} Ts = Tej — mTp is the reference time for the power-law flux decay of the pulse, Tp(Ro) = (m + 1)To =
(14 2)Ro/2cT3 is the angular time at Ro, and E,(T) = hu,(T) is the photon energy corresponding to the peak of the Band
function spectrum. Note that for m = 0, Ts = T¢;. One can express the argument of S as

ZJT) _ EjT) _ VVO [T—TS} v E  (1+2w

o T Ee T Tl Al
To(Ro) w Eo  2Toy (A19)

Sls

Reminding that Fs = Lo(1 + 2)/(4wd3), we then use the explicit expression for the Band function (eq. [I]) to express the
)‘71 QU= (T=T0) /Ty(Ro)] 7Ty

observed flux as:
r_g, 1012 o
Ty (Ro) To(Ro) ~ = 7

_ (A20)
by—2 b
|:T7Ts ] 2 (VL) 2 mglszeubz T-T, - =

FD(T 2 ch +TO)
Fs

Ty (Ro) 0 Ty(Ro) = X% -

A4 Emission from a range of radii

In the case of emission with a Band function spectrum over a finite range of radii, Ro < R < Ry = Ro + AR, we remind

that the comoving luminosity is:
, , R a v
L,=Ly|—= | S A21
v=1(7) 5 (m) (2

Introducing (A21)) into (AI0) we obtain the general expression of the flux:

F, —a+m/2 /ymax a—1-m/2 m+1 : v
=z = ¢ d — ) S| = A22
i Ymin vy " " (A22)

Ymin

/g"‘a"dgg“*’"/2< mil )zs<”—') ,
1 m+ Y gt Vp

where § = y/Ymin, Jmax = min[y[;ilm (Tf/TO)l/(m+1)]: and

/ m/2—d —m—1 —m—1~—m-—1
v :1< y ) <m+y >:Lgm/gfd<m+ymm ] > 7 (A23)

l/_;) 0 \ Ymin m+1 Vo m+1

and the expression for v//v), assumes that v, = v)(R/Ro)* = v (y/ymin)?. At late times, T — Tej > Ty, we have y < 1,
Jmax = Tt/To, and V' /v, &~ (v/vo)y =4 ™/ 2y "1 /(m + 1) increases with time so that S(v'/v,) < (v'/v})"? and F, o
(v/vo) P2y D E=02) — () Vo2 (T — Toy) /To]P2 2, i.e. the HLE relation o = 2 + 3 is satisfied.

min

In the case for internal shocks, with m = 0 and d = —1, v’ /v, becomes independent of y and can be taken outside the

integral (v' /vy, = (v/10)/Ymin = (v/v0)T), leading to the much simpler expression of the flux seen in the main text (eq. [).
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APPENDIX B: EVOLUTION OF THE TEMPORAL AND SPECTRAL INDEXES
This appendix explicits the evolution of the temporal and spectral indexes with time.

B0.1 Single emission radius

Where the luminosity is a delta function with radius at radius Ro, we obtain

—b1 +T(1+b1)l//yo T < meQ/V
—b T > zyvo/v

(2—()1)T/(1+T)+T(1+b1)y/l/o Tgxbuo/u—l

Qon = (B2)
(Q—bz)T/(l—‘rT) T}J:buo/u—l
2—b+T(1+b)v/vy T <o/

Qej = (B3)
2 — bz T 2 xbyo/l/

We then have a very simple relation between ae; and 3: ae; = 2 + 3, as expected at asymptotically late times for HLE,
just that for a.; it is satisfied all along for the local values of the temporal and spectral indexes. At late times oo, approaches
ae; and a similar relation approximately holds between aon and 8 (aon = 2 + 3).

B0.2 Emussion from a finite range of radit: Ry < R < Ry
In this case, the spectral index f3 is still given by eq. (Bl), while the two temporal indexes are:

(2= b))l + T+ b))% — (2+a) ZEDTL T < min(AR/Ro, zyvo/v — 1) |

(1+T)2Fa—1
2=b) i + T +b1) & AR/Ry < T < azpvo/v —1,
Con = (B4)
= A Fy1+a —
(2= be) iy — 2+ @) o T ayo/v—1<T < AR/Ro ,
(2 — b2) s T > max(AR/Ro, zyvo /v — 1) ,

which limits at very early and very late times are

-1 T<1,

Qon ~ (B5)
2—by T>1,

and
2—-b1—(24+a)/(1 - f*‘kz) + f(l +b)v/vo T < min(Rys/Ro, zpro/V) ,
2—b +f(1+b1)y/uo Rf/Ro<T<:Ebl/o/u7

Qej = (B6)
2—b—(24+a)/(1 -T2 zorvo/v <T < Ry /Ro
2 — by T>maX(Rf/Ro,be0/V) .

According to equations (BI) and (Bf) ce; has a simple relation with 3:

B+2—(24a)/Q1 -T2 T<Rs/Ro (T<Ty),
Qej = (B7)
B+2 T>Rf/Ro (T>Tf)

Note that in the limit T — 0 (T — 1), at very early times, just after the onset of the spike, ate; — —o0 while aorn, — —1.
Moreover, the simple HLE relation, ae; = 2 + (3, is valid as soon as T> Tf, for any value of f“f. This is a relation between
the local values of a.; and 3, that hold as both change with time, and is strictly valid from T > Tf only for m = 0 and
d = —1. For general values of m or d this local HLE relation would be valid only at late times, T >> T;. Note, however, that
for alternative other definitions of the temporal index, such as aon, this relation is only approached at late time: aon =~ 2+ 3
for T > Ty and T > 1.
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APPENDIX C: EXPONENTIAL TURN-OFF OF THE EMISSION WITH RADIUS

Throughout the paper we have assumed that the emission abruptly turns off at Ry. This results in a sharp change in the
temporal index at Ty, which usually corresponds to a sharp peak for the pulses in the prompt GRB light curve. Observations
sometimes show pulses with a round peak, which may be hard to fit with spiky theoretical spikes. Such rounder peaks for the
pulses may be obtain within the framework of our model by introducing a more gradual turn-off of the emission at R > Ry.
For convenience, we parameterize this here by assuming that the luminosity starts decreasing exponentially with radius at
R > Ry. For simplicity we consider here only AR > 0, but the results are similar for AR = 0. Similarly, only the case for
internal shock (m =0, d = —1) is considered here. Thus, we introduce the following comoving spectral luminosity:

(E)s()  menen
N\ _a(R—Ry)

L (R%)S(u—)e - R> Ry

P

where ¢ is the decay constant (a larger ¢ corresponds to a sharper turn-off of the emission).
For 1 < T < T} the observed flux is identical to that without introducing the gradual emission turn-off, and is therefore

given by eq. (1),

~ ~ ~_9 . ~ o~ 2+a vV o~
F (T > 1Ty) = BT (mm(T, Tf)) —1ls(ZT) . (C2)
Vo
The flux for T > Tf is obtained by calculations very similar to those of section [3.2] and reads
FAT>Ty) = RT2S(Tv/w) [Tf” 14 J(T)] : (C3)
B T .
JT) = 2+ a)/_ dgg*tte”0TT/Q (C4)
T

were Q@ = AR/(qRo), and we remind the reader that g = Ty for m = 0. The expression for the flux is thus very similar its form
for an abrupt turn-off of the emission at Ry, but with the additional term J(7') that adds some flux at 7' > T (representing
the added contributions from R > Ry). For a = 1 we have

J(T,a=1) = 6Q° + 6Q>Ty +3QT? — e T-Tp/@ (6@3 1 6QT + 3QT2) : (C5)
At late times J(T7 a = 1) approaches a constant value,
3
. - 6 (ﬂ) qg <K AR/Ro_
Joo = 6Q° +6Q°Ty +3Q17 ~ A;RO ar)? 12?%1;1/:0 (C6)
3R (1 + R_o) 9> TraR/Rg

where we have replaced @ and Tf by their dependence on ¢ and AR/Ry. Since J(T) appears in eq. (C3)) in a sum with T?ra -1,
it will dominate the observed flux at late times if Joo > Tf*“ — 1 or equivalently if ¢ < gerit where Joo (gerit) = Tf*“ — 1.

The left panel of figure [CIlshows gcrit as a function of Tr = AR/Ro for a = 1, and it can be seen that the limiting values
of gerit are 1 for Tf < 1, and (7+ 221/2)1/3 +1+3/(7+ 221/2)1/3 ~ 4.59 for Tf > 1, so that gerit is always of order unity.
Therefore, for ¢ < gerit ~ 1 the late time flux is dominated by contributions from R > Ry, the peak of the pulse is rounder
and the peak flux is higher compared to an abrupt turn-off of the emission with radius, which is approached in the opposite
limit of q¢ >> geit ~ 1. This can nicely be seen in the right panel of fig. [CI] which shows the shape of a pulse for different
values of ¢, including the limiting case of ¢ — oo, which corresponds to an abrupt turn-off of the emission at Ry.

Such an exponential turn-off could therefore be useful when fitting our our model with data, in order to reproduce
round-peaks pulses. Of course, one should be aware that this adds a free parameter (¢ or @), and might thus increases the
degeneracy between the different fit parameters. Therefore, adding this extra model parameter should be done only when it
is required by the data.
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Figure C1. Left: Dependence of the critical decay indez gerit of the ezponential cut-off on Tf = AR/Ry, in semi-logarithmic scale. It
is defined by Joo(qerit) = Tf — 1, i.e. at late time, the contribution to the flux from the exponential cut-off is equal to the contribution
from the emitting region between Ro and Ry. Right: Comparison of the shape of pulses with and without the exponential turn-off of the
luminosity for a ratio AR/Ro = 1 in logarithmic scale. The solid line shows the shape of the pulse for an abruptly stopping luminosity
(no exzponential turn-off), the other lines show the pulse shape for different values of the decay constant ¢ = 0.1 of the exponential

turn-off.
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