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Abstract. Consider the following problem. A and B each have a N-
element set of bit-strings. They wish to find all collisions, in other words
to find the common strings of their sets or to establish that there are
none. How much data must A and B exchange to do this?

Problems of this type arise in the context of Merkle puzzles, for exam-
ple where A and B propose to use the collision between two randomly
constructed lists to construct a cryptographic key.

Here we give a protocol for finding all the collisions. Provided the num-
ber of collisions is small relative to N/log, N the protocol requires on
the order of log, N messages and the total amount of data which A and
B need exchange is about 4.5V bits. The collision set can also be deter- .

mined in three messages containing a total of at most 9N bits provided
N < 21028,

Introduction

Suppose that A and B each have an N-element set of fixed-length bit-strings.
By first hashing with an appropriate random hash function if necessary, we
can assume that the bit-strings appear to be uniformly distributed. A and B
arrange their respective strings in lexical order, and form a table. They may use’
a fixed part of each string rather than the entire string, provided the parts are
sufficiently long to distinguish all pairs of strings.

A collision is a string which is in both tables. It is assumed in what follows
that the number of collisions is small relative to N/log, N. It may be known
a priori that there is exactly one collision, or some other small number, or the
precise number may be unknown, and may include zero. A and B wish to find
all collisions between their tables, by exchanging only a small amount of data
per table entry. : '

In the next few sections, we discuss the properties of some protocols to do this.
It turns out that the amount of data which the partners are required to exchange °
can be made less than five bits per list element, regardless of N. Following this,

we give an application of our solution to cryptography, in the context of a Merkle
puzzle.




Basic Protocol

The basic protocol is a recursive construction. Imagine a list containing, in lexical
order, all the 2" possible table entries (not just the actual ones). We divide this
list into a number of intervals of nearly equal size. Initially this number is chosen
to be M = Nlog, e =% 3N/2 where N is the number of entries actually in each
table. We say that an interval is occupied for A if it contains an entry which
occurs in A’s table, otherwise it is empty for A. The number of intervals M is
chosen so that the probability of each interval being occupied is about 1/2 for
each participant, and all these probabilities are nearly independent.

Each party informs the other which intervals are occupied and which are
empty. This communication requires one bit per interval, and the coding of the
information is optimal. On average half the intervals will be empty for each
participant. Only intervals which are occupied for both participants survive to
the next round.

Eliminating the intervals which A regards as empty obviously eliminates no
entries from A’s table, although it does eliminate about half the entries from B’s
table. However the information from B will eliminate roughly half of the intervals
which A regards as occupied, as well as half the intervals which A regards as
empty, since their selections are uncorrelated. For each participant, on average
half the table entries and one quarter of the intervals thus survive to the next
round.

The next round begins by dividing each surviving interval in half. This re-
stores the ratio N/M = log, e, so that the probability of occupation is still one
half, but the size of the problem is now halved.

Message and Bit Counts

The protocol continues for about log, NV rounds. The i-th round exchanges two
messages (one in each direction), each containing 12!~ bits of information.

However, if B waits to receive A’s messages before respondmg, the length of
B’s messages can be halved.

The number of messages can also be reduced if A and B take it in turns
to send the first message of a round combined with the second message of the
previous round giving logy N messages.

In this case the first message (from A) contains M bits, and the i-th message
(from A or B according as ¢ is odd or even) contains about M22~% bits for
1 <i<log, N.

The total bit-length of all messages is thus less than the geometric sum 3M.
(A’s total is M + 2M/3 bits. B’s total is 4M/3.) This is less than 4.5N, ie less
than five bits per table entry.

In all cases to eliminate chance we send extra bits of the candidate collision

strings to verify the collision. This requires at most log, N bits per. collision,

which is negligible since the number of collisions is assumed small relative to
N/log, N. Each collision also causes an interval to be occupied throughout the
protocol: this adds one bit per collision per round, which is also neghglble by
hypothesis on the number of collisions.




Effect of Statistical Deviations

At each round, small statistical deviations from the expected ratios occur. Al-
though the relative size of the deviation introduced at each round increases as the
protocol proceeds, the effects are not cumulative: deviations from the previous
rounds tend to be systematically damped out.

To see this, assume that at the i-th round there are M; occupied intervals and
N entries in A’s table. Let A\ = NAA/M;, et = M —log, 2. To first order, the
proportion of occupied intervals for 4 is 1 —exp —A\# = (1 + ¢{*)/2. Neglecting
the statistical errors introduced during the i-th round, we therefore have to first
order et ; = (1 —log, 2)ef! ~ €£/3 and similarly for B.

Reducing the Number of Rounds

We may wish to restrict the number of rounds. This can be done by pipelining
several rounds into the same pair of messages, at the cost of a modest increase
in the total number of bits required per initial table entry.

If A places 16 rounds in the first message, then B can produce a second
message of almost equal length containing 2!¢ rounds. If the table contains more
than 2%%%36 entries, then A can reply with a third message containing 2 4 (219)
rounds, and so on. .

In practice a reasonable trade-off might be for A to place two rounds in
the first message, and B to place ten rounds in the second message. Provided
N < 2192 4 total of three long messages suffices, with a combined total 6 <
9N bits. This is twice the minimum value required by the basic protocol. A
fourth short message is required if both parties wish to know the locations of
the collisions.

Application to a Merkle Puzzle

Suppose that A and B wish to agree a 40-bit shared secret. They publicly agree
a prefix ¢, and then each generates a few (k) million 40-bit random values 7;.
Each then forms a table (in lexical order) of the values h(c|r;), where & is a
randomizing hash funetion.

By the birthday paradox, the tables are likely to contain about k2 collisions,
and these can be found by the participants using the protocol described above,
exchanging on the order of 10k million bits of data. The value of r corresponding -
to the first collision is the shared secret, or alternatively the unused bits of the.
collision. The work required by an attacker to find r is of the order of 102 rather
than 108, ' ' .

If no collisions are found then the exchange is completely repeated or else N
is increased, until a solution is found. The chance that no collisions are found is
about exp —k2.




Conclusion

We have shown that Merkle-type puzzles can be solved at a total communications
cost which is less than five bits per table entry, regardless of the of the number
N of table entries, provided that the number of messages exchanged is allowed
to increase to log, V.

The usual protocols for a Merkle puzzle require one message in each direction,
effectively forcing one of the participants to transmit their table to the other,
at a communications cost which increases nonlinearly with the number of table
entries. (The precise cost under this restriction depends upon the details of
the protocol used, but even here a modified form of our protocol requires on the
order of 1.5log, IV bits per table entry, considerably fewer than Merkle’s original
algorithm which for a 40 bit key with log, N ~ 22 requires A to send about 70
bits per table entry.)

Alternatively, both the bits per table entry and the number of messages can
be held to deg, N, where deg, 1 = 0,degy, N = 1 + deg, {log, N].




