
Cheap Newton Steps for Optimal Control Problems�

Automatic Di�erentiation and Pantoja�s Algorithm

Bruce Christianson

Numerical Optimisation Centre� University of Hertfordshire � Hat�eld� England� Europe

November ����� revised November ���	

In this paper we discuss Pantoja�s construction of the Newton direction for
discrete time optimal control problems�

We show that Automatic Di�erentiation techniques can be used to calculate
the Newton direction accurately� without requiring extensive re�writing of user
code� and at a surprisingly low computational cost� for an N �step problem with
p control variables and q state variables at each step� the worst case cost is
�	p
 q
�� times the computational cost of a single target function evaluation�
independent of N � together with at most p��
p�	q
��
�p	q
���
	q
����
ie less than 	p
q
���� �oating point multiply�and�add operations per timestep�
These costs may be considerably reduced if there is signi�cant structural sparsity
in the problem dynamics�

The systematic use of checkpointing roughly doubles the operation counts�
but reduces the total space cost to the order of �pN �oating point stores�

A naive approach to �nding the Newton step would require the solution of
an Np�Np system of equations together with a number of function evaluations
proportional to Np� so this approach to Pantoja�s construction is extremely
attractive� especially if q is very small relative to N �

Straightforward modi�cations of the AD algorithms proposed here can be
used to implement other discrete time optimal control solution techiniques� such
as di�erential dynamic programming 	DDP�� which use state�control feedback�

The same techniques also can be used to determine with certainty� at the
cost of a single Newton direction calculation� whether or not the Hessian of the
target function is su�ciently positive de�nite at a point of interest� This allows
computationally cheap post�hoc veri�cation that a second�order minimum has
been reached to a given accuracy� regardless of what method has been used to
obtain it�

�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/1640214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

�� Introduction� Consider the following optimal control problem� choose
ui � Rp for � � i � N so as to minimize

z � F 	xN �

where x� is some �xed constant and

xi�� � fi	xi� ui� for � � i � N

Here each fi is a smooth map fromRq�Rp � Rq and F is a smooth map fromRq

to R� Note that for notational convenience we have assumed p and q independent
of i� but our methods and results can be generalized if this restriction is relaxed
and p� q are replaced throughout by pi� qi�

The more usual formulation of a discrete time optimal control problem is�
choose ui so as to minimize

z �

N��X
i��

Fi	xi� ui�
 FN 	xN �

but this is equivalent to a problem in the form introduced above� To see this�
adjoin to each state xi a new component vi � R de�ned by

v� � � vi�� � vi
 Fi	xi� ui�

and then de�ne F 	xN � vN � � vN
 FN 	xN �� Consequently� we lose nothing by
restricting attention to target functions of the form z � F 	xN ��

In ���� Pantoja described a stagewise construction of the Newton direc�
tion for discrete optimal control problems of this form ��������� An elementary
account of Pantoja�s construction and its properties is given elsewhere ����

In this paper� we show how Automatic Di�erentiation can be combined with
Pantoja�s algorithm and a checkpointing technique in such a way as to allow
accurate evaluation of the Newton direction at an extremely low computational
cost�

In the next section we give a brief introduction to the Automatic Di�erenti�
ation techniques which we shall use later� In Section we introduce Pantoja�s
algorithm� In Section � we show how forward and reverse Automatic Di�erenti�
ation techniques can be combined so as to provide an e�cient implementation of
Pantoja�s algorithm� and give an analysis of the corresponding time and space
bounds� In Section � we show how to incorporate checkpointing and discuss the
e�ect of this on the time and space bounds� We summarise our conclusions in
the �nal section�

�� Automatic Di�erentiation� Automatic di�erentiation 	AD� is a set of
techniques for obtaining derivatives of numerical functions to the same order of
accuracy as the function values themselves� but without the labour of forming

�

explicit symbolic expressions for the derivative functions �������� Automatic
di�erentiation works by repeated use of the chain rule� but applied to numerical
values rather than to symbolic expressions� This may be achieved either by pre�
processing the function code� or by using operator overloading� for convenience�
we brie�y describe the latter approach here�

The forward accumulation technique of AD associates with each program
variable v a vector �v� which contains numerical values for the partial derivatives
of v with respect to each of the independent variables� The combined structure
V � 	v� �v� is called a doublet� The doublets Ui corresponding to the independent
variables ui are initialized by setting �ui to be the i�th Cartesian unit vector�
We write this 	rather loosely� as

� �u� � �I �

The �oating point arithmetic operators are overloaded so as to operate correctly
on the numerical values in the vector parts� for example

sin	V � � 	sin	v�� cos	v� � �v� V �W � 	v � w� v � �w
 �v � w�

Re�compiling the same code which evaluates y � f	u� with all real variables
re�declared to be doublets will cause it to evaluate Y � f	U�� following which
we have �y � f �	u� �u � f �	u��

The reverse accumulation technique of AD works by overloading the �oat�
ing point operations so that they record a trace of the program evaluation for
y � f	u�� The trace consists of a list of elementary �oating point operations
in the order in which they were performed by the program� together with the
address	es� of their argument	s� and the numerical values of their partial derivat�
ive	s� at the point in question� For example the operations v �� w�u�w �� sin	v�
would record the values of u�w and of cos	v� respectively�

A �oating point adjoint variable �v 	initially zero� is associated with each
program variable v� The adjoint variable �v is updated so that it contains the
numerical value of the partial derivative of the dependent variable y with respect
to v at the corresponding point in the trace� These updates are calculated
numerically in the reverse order to the function evaluation� whence the term
�reverse accumulation�� Initially the adjoint �y is set to ���� and 	for example�
the adjoint operations corresponding to v �� w�u�w �� sin	v� are the operations

�v
� �w � cos	v�� �w �� �� and �w
� u � �v� �u
� �v � w� �v �� ��

At the end of the reverse pass through the trace for the code which evaluates
y � f	u� we have ��u� � �y�f �	u��T � �f �	u��T � For further details see ��������

The forward and reverse techniques can be combined to allow us to calcu�
late Hessians� We embed doublet arithmetic into an implementation of reverse
AD� each program variable value is a doublet rather than a real� and so is the

corresponding adjoint variable value� Preparing such an AD package when op�
erator overloading has been used to implement forward and reverse separately
is a simple matter of re�declaring the relevant �elds in the trace type�

After setting � �u� � �I � we calculate Y � f	U� giving �y � f �	u� as before�
We then initialize �Y by setting �y � ���� ��y � � and perform the reverse pass in
doublet arithmetic� For example the reverse accumulation step

�V
� �W � cos	V �

will 	by operator overloading� be executed as

�v
� �w � cos	v� ��v
� ��w � cos	v� � �w � sin	v� � �v

Following the reverse accumulation pass we will have

��u� � �y�f �	u��T � �f �	u��T

as before� and
� ��u� � �y�f ��	u�� �u
 ��y�f �	u��T � �f ��	u��

The important points to note about this process of automatic Hessian evaluation
are as follows� First� the same code that is used to calculate the function y can
be used to calculate the HessianH of y� with only minor modi�cations� variables
must be declared to have a new type� independent variables must be explicitly
identi�ed 	so as to contain the correct cartesian vector� and a function call to
perform the reverse pass must be inserted after the evaluation of f � Secondly�
the total amount of �oating point arithmetic involved is remarkably small� If
there are r independent variables� then the computational cost of a complete
Hessian is less than �r
 � times the cost of evaluating y� where the cost is
measured in �oating point multiply�and�add operations� For further details see
����

�� Pantoja�s Algorithm� De�ne the adjoint problem corresponding to
our original problem as follows� De�ne variables �xi � Rq and �ui � Rp by setting

�xN � F �	xN � �xi � �f �x�i�
T �xi�� �ui � �f �u�i�

T �xi�� for � � i � N

where f �x�i and f
�

u�i are the Jacobians of fi with respect to xi and ui respectively�
evaluated at 	xi� ui�� Then �ui � �z��ui by the chain rule�

The adjoint problem is extremely similar to the reverse accumulation tech�
nique introduced in the previous section� but applied to complete time steps
rather than at the level of individual �oating point operations�

Suppose that we linearize both the original and the adjoint problems at a
starting point u�� so that the �ui are approximated by linear functions of the
control variables u� Let unew be the point at which these linear functions all

�

vanish� Then the Newton direction is the vector unew � u�� The details of this
construction are embedded in Pantoja�s algorithm which follows�

Notation� Let g be the block vector with i�th block given by

gi � �ui �

�
�z

�ui

�

Let H be the block matrix with 	i� j��th block given by

Hij �

�
��ui
�uj

�
�

�
��z

�ui�uj

�

For given values of ti� bi � Rp � � � i � N we write Ht � b to denote

N��X
j��

Hijtj � bi for � � i � N

Algorithm ���� �Pantoja� Given a starting position ui to obtain values for ti
such that Ht � �g�

Step �� For i from � up to N calculate xi by

xi�� � fi	xi� ui�

where x� is a �xed constant�
Step �� De�ne �xN � aN � Rq� DN � Rq�q by

�xN � aN � F �	xN � DN � F ��	xN �

Step � For i from N�� down to � calculate �xi� ai � Rq � �ui� ci � Rp� Ai� Di �
Rq�q � Bi � Rp�q� Ci � Rp�p by

�xi �
�
f �x�i

�T
�xi��

�ui �
�
f �u�i

�T
�xi��

Ai �
�
f �x�i

�T
Di��

�
f �x�i

�

 	�xi���

T �
f ��xx�i

�
Bi �

�
f �u�i

�T
Di��

�
f �x�i

�

 	�xi���

T �
f ��ux�i

�
Ci �

�
f �u�i

�T
Di��

�
f �u�i

�

 	�xi���

T �
f ��uu�i

�
where ��� denotes evaluation at 	xi� ui�� and we write 	for example�

��
f �u�i

�T
Di��

�
f �x�i

��
j�k

for

qX
l��

qX
m��

�
�	xi���l
�	ui�j

�
	Di���l�m

�
�	xi���m
�	xi�k

�
etc�

�

If Ci is singular then the algorithm fails� otherwise set

Di � Ai �BT
i C

��
i Bi

ci �
�
f �u�i

�T
ai��

ai �
�
f �x�i

�T
ai�� �BT

i C
��
i ci

Step �� For i from � up to N � � calculate ti � Rp� si�� � Rq by

ti � �C��
i 	Bisi
 ci�

si�� �
�
f �x�i

�
si

�
f �u�i

�
ti

where s� is the �xed constant ��
STOP

Proposition ���� Either Algorithm �� fails because some Ci is singular� or
else at the end the ti satisfyHt � �g� If all the Ci de�ned in Step of Algorithm
P are invertible� then so is H �

If all the Ci are positive de�nite� then so is H � Conversely� if H is positive
de�nite then all the Ci are positive de�nite 	and hence are invertible��

Proof� See ����

�� Implementation using AD� In this section we describe how to use
Automatic Di�erentiation to implement Algorithm ��� which is Algorithm ���
of ���� Minor modi�cations can be made to implement the other algorithms
described in ���� The basic idea of the implementation is to note that the
recurrence relations for Di correspond to a �rst order expansion of the forward
and adjoint state equations�

Algorithm 	�� �Pantoja with AD�
We start with stored values for ui � � � i � N � Recall that x� is a �xed

constant�
Step �� For i from � up to N calculate xi using ordinary �oating point

arithmetic� Store xi�
Step �� De�ne doublets XN with scalar parts xN respectively� and vector

parts 	of length q� given by �xN � �Iq �� Evaluate Z � F 	XN � in doublets� We
now have �z � �F �	xN ��� De�ne �Z by setting �z � ���� ��z � �q� Reverse through
the trace for Z to obtain the doublets �XN � We have �xN � �F �	xN ��T � ��xN �
�F ��	xN ��� Set aN � �xN � DN � ��xN � Delete the trace for Z�

Step � For i from N � � down to � we calculate �xi� ai� Di as follows� We
assume at each stage that the corresponding quantities are available for i
 ��

�

De�ne doublets Xi and Ui with scalar parts xi� ui respectively� and vector
parts 	of length q
 p� given by�

�xi

�ui

	
�

�
Iq O

O Ip

	

Evaluate Xi�� � fi	Xi� Ui� in doublets� Now we have�
�xi��

�
�
�
f �x�i f �u�i

�
De�ne �Xi�� by setting �xi�� to the supplied value and setting�

��xi��
�
�
�
Di��f

�

x�i Di��f
�

u�i

�
Reverse through the trace for Xi�� to obtain the doublets �Xi� �Ui� Then�

��xi

��ui

	
�

�
Ai BT

i

Bi Ci

	

Calculate the column vectors
�
f �x�i

�T
ai���

�
f �u�i

�T
ai��� Adjoin these to form�

� Ai BT
i

�
f �x�i

�T
ai��

Bi Ci

�
f �u�i

�T
ai��

�

Row reduce this to obtain�
Ai �BT

i C
��
i Bi O

��
f �x�i

�T �BT
i C

��
i

�
f �u�i

�T�
ai��

C��
i Bi I C��

i

�
f �u�i

�T
ai��

	

�

�
Di O ai
C��
i Bi I C��

i ci

�

Now �xi� ai� Di are available for the next iteration� Store the values �xi��� �ui�
C��
i Bi� C

��
i ci� Delete the trace for Xi���

Step �� In ordinary arithmetic� for i from � up to N � � calculate ti �
Rp� si�� � Rq by

ti � �	C��
i Bi�si � 	C��

i ci�

and
si�� �

�
f �x�i

�
si

�
f �u�i

�
ti

where s� is the �xed constant ��
STOP

We now give some time and space bounds for Algorithm ����

�

Proposition 	�� The total computational cost of Algorithm ��� is less than
the cost of �	p
 q
�� evaluations of z� regardless of N � together with at most
p��
p�	q
��
�p	q
���
	q
��� �oating point multiply�and�add operations
per time step�

The total storage requirement is bounded by �	p
 q
��W � where W is the
maximum number of �oating point operations in any single fi or F � together
with at most 	q
 ��	�p
 q�N �oating point stores�

Proof� The �oating point cost of the doublet calculation in Step is at most
�	p
 q�
 � times the corresponding scalar arithmetic cost in Step �� The total
cost of Step � is at most �q
 � times the cost of an ordinary evaluation of
F � Step � itself adds one function evaluation� The computational cost of the
matrix multiplications in Step of Algorithm ��� are q�	p
q� multiply�and�add
operations to form �Xi�� and a further q	p
 q� to form the products with ai���

The computational cost of the row�elimination operations in Step is at
most p	q
 ��	p
 q�
 p�� multiply�and�add operations per time step�

The matrix multiplications in Step � add another pq multiply�and�add op�
erations to form ti and q	p
 q� to form si���

The total number of �oating point multiply�and�add operations per time
step is thus less than

p��
 p�q
�pq�
 q�
 p�
�pq
�q� � p��
 p�	q
��
�p	q
���
	q
���

We need enough space to store a single trace for 	the largest� single fi� with
q
 p vector doublets� ie �	p
 q�
 � per �oating point operation in fi� We also
need to store �xi��� �ui� C

��
i Bi� C

��
i ci for each of N values of i� with storage costs

respectively q	p
 q�� p� pq� p� The total is of order q	�p
 q�
 �p per time step�
which is less than 	q
 ��	�p
 q�N in total�

QED

Note that the number of additional �oating point multiply�and�add operations
is bounded by 	p��
 q
 ����

If the computational complexity of evaluating fi is signi�cantly less than the
order of q	p
 q� �oating point operations� then there is likely to be redundancy
	eg sparsity or rank de�ciency� in the structure of the Jacobians f �u�i� f

�

v�i� If
there is such redundancy� then this can be exploited in the row reductions to
reduce the cost of Step � In either case� the total cost of the matrix operations
is likely to be reducible to the cost of about �	p
 q
 �� additional function
evaluations� regardless of N � assuming that p is not larger than q� The operation
count for our Algorithm ��� should be compared with that given by Coleman
and Liao ���� x���� viz p��
 �p�q
 �pq���
 �q��

Usually the requirement to be able to store the graph of the largest fi 	or
F � is trivial relative to the other storage� provided the number of �oating point
operations in any fi is small relative to N the store required will be bounded

�

by �	p
 q
 �� �oating point stores per time step� If this requirement is not
met� is possible to perform the doublet calculation several times with shorter
vector components� thus extracting the required matrices a block at a time ����
Alternatively� it may be possible to split the function evaluation into two or
more stages�

However the total space requirements appear infeasible if q is large� We
discuss a strategy to address this problem in the next section�

�� Checkpointing� In Algorithm ��� we store a large amount of data
long before we need it� for example values for all the C��

i Bi are stored during
Step � ready to be used in Step �� If q is large� this storage overhead may
well be unacceptable� In this case� it would make more sense to store su�cient
information to allow values to be re�computed when they are actually needed�
For example� suppose that N is a million� If we store values for xi� �xi� Di

just when i is a multiple of a thousand� then we can re�compute the values of
C��
i Bi when we need them� in groups of a thousand at a time� This doubles

the computational e�ort required 	although much of this could be computed
in parallel ���� but reduces the storage requirement from a million records to
a thousand records� plus a thousand checkpoints� Further development of this
line of argument leads to the following algorithm�

Algorithm
�� �Pantoja with AD and checkpointing�
We start with stored values for ui � � � i � N � Recall that x� is a �xed

constant� For convenience� we assume that N � n��
Step �� For i from � up to N calculate xi using ordinary �oating point

arithmetic� If i is a multiple of n then store xi�
Step �� Calculate aN � F �	xN �� DN � F ��	xN � as in Algorithm ���
Step � For j from n � � down to � calculate �xjn� ajn� Djn as follows� We

assume at each stage that the corresponding quantities are available for j
 ��
Recall that xjn is available from Step ��

For i from jn up to 	j
��n� � recalculate xi using ordinary �oating point
arithmetic� Store xi�

For i from 	j
 ��n� � down to jn de�ne doublets Xi and Ui and calculate
�xi� ai� Di for the next iteration just as in Step of Algorithm ��� Delete the
trace for Xi��� Delete xi�

Store the values �xnj � anj � Dnj �
Step �� For j from � up to n � � proceed as follows� Recall that xnj is

available from Step �� and that �x�n���j � a�n���j � D�n���j are available from Step
�

For i from jn up to 	j
��n� � recalculate xi using ordinary �oating point
arithmetic� Store xi�

For i from 	j
��n�� down to jn de�ne doublets Xi and Ui and recalculate
�ui� �xi� ai� Di just as in Step � Delete the trace forXi��� Store �ui� C

��
i Bi� C

��
i ci�

�

For i from jn up to 	j
 ��n � � calculate ti � �	C��
i Bi�si � 	C��

i ci��
Recall that xi is available from the �rst part of this step� Assume that si is
available from the previous iteration� De�ne doublets 	with vector parts of
length �� Ui� Xi by setting �ui � ti� �xi � si and calculate Xi�� � fi	Xi� Ui�� Set
si�� � �xi��� Delete xi� si�

STOP

Proposition
�� The total computational cost of Algorithm ��� is less than
the cost of ��	p
 q�
 �� evaluations of z� regardless of N � together with at
most �p��
�p�	q
��
�p	q
���
�	q
��� �oating point multiply�and�add
operations per time step�

A total of pN �oating point stores are required in order to maintain the
values of u� �u and t� The total storage required in addition to this is bounded
by �	p
q
��W � whereW is the maximum number of �oating point operations
in any single fi or F � together with

	p
 q
 ��	q
 ��
p
N

�oating point stores�

Proof� Step � represents the cost of a single function evaluation� The total
cost of Step � is at most �q
� times the cost of an ordinary evaluation of F � The
�oating point cost of the doublet calculation in Step is at most �	p
q�
� times
the corresponding scalar arithmetic cost in Step �� The recalculation of the xi
adds one further function evaluation� The computational cost of the matrix
multiplications in Step of Algorithm ��� are 	as before� q�	p
 q� multiply�
and�add operations to form �Xi�� and a further q	p
 q� to form the products
with ai���

The computational cost of the row�elimination operations in Step is the
same as in Algorithm ���� but these operations are repeated in Step ��

In Step � the re�evaluation of xi and the doublet calculation of Step are
repeated� which adds another �	p
 q�
� function evaluations� The calculation
of ti requires pq multiply�and�add operations per time step� and the doublet
arithmetic to compute si�� adds the cost of another � function evaluations�

The total number of function evaluations is thus ��	p
 q�
 �� and the
additional number of �oating point multiply�and�add operations per time step
is less than twice that required by Algorithm ���

The storage requirement for the trace is the same as for Algorithm ����
We need to store C��

i Bi� C
��
i ci for each of n values of i� with storage costs

respectively pq� p� We also need to store n checkpoints xnj � �xnj � anj � Dnj with
storage costs respectively q� q� q� q�� This totals

�	p
 q�q
 	p
 q�� �
p
N

which is less than 	p
 q
 ��	q
 ���
p
N per time step�

��

QED

Note that the number of additional �oating point multiply�and�add operations
is bounded by �	p��
 q
 ����

Assume that N � �	p
 q
��	q
���� and that the number of �oating point
operations in any fi or F is small compared with N�	p
 q�� Then the cost of
the working store can be reduced to below N �oating point stores� This is less
than the cost of storing u or t�

More sophisticated approaches are possible� For example� suppose that N
is a million� Algorithm ��� requires a million records of storage� Algorithm ����
with one level of checkpointing� requires storage for one thousand records and
one thousand checkpoints� but also requires double the run time� If we employ
two levels of checkpoint� we need only one hundred records� and two hundred
checkpoints 	one hundred at each level� � but will require treble the run time� An
algorithm with six levels of checkpoint requires ten records� sixty checkpoints�
and seven times the run time� In general� we can reduce the storage from N to
order logN at the cost of a logN fold increase in run time� For further details�
see for example ���� �����

	� Conclusions� We have discussed the application of AD to Pantoja�s
algorithm� and shown that the Newton step can be calculated for a discrete
time optimal control problem for a very low computational cost� The pleasing
feature of using AD is that existing code to evaluate the numerical value of
the target function z can be used� without extensive re�writing� to compute
truncation�free values for the �rst and second derivatives required�

Similar implementations of other algorithms involving state�control feedback
are also possible� for example the traditional di�erential dynamic programming
	DDP� algorithm ���� simply substitutes ai�� for �xi�� in the initialization of
Xi�� in Step of Algorithm ���� Other algorithms given in ��� can also be
implemented in this way� for example to determine a diagonal matrix � such
that H
� is positive de�nite� to �nd a descent direction t such that 	H
��t �
�g� or to solve more general equations such as 	H
 ��t � b with an arbitrary
right hand side� as required for example by ���� to implement trust regions�

However Pantoja�s algorithm provides a useful tool even when the Newton
direction is not being used to solve the optimization problem� it allows an inex�
pensive determination of whether the Hessian of the target function is positive
de�nite at any point� This information is of utility to many optimization al�
gorithms 	particularly in the context of global optimization� and in particular
allows post�hoc veri�cation that a second order minimum has been reached�
Similarly use of the algorithm to examine H � �I allows veri�cation that the
Hessian does not contain eigenvalues below a posited positive threshold� Such
sensitivity analyses can in turn be used to verify the accuracy of the adjoint
problem solution�

��

Further re�nement of the approach described here using the techniques of
�������������� allows the dynamics of the problem to be expressed in terms of
implicit equations 		xi��� xi� ui� rather than explicitly� This in turn opens the
prospect of applying similar techniques to problems arising from di�erential
equations�

References�

References

��� Jochen Benary� ����� Parallelism in the Reverse Mode� in Computational
Di�erentiation� SIAM� Philadelphia

��� Charles Bennett et al� ���� Logical Reversibility of Computation� IBM
J Res Dev �
 ��� ��

�� M� Bartholomew�Biggs� ����� Automatic Di�erentiation of Implicit Func�
tions using Forward Accumulation� to appear

��� Christian Bischof et al� ����� ADIFOR � Generating Derivative Codes
from Fortran Programs� MCS�P�������� Argonne National Laboratory�
Illinois

��� Christian Bischof et al� ����� Using ADIFOR to Generate Dense and
Sparse Jacobians� TM����� Argonne National Laboratory� Illinois

��� Bruce Christianson� ����� Automatic Hessians by Reverse Accumulation�
IMA Journal of Numerical Analysis ��� �� ���

��� Bruce Christianson� ����� Reverse Accumulation and Attractive Fixed
Points� Optimization Methods and Software �	��� �� ��

��� Bruce Christianson� ����� Reverse Accumulation and Implicit Functions�
Technical Report� Numerical Optimisation Centre� University of Hert�
fordshire � Hat�eld� England

��� Bruce Christianson� ����� Generalization of Pantoja�s Optimal Control
Algorithm� Technical Report� Numerical Optimisation Centre� University
of Hertfordshire � Hat�eld� England

���� Thomas Coleman and Aiping Liao� ����� An E�cient Trust Region
Method for Unconstrained Discrete�Time Optimal Control Problems�
Computational Optimization and Applications � �� ��

���� Laurence Dixon et al� ����� Automatic Di�erentiation of Large Sparse
Systems� Journal of Economic Dynamics and Control ������ ��

��

���� Jean Charles Gilbert� ����� Automatic Di�erentiation and Iterative Pro�
cesses� Optimization Methods and Software �	��� � ��

��� Andreas Griewank� ����� On Automatic Di�erentiation� pp � ��� in
Mathematical Programming� Recent Developments and Applications�
Kluwer Academic Publishers� Japan

���� Andreas Griewank� ����� Achieving Logarithmic Growth of Temporal and
Spatial Complexity in Reverse Automatic Di�erentiation� Optimization
Methods and Software � � ��

���� Andreas Griewank et al� ���� Derivative Convergence for Iterative Equa�
tion Solvers� Optimization Methods and Software �	�� �� ��

���� D�H� Jacobson and D�Q� Mayne� ����� Di�erential Dynamic Program�
ming� Americal Elsevier� New York

���� D�M� Murray and S�J� Yakowitz� ����� Di�erential Dynamic Program�
ming and Newton�s Method for Discrete Optimal Control Problems�
JOTA ��	� �� ���

���� J�F�A�De O� Pantoja� ���� Algorithms for Constrained Optimization
Problems� PhD thesis� Imperial College of Science and Technology� Uni�
versity of London

���� J�F�A�De O� Pantoja� ����� Di�erential Dynamic Programming and New�
ton�s Method� Int J Control �
	�� ��� ���

���� Louis B� Rall et al� ����� An Introduction to Automatic Di�erentiation�
in Computational Di�erentiation� SIAM� Philadelphia

���� Yu� M� Volin and G�M� Ostrovskii� ����� Automatic Computation of De�
rivatives with the use of the Multilevel Di�erentiation Technique� Com�
puters and Mathematics with Applications ��	��� ���� ����

�

