View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by University of Hertfordshire Research Archive

Cheap Newton Steps for Optimal Control Problems:
Automatic Differentiation and Pantoja’s Algorithm

Bruce Christianson

Numerical Optimisation Centre, University of Hertfordshire : Hatfield, England, Europe

November 1996, revised November 1997

In this paper we discuss Pantoja’s construction of the Newton direction for
discrete time optimal control problems.

We show that Automatic Differentiation techniques can be used to calculate
the Newton direction accurately, without requiring extensive re-writing of user
code, and at a surprisingly low computational cost: for an N-step problem with
p control variables and ¢ state variables at each step, the worst case cost is
6(p+ ¢+ 1) times the computational cost of a single target function evaluation,
independent of N, together with at most p?/3+p?(q+1)+2p(¢+1)*+ (¢+1)3,
ie less than (p+¢+1)3, floating point multiply-and-add operations per timestep.
These costs may be considerably reduced if there is significant structural sparsity
in the problem dynamics.

The systematic use of checkpointing roughly doubles the operation counts,
but reduces the total space cost to the order of 4pN floating point stores.

A naive approach to finding the Newton step would require the solution of
an Npx Np system of equations together with a number of function evaluations
proportional to Np, so this approach to Pantoja’s construction is extremely
attractive, especially if ¢ is very small relative to N.

Straightforward modifications of the AD algorithms proposed here can be
used to implement other discrete time optimal control solution techiniques, such
as differential dynamic programming (DDP), which use state-control feedback.

The same techniques also can be used to determine with certainty, at the
cost of a single Newton direction calculation, whether or not the Hessian of the
target function is sufficiently positive definite at a point of interest. This allows
computationally cheap post-hoc verification that a second-order minimum has
been reached to a given accuracy, regardless of what method has been used to
obtain it.

https://core.ac.uk/display/1640214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction. Consider the following optimal control problem: choose
u; € RP for 0 < i < N so as to minimize

z =F(zn)
where z(is some fixed constant and
Tip1 = fl(a:l,uz) for0<i< N

Here each f; is a smooth map from R?x RP — R? and F'is a smooth map from R?
to R. Note that for notational convenience we have assumed p and g independent
of 7, but our methods and results can be generalized if this restriction is relaxed
and p, q are replaced throughout by p;, ¢;.

The more usual formulation of a discrete time optimal control problem is:
choose u; so as to minimize

N-1

=0

but this is equivalent to a problem in the form introduced above. To see this,
adjoin to each state x; a new component v; € R defined by

vo =0 Viy1 = v; + Fi(x;,ui)

and then define F'(zn,vn) = vy + Fn(zn). Consequently, we lose nothing by
restricting attention to target functions of the form z = F(zy).

In 1983, Pantoja described a stagewise construction of the Newton direc-
tion for discrete optimal control problems of this form [18][19]. An elementary
account of Pantoja’s construction and its properties is given elsewhere [9].

In this paper, we show how Automatic Differentiation can be combined with
Pantoja’s algorithm and a checkpointing technique in such a way as to allow
accurate evaluation of the Newton direction at an extremely low computational
cost.

In the next section we give a brief introduction to the Automatic Differenti-
ation techniques which we shall use later. In Section 3 we introduce Pantoja’s
algorithm. In Section 4 we show how forward and reverse Automatic Differenti-
ation techniques can be combined so as to provide an efficient implementation of
Pantoja’s algorithm, and give an analysis of the corresponding time and space
bounds. In Section 5 we show how to incorporate checkpointing and discuss the
effect of this on the time and space bounds. We summarise our conclusions in
the final section.

2. Automatic Differentiation. Automatic differentiation (AD) is a set of
techniques for obtaining derivatives of numerical functions to the same order of
accuracy as the function values themselves, but without the labour of forming

explicit symbolic expressions for the derivative functions [13][20]. Automatic
differentiation works by repeated use of the chain rule, but applied to numerical
values rather than to symbolic expressions. This may be achieved either by pre-
processing the function code, or by using operator overloading: for convenience,
we briefly describe the latter approach here.

The forward accumulation technique of AD associates with each program
variable v a vector v, which contains numerical values for the partial derivatives
of v with respect to each of the independent variables. The combined structure
V = (v, 0) is called a doublet. The doublets U; corresponding to the independent
variables u; are initialized by setting ; to be the i—th Cartesian unit vector.
We write this (rather loosely) as

The floating point arithmetic operators are overloaded so as to operate correctly
on the numerical values in the vector parts: for example

sin(V') = (sin(v), cos(v) * v) VW = (vxw,v*w+0*w)

Re-compiling the same code which evaluates y = f(u) with all real variables
re-declared to be doublets will cause it to evaluate Y = f(U), following which
we have y = f'(u)d = f'(u).

The reverse accumulation technique of AD works by overloading the float-
ing point operations so that they record a trace of the program evaluation for
y = f(u). The trace consists of a list of elementary floating point operations
in the order in which they were performed by the program, together with the
address(es) of their argument(s) and the numerical values of their partial derivat-
ive(s) at the point in question. For example the operations v := w*u; w := sin(v)
would record the values of u, w and of cos(v) respectively.

A floating point adjoint variable ¥ (initially zero) is associated with each
program variable v. The adjoint variable ¥ is updated so that it contains the
numerical value of the partial derivative of the dependent variable y with respect
to v at the corresponding point in the trace. These updates are calculated
numerically in the reverse order to the function evaluation, whence the term
‘reverse accumulation’. Initially the adjoint § is set to 1.0, and (for example)
the adjoint operations corresponding to v := w+u,w := sin(v) are the operations

v4+= wx*cos(v), w:=0; and w+=wuxv, u+=0vxw, v:=0.

At the end of the reverse pass through the trace for the code which evaluates
y = f(u) we have [@] = g[f'(u)]T = [f'(u)]T. For further details see [11][6].
The forward and reverse techniques can be combined to allow us to calcu-
late Hessians. We embed doublet arithmetic into an implementation of reverse
AD: each program variable value is a doublet rather than a real, and so is the

corresponding adjoint variable value. Preparing such an AD package when op-
erator overloading has been used to implement forward and reverse separately
is a simple matter of re-declaring the relevant fields in the trace type.

After setting [¢] = [I] we calculate Y = f(U) giving y = f'(u) as before.
We then initialize Y by setting 7 = 1.0, = 0 and perform the reverse pass in
doublet arithmetic. For example the reverse accumulation step

V+= W xcos(V)
will (by operator overloading) be executed as
¥ += w * cos(v) U+= 1w x cos(v) — w x sin(v) * O
Following the reverse accumulation pass we will have
[a] = ylf' (W] = [f' ()"

as before, and
(@] = gLf" ()i + [f' ()] " = [(w)]

The important points to note about this process of automatic Hessian evaluation
are as follows. First, the same code that is used to calculate the function y can
be used to calculate the Hessian H of y, with only minor modifications: variables
must be declared to have a new type, independent variables must be explicitly
identified (so as to contain the correct cartesian vector) and a function call to
perform the reverse pass must be inserted after the evaluation of f. Secondly,
the total amount of floating point arithmetic involved is remarkably small: If
there are r independent variables, then the computational cost of a complete
Hessian is less than 6r + 4 times the cost of evaluating y, where the cost is
measured in floating point multiply-and-add operations. For further details see

[6].

3. Pantoja’s Algorithm. Define the adjoint problem corresponding to
our original problem as follows. Define variables Z; € R? and @; € RP by setting

an=F'ay) #i=[f1] T wi=[fl) T for0<i<N

where f; ; and f, ; are the Jacobians of f; with respect to z; and u; respectively,
evaluated at (z;,u;). Then @; = 0z/0u; by the chain rule.

The adjoint problem is extremely similar to the reverse accumulation tech-
nique introduced in the previous section, but applied to complete time steps
rather than at the level of individual floating point operations.

Suppose that we linearize both the original and the adjoint problems at a
starting point u°, so that the @; are approximated by linear functions of the
control variables u. Let u™" be the point at which these linear functions all

vanish. Then the Newton direction is the vector u% — u®. The details of this
construction are embedded in Pantoja’s algorithm which follows.

Notation. Let g be the block vector with ¢-th block given by

o 0z
gi = Uy = o

Let H be the block matrix with (¢, j)-th block given by

ou; 8%z
Hi = {31%] - {&Mauy}

For given values of t;,b; € RP : 0 < i < N we write Ht = b to denote

N-—1
> Hytj=b; for0<i<N
j=0

Algorithm 8.1. (Pantoja) Given a starting position u; to obtain values for ¢;
such that Ht = —g.
Step 1. For ¢ from 1 up to N calculate x; by

Tip1 = fi(zi, uq)

where z¢ is a fixed constant.
Step 2. Define Zn,any € R?, Dy € R7*? by

a‘:N:aN:F'(a:N) DN:F"(I‘N)

Step 3. For i from N —1 down to 0 calculate Z;,a; € R?,4;,¢; € RP, A;,D; €
R4 B; € RP*1 C; € RP*P by

Al - [falc,z]TDi-i-l [falc,z] + ('i'i+1)T [falclx,z]
B; = [f{L,z]TDi+1 [fa,c,z] + (ji+1)T [f;lm,z]
Ci= [f;,z]TDH-l [f;,z] + (ZEZ'-H)T [f;u,z]
where [.] denotes evaluation at (z;,u;), and we write (for example)

etc.

’ =1 m=1

If C; is singular then the algorithm fails, otherwise set

D;=A;— BI'C;'B;

T
Ci = [fqlm] Aj41
a; = I:f;’i]TaiJrl — BlTC;lcl
Step 4. For ¢ from 0 up to NV — 1 calculate t; € RP,s;+1 € R? by

t; = —Cz_l(BZSZ +¢i)

Siy1 = [falct] sit+ [fqlu] ti
where sg is the fixed constant 0.
STOP

Proposition 3.2. Either Algorithm 3.1 fails because some C; is singular, or
else at the end the ¢; satisfy Ht = —g. If all the C; defined in Step 3 of Algorithm
P are invertible, then so is H.

If all the C; are positive definite, then so is H. Conversely, if H is positive
definite then all the C; are positive definite (and hence are invertible).

Proof: See [9].

4. Implementation using AD. In this section we describe how to use
Automatic Differentiation to implement Algorithm 3.1, which is Algorithm 2.1
of [9]. Minor modifications can be made to implement the other algorithms
described in [9]. The basic idea of the implementation is to note that the
recurrence relations for D; correspond to a first order expansion of the forward
and adjoint state equations.

Algorithm 4.1 (Pantoja with AD)

We start with stored values for u; : 0 < i < N. Recall that zg is a fixed
constant.

Step 1. For i from 1 up to N calculate z; using ordinary floating point
arithmetic. Store x;.

Step 2. Define doublets X with scalar parts x respectively, and vector
parts (of length ¢) given by &n = [I;]. Evaluate Z = F(Xxn) in doublets. We
now have 2 = [F'(zy)]. Define Z by setting Z = 1.0,2 = 0,. Reverse through
the trace for Z to obtain the doublets Xn. We have zy = [F'(zn)]T,2n =
[F"(zn)]. Set ay = Zn, Dy = Zn. Delete the trace for Z.

Step 3. For ¢ from N — 1 down to 0 we calculate Z;,a;, D; as follows. We
assume at each stage that the corresponding quantities are available for ¢ + 1.

Define doublets X; and U; with scalar parts z;, u; respectively, and vector
parts (of length ¢ + p) given by

-

Evaluate X; 1 = f;(X;,U;) in doublets. Now we have

1, O
o I,

[@i =] foi i]
Define X;,1 by setting Z;;1 to the supplied value and setting
[#ix1 | =[Digafri Divafi,]

Reverse through the trace for X, to obtain the doublets X;, U;. Then

M

Calculate the column vectors [fa’m]T ait1, [fq’M»]T a;+1- Adjoin these to form:

A, BT
B; C;

[A BY
e

[fg’“] ’ Qi+1 -I
[ﬂ”] ’ Qi+1 J

Row reduce this to obtain

Ai-Bror' B o ([f2]" =BT [fi]") aim
C;'B; I Ctfo]" a

[by O | a;

T LC'B TGt

Now Z;,a;, D; are available for the next iteration. Store the values z;41, u;,
C’i_lBi, C’i_lci. Delete the trace for X;1.
Step 4. In ordinary arithmetic, for ¢ from 0 up to N — 1 calculate ¢; €
RP s;11 € RY by
ti = —(C;lBl)SZ — (C»ﬁlci)

and
Siy1 = [f;z] sit+ [leu] ti
where sg is the fixed constant 0.
STOP

We now give some time and space bounds for Algorithm 4.1.

Proposition 4.2 The total computational cost of Algorithm 4.1 is less than
the cost of 6(p + g + 1) evaluations of z, regardless of N, together with at most
p*/3+p*(q+1)+2p(g+1)?+(g+1)? floating point multiply-and-add operations
per time step.

The total storage requirement is bounded by 2(p+ g+ 2)W, where W is the
maximum number of floating point operations in any single f; or F, together
with at most (g + 1)(2p + q) N floating point stores.

Proof: The floating point cost of the doublet calculation in Step 3 is at most
6(p + q) + 4 times the corresponding scalar arithmetic cost in Step 1. The total
cost of Step 2 is at most 6¢ + 4 times the cost of an ordinary evaluation of
F. Step 1 itself adds one function evaluation. The computational cost of the
matrix multiplications in Step 3 of Algorithm 4.1 are ¢2(p+q) multiply-and-add
operations to form X;,; and a further ¢(p + q) to form the products with a;y;.

The computational cost of the row-elimination operations in Step 3 is at
most p(q + 1)(p + ¢q) + p*/3 multiply-and-add operations per time step.

The matrix multiplications in Step 4 add another pg multiply-and-add op-
erations to form t; and ¢(p + ¢) to form s;41.

The total number of floating point multiply-and-add operations per time
step is thus less than

PP /34020 +2p¢* + ¢ +p* + 4pg+2¢° < p*/3+p*(q+ 1) +2p(g+ 1) + (¢ +1)°

We need enough space to store a single trace for (the largest) single f;, with
q + p vector doublets, ie 2(p + ¢q) + 4 per floating point operation in f;. We also
need to store ;1, @, C’;lBi, C’;lci for each of N values of i, with storage costs
respectively ¢(p + q), p, pg, p- The total is of order q(2p + q) + 2p per time step,
which is less than (¢ + 1)(2p + ¢)N in total.

QED

Note that the number of additional floating point multiply-and-add operations
is bounded by (3p/4 + ¢ + 1)3.

If the computational complexity of evaluating f; is significantly less than the
order of ¢(p+ q) floating point operations, then there is likely to be redundancy
(eg sparsity or rank deficiency) in the structure of the Jacobians f,, ;, f, ;. If
there is such redundancy, then this can be exploited in the row reductions to
reduce the cost of Step 3. In either case, the total cost of the matrix operations
is likely to be reducible to the cost of about 2(p + ¢ + 1) additional function
evaluations, regardless of IV, assuming that p is not larger than ¢q. The operation
count, for our Algorithm 4.1 should be compared with that given by Coleman
and Liao [10, §2.1] viz p®/3 + 2p%q + Tpq®/2 + 243.

Usually the requirement to be able to store the graph of the largest f; (or
F) is trivial relative to the other storage: provided the number of floating point
operations in any f; is small relative to N the store required will be bounded

by 2(p + ¢ + 1) floating point stores per time step. If this requirement is not
met, is possible to perform the doublet calculation several times with shorter
vector components, thus extracting the required matrices a block at a time [5].
Alternatively, it may be possible to split the function evaluation into two or
more stages.

However the total space requirements appear infeasible if ¢ is large. We
discuss a strategy to address this problem in the next section.

5. Checkpointing. In Algorithm 4.1 we store a large amount of data
long before we need it: for example values for all the C; ! B; are stored during
Step 3, ready to be used in Step 4. If ¢ is large, this storage overhead may
well be unacceptable. In this case, it would make more sense to store sufficient
information to allow values to be re-computed when they are actually needed.
For example, suppose that N is a million. If we store values for z;,Z;, D;
just when ¢ is a multiple of a thousand, then we can re-compute the values of
C’i_lBi when we need them, in groups of a thousand at a time. This doubles
the computational effort required (although much of this could be computed
in parallel [1]) but reduces the storage requirement from a million records to
a thousand records, plus a thousand checkpoints. Further development of this
line of argument leads to the following algorithm.

Algorithm 5.1 (Pantoja with AD and checkpointing)

We start with stored values for u; : 0 < i < N. Recall that zg is a fixed
constant. For convenience, we assume that N = n?.

Step 1. For i from 1 up to N calculate z; using ordinary floating point
arithmetic. If 7 is a multiple of n then store x;.

Step 2. Calculate ay = F'(zn), Dy = F"(zy) as in Algorithm 4.1

Step 3. For j from n — 1 down to 0 calculate Z;,,a;n, Dj, as follows. We
assume at each stage that the corresponding quantities are available for j + 1.
Recall that zj, is available from Step 1.

For ¢ from jn up to (j + 1)n — 1 recalculate x; using ordinary floating point
arithmetic. Store x;.

For i from (j 4+ 1)n — 1 down to jn define doublets X; and U; and calculate
Z;,a;, D; for the next iteration just as in Step 3 of Algorithm 4.1 Delete the
trace for X;11. Delete z;.

Store the values Z;, an;j, Dp;-

Step 4. For j from 0 up to n — 1 proceed as follows. Recall that z,; is
available from Step 1, and that Z(,11);,a(n41)j, D(nt1); are available from Step
3.

For i from jn up to (j + 1)n — 1 recalculate z; using ordinary floating point
arithmetic. Store x;.

For i from (j+ 1)n —1 down to jn define doublets X; and U; and recalculate
@i, Ti,ai, D; just as in Step 3. Delete the trace for X; 1. Store @, Ci_lBi, Ci_lci.

For i from jn up to (j + 1)n — 1 calculate t; = —(C; 'B;)s; — (C; 'c;).
Recall that z; is available from the first part of this step. Assume that s; is
available from the previous iteration. Define doublets (with vector parts of
length 1) U;, X; by setting u; = t;,&; = s; and calculate X;11 = fi(X;,U;). Set
Si+1 = &i41. Delete x;, s;.

STOP

Proposition 5.2 The total computational cost of Algorithm 5.1 is less than
the cost of 12(p + ¢) + 15 evaluations of z, regardless of N, together with at
most 2p®/3 + 2p%(q¢+ 1) +4p(q +1)? + 2(¢ + 1)? floating point multiply-and-add
operations per time step.

A total of 3pN floating point stores are required in order to maintain the
values of u,u and ¢t. The total storage required in addition to this is bounded
by 2(p+q+2)W, where W is the maximum number of floating point operations
in any single f; or F, together with

(p+aq+2)(q+1)VN

floating point stores.

Proof: Step 1 represents the cost of a single function evaluation. The total
cost of Step 2 is at most 6¢+4 times the cost of an ordinary evaluation of F'. The
floating point cost of the doublet calculation in Step 3 is at most 6(p+¢)+4 times
the corresponding scalar arithmetic cost in Step 1. The recalculation of the z;
adds one further function evaluation. The computational cost of the matrix
multiplications in Step 3 of Algorithm 4.1 are (as before) ¢?(p + q) multiply-
and-add operations to form X;;; and a further ¢(p + ¢) to form the products
with 41

The computational cost of the row-elimination operations in Step 3 is the
same as in Algorithm 4.1, but these operations are repeated in Step 4.

In Step 4 the re-evaluation of x; and the doublet calculation of Step 3 are
repeated, which adds another 6(p+ ¢) + 5 function evaluations. The calculation
of t; requires pg multiply-and-add operations per time step, and the doublet
arithmetic to compute s;41 adds the cost of another 4 function evaluations.

The total number of function evaluations is thus 12(p + q) + 15 and the
additional number of floating point multiply-and-add operations per time step
is less than twice that required by Algorithm 4.1

The storage requirement for the trace is the same as for Algorithm 4.1.
We need to store C’;lBi,C;lci for each of n values of i, with storage costs
respectively pg,p. We also need to store n checkpoints z,;, Zpn;j, Gnj, Dn; With
storage costs respectively ¢, q, q,¢%. This totals

[(p+ 9)g + (p+ 3¢)] VN
which is less than (p + ¢ + 2)(¢ + 1)/v/N per time step.

10

QED

Note that the number of additional floating point multiply-and-add operations
is bounded by 2(3p/4 + ¢ + 1)3.

Assume that N > [(p+¢+2)(¢+ 1)]* and that the number of floating point
operations in any f; or F is small compared with N/(p + ¢). Then the cost of
the working store can be reduced to below N floating point stores. This is less
than the cost of storing u or ¢.

More sophisticated approaches are possible. For example, suppose that N
is a million. Algorithm 4.1 requires a million records of storage. Algorithm 5.1,
with one level of checkpointing, requires storage for one thousand records and
one thousand checkpoints, but also requires double the run time. If we employ
two levels of checkpoint, we need only one hundred records, and two hundred
checkpoints (one hundred at each level) , but will require treble the run time. An
algorithm with six levels of checkpoint requires ten records, sixty checkpoints,
and seven times the run time. In general, we can reduce the storage from N to
order log N at the cost of a log N fold increase in run time. For further details,
see for example [21] [14].

6. Conclusions. We have discussed the application of AD to Pantoja’s
algorithm, and shown that the Newton step can be calculated for a discrete
time optimal control problem for a very low computational cost. The pleasing
feature of using AD is that existing code to evaluate the numerical value of
the target function z can be used, without extensive re-writing, to compute
truncation-free values for the first and second derivatives required.

Similar implementations of other algorithms involving state-control feedback
are also possible: for example the traditional differential dynamic programming
(DDP) algorithm [16] simply substitutes a;+1 for Z;y; in the initialization of
Xit1 in Step 3 of Algorithm 4.1. Other algorithms given in [9] can also be
implemented in this way: for example to determine a diagonal matrix A such
that H + A is positive definite, to find a descent direction ¢ such that (H +A)t =
—g, or to solve more general equations such as (H + A)t = b with an arbitrary
right hand side, as required for example by [10] to implement trust regions.

However Pantoja’s algorithm provides a useful tool even when the Newton
direction is not being used to solve the optimization problem: it allows an inex-
pensive determination of whether the Hessian of the target function is positive
definite at any point. This information is of utility to many optimization al-
gorithms (particularly in the context of global optimization) and in particular
allows post-hoc verification that a second order minimum has been reached.
Similarly use of the algorithm to examine H — AI allows verification that the
Hessian does not contain eigenvalues below a posited positive threshold. Such
sensitivity analyses can in turn be used to verify the accuracy of the adjoint
problem solution.

11

Further refinement of the approach described here using the techniques of
[12][15][7][8] allows the dynamics of the problem to be expressed in terms of
implicit equations ¢(x; 11, %, u;) rather than explicitly. This in turn opens the
prospect of applying similar techniques to problems arising from differential
equations.

References.

References

[1]

[2]

[7]

[8]

[10]

[11]

Jochen Benary, 1996, Parallelism in the Reverse Mode, in Computational
Differentiation, STAM, Philadelphia

Charles Bennett et al, 1973, Logical Reversibility of Computation, IBM
J Res Dev 17 525-532

M. Bartholomew-Biggs, 1996, Automatic Differentiation of Implicit Func-
tions using Forward Accumulation, to appear

Christian Bischof et al, 1992, ADIFOR : Generating Derivative Codes
from Fortran Programs, MCS-P263-0991, Argonne National Laboratory,
linois

Christian Bischof et al, 1992, Using ADIFOR to Generate Dense and
Sparse Jacobians, TM-158, Argonne National Laboratory, Illinois

Bruce Christianson, 1992, Automatic Hessians by Reverse Accumulation,
IMA Journal of Numerical Analysis 12, 135-150

Bruce Christianson, 1994, Reverse Accumulation and Attractive Fixed
Points, Optimization Methods and Software 3(4), 311-326

Bruce Christianson, 1996, Reverse Accumulation and Implicit Functions,
Technical Report, Numerical Optimisation Centre, University of Hert-
fordshire : Hatfield, England

Bruce Christianson, 1996, Generalization of Pantoja’s Optimal Control
Algorithm, Technical Report, Numerical Optimisation Centre, University
of Hertfordshire : Hatfield, England

Thomas Coleman and Aiping Liao, 1995, An Efficient Trust Region
Method for Unconstrained Discrete-Time Optimal Control Problems,
Computational Optimization and Applications 4 47-66

Laurence Dixon et al, 1990, Automatic Differentiation of Large Sparse
Systems, Journal of Economic Dynamics and Control 14,299-311

12

[12] Jean Charles Gilbert, 1992, Automatic Differentiation and Iterative Pro-
cesses, Optimization Methods and Software 1(1), 13-21

[13] Andreas Griewank, 1989, On Automatic Differentiation, pp 83-108 in
Mathematical Programming: Recent Developments and Applications,
Kluwer Academic Publishers, Japan

[14] Andreas Griewank, 1992, Achieving Logarithmic Growth of Temporal and
Spatial Complexity in Reverse Automatic Differentiation, Optimization
Methods and Software 1 35-54

[15] Andreas Griewank et al, 1993, Derivative Convergence for Iterative Equa-
tion Solvers, Optimization Methods and Software 2(4) 321-355

[16] D.H. Jacobson and D.Q. Mayne, 1970, Differential Dynamic Program-
ming, Americal Elsevier, New York

[17] D.M. Murray and S.J. Yakowitz, 1984, Differential Dynamic Program-
ming and Newton’s Method for Discrete Optimal Control Problems,
JOTA 43(3) 395414

[18] J.F.A.De O. Pantoja, 1983, Algorithms for Constrained Optimization
Problems, PhD thesis, Imperial College of Science and Technology, Uni-
versity of London

[19] J.F.A.De O. Pantoja, 1988, Differential Dynamic Programming and New-
ton’s Method, Int J Control 47(5) 1539-1553

[20] Louis B. Rall et al, 1996, An Introduction to Automatic Differentiation,
in Computational Differentiation, STAM, Philadelphia

[21] Yu. M. Volin and G.M. Ostrovskii, 1985, Automatic Computation of De-
rivatives with the use of the Multilevel Differentiation Technique, Com-
puters and Mathematics with Applications 11(11) 1099-1114

13

