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Mon. Not. R. Astron. So. 000, 1�23 (2009) Printed 15 July 2009 (MN LATEX style �le v2.2)Realisti analyti model for the prompt and high latitudeemission in GRBsF. Genet1⋆ and J.Granot1
1 Center for Astrophysis Researh, University of Hertfordshire, UK.Submitted Deember 2008. ABSTRACTMost gamma-ray bursts (GRBs) observed by the Swift satellite show an early steepdeay phase (SDP) in their X-ray lighturve, whih is usually a smooth ontinuationof the prompt gamma-ray emission, strongly suggesting that it is its tail. However, themehanism behind it is still not lear. The most popular model for this SDP is HighLatitude Emission (HLE), in whih after the prompt emission from a (quasi-) spherialshell stops photons from inreasingly large angles relative to the line of sight still reahthe observer, with a smaller Doppler fator. This results in a simple relation betweenthe temporal and spetral indexes, α = 2 + β where Fν ∝ t−αν−β . While HLE isexpeted in many models for the prompt GRB emission, suh as the popular internalshoks model, there are models in whih it is not expeted, suh as sporadi magnetireonnetion events. Therefore, testing whether the SDP is onsistent with HLE anhelp distinguish between di�erent prompt emission models. In order to adequatelyaddress this question in a areful quantitative manner we develop a realisti self-onsistent model for the prompt emission and its HLE tail, whih an be used forombined temporal and spetral �ts to GRB data that would provide strit tests forthe HLE model. We model the prompt emission as the sum of its individual pulseswith their HLE tails, where eah pulse arises from an ultra-relativisti uniform thinspherial shell that emits isotropially in its own rest frame over a �nite range of radii.Analyti expressions for the observed �ux density are obtained for the internal shokase with a Band funtion emission spetrum. We �nd that the observed instantaneousspetrum is also a Band funtion. Our model naturally produes, at least qualitatively,the observed spetral softening and steepening of the �ux deay as the peak photonenergy sweeps aross the observed energy range. The observed �ux during the SDPis initially dominated by the tail of the last pulse, but the tails of one or more earlierpulses an beome dominant later on. A simple riterion is given for the dominantpulse at late times. The relation α = 2 + β holds also as β and α hange in time.Modeling several overlapping pulses as a single wider pulse would over-predit theemission tail.Key words: Gamma-rays: bursts � methods: analytial.1 INTRODUCTIONBefore the launh of the Swift satellite (Gehrels et al. 2004), Gamma Ray burst (GRB) X-ray afterglows were detetedat least several hours after the burst (So�tta et al. 2004 and referenes therein). They typially displayed a power law deay
∼ t−1− t−1.5 around their detetion time (De Pasquale et al. 2006). Swift's ability to rapidly and autonomously slew when theBurst Alert Telesope (BAT, observing in the energy range 15 − 350 keV; Barthelmy et al. 2005) instrument detets a GRBenables it to point its other instruments - the X-Ray Telesope (XRT, observing in the energy range 0.2− 10 keV; Burrows et
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2 F. Genet and J.Granotal. 2005a) and UV/Optial Telesope (UVOT, observing at wavelengths 170 − 650 nm, i.e. from the optial to the near UV;Roming et al. 2005) - toward the GRB within tens of seonds from the GRB trigger time.The XRT thus �lled the observationalgap between the end of the prompt emission and the beginning of the pre-Swift afterglow observations several hours later.It revealed a omplex behaviour usually onsisting of three phases, followed by most GRBs, and referred to as a anoniallight urve (Nousek et al. 2006), onsisting of three distint power-law segments where Fν ∝ t−α: an initial (at t < tbreak,1,with 300 s . tbreak,1 . 500 s) very steep deay with time t (with a power-law index 3 . α1 . 5; see also Bartherlmy etal. 2005; Tagliaferri et al. 2005); a subsequent (at tbreak,1 < t < tbreak,2, with 103 s . tbreak,2 . 104 s) very shallow deay(0.2 . α2 . 0.8); and a �nal steepening (at t > tbreak,2) to the familiar pre-Swift power-law behaviour (1 . α3 . 1.5). Inmany ases there are X-ray �ares superimposed on this underlying smooth omponent (typially during the �rst two phases,at t < tbreak,2; Burrows et al. 2005b; Falone et al. 2006; Krimm et al. 2007), and in some ases there is a later (at tj > tbreak,2)further steepening due to a jet.The third deay phase (Fν ∝ t−α3) is the afterglow emission that was observed before Swift and is well explained bysynhrotron radiation from the forward shok that is driven into the external medium as the GRB ejeta are deelerated,where the energy in the afterglow shok is onstant in time (no signi�ant energy gains or losses). The plateau (or shallowdeay) phase an be explained either by pre-Swift models or by later models that have been developed espeially for thispurpose (Nousek et al. 2006; Panaitesu et al. 2006; Granot 2007). It ould be due to energy injetion, either by a tail ofdereasing Lorentz fators at the end of the ejetion phase (Rees & Mészaros 1998; Sari & Mészaros 2000; Ramirez-Ruiz,Merloni & Rees 2001; Granot & Kumar 2006) or by a relativisti wind produed by a long lasting soure ativity (Rees &Mészaros 2000; MFadyen et al. 2001; Lee & Ramirez-Ruiz 2002; Dai 2004; Ramirez-Ruiz 2004), by an inreasing e�ieny ofX-ray afterglow emission due to time dependene of the shok mirophysis parameters (Granot, Königl & Piran 2006), by aviewing angle slightly outside the region of prominent afterglow emission (Eihler & Granot 2006), by a ontribution from thereverse-shok (Genet, Daigne & Mohkovith 2007) or by a two omponent jet model (Peng, Königl & Granot 2005; Granot,Königl & Piran 2006).The steep deay phase is observed in most bursts, and is in the great majority of ases a smooth ontinuation of theprompt emission, both temporally and spetrally (O'Brien et al. 2006). This strongly suggests that it is the tail of the promptemission. Several explanations for this phase have been suggested in the ontext of previously existing models (Tagliaferri etal. 2005; Nousek et al. 2006), suh as emission from the hot ooon in the ollapsar model (Mészaros & Rees 2001, Ramirez-Ruiz et al. 2002). The most popular model, by far, is High Latitude Emission (HLE) originally referred to as emission froma �naked� GRB (Kumar and Panaitesu 2000a). In this model the prompt GRB emission is from a (quasi-) spherial shell,and after it turns o� at some radius then photons keep reahing the observer from inreasingly larger angles relative to theline of sight, due to the the added path length aused by the urvature of the emitting region. Suh late arriving photonsexperiene a smaller Doppler fator. This leads to a simple relation between the temporal and spetral indexes, α = 2 + βwhere Fν(t) ∝ t−αν−β, that holds at late times when t− t0 ≫ ∆t, where t0 and ∆t are the start time and width of the pulse,respetively. The steep deay phase also shows a softening of the spetrum with time (see Zhang et al. 2007 and referenestherein).The onsisteny of the steep deay phase with HLE has been studied by several authors (Nousek et al. 2006; Liang etal. 2006; Butler & Koevski 2007; Zhang et al. 2007; Qin 2008). However, some simplifying assumptions were usually made,whih may a�et the omparison between this model and the observations. One suh assumption is the hoie of the referenetime t0 for the steep deay, espeially when the prompt emission onsists of several pulses. Liang et al. (2006) �nd that whenassuming the HLE relation α = 2 + β and �tting for t0 its derived value is onsistent with the onset of the last pulse of theprompt emission (or of the individual spike or �are whose tail is being �t). Zhang et al. (2007) �nd that the HLE annotexplain the steep deays aompanied by a spetral softening, but an explain the ases with no observed spetral evolution.Barniol Duran and Kumar (2008) �nd that only 20% of their sample is onsistent with HLE. Butler & Koevski (2007) �ndthat for a (physially motivated) time independent soft X-ray absorption (�xed NH) the spetrum during the steep deayphase, is muh better �t by an intrinsi Band funtion spetrum (Band et al. 1993) rather than by a power-law, and that thepeak photon energy shifts to lower energies with time. Qin (2008) �nds that suh a behavior an, at least qualitatively, beprodued for a delta funtion emission in radius with a Band funtion spetrum. It is therefore still a largely open questionwhether the temporal and spetral properties of the steep deay are onsistent with HLE. Moreover, it appear that a physiallymotivated model for the prompt emission with realisti assumptions about the emission (e.g. over a �nite range of radii with aBand funtion emissivity) is needed in order to address this question in a more quantitative and fully self onsistent manner.The nature of the prompt GRB emission is what ultimately determines the properties of its tail. HLE is expeted onlyin models where the prompt emission is from a quasi-spherial shell and turns o� rather abruptly at some �nite radius (orlab frame time). The best example for this type of model is internal shoks (Rees & Mészaros 1994; Sari & Piran 1997)where variability in the Lorentz fator of the relativisti GRB out�ow auses faster shells of ejeta to ollide with slower sellsresulting in shoks going into the shell over a �nite range of radii (typially ∆R ∼ R). On the other hands, there are modelsin whih HLE is not expeted, suh as in the ase of isolated sporadi magneti reonnetion events within a Poynting �uxdominated out�ow (e.g. Lyutikov & Blandford 2003) in whih eah spike in the GRB light urve is from a distint small and 2009 RAS, MNRAS 000, 1�23



Model for the prompt and high latitude emission in GRBs 3well loalized region. Therefore, testing whether the steep deay phase is onsistent with HLE would help distinguish betweenthese two types (or lasses) of prompt GRB models. This an be an important step toward identifying the basi underlyingmehanism for the prompt emission, whih is still one the the most striking open questions in GRB researh more than fourdeades after the disovery of GRBs.In order to address this question, we develop a model for the prompt and its HLE tail that is physially motivated,realisti, and easy to use (fully analyti in its simplest version) in global joint �ts (to all of the available data at all times andphoton energies) of the prompt GRB and its SDP tail. Suh global �ts an provide a stringent and fully self-onsistent testof HLE model for the SDP in GRBs.The prompt emission is modeled as the sum of a �nite number of pulses. Eah pulse orresponds to a spike in theprompt GRB light urve and has its own HLE tail. An individual spike is modeled as arising from a thin uniform spherialrelativisti shell that emits isotropially in its own rest frame over a �nite range of radii, while the observed �ux is alulatedby integrating over the equal arrival time surfae (Granot, Piran & Sari 1999; Granot 2005; Granot, Cohen-Tanugi & doCouto e Silva 2008) of photons to a distant observer. Our model is partiularly suitable for internal shoks, whih we fous onin this paper. For the emitted spetrum we onsider the phenomenologial Band funtion, whih provides a good �t the theprompt emission spetrum of the vast majority of GRBs. We point out that our model an also be used for X-ray �ares, whihappear to have temporal and spetral properties similar to the spikes of the prompt GRB emission. The main text providesthe most useful results in an easy to use form, while the full derivations of these results are provided in appendixes in orderto help understand their origin and make it easier to extend or generalize our model. We stress here that our main aim is notneessarily to uniquely determine all of the model parameters, whih may be subjet to various degeneraies and may provehard when �tting to real data, but instead to test whether our model an provide a good �t to the data for any set of physialparameters. While suh a good �t would still not prove that the HLE must be at work, it would de�nitely support HLE as aviable and arguably most plausible model. Our model for an individual pulse is desribed in � 2, and results for the �ux inthe ase for internal shoks with a Band funtion spetrum are given in � 3. The dependene of a single pulse on the modelparameters is then investigated in � 4, while � 5 disusses how to ombine several pulses in order obtain to the total promptemission and its tail. Both are intended to help the reader when using our model to �t data, whih is one of the main aims ofour paper. Our onlusions are disussed in � 6. This paper desribes in detail our theoretial model and its main properties,and stresses some important aveats that one should keep in mind when using it to �t data in order to test the HLE model.In subsequent work we intend to onfront it with Swift BAT+XRT data.
2 DESCRIPTION OF THE MODEL2.1 The Basi Physial ModelWe onsider an ultra-relativisti (Γ ≫ 1) thin (of width ≪ R/Γ2) spherial expanding shell that emits over a rangeof radii R0 6 R 6 Rf ≡ R0 + ∆R. The emission turns on at radius R0 and turns o� at radius Rf > R0. The Lorentzfator of the emitting shell is assumed to sale as a power-law with radius, Γ2 = Γ2

0(R/R0)
−m where Γ0 ≡ Γ(R0). Theemission is assumed to be isotropi in the omoving frame of the shell, and uniform over the shell, i.e. the omoving spetralluminosity depends only on the radius of the shell, L′

ν′ = L′

ν′(R). As the main purpose of this work is to hek the onsistenyof the tail of the prompt emission with HLE, we need to model the prompt emission. We therefore use for the emissionspetrum the phenomenologial Band funtion (Band et al. 1993) spetrum that provides a good �t to the observed promptemission spetrum of the vast majority of GRBs. In the following we mainly onsider emission over a �nite range of radii,
R0 6 R 6 Rf = R0 + ∆R. The omoving luminosity is then:
L′

ν′ = L′

0

„

R

R0

«a

S

„

ν′

ν′
p

«

, S(x) = e1+b1

(

xb1e−(1+b1)x x 6 xb ,

xb2xb1−b2
b e−(b1−b2) x > xb ,

(1)where ν′

p(R) ≡ ν′

0(R/R0)
d is the frequeny where ν′L′

ν′(R) peaks, with ν′

0 ≡ ν′

p(R0); xb = (b1 − b2)/(1 + b1), while b1 and b2are the high and low energy slopes of the spetrum. For b1 > −1 > b2 the Band funtion has a peak in the νFν spetrum, at
x = 1, and therefore sine S(x) is normalized suh that S(x) = xS(x) = 1 at x = 1, it will not a�et normalization of νFν atits peak. The two funtional forms used in the band funtion are mathed at ν′

b = xbν
′

p. The peak luminosity L′

ν′

p
evolve as apower-law with radius, L′

ν′

p
= L′

0(R/R0)
a where L′

0 = L′

ν′

p
(R0) is a normalization fator.Throughout the paper, primed quantities are quantities measured in the omoving frame (i.e. the loal rest frame of theemitting shell), unprimed quantities are measured either in the soure rest frame (the lab frame, i.e. the osmologial frameof the GRB; this inludes Γ, R, θ and t) or the observer frame (this refers to observed quantities, suh as Fν , ν and T ). 2009 RAS, MNRAS 000, 1�23



4 F. Genet and J.Granot2.2 Calulating the Observed FluxThe observer is assumed to be loated at a distane from the soure that is muh larger than the soure size, so thatthe angle extended by the soure as seen by the observer is very small and the observer e�etively at �in�nity�. In order toalulate the �ux density Fν that reahes the observer at an observed time T we integrate the luminosity L′

ν′ over the EqualArrival Time Surfae (EATS; see Figure 1), i.e. the lous of points from whih photons that are emitted by the shell at aradius R, angle θ relative to the line of sight, and a lab frame time t, reah the observer simultaneously at an observed time
T (for full derivation see Appendix A).2.3 Expeted parameters values for internal shoksThe internal shoks model is the most popular model for the prompt GRB emission. Moreover, our model is very suitablefor internal shoks. Therefore, we onsider it in the following. Here we alulate the salings of the various quantities withradius, that are expeted for the internal shoks model. First, when di�erent shells (i.e. parts of the out�ow with di�erentLorentz fators) ollide, they are expeted to be in the oasting phase, orresponding to m = 0. Moreover, for the simplestase of uniform shells, the strength of the shoks going into the two shells, as haraterized by the relative upstream todownstream Lorentz fator, Γud, is expeted to be roughly onstant with radius while the shok are rossing the shells. Theeletrons are expeted to be fast ooling, i.e. ool signi�antly on a timesale muh shorter than the shell rossing time of theshok, and therefore most of the emission is expeted to arise from a thin ooling layer behind the shok. Therefore our thinshell approximation is expeted to be reasonably valid. Admittedly, we use one emitting thin shell, orresponding to a singleshok front, while the shok going into the other shell is not expliitly modeled. One ould always model suh a seond shokby adding another thin emitting shell that turns on and o� at the same radii (R0 and Rf , respetively) but has a slightlysmaller or larger Lorentz fator. This will not introdue a big di�erene in the overall result, so for the sake of simpliity wedo not inlude this here.Now we turn to �nd the expeted saling of L′

ν′

p
and ν′

p with radius, under the assumption that the observed softgamma-ray range is dominated by synhrotron emission. For fast ooling, the peak frequeny ν′

p of the νFν spetrum is
ν′

m ≈ (eB′γ2
m)/(2πmec

2) where dNe/dγe ∝ γ−p
e for γe > γm where γm = (p − 2)/(p − 1)(ǫe/ξe)(mp/me)(Γud − 1), while

ǫe is the fration of the internal energy behind the shok in the power law distribution of the relativisti eletron, and ξeis the fration of all eletrons taking part in this power energy distribution (and an eletron-proton plasma is assumed forthe omposition of the out�ow). As mentioned above, Γud is expeted to be roughly onstant during the shell rossing (forroughly uniform olliding shells), and therefore γm would also be approximately onstant, so that ν′

p ∝ B′. The magneti�eld is expeted to be predominantly normal to the radial diretion, so that B′ ≈ B/Γ ∝ B for m = 0. Moreover, B ∝ R−1is expeted both for a magneti �eld onveted from the entral soure, and for a �eld generated at the shok that holdsome onstant fration (ǫB) of the internal energy behind the shok. Therefore, one expets the peak frequeny to evolveas ν′

p ∝ R−1. We have also assumed L′

ν′

p
∝ (R/R0)

a. For synhrotron emission L′

ν′,max ∝ NeB
′ ∝ R0 as the numberof emitting eletron is proportional to the radius, Ne ∝ R. Sine the ooling break frequeny sales as ν′

c ∝ R, we have
L′

ν′

p
≈ L′

ν′,max(ν
′

m/ν′

c)
−1/2 ∝ R1, implying a = 1.More generally (without speifying the emission mehanism) for roughly uniform shells with onstant Γud both the rateat whih partiles ross the shok and the average energy per partile are onstant with radius, implying a onstant rate ofinternal energy generation (dE′

int/dt′ ∝ R0), and therefore for fast ooling this also applies for the total omoving luminosity,
L′ ∼ ν′

pL′

ν′

p
∝ R0, and therefore d + a = 0. This is indeed satis�ed for synhrotron emission for whih d = −1 and a = 1, andholds more generally for other emission mehanisms in the fast ooling regime.For now on the values m = 0 and d = −1 derived in this part will be used throughout the paper. However, sine theexpressions do not beome muh simpler by speifying the value of a, we leave a in the simpler expressions, and use the valueof a = 1 for �gures only. In partiular, all the �gures showing lighturves in this paper use these parameter values, as well asthe mean BATSE values for the Band funtion spetral slopes: b1 = −0.25 and b2 = −1.25 (Preee et al., 2000).2.4 Relevant Times and TimesalesA photon emitted from the soure (at the origin) when the shell is ejeted from it (i.e. at a lab frame time tej when theshell radius is R = 0) arrives at the observer at an observer time Tej whih an be thought of as the observed ejetion timeof the shell. We de�ne T0 the initial radial time by T = Tej + T0 being the time at whih the �rst photons emitted reahthe observer (that is, photons emitted at a radius R0 along the line of sight). We also de�ne Tf the �nal angular time by

T = Tej + Tf being the time at whih the last photons that are emitted along the line of sight (from Rf and θ = 0) reah theobserver.For a onstant Lorentz fator with radius (m = 0), as expeted for internal shoks, the expressions for T0 and Tf are 2009 RAS, MNRAS 000, 1�23



Model for the prompt and high latitude emission in GRBs 5simple:
T0 =

(1 + z)R0

2cΓ2
0

, Tf = T0

„

1 +
∆R

R0

«

. (2)We also de�ne two normalized times (and their orresponding values at Tf ) that will be used in the following:
T̃ ≡ 1 + T̄ ≡

T − Tej

T0
, T̃f ≡ 1 + T̄f ≡

Tf

T0
= 1 +

∆R

R0
, (3)where T̃ = 1 (or T̄ = 0) orresponds to the onset of the spike � the very �rst photon that reahes the observer (emitted at

R0 on the line of sight). The main motivation for de�ning these two times is that they orrespond to the two most naturalhoies for the zero to, T̃ = 0 orresponding to the ejetion time of the shell, and T̄ = 0 orresponding to the onset of thespike in the lighturve. The hoie of the zero time is important for the de�nition of the temporal index in � 4.1, where weexplore these two hoies in detail. Moreover, it is more onvenient to use T̄ in some expressions and T̃ in others.3 RESULTS FOR INTERNAL SHOCKS WITH A BAND FUNCTION SPECTRUM3.1 Emission from a single radiusBefore to turn to the more generi ase of emission from a range of radii, we �rst onsider the limiting ase of emissionfrom a single radius R0. The peak frequeny is then ν′

p = ν′

0, and the luminosity is
L′

ν′ = L′

0S

„

ν′

ν′
p

«

R0δ(R − R0) , (4)whih after some algebra (see appendix A for details, and in partiular setion A3) we obtain the �ux:
Fν(T̃ > 1) =

(1 + z)

4πd2
L

L0T̃
−2S

„

ν

ν0
T̃

«

, (5)where dL and z are the luminosity distane and osmologial redshift of the soure, L0 ≡ 2Γ0L
′

0 and ν0 ≡ 2Γ0ν
′

0/(1 + z).Denoting Fs ≡ L0(1 + z)/(4πd2
L) and using the expliit expression for the Band funtion (eq. [1℄), the observed �ux reads

Fν(T̃ > 1)

Fs
=

8

>

<

>

:

T̃ b1−2(ν/ν0)
b1e(1+b1)[1−T̃ ν/ν0] T̃ 6 xbν0/ν ,

T̃ b2−2(ν/ν0)
b2xb1−b2

b e1+b2 T̃ > xbν0/ν .

(6)3.2 Emission from a �nite range of radiiIntegrating the luminosity (eq. (1)) over the Equal Arrival Time Surfae (for details of the alulation see appendix A,and in partiular its setion A4) leads to the following expression for the �ux:
Fν(T̃ > 1) = F0T̃

−2

»
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“

T̃ , T̃f

”2+a

− 1

–

S

„

ν

ν0
T̃

«

, (7)where F0 ≡ (1 + z)L0/[(2 + a)4πd2
L]. This an be expliited as:

Fν(T̃ > 1)
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=
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>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

(ν/ν0)
b1 T̃ b1−2

“

T̃ 2+a − 1
”

e(1+b1)(1−T̃ ν/ν0) T̃ < min
h

T̃f , xbν0/ν
i

,

(ν/ν0)
b1 T̃ b1−2

h

T̃ 2+a
f − 1

i

e(1+b1)(1−T̃ ν/ν0) T̃f < T̃ < xbν0/ν ,

(ν/ν0)
b2 T̃ b2−2

“

T̃ 2+a − 1
”

xb1−b2
b e1+b2 xbν0/ν < T̃ < T̃f ,

(ν/ν0)
b2 T̃ b2−2

h

T̃ 2+a
f − 1

i

xb1−b2
b e1+b2 T̃ > max

h

T̃f , xbν0/ν
i

.

(8)Note that the observed funtion has exatly the same shape as the loal spetral emissivity � a pure Band funtion. Thisours only for m = 0 and d = −1.In terms of number of photons N per unit photon energy E, area A and observed normalized time T (whih is simplyequal to Fν/hE), this an be expressed as
dN

dEdAdT
(E, T̃ > 1) = T̃−1

»

min
“

T̃ , T̃f

”a+2

− 1

–

B

„

E

E0
T̃

«

, (9)where
B(z) = Bnorm

(

zb1−1e−z z 6 b1 − b2

zb2−1(b1 − b2)
b1−b2e−(b1−b2) z > b1 − b2

(10) 2009 RAS, MNRAS 000, 1�23



6 F. Genet and J.Granotis the familiar Band funtion with a normalization onstant Bnorm, where z = (E/E0)T̃ = (1 + b1)x, while E = hν and
E0 = hν0 are the orresponding photon energies (the more ommon notation is αBand = b1 − 1 and βBand = b2 − 1).4 PROPERTIES OF THE SINGLE PULSE EMISSIONNow that we have derived the observed �ux for a single emission episode (or single pulse in the light urve), we studyits temporal and spetral behaviour for any radial width ∆R > 0 of the emitting region. We remind the reader that weonsider only internal shoks, and use the orresponding model parameter values (a = 1, m = 0 and d = −1) for fast oolingsynhrotron emission, with a Band funtion emission (and observed) spetrum (exept in some ases where the disussion anstay general without muh ompliation). Some of the results may not hold for more general parameter values of m or d, andwe point this out when relevant. For all �gures showing lighturves (throughout the whole paper), the panels or �gures witha linear sale show Fν/Fmax where Fmax ≡ Fν(T̃f ), while panels or �gures with a logarithmi sale show Fν/F0 where weremind the reader that F0(a = 1) = (1 + z)L0/(12πd2

L). All �gures showing temporal evolution of parameters or lighturveswith a logarithmi time axis in this setion use T̄ , as this shows the early behaviour muh more learly than for T̃ .From eq. (7), for reasonable values of the parameters T̃f , b1, b2, ν/ν0, and a, the pulse peaks at T = Tej + Tf (T̃ = T̃f ).While this is generally the ase, for some ombinations of parameters (often involving relatively large values of T̃f ) the pulsehas a round peak and starts deaying before T̃f .For T̃ < 1, the Equal Arrival Time Surfae (EATS) does not interset the emission region and no photons reah theobserver (its outermost radius RL is smaller than R0): Fν(T̃ < 1) = 0. When 1 6 T̃ 6 T̃f (R0 6 RL 6 Rf ), the EATSintersets the emission region but does not yet enounter its outer edge (in partiular the observed �ux is independent of theradial extension ∆R of the emission region); the fration of the EATS within the emission region inreases with time, as doesthe maximal angle θmax relative to the line of sight from whih photons reah the observer, (θmaxΓ0)
2 = (T̃ −1). When T̃ > T̃f(RL > Rf ), the front part of the EATS is outside the emission region, and its parts inside the emission region are at inreasingangles from the line of sight. In partiular, photons reah the observers from θmin 6 θ 6 θmax where (θminΓ0)

2 = (T̃ − T̃f )T̃−1
f .Note that at T̃ ≫ T̃f , well into the tail of the pulse, θmax/θmin ≈ T̃

1/2
f , so that the emission omes from a rather narrowrange of angles θ, whose typial value inreases linearly with T̃ . Moreover, for T̃ > T̃f , the �ux ratio for two idential sets ofemission parameters that di�er only in their T̃f (denoted by subsripts 1 and 2), is onstant in time and equal to

Fν(T̃ > T̃f,2 > 1)

Fν(T̃ > T̃f,1 > 1)
=

T̃ 2+a
f,2 − 1

T̃ 2+a
f,1 − 1

,
Fν(T̃ > T̃f,2 > 1)

Fν(T̃ > T̃f,1 = 1)
=

T̃ 2+a
f,2 − 1

2 + a
. (11)The �rst ratio approahes ∆R2/∆R1 for ∆R1,2 ≪ R0, sine this orresponds to the thin shell limit, while the overall emittedenergy is proportional to ∆R, sine L′

ν′ (R) ≈ L′

ν′(R0) is almost independent of R within the very thin emission region. Forthe seond ratio, the denominator is the �ux for a delta funtion emission with radius, for whih the total emitted energyis held �xed, and therefore the ratio approahes ∆R2/R0 ≪ 1 in the limit of a thin emission region. The fat that the �uxratio is onstant in time at T̃ > T̃f holds only for m = 0 and d = −1, and means that the �ux at these late times (typiallyafter the peak of the spike, whih is usually at T̃f ) has the same time dependene regardless the width of the emitting region(∆R). This an simplify the alulation of the �ux for a family of pulses that di�er only in ∆R: one an alulate the �uxfor ∆R = 0 (T̃f = 1) and apply it to T̃ > T̃f , multiplied by a fator [T̃ 2+a
f − 1]/(2 + a) for any value ∆R > 0 (T̃f > 1).Moreover, it is also su�ient to alulate the �ux for ∆R → ∞ and apply it to T̃ 6 T̃f (this holds muh more generally;Granot, Cohen-Tanugi & do Couto e Silva 2008).Figure 2 shows light urves for a single pulse in both linear and logarithmi sales, for di�erent values of the normalizedfrequeny ν/ν0. The peak time is at T̃f = 2 (equivalent to T̄f = 1). The light urves sample the two parts of the Bandfuntion both before and after the peak time. The di�erenes between the light urves for di�erent frequenies re�et thespetral evolution, and in partiular the evolution of the spetral break frequeny νp. At higher observed frequenies ν thehange in the spetral and temporal indexes assoiated with the passages of νp ours earlier. The shape of a pulse (left panelof �gure 2) an vary from being very spiky (dotted line) to a rounder peak (dot-dashed line), depending on the frequeny. Itmay thus provide some latitude in the �tting of atual observed pulses.Figure 3 shows the dependene of the same pulse on T̄f for three values of the normalized frequeny ν/ν0 (0.01, 0.1 and

1). It is evident from the logarithmi sale �gures that at T̄ 6 T̄f the �ux is independent of ∆R (and therefore of T̄f ), andthat at T̄ > T̄f all the light urves have the same time dependene (i.e. their �ux ratio is onstant in time). At any given timethe spetrum is independent of ∆R (this is valid only for m = 0 and d = −1). The bottom right panel of this �gure showslinear sale to help visualise a ase where the peak of the pulse is before T̃f .Figure 4 shows the dependene of the same pulse on the parameter a for three values of the normalized frequeny ν/ν0(0.01, 0.1 and 1). We an see that, ompared to the ase for a = 1, when a inreases the peak is at T̄f and beomes sharper.When a dereases the pulse beomes larger, the slope for T̄ > T̄f beoming loser to zero up to a point where is is zero. For 2009 RAS, MNRAS 000, 1�23



Model for the prompt and high latitude emission in GRBs 7values of a even smaller, the peak of the pulse ours before T̄f and beomes rounder; in this ase at T̄f only a sharp breakis observed.4.1 Loal temporal and spetral indexesIt is natural to de�ne the loal values of the spetral and temporal indexes as the logarithmi derivatives of the �ux densitywith respet to frequeny and time, respetively. For the spetral index, there is no ambiguity and β ≡ −d log Fν/d log ν. Forthe temporal index, however, we must hoose a referene time, and the hoie is not obvious. for this reason we onsider twoalternative de�nitions: αej ≡ −d log Fν/d log T̃ , that uses the ejetion time as the referene time, and αon ≡ −d log Fν/d log T̄that uses the onset of the spike as the referene time. The �gures in this subsetion use the observed frequeny ν instead of itsnormalized value ν/ν0, in order to provide a more realisti example that ould be at least qualitatively ompared with data,and inlude the BAT and XRT energy ranges. For these �gures we onsider E0 = 2Γ0E
′

0/(1 + z) = 300 keV, whih ould forexample orrespond to E′

0 = 1 keV, Γ0 = 300 and z = 1.Figure 5 shows the evolution of the temporal indexes αej and αon during a pulse (See appendix B for the detailedevolution of the temporal and spetral slopes). The temporal index αej starts at very negative values and gradually inreases,until at T̄f it makes an abrupt jump to its value during the deaying part of the pulse, whih is exatly 2 + β (see eq. [B7℄).The temporal index αon starts at early times, T̄ ≪ 1, either at −1 for T̄f > 0 and T̄ < T̄f , or from 0 for T̄f → 0. Moreover,for 0 < T̄f ≪ 1, αon ≈ −1 for T̄ < T̄f and αon ≈ 0 for T̄f < T̄ ≪ 1 (see eqs. [B2℄ and [B4℄). Note that when αon jumps fromits negative value to a positive value at T̄ = T̄f (i.e. at the peak of the spike), it reahes the same funtion of T̄ , independentof the time of the jump, T̄f , and therefore the same funtion also holds for T̄f = ∆R/R0 = 0 (see eqs. [B2℄ and [B4℄). At latetimes, T̄ ≫ 1 and T̄ > T̄f , the HLE relation is approahed, αon ≈ 2 − b2.The left panel of �gure 6 shows the evolution of 2 + β (where β is the spetral index) with the temporal indexes αej and
αon. The spetral index naturally softens (β inreases with time), similar to what is typially observed (at least qualitatively),until it reahes −b2 at late times (T̄ > xbν0/ν − 1). The hange in β ours earlier at higher photon energies. At T̄ > T̄f ,
αej = 2 + β while αon only approahes 2 + β at late times.In order to get a better idea of how the observed spetral index β is expeted to behave in Swift XRT observations, wealulate its average values over the XRT energy range (0.2�10 keV). We de�ne two average values, by integrating over eitherthe frequeny ν or its logarithm log ν:
〈β〉ν ≡

1

(νmax − νmin)

Z νmax

νmin

dν β(ν) , 〈β〉log ν ≡
1

log(νmax/νmin)

Z νmax

νmin

dν

ν
β(ν) = −

log(Fνmax/Fνmin)

log(νmax/νmin)
. (12)The middle panel of �gure 6 shows the evolution of these two averages as well as the values of β at νmin = 0.2 keV,

νmax/2 = 5 keV and νmax = 10 keV. As expeted, 〈β〉ν gives a larger weight to higher frequenies ompared to 〈β〉log ν , andits value it is usually very lose to the spetral slope at νmax/2 (5 keV), exept when the break frequeny νp of the Bandspetrum passes through the XRT range, and the hange in β within this range is the largest. Therefore, 〈β〉log ν appears tobetter re�et the spetral slope measured over a �nite frequeny range.4.2 SpetrumThe loal spetral emissivity in the omoving frame is taken to be a Band funtion. We have seen previously that forthe parameter values relevant for internal shoks (m = 0, d = −1), the observed spetrum is also a pure Band funtion.This is evident in the right panel of �gure 6, whih shows the temporal evolution of the observed spetrum in our model. Itresults from the fat that for these parameter values the observed peak frequeny νp is onstant along the EATS. We have
νp/ν0 = Ep(T )/E0 = 1/T̃ = 1/(1 + T̄ ) (see eq. (A18)) whih is independent of T̄f . This behaviour is evident in the rightpanel of �gure 6, where Ep/E0 is 1 at the onset of the spike (T̄ = 0), Ep/E0 = 1/2 at the peak of the spike (T̄ = T̄f = 1),and Ep/E0 dereases roughly linearly with T̄ at later times, during the tail of the pulse.5 COMBINING PULSES TO OBTAIN THE PROMPT EMISSIONThere is good observational evidene that the steep deay phase is the tail of the prompt emission (O'Brien et al. 2006).Within our model, the prompt emission is the sum over a �nite number of pulses, and therefore the steep deay phase is thesum of their tails. In this setion we provide examples of ombining several pulses to model the prompt emission, and studythe e�et of varying the di�erent pulse parameters. To this end, we start with a simple prompt emission model onsistingof six pulses that are idential exept for their ejetion time Tej (see Fig. 7a). Eah pulse orresponds to a single emissionepisode of a partiular shell that was ejeted at Tej,i (for i'th pulse), has an initial radial time T0,i, and a �nal angular time of
Tf,i. Then, we study the e�et of hanging the other model parameters one by one among the pulses. All lighturves in this 2009 RAS, MNRAS 000, 1�23



8 F. Genet and J.Granotsetion are drawn against T , as the ejetion time is di�erent for eah pulse (and then the de�nition of a T̃ T̄ would di�er foreah pulse). In Fig. 7b the peak �ux Fpeak is varied. Next, we vary T0 and/or Tf . In Fig. 7, T0 is varied while Tf/T0 remainsonstant. In Fig. 7d, Tf and ∆R/R0 vary while T0 and R0 remain onstant. In Fig. 7e, T0 and ∆R/R0 vary while Tf and Rfremain onstant. Eah of these panels show the light urve in logarithmi sales, T = 0 is set to the onset time of the �rstpulse, whih means that Tej,1 = −T0,1, thus showing the modeled prompt from a time lose to what would be the trigger timefor an observed burst. The red solid line represents the total prompt emission (the sum of all the pulses), while the blak nonsolid lines are the individual underlying pulses. All the examples shown here of the prompt emission are for ν/ν0 = 0.1.In the ase of six equal pulses (Fig. 7a), later pulses appear to deay muh more steeply just after their peak in alogarithmi sale with the zero time near the beginning of the �rst pulse. At very late times the relative ontribution fromthe di�erent pulses beomes almost the same. As the only parameter that varies between pulses is the ejetion time, Tej, thishange in slope must depend only on it. Noting that the temporal slope is α ≡ −d log Fν/d log T = αej/(1− Tej/T ), and thatthe value of αej just after the peak is independent of Tej (it depends only on T̃f ; see eq. [B6℄), we an see that the value of αjust after the peak sales as αpeak = αej,peak(1 + Tej/Tf ), sine T = Tej + Tf is the time of the peak of the pulse. Sine thepulses are equal they have the same Tf and αej,peak, it is lear that αpeak inreases with Tej. At late times when T ≫ Tej, αapproahes αej = 2 + β.When varying Fpeak while �xing the other parameters (see Fig. 7b), the relative �ux from eah pulse at very late timesis proportional to its Fpeak, so that the largest ontribution is from the pulse with the largest Fpeak.At late times the observed �ux density of a single spike sales as Fν ∝ T̃ b2−2 (see, e.g., eq. [8℄). If at the peak time ofthe spike, whih for simpliity is assumed here to be at T = Tej + Tf (as is usually the ase), the observed photon energy isat the high-energy part of the Band funtion, E > E∗ ≡ E0(T0/Tf )xb or ν > ν∗ ≡ ν0(T0/Tf )xb, then (using eq. [8℄) the �uxfrom the peak onwards is simply given by
Fν>ν∗

(T > Tej + Tf ) = Fν,peak

„

T − Tej

Tf

«b2−2

, (13)while for E/E∗ = ν/ν∗ < 1 the expression is slightly more ompliated,
Fν<ν∗

Fν,peak
=

8

>

>

<

>

>

:

“

T−Tej

Tf

”b1−2

e−(1+b1)(ν/ν0)(T−Tej−Tf )/T0 Tf 6 T − Tej 6 T0xbν0/ν ,

“

T0xbν0
Tf ν

”b1−b2
eb2−b1+(1+b1)(Tf /T0)(ν/ν0)

“

T−Tej

Tf

”b2−2

T − Tej > T0xbν0/ν ,

(14)but the qualitative behaviour is still rather similar. Therefore, the �ux ratio of two pulses with ejetion times Tej,1 6 Tej,2and a omparable Ep(T̄f ) = (T0/Tf )E0 (as is usually the ase for di�erent pulses in the prompt emission of the same GRB),at late times (T > max(Tej,1 + Tf,1, Tej,2 + Tf,2) and T − Tej,2 ≫ Tej,2 − Tej,1) is approximately
Fν,1(T )

Fν,2(T )
∼

Fpeak,1

Fpeak,2

„

Tf,1

Tf,2

«2+β

, for min[T̄f,1, T̄f,2] > 1 and T − Tej,2 ≫ Tej,2 − Tej,1 , (15)where β = −b2 for ν > ν∗ while β is generally intermediate between −b2 and −b1 for ν < ν∗.Fig. 7 demonstrates this niely for a series of six pulses with the same Fpeak but dereasing Tf , so that the later pulseswith a smaller Tf deay faster and beome sub-dominant at late times. At the latest times the �rst spike, whih has the largest
Tf , dominates the observed �ux in the tail emission. A similar behaviour is also seen in Fig. 7d. In Fig. 7e both Fpeak and Tfare the same between the di�erent pulses, and therefore their tail �uxes at late times are similar. In Fig. 7, T0 and Tf arevaried while Tf/T0 is onstant, and it an be seen that this orresponds to a resaling of the pulse width (its typial duration)without e�eting its shape. In Fig. 7d, Tf and Tf/T0 are varied while T0 is onstant, and this niely demonstrates how theshape of the pulse depends on Tf/T0. Typially, the rise time of a pulse is Tf −T0 while its deay time is Tf , so that the ratioof the rise and deay time is 1 − T0/Tf . In Fig. 7e, T0 and Tf/T0 are varied while Tf is onstant. In this ase the rise timevaries onsiderably between the di�erent pulses while the deay timesale and the late time tail of the pulses are pratiallythe same. This arises sine the tail is dominated by emission from R ∼ Rf , that in this ase is very similar for all the pulses.Moreover, for the partiular hoie of parameters in Fig. 7e, where Ep(T̄f ) = (T0/Tf )E0 and E∗ = xbEp(T̄f ) remain onstantfor all the pulses, their late time tails have the same �ux normalization. This an be understood from eq. (14), where the �uxfor T̃ > max(T̃f , xbν0/ν) an be written as Fν/Fν,peak = (E/E∗)

b2−b1 exp[(b1 − b2)(E − E∗)/E∗]T̃
b2−2.Fig. 7f shows a more realisti example of the prompt emission, in whih a larger number of model parameters is variedbetween the di�erent pulses. This example ontains only three pulses in order to be learer. It an be seen that the �uxduring the deaying phase is initially dominated by the last pulse just after its peak (T > 27 s), but the seond peak beomesdominant (even if only by a small fator) as early as T ∼ 37 s, and �nally at T ∼ 140 s the �rst pulse beomes the dominantone. This demonstrates that di�erent pulses an dominate the observed �ux during the ourse of the steep deay phase. Whihpulses would ontribute more to the steep deay phase an be estimated aording to their typial width (or duration), peak�ux, and peak time. The peak time is most important at the beginning of the steep deay phase, where the last spike alwaysdominates just after its peak if its peak is above the �ux from the other spikes. Later on the relative ontribution of thedi�erent spikes an be estimated aording to eq. (15). Sine the late time �ux sales as FpeakT

2+β
f and usually 0 . β . 2, 2009 RAS, MNRAS 000, 1�23



Model for the prompt and high latitude emission in GRBs 9the power of Tf (whih orresponds to the typial width of the spike) is higher than that of Fpeak, so that wider spikes tendto dominate over narrower spikes, even if their peak �ux is somewhat lower.One should be very areful when �tting atual data with suh a model. Fig. 8 shows what an happen if beause of noisydata or oarse time bins, a prompt emission (red solid line) whih is atually omposed by several pulses (three, six or twelvein the ases shown; blak non-solid lines) is �tted by a single broad pulse (green solid line). In this ase the tail of the promptemission an be signi�antly overestimated at late times, by a fator that tends to inrease with the true number of underlyingpulses. This an be understood by the simple example of omparing a single spike with N idential spikes with the same peak�ux but a duration smaller by a fator of N , for whih the sum of their late time tail �ux would be smaller than that of thesingle pulse by a fator of ∼ N1+β . However, in more realisti examples, the late time �ux would often be dominated by thewidest underlying pulse, so that its width would be more important than the total number of narrower underlying spikes. Itis important to keep this e�et in mind when onfronting suh a model with atual data.6 DISCUSSION AND CONCLUSIONSWe have presented and explored a model for the prompt GRB emission and its high latitude emission (HLE) tail. Thismodel is physially motivated and realisti: it onsists of a �nite number of emission episodes, eah of whih orresponds toa single spike in the prompt light urve, and is modeled by a relativistially expanding thin spherial uniform shell emittingisotropially in its own rest frame within a �nite range of radii. Our model thus desribes the prompt emission and the steepdeay pahse as a whole from its very start to its late tail. Yet this model is easy to use (fully analyti in its simplest formdesribed here), making it partiularly suitable for detailed ombined temporal and spetral global �ts to the prompt GRBemission and the following steep deay phase (SDP). Suh �ts an provide a striter test of the HLE model for the SDPompared to most previous models, sine we use a single self-onsistent model to �t both the prompt emission and the SDP,while most previous models �t only the SDP and are largely deoupled from the details of the prompt emission. Moreover,our model is also physially motivated, and more realisti than previous models. We have derived analyti expressions for the�ux in the realisti ase of a Band funtion spetrum (eqs. [7℄ and [8℄), whih onsists of two power laws that smoothly joinat some typial photon energy.The temporal evolution of the instantaneous values of the temporal (α) and spetral (β) indexes for a single emissionepisode was studied, orresponding to a single observed pulse in the light urve. The de�nition of α is not unique as it dependson the hoie of referene time. We explored two options for the referene time, either the ejetion time (αej) or the onsettime of the spike (αon), and found that for the former the HLE relation (αej = 2 + β) is satis�ed from immediately after thepeak of the spike (T̄ > T̄f ), while for the former it is only approahed at late times (αon ≈ 2 + β at for T̄ > T̄f and T̄ ≫ 1).We have intentionally hosen a simple model to desribe the pulses, in order to redue the number of free parameters. Fora single emission episode (or pulse), in the most generi ase there are ten free parameters: the power m = −2d log Γ/d log R,
d = d log ν′

p/d log R, a = d log L′

ν′

p
/d log R, the normalization fator F0 (or L0), three additional parameters for the Bandfuntion (the two spetral slopes, b1 and b2, as well as the peak energy at the onset of the pulse E0), the two timesales T0and Tf , and the ejetion time Tej. We have the general onstraint ∆R > 0, whih implies T̃f = 1 + ∆R/R0 > 1. Fousingon the internal shoks model �xes some of these parameters: as the out�ow is typially in the oasting phase, m = 0, whilefor synhrotron emission from fast ooling eletrons d = −1 and a = 1. Sine we expet ∆R/R0 = T̄f ∼ 1 we an �x T̄f ∼ 1(although a wider range, suh as 0.2∆R/R0 . 5, may still be onsidered as plausible). Fixing m, d, a, and Tf/T0 in thismanner would leave only six free parameters. For a prompt emission with several pulses, one may be able in some ases toneglet the spetral evolution and use the same values of b1, b2, and E0 for all the di�erent pulses (or at least two of them,e.g. b1 and b2), whih leads to a total number of free parameter of 3(Npulses + 1) (or 4Npulses + 2 if E0 annot be �xed for allthe pulses) for a burst with Npulses pulses.The shape of the pulses in our model an vary onsiderably, from very spiky peaks to rounder ones, from a very sharprise to shallower rise, and so on (see Figs. 2 � 4). This an help reprodue some of the observed diversity in the shape of spikein the prompt light urve. This appears to be a promising feature of our model. However, we have an abrupt hange in thetemporal index at T̄f , that usually orresponds to a sharp peak of the spike. This is aused by our model assumption thatthe emission abruptly shuts o� at the outer emission radius Rf . Therefore, we also onsider an alternative and more realistiassumption, whih leads to a rounder peak for the spikes, where the emission more gradually turns o� at R > Rf . This isdone by introduing and exponential turn-o� with radius of the omoving spetral luminosity, L′

ν′ (R), and is examined inAppendix C. The more gradual the turn-o� of the emission with radius the rounder the peak of the pulse in the light urve.This an help �t the observed variety of pulse shapes even better (at the ost of adding an additional free parameter).In the partiular ase of synhrotron emission from internal shoks, we �nd that the observed spetrum has the sameshape as the emitted one, whih in our ase is modeled as a Band funtion. The observed peak photon energy of the Bandfuntion dereases with time, Ep(T̃ ) = E0/T̃ , naturally leading to a softening of the spetrum with time, similar to what isobserved by Swift. Thus, our model an at least qualitatively reprodue the main temporal and spetral features observed by 2009 RAS, MNRAS 000, 1�23



10 F. Genet and J.GranotSwift. The spetral index β evolves from its value below Ep (β = −b1) to its value above Ep (β = −b2), where the transitionthat orresponds to the passage of Ep through the observed energy band ours at earlier times for higher observed photonenergies (or frequenies).When modeling the prompt emission by ombining several pulses, the SDP is initially dominated by the last pulse (justafter its peak, if it is above the �ux fro the other pulses), but an later be dominated by the tail of other pulses. The relativeontribution of a pulse to the late time �ux sales as ∼ FpeakT 2+β
f , and therefore wider pulses (with a larger Tf ), and to alesser extent pulses with a larger peak �ux (Fpeak), tend to dominate the late time �ux, deep into the SDP. Moreover, oftenthe ontribution to the total �ux from the tails of several pulses an be omparable, so it annot be adequately modeledusing a single pulse model. Therefore, we aution here that modeling the steep deay phase using the HLE of a single pulse,

Fν ∝ (T − Tref)
−(2+β), may lead to wrong onlusions, and all the more so if the referene time Tref is arbitrarily set to theGRB trigger time. Even if Tref is set to the onset time of the last spike, this may still be a bad approximation in many asessine (i) we �nd that αej = 2 + β (with Tref = Tej) rather than αon (with Tref = Tej + T0, orresponding to the onset of thespike) while αon approahes αej = 2 + β only at late times well after the peak of the last pulse, and (ii) at suh late timesthe �ux often beomes dominated by the tails of earlier pulses.Our model an produe di�erent shapes for the tail of the prompt emission, from lose to a power law (whih an havea di�erent temporal index than its asymptoti late time value) to a urved shape with dereasing temporal index α. Thisis qualitatively onsistent with observations, where these type of behaviour are observed. We have demonstrated that justafter the peak of the last pulse, the deay index of the prompt emission tail an reah very large values, far greater than thetypial average value observed during the SDP by Swift, of 3 . α . 5 (Nousek et al. 2006). Larger values for the temporalindex, however, are sometimes observed lose to the end of the prompt emission (for example in GRB050422, GRB050803 orGRB050916; see �gure 2 from O'Brien et al. 2006), in aord with our model.Beause of the large number of free parameters, the �tting of atual data should be handled with are, and there may bevarious degeneraies involved. The results of suh �ts to data should also be taken autiously beause of the di�ulty in prop-erly resolving distint pulses in the prompt emission. For di�erent reasons (suh as noisy data, oarse time bins, pulse overlap,et.), a group of distint pulses may be �tted by a single broader pulse, resulting in an over-predition of the �ux during theSDP, as well di�erent spetral and temporal evolution, whih might lead to a misinterpretation of the SDP. Nevertheless, whenhandled with are, a �t of our model to a good ombined data set of the prompt GRB emission and its SDP tail an serve as apowerful test of the HLE model for the SDP, and thus help distinguish between di�erent models for the prompt GRB emission.J. G. gratefully aknowledges a Royal Soiety Wolfson Researh Merit Award.
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12 F. Genet and J.Granot pulse number 1 2 3 broad pulse
Tej [s℄ -2 15 35 -4
T0 [s℄ 2 4 5 4
Tf 16 16 25 36
Fpeak/F0 0.85 1 0.12 1.03Table 1. Parameters of the pulses for �gure 8 (top panels)pulse number 1 2 3 4 5 6 broad pulse

Tej [s℄ -2 1 16 26 36 46 -4
T0 [s℄ 2 2 2 1.5 2 2 4
Tf 6 10 6 6 8 8 36
Fpeak/F0 0.25 0.8 0.9 1 0.4 0.2 1.03Table 2. Parameters of the pulses for �gure 8 (middle panels)pulse number 1 2 3 4 5 6 7 8 9 10 11 12 broad pulse

Tej [s℄ -2 -1 5 11 19 20 26 31 36 44 51 66 -4
T0 [s℄ 2 2 2 2 1 2 2 2 3 2 2 3 4
Tf 4 6 6 6 2 5 6 6 7.5 8 6 6 36
Fpeak/F0 0.25 0.5 0.75 0.85 0.75 0.85 0.95 0.55 0.35 0.25 0.11 0.11 1.03Table 3. Parameters of the pulses for �gure 8 (bottom panels)
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Model for the prompt and high latitude emission in GRBs 13

Figure 1. Illustration of Equal Arrival Time Surfaes (EATS). The partiular EATS shown here are for a oasting shell (m = 0), andare ellipsoids (Rees 1966) with an elliptiity ǫ = β and a semi-major to semi-minor axis ration of Γ (whih for display purposes is only3 here). The red solid lines orrespond to the inner (R0) and outer (Rf ) radii of the emission region. We all RL(T ) the outermostradius of the EATS at observed time T . Shown are the EATS for the limiting ases orresponding to RL = R0 (T = Tej + T0; thikshort-dashed line) and RL = Rf (T = Tej +Tf ; thik long-dashed line) as well as representative ases for RL < R0, R0 < RL < Rf and
RL > Rf (dotted lines). For RL < R0 the EATS does not interset the emission region, and therefore the �rst photons start reahingthe observer only at T = Tej + T0 from R = R0 along the line of sight. At R0 < RL < Rf the �ux typially rises (for ∆R . R0). At
T = Tej + Tf the last photons from the line of sight (at R = Rf ) reah the observer, while for T > Tej + Tf the front part of the EATS,whih would otherwise ontribute the most to the observed �ux, stiks outside of the emission radius resulting in a sharp deay in theobserved �ux, whih is then dominated by emission from large angles relative to the line of sight (HLE).

Figure 2. Lighturves of a single pulse at di�erent normalized frequenies, ν/ν0. The low and high energy slopes of the spetrum are
b1 = −0.25 and b2 = −1.25, while a = 1. ∆R/R0 = 1, so that T̃f = 2 and T̄f = 1. Left: Normalized �ux density shown as a funtionof T̃ in linear sale. Right: Flux density shown as a funtion of T̄ in logarithmi sale. 2009 RAS, MNRAS 000, 1�23



14 F. Genet and J.Granot

Figure 3. The same pulse as in �gure 2 is shown for di�erent values of T̄f for (ν/ν0) = 0.01, 0.1, and 1 in the �rst, seond and thirdpanel respetively (in logarithmi sale). The fourth panel shows the ase (ν/ν0) = 1 in linear sale in order to show the shape of a pulsehaving its peak before T = Tf . The normalized �ux density is shown as a funtion of T ×T0,i/Tfi
where the subsript i denotes the i'thpulse, so that all the Tf,i would appear to oinide, and the deay times of the di�erent pulses would appear to be the same.

 2009 RAS, MNRAS 000, 1�23
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Figure 4. E�et of the variation of a on the shape of a pulse for (ν/ν0) = 0.01, 0.1, and 1 in the �rst, seond and third panel respetively(in logarithmi sale). We an see that inreasing a makes the pulse sharper. The onstant parameters are T0 = 1 s and Tf = 2 s andthe low and high energy spetral slopes are b1 = −0.25 and b2 = −1.25.

Figure 5. Evolution of the temporal indexes αej = −d log Fν/d log T̃ (left panel) and αon = −d log Fν/d log T̄ (right panel) withnormalized observed time T̄ , at di�erent observed photon energies (for E0 = 300 keV). Di�erent line styles are used for the di�erentenergies. The olor oding shows the temporal indexes for several values of T̄f = ∆R/R0: 0 (green), 0.1 (blue), 1 (blak) and 10 (red).The low and high energy spetral slopes are b1 = −0.25 and b2 = −1.25, while a = 1.
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16 F. Genet and J.Granot

Figure 6. Left panel: Comparison of the evolution of the spetral (β � thin lines) and temporal (αej � thik lines � and αon � verythik lines) indexes at di�erent photon energies (E0 = 300 keV). The low and high energy spetral slopes are b1 = −0.25 and b2 = −1.25,while a = 1. Middle panel: Evolution of spetral index β over the Swift XRT energy range (νmin < ν < νmax with νmin = 0.2 keVand νmax = 10] keV. Shown are the loal values of β at νmin (short dashed line), νmax/2 (dotted line) and νmax (long dashed line),as well as the average values of β over the XRT range, taken either over ν (thin solid line) or over log ν (thik solid line). The lowand high energy spetral slopes are b1 = −0.25 and b2 = −1.25, while a = 1. Right panel: Evolution of the observed spetrum withtime. The spetrum, νFν/(ν0F0), is shown as a funtion of the normalized frequeny, ν/ν0, for di�erent values of the normalized time,
log10(T̄ /T̄f ), where we have used T̄f = 1. The red thin lines orrespond to the rising stage of the pulse (T̄ < T̄f ), while the blak thiklines are for its peak (T̄ = T̄f ) and deaying stage (T̄ > T̄f ). The low and high energy spetral slopes of the spetrum are b1 = −0.25and b2 = −1.25, while a = 1.
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Model for the prompt and high latitude emission in GRBs 17

Figure 7. For all panels, The blak lines show the individual pulses, while the red line shows the total prompt emission. The normalizedobserved frequeny is ν/ν0 = 0.1 (a): Prompt emission with six pulses, all having the same following parameters: m = 0, d = −1, a = 1,
b1 = −0.25, b2 = −1.25, T0 = 2 s, T̄f = ∆R/R0 = 3 and Fpeak/F0 = 1. The ejetion times Tej are (from the �rst to the last pulse):
−2 s, 8 s, 18 s, 28 s, 38 s and 48 s. (b): Same as top left panel, exept for varying Fpeak/F0, whih is from the �rst to the last pulse:
0.1, 0.5, 1, 0.8, 0.3, and 0.2. (): Same as top left panel exept for varying T0 while ∆R/R0 = 3 remains onstant, whose values are(from �rst to last pulse): 6 s, 5 s, 4 s, 3 s, 2 s, 1 s, whih orrespond to Tf = 24 s, 20 s, 16 s, 12 s, 8 s, 4 s. To keep tej,1 = −T0,1 theejetion times in this ase are: −6 s, 4 s, 14 s, 24 s, 34 s and 44 s. (d): Same as top left panel exept for varying ∆R/R0 while keeping
R0 and therefore T0 onstant. The values of ∆R/R0 are (from �rst to last pulse): 5, 4, 3, 2, 1, 0. Sine T0 = 2 s, this orrespondsto Tf = (1 + ∆R/R0)T0 = 12 s, 10 s, 8 s, 6 s, 4 s, and 2 s, respetively. (e): Same as top left panel exept for varying ∆R/R0 whilekeeping Rf onstant and therefore Tf and T0/R0 also remain onstant, while both R0 and T0 vary. From �rst to last pulse, ∆R/R0 =
10, 3, 1, 0.3, 0.1, and 0.03, and sine Tf = 8 s this orresponds to T0 = 0.727 s, 2 s, 4 s, 6.15 s, 7.27 s, and 7.77 s. The �nal peakfrequeny νp(T̃f ) = (T0/Tf )ν0 at Tf is also kept onstant, so that from the �rst to the last pulse ν/ν0 = 0.0091, 0.025, 0.05, 0.0769,
0.0909, 0.0971. (f): example of a more realisti prompt emission onsisting of three pulses with Tej = −1 s, 13 s, 21 s, T0 = 2 s for allthree pulses, ∆R/R0 = 3, 2, 1, and Fpeak/F0 = 0.7, 1, 0.7.
 2009 RAS, MNRAS 000, 1�23



18 F. Genet and J.Granot

Figure 8. Comparison between the emission from several partially temporally overlapping pulses (individual pulses are in non-solidblak lines, while the total prompt emission is in a solid red line), and a tentative �t to these pulses using a single broad pulse (thik solidgreen line). The same single broad pulse is used as a tentative �t for three di�erent prompt emissions, with 3 (top panels), 6 (middlepanels) and 12 (bottom panels) pulses. The parameters of the pulses are shown tables 1, 2 and 3. The normalized observed frequeny is
ν/ν0 = 0.1 Left panels: linear sale. Right panels: Logarithmi sale.
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Model for the prompt and high latitude emission in GRBs 19APPENDIXAPPENDIX A: DETAILED CALCULATION OF THE FLUXIn order to alulate the �ux density Fν that reahes the observer at an observed time T , we losely follow Granot,Cohen-Tanugi and DoCouto e Silva 2008: we integrate over the Equal Arrival Time Surfae (EATS), i.e. the lous of pointsfrom whih photons that are emitted by the shell at a radius R, angle θ relative to the line of sight, and a lab frame time t,reah the observer simultaneously at an observed time T . The lab frame time and the shell radius are related by
t − tej =

Z R

0

dr

βc
≈

R

c
+

R

2(m + 1)cΓ2
. (A1)From simple geometrial onsiderations, the EATS is given by

T − Tej

(1 + z)
= t − tej −

R cos θ

c
≈

R

c

»

1 − cos θ +
1

2(m + 1)Γ2

–

, (A2)Sine Γ ≫ 1 we an onsider only small emission angles θ ≪ 1, for whih cos θ ≈ 1 − θ2/2, so that the EATS reads
T − Tej

(1 + z)
≈

RL

2(m + 1)cΓ2
L

ˆ

ym+1 + y(m + 1)(ΓLθ)2
˜

, (A3)where we have introdued the normalized radius y ≡ R/RL, as well as RL = RL(T ) that is the largest radius on the EATSat time T , and ΓL ≡ Γ(RL). Sine RL is always obtained along the line of sight (at θ = 0),
RL = 2(m + 1)cΓ2

L
T − Tej

(1 + z)
= R0

„

T − Tej

T0

«

1
m+1

, T0 =
(1 + z)R0

2(m + 1)cΓ2
0

. (A4)Substituting eq. (A4) into eq. (A3) implies
1 − µ ≈

θ2

2
=

y−1 − ym

(m + 1)Γ2
L

,
dµ

dy
=

y−2 + mym−1

2(m + 1)Γ2
L

, (A5)where µ ≡ cos θ. The Doppler fator between the omoving frame and the lab frame is given by
δ ≡ (1 + z)

ν

ν′
=

1

Γ(1 − βµ)
≈

2Γ

1 + (Γθ)2
=

2(m + 1)ΓLy−m/2

m + y−m−1
. (A6)Remembering the reader that T = Tej + Tf is the time at whih the last photons that are emitted along the line of sight(from Rf and θ = 0) reah the observer (whih an be de�ned here by RL(Tej + Tf ) ≡ Rf ), from equation (A4) its generalvalue is

Tf = T0

„

Rf

R0

«m+1

= T0

„

1 +
∆R

R0

«m+1

. (A7)In the limit ∆R → 0, Tf → T0.The observed �ux is then obtained by integration over the EATS (Sari 1998; Granot 2005),
Fν(T ) =

(1 + z)

4πd2
L

Z
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1 + z

4πd2
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δ3dL′
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δ3(y)L′

ν′(y) , (A8)where dL′

ν′ = L′

ν′ (R)dνdφ/4π → L′

ν′(r)dµ/2 = 1
2
L′

ν′(R)(dµ/dy)dy due to symmetry around the line of sight (no dependeneof the emission on the azimuthal angle φ), L′

ν′(R) is the total omoving spetral luminosity of the shell (the emitted energyper unit time and frequeny), ν′ = ν(1 + z)/δ, and dL(z) is the luminosity distane of the soure. The limits of integrationover y are
ymin = min
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=

8

<

:
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, (A9)

ymax = min

„

1,
R0 + ∆R

RL(T )

«

=

8

<

:

1 T 6 Tej + Tf ,
“

T−Tej

Tf

”

−1/(m+1)

T > Tej + Tf .
.For T 6 Tej + T0 we have RL(T ) 6 R0 and therefore ymin = ymax = 1 and Fν(T ) = 0. This is sine the EATS does notinterset the emission region for RL < R0, and only touhes it at one point, (R, θ) = (R0, 0), for RL = R0 (T = Tej +T0). Theobserved �ux beomes non-zero for RL > R0, orresponding to T > Tej + T0. Substituting eqs. (A5) and (A6) into eq. (A8) 2009 RAS, MNRAS 000, 1�23



20 F. Genet and J.Granot�nally gives
Fν(T ) =

(1 + z)

2πd2
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ν′(y) . (A10)A1 Power-law spetrumWhile a single power law emission spetrum is not very realisti, it already shows many important properties that alsoappear for a Band funtion emission spetrum (onsidered in the main text). This is the reason why this ase is desribedhere. The luminosity is then
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, (A11)where the omoving spetral luminosity also sales as a power law with radius when the emission is over a �nite range ofradii, ν′

0 is a �xed frequeny in the omoving frame.A1.1 Emission from an in�nitely thin shell at radius R0We �rst study the ase where the whole emission omes from a single radius R0,
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yminδ(y − ymin) , (A12)where this is valid only for T̃ > 1 that orresponds to RL > R0, for whih ymin = R0/RL = [(T −Tej)/T0]
−1/(m+1). Eq. (A10)then implies
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T − Tej + mT0

(m + 1)T0

–b−2

. (A13)There are two times of partiular relevane here: the radial time Tr(R0) = T0 = (1 + z)R0/[2c(m + 1)Γ0], whih is the timepast Tej when the �rst photons start reahing the observer, and the angular time Tθ(R0) = (1+ z)R0/(2cΓ0) = (m+1)Tr(R0)that sets the time-sale for the width of the pulse. One an rewrite the expression for the observed �ux density as
Fν(T > Tej + T0) =
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–b−2

, (A14)where Ts = Tej + T0 − Tθ(R0) = Tej − mT0 is the referene time for the power-law �ux deay of the pulse, and is exatly
Tθ(R0) before the onset of the pulse. Sine the emission itself ours at one partiular radius (R0) it depends only on theLorentz fator at that radius radius, and is independent of m. In partiular, Tθ(R0) = (m + 1)T0 and the pulse peak �ux areindependent of m. The value of m a�ets only the onset time of the pulse (T = Tej +T0) and the referene time for the powerlaw �ux deay. For internal shoks we expet a oasting shell (m = 0) for whih Ts = Tej and Tθ(R0) = T0. It an easily beseen that the HLE relation, α = 2 + β where Fν ∝ T−αν−β, is satis�ed here as β = −b and α = 2 − b = 2 + β.A1.2 Emission from a region of �nite widthWe now turn to the ase where the emission omes from a range of radii between R0 and Rf = R0 + ∆R > R0. Theomoving spetral luminosity in this ase is L′

ν′ = L′

0 (R/R0)
a (ν′/ν′

0)
b, and the �ux density is given by (Granot, Cohen-Tanugi& do Couto e Silva 2008):
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, (A15)whih, for internal shoks (m = 0) beomes:
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. (A16)It is therefore obvious that for T > Tej + Tf the HLE relation is valid, where the referene time is the ejetion time Tej, asin this ase the spetral slope is β = −b and the temporal slope is α = 2 − b = 2 + β. In this sense a �nite range of emissionradii with m = 0 is similar to emission from a single radius, as in both ases the HLE relation α = 2 + β is stritly validimmediately from T > Tej + Tf , for some referene time, though in the latter ase the referene time for whih this is valid isequal to the observed ejetion time only for m = 0. For emission from a �nite range of radii with m 6= 0 the relation α = 2+βis approahed asymptotially at T − Tej ≫ Tf .  2009 RAS, MNRAS 000, 1�23



Model for the prompt and high latitude emission in GRBs 21A2 Band funtion spetrum: general ase and late time dependeneIn the main text we have given the �ux in the spei� ase of internal shoks, m = 0 and d = −1. We derive here the�ux for any values of the parameters m and d.A3 Emission from a single radiusWhen the whole emission omes from a single radius R0, the peak frequeny is ν′

p = ν′

0, and the luminosity is thus
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yminδ(y − ymin) , (A17)Using this luminosity (eq. [A17℄) in the integral for the �ux (eq. [A10℄) results in
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, (A18)where as in � A1, Ts ≡ Tej − mT0 is the referene time for the power-law �ux deay of the pulse, Tθ(R0) = (m + 1)T0 =

(1 + z)R0/2cΓ2
0 is the angular time at R0, and Ep(T ) = hνp(T ) is the photon energy orresponding to the peak of the Bandfuntion spetrum. Note that for m = 0, Ts = Tej. One an express the argument of S as
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. (A19)Reminding that Fs ≡ L0(1 + z)/(4πd2
L), we then use the expliit expression for the Band funtion (eq. [1℄) to express theobserved �ux as:
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(A20)
A4 Emission from a range of radiiIn the ase of emission with a Band funtion spetrum over a �nite range of radii, R0 < R < Rf = R0 + ∆R, we remindthat the omoving luminosity is:
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« (A21)Introduing (A21) into (A10) we obtain the general expression of the �ux:
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dỹ ỹa−1−m/2

„

m + 1

m + y−m−1
min ỹ−m−1

«2

S

„

ν′

ν′
p

«

,where ỹ = y/ymin, ỹmax = min[y−1
min, (Tf/T0)

1/(m+1)], and
ν′

ν′
p

=
ν

ν0

„

y

ymin

«m/2−d „

m + y−m−1

m + 1

«

=
ν

ν0
ỹm/2−d

„

m + y−m−1
min ỹ−m−1

m + 1

«

, (A23)and the expression for ν′/ν′

p assumes that ν′

p = ν′

0(R/R0)
d = ν′

0(y/ymin)
d. At late times, T − Tej ≫ Tf , we have y ≪ 1,

ỹmax = Tf/T0, and ν′/ν′

p ≈ (ν/ν0)ỹ
−1−d−m/2y−m−1

min /(m + 1) inreases with time so that S(ν′/ν′

p) ∝ (ν′/ν′

p)b2 and Fν ∝

(ν/ν0)
b2y

(m+1)(2−b2)
min = (ν/ν0)

b2 [(T − Tej)/T0]
b2−2, i.e. the HLE relation α = 2 + β is satis�ed.In the ase for internal shoks, with m = 0 and d = −1, ν′/ν′

p beomes independent of y and an be taken outside theintegral (ν′/ν′

p = (ν/ν0)/ymin = (ν/ν0)T̃ ), leading to the muh simpler expression of the �ux seen in the main text (eq. 7). 2009 RAS, MNRAS 000, 1�23



22 F. Genet and J.GranotAPPENDIX B: EVOLUTION OF THE TEMPORAL AND SPECTRAL INDEXESThis appendix expliits the evolution of the temporal and spetral indexes with time.B0.1 Single emission radiusWhere the luminosity is a delta funtion with radius at radius R0, we obtain
β =

8

>

<

>

:

−b1 + T̃ (1 + b1)ν/ν0 T̃ 6 xbν0/ν

−b2 T̃ > xbν0/ν

(B1)
αon =

8

>

<

>

:

(2 − b1)T̄ /(1 + T̄ ) + T̄ (1 + b1)ν/ν0 T̄ 6 xbν0/ν − 1

(2 − b2)T̄ /(1 + T̄ ) T̄ > xbν0/ν − 1

(B2)
αej =

8

>

<

>

:

2 − b1 + T̃ (1 + b1)ν/ν0 T̃ 6 xbν0/ν

2 − b2 T̃ > xbν0/ν

(B3)We then have a very simple relation between αej and β: αej = 2 + β, as expeted at asymptotially late times for HLE,just that for αej it is satis�ed all along for the loal values of the temporal and spetral indexes. At late times αon approahes
αej and a similar relation approximately holds between αon and β (αon ≈ 2 + β).B0.2 Emission from a �nite range of radii: R0 < R < RfIn this ase, the spetral index β is still given by eq. (B1), while the two temporal indexes are:
αon =

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

(2 − b1)
T̄

(1+T̄ )
+ T̄ (1 + b1)

ν
ν0

− (2 + a) T̄ (1+T̄ )1+a

(1+T̄ )2+a−1
T̄ < min(∆R/R0, xbν0/ν − 1) ,

(2 − b1)
T̄

(1+T̄ )
+ T̄ (1 + b1)

ν
ν0

∆R/R0 < T̄ < xbν0/ν − 1 ,

(2 − b2)
T̄

(1+T̄ )
− (2 + a) T̄ (1+T̄ )1+a

(1+T̄ )2+a−1
xbν0/ν − 1 < T̄ < ∆R/R0 ,

(2 − b2)
T̄

(1+T̄ )
T̄ > max(∆R/R0, xbν0/ν − 1) ,

(B4)whih limits at very early and very late times are
αon ≈

8

>

<

>

:

−1 T̄ ≪ 1 ,

2 − b2 T̄ ≫ 1 ,

(B5)and
αej =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

2 − b1 − (2 + a)/(1 − T̃−a−2) + T̃ (1 + b1)ν/ν0 T̃ < min(Rf/R0, xbν0/ν) ,

2 − b1 + T̃ (1 + b1)ν/ν0 Rf/R0 < T̃ < xbν0/ν ,

2 − b2 − (2 + a)/(1 − T̃−a−2) xbν0/ν < T̃ < Rf/R0 ,

2 − b2 T̃ > max(Rf/R0, xbν0/ν) .

(B6)Aording to equations (B1) and (B6) αej has a simple relation with β:
αej =

8

>

<

>

:

β + 2 − (2 + a)/(1 − T̃−a−2) T̃ < Rf/R0 (T̄ < T̄f ) ,

β + 2 T̃ > Rf/R0 (T̄ > T̄f ) .

(B7)Note that in the limit T̄ → 0 (T̃ → 1), at very early times, just after the onset of the spike, αej → −∞ while αon → −1.Moreover, the simple HLE relation, αej = 2 + β, is valid as soon as T̃ > T̃f , for any value of T̃f . This is a relation betweenthe loal values of αej and β, that hold as both hange with time, and is stritly valid from T̃ > T̃f only for m = 0 and
d = −1. For general values of m or d this loal HLE relation would be valid only at late times, T̄ ≫ T̄f . Note, however, thatfor alternative other de�nitions of the temporal index, suh as αon, this relation is only approahed at late time: αon ≈ 2 + βfor T̄ > T̄f and T̄ ≫ 1.  2009 RAS, MNRAS 000, 1�23



Model for the prompt and high latitude emission in GRBs 23APPENDIX C: EXPONENTIAL TURN-OFF OF THE EMISSION WITH RADIUSThroughout the paper we have assumed that the emission abruptly turns o� at Rf . This results in a sharp hange in thetemporal index at T̄f , whih usually orresponds to a sharp peak for the pulses in the prompt GRB light urve. Observationssometimes show pulses with a round peak, whih may be hard to �t with spiky theoretial spikes. Suh rounder peaks for thepulses may be obtain within the framework of our model by introduing a more gradual turn-o� of the emission at R > Rf .For onveniene, we parameterize this here by assuming that the luminosity starts dereasing exponentially with radius at
R > Rf . For simpliity we onsider here only ∆R > 0, but the results are similar for ∆R = 0. Similarly, only the ase forinternal shok (m = 0, d = −1) is onsidered here. Thus, we introdue the following omoving spetral luminosity:
L′

ν′ =

8

>

>

<

>

>

:

L′

0

“

R
R0

”a

S
“

ν′

ν′

p

”

R0 6 R 6 Rf

L′

0

“

R
R0

”a

S
“

ν′

ν′

p

”

e−
q(R−Rf )

∆R R > Rf

(C1)where q is the deay onstant (a larger q orresponds to a sharper turn-o� of the emission).For 1 6 T̃ 6 T̃f the observed �ux is idential to that without introduing the gradual emission turn-o�, and is thereforegiven by eq. (7),
Fν(T̃ > T̃f ) = F0T̃

−2

»

“

min(T̃ , T̃f )
”2+a

− 1

–

S

„

ν

ν0
T̃

«

. (C2)The �ux for T̃ > T̃f is obtained by alulations very similar to those of setion 3.2, and reads
Fν(T̃ > T̃f ) = F0T̃

−2S(T̃ ν/ν0)
h

T̃ 2+a
f − 1 + J(T̃ )

i

, (C3)
J(T̃ ) ≡ (2 + a)

Z T̃

T̃f

dỹ ỹa+1e−(ỹ−T̃f )/Q , (C4)were Q ≡ ∆R/(qR0), and we remind the reader that ỹ = T̃ y for m = 0. The expression for the �ux is thus very similar its formfor an abrupt turn-o� of the emission at Rf , but with the additional term J(T̃ ) that adds some �ux at T̃ > T̃f (representingthe added ontributions from R > Rf ). For a = 1 we have
J(T̃ , a = 1) = 6Q3 + 6Q2T̃f + 3QT̃ 2

f − e−(T̃−T̃f )/Q
“

6Q3 + 6Q2T̃ + 3QT̃ 2
”

. (C5)At late times J(T̃ , a = 1) approahes a onstant value,
J∞ ≡ 6Q3 + 6Q2T̃f + 3QT̃ 2

f ∼

8

<

:

6
“

∆R
qR0

”3

q ≪ ∆R/R0
1+∆R/R0

3 ∆R
qR0

“

1 + ∆R
R0

”2

q ≫ ∆R/R0
1+∆R/R0

(C6)where we have replaed Q and T̃f by their dependene on q and ∆R/R0. Sine J(T̃ ) appears in eq. (C3) in a sum with T̃ 2+a
f −1,it will dominate the observed �ux at late times if J∞ > T̃ 2+a

f − 1 or equivalently if q < qcrit where J∞(qcrit) ≡ T̃ 2+a
f − 1.The left panel of �gure C1 shows qcrit as a funtion of T̄f = ∆R/R0 for a = 1, and it an be seen that the limiting valuesof qcrit are 1 for T̄f ≪ 1, and (7 + 221/2)1/3 + 1 + 3/(7 + 221/2)1/3 ≈ 4.59 for T̄f ≫ 1, so that qcrit is always of order unity.Therefore, for q ≪ qcrit ∼ 1 the late time �ux is dominated by ontributions from R > Rf , the peak of the pulse is rounderand the peak �ux is higher ompared to an abrupt turn-o� of the emission with radius, whih is approahed in the oppositelimit of q ≫ qcrit ∼ 1. This an niely be seen in the right panel of �g. C1, whih shows the shape of a pulse for di�erentvalues of q, inluding the limiting ase of q → ∞, whih orresponds to an abrupt turn-o� of the emission at Rf .Suh an exponential turn-o� ould therefore be useful when �tting our our model with data, in order to reprodueround-peaks pulses. Of ourse, one should be aware that this adds a free parameter (q or Q), and might thus inreases thedegeneray between the di�erent �t parameters. Therefore, adding this extra model parameter should be done only when itis required by the data.
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24 F. Genet and J.Granot

Figure C1. Left: Dependene of the ritial deay index qcrit of the exponential ut-o� on T̄f = ∆R/R0, in semi-logarithmi sale. Itis de�ned by J∞(qcrit) = T̃ 3
f − 1, i.e. at late time, the ontribution to the �ux from the exponential ut-o� is equal to the ontributionfrom the emitting region between R0 and Rf . Right: Comparison of the shape of pulses with and without the exponential turn-o� of theluminosity for a ratio ∆R/R0 = 1 in logarithmi sale. The solid line shows the shape of the pulse for an abruptly stopping luminosity(no exponential turn-o�), the other lines show the pulse shape for di�erent values of the deay onstant q = 0.1 of the exponentialturn-o�.

 2009 RAS, MNRAS 000, 1�23


	Introduction
	Description of the Model
	The Basic Physical Model
	Calculating the Observed Flux
	Expected parameters values for internal shocks
	Relevant Times and Timescales

	Results for Internal shocks with a Band function spectrum
	Emission from a single radius
	Emission from a finite range of radii

	Properties of the single pulse emission
	Local temporal and spectral indexes
	Spectrum

	Combining pulses to obtain the prompt emission
	Discussion and conclusions
	Detailed calculation of the flux
	Power-law spectrum
	Band function spectrum: general case and late time dependence
	Emission from a single radius
	Emission from a range of radii

	Evolution of the temporal and spectral indexes
	Exponential turn-off of the emission with radius

