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Abstract� We begin by introducing a simple technique for using reverse accu�
mulation to obtain the �rst derivatives of target functions which include in their
construction the solution of systems of linear or nonlinear equations	 In the lin�
ear case solving Ay 
 b for y corresponds to the adjoint operations �b �
 �b 
 v
and �A �
 �A � yv where v is the solution to the adjoint equations vA 
 �y	 A
more sophisticated construction applies in the nonlinear case	

We apply these techniques to obtain automatic numerical error estimates for
calculated function values	 These error estimates include the e�ects of inaccur�
ate equation solution as well as rounding error	

Our basic techniques can be generalized to functions which contain several
�linear or nonlinear� implicit functions in their construction� either serially or
nested	 In the case of scalar�valued target functions that include equation solu�
tion as part of their construction� our algorithms involve at most the same
order of computational e�ort as the computation of the target function value�
regardless of the number of independent variables or the size of the systems of
equations	

�� Introduction� Automatic di�erentiation ����������� is a set of techniques
for obtaining derivatives of numerical functions to the same order of accuracy as
the function values themselves� but without the labour of forming explicit sym�
bolic expressions for the derivative functions	 Automatic di�erentiation works
by repeated use of the chain rule� but applied to numerical expressions rather
than to symbolic values	

The forward accumulation technique of automatic di�erentiation associates
with each program variable a vector containing partial derivatives of that vari�
able with respect to the independent variables	 The reverse accumulation tech�
nique builds a computational graph for the function evaluation� with one graph
node �or Wengert variable� corresponding to each successive value held by a
program variable� and associates with each node an adjoint variable containing
the partial derivatives of the dependent variables with respect to that node	 The
adjoint values are calculated numerically in the opposite order to the function
evaluation� whence the term �reverse accumulation�	 Reverse accumulation is of
particular interest when the gradient �or sensitivities� of a single scalar�valued
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target �loss� function is required� as it allows the evaluation of the entire gradient
vector of a scalar function at a computational cost of three function evaluations
in total� regardless of the number of independent variables	 For further details�
see ���� ����� ���� and the references therein	

Many functions include in their computation the solution of a set of equations
of the form ��y� u� 
 � where u � Rp� y � Rq are �column� vectors of known and
unknown quantities respectively and � is a mapping Rq �Rp � Rq 	 Provided
the function � is su�ciently well�behaved� we can regard � as the implicit
de�nition at u of �a branch of� the function y��u� de�ned by ��y��u�� u� 
 �	
The eversion of this equation for a particular value of u� so as to construct
a corresponding value for y��u�� is typically part of a larger computation of
a dependent variable z 
 f�x� y�� where the x are the independent variables�
y 
 y��u�� and the u are also functions of the x	

It is clearly desirable to extend the automatic di�erentiation techniques so
as to determine such quantities as the gradient �row� vector rx z	 The paper
��� addresses these issues and proposes an approach to the automatic evaluation
of �rst derivatives� in the context of equation solution by iterative �xed point
constructions	 More detailed analyses in this context were given by Griewank
et al ��� in the case where forward accumulation is used� and by Christianson
��� in the reverse case	

In this paper we examine a simple technique for using reverse accumulation
to obtain �rst derivatives of a target function �dependent variable� which in�
cludes implicit function eversions in its construction	 Some of the results and
techniques presented here are generalizations of those given in ���� others are
completely new	 A corresponding analysis for the forward case has been given
by Bartholomew�Biggs ���	

In the next section� following some mathematical preliminaries� we show that
the adjoint quantities �u can also be de�ned implicitly	 In section �� we use this
to suggest an implementation approach which could be built on top of existing
code	 In section � we show how to obtain accurate error bounds for the e�ects
of inexact equation solution on target function values which are calculated via
an implicit constructor	 In section � we extend this to provide a uni�ed analysis
of the e�ects of inexact solution of nonlinear equations and of rounding error
and give an algorithm for calculating these error bounds numerically	 In section
� we discuss possible generalizations	

�� Adjoint Implicit Equations� In what follows� we assume a norm kbk
for column vectors b� and denote by the same symbol the corresponding operator
norm kAk 
 supfkAbk st kbk 
 �g	 We write kak for the norm of a row vector
a considered as a linear operator on column vectors� so that kak 
 kaTkadj
where T denotes the adjoint �transpose�	 Usually in practice we shall use the
Euclidean norm� in which case kak� 
 kaT k� and the corresponding operator
norm is the spectral norm� but we do not assume this in what follows	 Because
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we are dealing with �nite dimensional spaces� all complete norms are equivalent
and we can speak without ambiguity of an open �neighbourhood� of a point	
However the equivalence bounds can be arbitrarily large	

We regard the gradient operator r as an adjoint operator� mapping scalars
into row vectors and column vectors into Jacobian matrices	

If � is a mapping of the form ��y� u� � Rq�Rp � Rq then we write �y��u to
denote ry��ru� respectively� when these derivatives exist	 At any such point
�y� u�� ���y� u� 
 ��y�y� u���u�y� u�� is a map Rq � Rp � L�Rq � Rp � Rq�	
On a region where �� is everywhere de�ned� we say that �� is Lipschitz with
respect to a given norm if the map �y� u� � ���y� u� is Lipschitz with respect
to the induced operator norm	

The results we give below remain true in the case where �� is uniformly
continuous �rather than Lipschitz�	 The methods of proof are the same� but the
construction of bounds is notationally more cumbersome	

De�nition ��� Fix the norm k�k on Rq � Rp� this induces norms on Rq 

Rq � f�g� Rp 
 f�g � Rp and on L�Rq � Rp � Rq�	 Choose u� � Rp� y� � Rq

and let U� Y be bounded open convex subsets of Rp� Rq respectively� such that
u� � U� y� � Y 	 Since we are interested in local behaviour with respect to u� we
lose nothing by restricting our attention to domains of this form	

We say that � � Y � U � Rq is a well behaved implicit mapping if the fol�
lowing four conditions are satis�ed�
�a� ��y�� u�� 
 �
�b� � is continuously di�erentiable throughout Y � U
�c� �� is Lipschitz with constant C throughout Y � U for some constant C
�d� �y is uniformly invertible throughout Y � U �
ie there is some constant � such that k���

y �y� u�k � � for all u in U and y in Y

Note that under these conditions there will always exist a constant � with
k�u�y� u�k � � for all u in U and y in Y 	 We could relax condition �d� in
De�nition �	�� as the following Lemma shows	

Lemma ��� Suppose that � � Y � U � Rq satis�es conditions �a�� �b�
and �c� in De�nition �	�� and that �y is invertible at �y�� u��	 Then there exist
convex sets Y�� U� with y� � Y� � Y and u� � U� � U such that � restricted to
Y� � U� is a well�behaved implicit mapping	

Proof� Choose Y� and U� small enough to ensure that ky� y�k and ku�u�k
are both less than

�

� C k���
y �y�� u��k

for all y � Y�� u � U�	 De�ne

A 
 �y�y� u�� A� 
 �y�y�� u��� D 
 ��A�A��A
��

�
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Then A 
 �I �D�A� but

kDk � kA�A�k�kA
��

� k �
�

�

so the series
A�� 
 A��

� �I 
D 
D� 
D� 
 ����

converges in operator norm with kA��k � �kA��

� k for all u � U�� y � y�� and
condition �d� is recovered	

QED�

By the implicit function theorem� a well�behaved implicit mapping de�nes
a continuous function y� � U � Y such that ��y��u�� u� 
 � for all u � U �
provided U is small enough relative to Y 	

Lemma ��� Suppose � a well behaved implicit mapping on Y � U � with
�� Lipschitz with constant C� and k���

y k� k�uk bounded throughout Y �U by
�� � respectively	 Suppose that U and Y are related in such a way that if u � U
and y � Rq such that ky � y�k � ���ku� u�k then y � Y 	

Then there is a unique continuous function y� � U � Y such that

y��u�� 
 y� and ��y��u�� u� 
 � for all u � U

Furthermore y��u� is continuously di�erentiable with respect to u� with gradient
given by

ru y��u� 

dy�
du
�u� 
 ����

y �y��u�� u��u�y��u�� u�

Proof� This follows from the implicit function theorem� de�ning y��u� by
integrating the given equation for the derivative along a line from u� to u	
Taking norms gives ky��u� � y�k � ��ku � u�k so we maintain the condition
that �y��u�� u� � Y � U at each point along the line	

QED�

Theorem ��� Suppose � a well behaved implicit mapping for y� on the open
domain Y � U � with �� Lipschitz with constant C� and k���

y k� k�uk bounded
throughout Y � U by �� � respectively	

Then the map �y� u�� ���
y �y� u� is Lipschitz with constant

C ��

the map �y� u�� ���
y �y� u��u�y� u� is Lipschitz with constant

C ��� 
 ���
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and the map u� ru y��u� is Lipschitz with constant

C ��� 
 ����

Proof� Suppose u�� u � U � y�� y � Y with k�y� u�� �y�� u��k � � and de�ne

A 
 �y�y� u�� A� 
 �y�y�� u���

B 
 �u�y� u�� B� 
 �u�y�� u���

Since
A�� �A��

� 
 �A���A�A��A
��

�

and the map �� � �y� u� � ��y�y� u���u�y� u�� is Lipschitz with constant C
throughout Y � U � we have

kA�� �A��

� k � ��kA�A�k � ��C�

Also
A��B �A��

� B� 
 A���B �B�� 
 �A
�� �A��

� �B�

so
kA��B �A��

�
B�k � �kB �B�k
 ���kA�A�k

whence
kA��B �A��

�
B�k � �� 
 ����C�

Finally� as in Lemma �	� a line integral of ru y��u� from u� to u shows that
ky��u�� y��u��k � ��ku� u�k whence

k�y��u�� u���y��u��� u��k � ky��u��y��u��k
ku�u�k � ��ku�u�k
ku�u�k

which with the previous result gives the �nal assertion	
QED�

Theorem ��� Suppose � a well behaved implicit mapping and let r be a
�xed arbitrary adjoint �row� vector in L�Rq � R� 
 �Rq�T 	

Suppose second order derivatives of � exist and are Lipschitz� then the
operator  � R�q�p �Rp�q � R�q�p given by

 ��y� �T � 	T �� �u� r�� 
 ���y� u�� r � ��y�y� u�� 	 
 ��u�y� u��

is a well�behaved implicit mapping� and solving  
 � gives 	 
 r ru y��u�	

Proof� Since � 
 � we have y 
 y��u�� since r 
 ��y we have � 
 r���
y

and since 	 
 ���u we have 	 
 �r���
y �u 
 r ru y��u� by Theorem �	�

QED�
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Note that if reverse accumulation is used to construct the directional de�
rivatives ��y and ��u then the evaluation of  involves the same order of
computational e�ort as the evaluation of �	

�� Implementation Strategy� We seek to use the technique of reverse
accumulation to calculate row vectors of the form r ru y��u� for �xed row
�adjoint� vectors r	 We can use the construction in Theorem �	� to do this�
which leads to the following	

Algorithm ��� Suppose as before that � is a well�behaved implicit mapping
for y�� and assume now that the computation of y��u� is part of a larger com�
putation of a dependent variable z 
 f�x� y�� where the x are the independent
variables� y 
 y��u�� and the u are also functions of the x	

To evaluate rx z proceed as follows�
Step �� Build the part of the computational graph corresponding to the calcu�
lation of u from the independent variables x	
Step �� Switch o� building the graph and construct y by solving the equations
��y� u� 
 �	
Step �� Switch on graph construction and compute the variables w 
 ��y� u�
�which should have value zero�	
Step �� Build the graph for the dependent variable z 
 f�x� y�	
Step �� Initialize �z to � as usual	
Step 	� Reverse through the graph from Step �� accumulating the adjoint quant�
ities �x 
 fx and �y 
 fy	
Step 
� Solve the adjoint equations ��y 
 �y and set �w 
 ��	
Step �� Reverse through the graph from Step �	 �This has the e�ect of setting
�u �
 �u� ��u	�
Step �� Reverse through the graph from Step �� accumulating the adjoints �x of
the independent variables x	

Writing � to mean �has a functional dependence upon�� we have

x � u � y � z� x � z� y � w� u � w�

Algorithm �	� is a template from which a number of well�known algorithms
can be recovered by �lling in particular strategies for performing Steps � and �	
It is not our intention here to advocate a preferred way of doing this� rather we
wish to ensure that our results in x� will apply to all algorithms which can be
derived from this general template	

In practice we may have a linking between the strategies used in the two
steps� for example there may exist some di�erentiable contractive iteration of
the form y �
 !�y� u� with the property that the �xed point to which this con�
verges satis�es the implicit equation ��y� u� 
 �	 Whether or not this iteration
is used in Step �� the corresponding adjoint operator may be iterated to solve
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the adjoint equations in Step �� as described in ���	 However even in this case
the de�linked form of Algorithm �	� is useful� because � may have very di�erent
numerical stability properties to idleft � !	

Alternatively we may have a �possibly non�di�erentiable� method for ever�
sion of the implicit equations in Step � which produces by�products that can be
used in the solution of the �linear� equations in Step �	 We consider this case
further in x�	 Or it may be that there is a complete disconnection between the
two steps� with the Jacobian �y being explicitly calculated and factorised to
solve the linear equations for �	

Algorithm �	� has a particularly simple form in the case where the implicit
mapping � is itself linear	

Corollary ��� Suppose the computation of a dependent variable z contains
the intermediate step

solve Ay 
 b for y

where A and b are functions of the independent variables	
Then the corresponding adjoint steps on the reverse accumulation pass are

solve vA 
 �y for v� �b �
 �b
 v� �A �
 �A� yv�

where
�Aij 



z


Aji

Proof� In Algorithm �	� set u 
 �Ajb� and ��y� u� 
 Ay � b	 Then �y 
 A so

ru y 
 ����
y �u 
 �A���u

For �xed row �adjoint� vector r we have r�u 

�

yr

�r

�
so if v 
 rA�� then

rru y 
 �rA���u 
 �v�u 


�
�yv

v

�

Now set r 
 �y and the result follows	
QED�

�� Error Estimates for Function Values� There are a number of po�
tential sources of numerical error in Algorithm �	�	 Rounding error introduces
slight perturbations into the calculated values for u in Step �	 In Step � we may
not solve the equations exactly for y	 Even if the calculated value of w in Step �
is exactly zero� this fact may itself be due to rounding errors in the evaluation of
�	 These slight perturbations in y� together with the further e�ects of rounding
error in Step �� will perturb the calculated value of z	 This in turn will have an
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e�ect on �y and hence on �u and �x	 Again� in Step � we may not solve the adjoint
equations exactly� and this will also a�ect the values calculated for �u and �x	

We investigate further the e�ects of these errors in this section	 We begin
by investigating the e�ect of inexact solution in Step � of Algorithm �	� upon
the calculated value for the dependent variable z	

Lemma ��� In the set�up of Algorithm �	�� suppose that we are using
accurate arithmetic �ie with no rounding error�� but that we have w �
 � in Step
�� as a result of inaccurate equation solution in Step �	 Let "z be the true value
of the dependent variable �corresponding to the correct values "y for y� and let
z be the value calculated in Step �	 Assume that � is exactly calculated in Step
�� but using the incorrect values for y	

Let B be the ball with diameter ��kwk around �y� u� and assume that B �
Y � U 	 Let K be a Lipschitz constant for fy on B	 Then

kz � "z � �wk � �K 
 C�k�yk� ��kwk�
�

Hence to �rst�order
"z 
 z � �w�

Proof� By the inverse function theorem� treating u as �xed� we have

dy

dw

 ���

y �

Integrating this from � to w gives

ky � "yk � �kwk

where y is the calculated �incorrect� value	 Also

dz

dw
� � 
 fy�

��
y � � 
 �fy � �y����

y 
 ��y���
y � ��

where �y is fy�y� u� evaluated at the calculated �incorrect� value for y and � is
�y���

y evaluated at this point	 Certainly

kfy � �yk � Kky � "yk

and
k���

y �y� u�����
y �"y� u�k � C��ky � "yk

by Theorem �	�	 Integrating as before now gives

kz � "z � �wk � Kky � "yk 	 �kwk
 k�yk 	 C��ky � "yk 	 kwk

� �K 
 C�k�yk� ��kwk��

�



QED�

Note that if � is also calculated inexactly in Step �� the e�ect on the value
of z � �w is bounded by �k�y � ��yk 	 kwk	

In the next Lemma� we examine the case where the equations for y are solved
exactly� but for a perturbed value of u	 The crucial point is that by Theorem
�	�� all the relevant operators are Lipschitz� and so the error growth is contained�
in a fashion similar to the propagation of rounding error	

Lemma ��� In the set�up of Algorithm �	�� suppose that we are using
accurate arithmetic and exact equation solution� but that we slightly perturb
the values of u	 Let "z be the true value of the dependent variable �corresponding
to the correct values "u for u� and let z be the value calculated in Step � by using
u 
 "u
#u in Step �	

Let B be the ball with diameter ���k#uk around �y� u�� assume that B �
Y � U and let K be a Lipschitz constant for f � 
 �fy� fu� on B	 Then

kz � "z � �u#uk � ��� 
 ��� ��K 
 C�� 
 ���k�yk� k#uk�

where � and �u 
 ���u are calculated using u 
 "u
#u	

Proof� Applying Lemma �	� to the equation ru y� 
 ����
y �u gives

k#yk 
 ky � "yk � ��k#uk

Pre�multiplying the same equation by fy we have

dz

du
� �u 
 ��fy � �y��

��
y �u � ��y�

��
y �u 
 �u�

and integrating this from "u to u gives �using Theorem �	��

kz � "z � �u#uk � �K��
 k�ykC��� 
 ���� k�#y�#u�k 	 k#uk

Now inserting the bound for #y and rearranging gives the result	
QED�

Essentially the same analysis can be made of the potential error in �y and �u	

Corollary ��� Under the conditions of Lemma �	� and Lemma �	�� the
sources of error in the values for �u calculated by Algorithm �	� and bounds on
their magnitudes are�

Error caused by using an inaccurate value u 
 #u in place of u in Steps �� �
and � at most

k�ykC��� 
 ����k#uk

�



Error caused by inexact solution in Step � at most

k�ykC���� 
 ���kwk

Error caused by inexact solution in Step � at most

��k��y � �yk

Error caused by using inaccurate values of u and y in Steps � and � at most

��k#�yk � ��Kk�#y�#u�k

where k#yk can be estimated using the bound

k#yk � �kwk
 ��k#uk

Proof� Theorem �	� and Lemmas �	�� �	� QED�

If estimates of the constants �� � and C are available� then they can be
used to check that the equation solution in Steps � and � of Algorithm �	� is
su�ciently accurate to ensure the desired accuracy for z and �u	

From now on� we shall assume that the errors in �u are �small� relative to
max�k�uk� �� where � is a machine constant which is �small� relative to one� and
that consequently a �rst�order analysis su�ces	

�� Rounding Error� An important application of reverse accumulation is
the analysis of rounding error	 The conventional method of reverse accumulation
allows an analysis of the rounding error in a dependent variable to be made
automatically	 We summarize these results in the following	

Proposition ��� �M	 Iri� Let z be a scalar dependent variable produced by
a sequence of elementary operations� indexed by i	 �We assume for convenience
that the indexing includes the independent variables at the beginning and z itself
at the end	� For each node vi in the computational graph of the calculation for
z� let �vi 
 
z�
vi be the corresponding adjoint quantity calculated by reverse
accumulation� and let �i be an upper bound on the absolute rounding error in
vi introduced by the elementary operation i which produced vi	 De�ne

e 

X
i

�i 	 j�vij� s 

X
i

��i

Then the rounding error for z is bounded by e
O�s�	

Proof� 
Outline�� We perform a reverse induction� in decreasing order of
i	 At stage i of the induction� we assume that all the values vj with j � i
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are calculated using inaccurate operations subject to rounding error� but that
the values "vj for j 
 i are calculated using exact arithmetic �with no rounding
error� although the accurate operations are applied to possibly inaccurate ar�
guments	 To proceed from stage i to stage i� �� we replace the value vi by the
accurate value "vi obtained by applying the accurate elementary operation i to
the �inaccurate� arguments� and we then re�calculate all the "vj with j 
 i	

The total e�ect of this on "z is to add �vi�"vi � vi� together with a remainder
term which is bounded by some multiple of j"vi � vij

�	 Since j"vi � vij � �i�
completing the induction gives our result	 For further details see ��� x��� ����
and the references cited there	

QED�

We now show how to provide a combined analysis of rounding and equation
solution error where the computation of z involves constructing a value for an
implicit function	 We do this by applying Proposition �	� to the graph produced
by Steps �� � and � of Algorithm �	�	 For the purpose of this analysis� we treat
the y as additional independent variables	

Algorithm ���Augment Algorithm �	� by introducing a new scalar variable
e	 Initialize e to zero in Step �� and add to Steps �� � and � the operation

e �
 e
 �i 	 j�vij

for each of the graph nodes vi visited in the reverse accumlation� where �i is an
upper bound on the absolute rounding error in vi introduced by the elementary
operation i which produced vi	

Theorem ��� After the completion of Algorithm �	�� assume that

k��y � �yk � kwk

Then
j"z � z 
 �wj � e
O�s��

where "z denotes the true value for the dependent variable� with accurate equa�
tion solution and no rounding error� z� � and w denote the values actually calcu�
lated in Algorithm �	�� including the e�ects of rounding error and of inaccurate
equation solution in Steps � and �� and

s� 
 kwk� 

X
i

��i

Proof� Lemma �	� tells us that in the absence of rounding error z � �w is
an O�kwk�� estimate for "z	 By our assumption� k� � �y���

y k � �kwk� so the
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e�ect upon z � �w of inaccurate equation solution for the calculated value of �
in Step � will be O�kwk�� as well	 Therefore it su�ces to consider the e�ects
of rounding error on the calculated value of z � �w� treating the values of y as
�xed constants	

The rounding errors which occur during Step � a�ect only the calculated
value for z� by an amount which is already contained in e
O�s�� by Proposition
�	�	 The rounding errors in Step � a�ect only the calculated values of w	 By
Step �� the e�ect on z � �w of replacing vi by "vi in Step � is

��
dw

dvi
�"vi � vi� 
 �vi�"vi � vi�

plus a remainder term of second order in "vi � vi	 Since j"vi � vij � �i� the
magnitude of the �rst order term is bounded by �i 	 j�vij which is contained in
e� and the remainder term by O���i � which is contained in O�s��	 The rounding
error in Step � may a�ect both z and �w	 However the value �vi contains a
component for each of these e�ects and once again the total e�ect on z � �w
will be bounded by �i 	 j�vij which is contained in e� plus a remainder term which
is of the required order	

QED�

Theorem �	� says in essence that e 
 k�wk is� to �rst order� a tight worst
case error bound for the entire calculation of z� including both rounding error
and equation solution error	 It is a worst case estimate� because it implicitly
assumes that all rounding errors will a�ect z in the same direction� rather than
cancelling	

An alternative analysis of rounding error can be made under the assumption
that absolute rounding errors for vi are independently distributed with mean
zero and standard deviation �i rather than being worst case additive� see ����
and ���	 Analagous results can be proved in our set�up under this assumption	
Given reasonable conditions on the distribution of the jvij the error for z will
be approximately normally distributed� with mean zero and standard deviation
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sX
i

��i 	 �vi�
�

Consequently j"z � z 
 �wj is �very probably� bounded by ��	

	� Discussion� The main contributions of this paper are Algorithms �	�
and �	�	 The total computational e�ort involved in these algorithms is typically
of the same order as that required for the computation of the dependent variable
z	 Note that algorithms of this type do not involve forming ���

y �u explicitly	 In
particular� the computational e�ort of our algorithms does not explicitly depend
upon the dimensions p and q	 Although the cost of solving the adjoint equations
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will usually depend implicitly upon q� this cost is typically no worse than that
of solving the original implicit equations and may indeed be very much less	

For example� if by�products of the original equation solution �such as LU
decompositions� are available on the reverse pass� then the time required to do
the reverse pass may be an order of magnitude less than that required to calcu�
late the function value� see ��� and ����	 It may also be possible to precondition
the equations � 
 � so that the component equations have similar sensitivities	

If the target function �dependent variable� is evaluated frequently in the same
region �typically true in the later stages of optimization where accurate solu�
tions are required� and preconditioning is used together with some improvement
algorithm to obtain the new solution from the old then the implicit dependence
on q may disappear altogether	

The techniques and algorithms discussed in this paper can be applied re�
cursively or iteratively to cope with nested or serial iterative implicit function
constructions� and the fact that the adjoint equations are linear makes it easy in
principle to extend the method to higher order directional derivatives or Taylor
series	 The paper ��� does just this in the case of a particular inverse di�usion
problem	 This in turn enables the use of conjugate gradient or truncated New�
ton method� see ���	 Other recent advances in the use of reverse accumulation
are discussed in ���	

The paper ��� considered the iterative constructor case where

kI ��yk � � � � throughout Y � U� whence � �
�

�� �
�

Here we make no such restriction on the norm of I � �y	 Even in the case
where the restriction is satis�ed� the results in x� of the present paper give
powerful alternative accurate error bounds for truncation and rounding error�
particularly when � � ��� in which case � � �	 User code for these algorithms
can be written in pretty much the same style as in the forward case� see ���	
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