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Abstract

Consider a computation F with n inputs �independent variables� and m outputs
�dependent variables�� and suppose that we wish to evaluate the Jacobian of F �
Automatic di�erentiation commonly performs this evaluation by associating vector
storage either with the program variables �in the case of forward�mode automatic
di�erentiation� or with the adjoint variables �in the case of reverse�� Each vector
component contains a partial derivative with respect to an independent variable� or a
partial derivative of a dependent variable� respectively� The vectors may be full vectors�
or they may be dynamically managed sparse data structures� In either case� many of
these vectors will be scalar multiples of one another� For example� any intermediate
variable produced by a unary operation in the forward mode will have a derivative
vector that is a multiple of the derivative for the argument� Any computational graph
node that is read just once during its lifetime will have an adjoint vector that is a
multiple of the adjoint of the node that reads it�

It is frequently wasteful to perform component multiplications explicitly� A scalar
multiple of another vector can be replaced by a single multiplicative �scale factor	
together with a pointer to the other vector� Automated use of this �dirty vector	
technique can save considerable memory management overhead and dramatically
reduce the number of 
oating�point operations required� In particular� dirty vectors
often allow shared threads of computation to be reverse�accumulated cheaply� The
mechanism permits a number of generalizations� some of which give e�cient techniques
for preaccumulation�

keywords� computational graph� copy�on�write� Jacobian� preaccumulation� reducing FLOP
count� sparse vectors�

� Introducing Dirty Vectors

Consider a computation F with n inputs �independent variables� ui and m outputs
�dependent variables� zj � and suppose that we wish to evaluate the Jacobian of F �
Automatic di�erentiation �AD� 	
�� commonly performs this evaluation by associating
vector storage either with the program variables �in the case of forward�mode AD� or
with the adjoint variables �in the case of reverse� 	� 

�� Each vector component contains
a partial derivative with respect to an independent variable� or a partial derivative of
a dependent variable� respectively� The vectors may be full vectors� or they may be
dynamically managed sparse data structures 	
� ���

Many of these vectors will be scalar multiples of one another� For example� if the
program contains the line

y �� sin�x���
�
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then in the forward node we will have y� � cos�x�x�� where x� and y� are respectively the
vectors with components �x��ui and �y��ui� In fact� any intermediate variable produced
by a unary operation in the forward mode will have a derivative vector that is a scalar
multiple of the derivative vector of the argument�

Dually� in reverse mode� any graph node �Wengert variable� 	
�� x�� that is read just
once during its lifetime will have an adjoint vector that is a scalar multiple of the adjoint
of the node that reads it� For example� if the program contains the line

x �� v � w����

and this is the only use made of w before it is overwritten� then we will have �w � v�x� where
�w and �x are the vectors with components �zj��w and �zj��x�

It is frequently wasteful of both space and time to perform such component�by�
component multiplications explicitly� A scalar multiple of another vector can be replaced by
a �dirty vector� consisting of a single multiplicative �scale factor� together with a pointer
to the other vector� A Boolean �ag indicates whether scaling multiplications need to be
carried out when the dirty vector contents are subsequently accessed�

Here is an appropriate data structure

type dirty vector is

normalized � boolean

factor � real

pv � pointer to vector

end type

The vector v to which pv points may be a full or sparse vector� Every element of the
vector v is to be regarded as scaled �multiplied� by the scale factor� Several di�erent
dirty vectors �possibly with di�erent scale factors� may point to the same vector v� The
header of vector v includes a usecount� which indicates how many dirty vectors point to
v� Whenever a dirty vector is initialized to a multiple of v then the usecount of v is
incremented� Conversely� the call release�v� will decrement the usecount of v and� if the
count reaches zero� will garbage�collect the storage for v� We adopt the convention that a
dirty vector has the value zero if the pointer pv is null� If the actual values of a dirty vector
are required then we can explicitly renormalize

procedure renormalize �d � dirty vector� is

if not d�normalized then

declare t � vector � allocate �size of �d�pv�target��

t�usecount �� �

d�normalized �� true

for each component i of d�pv�target do

t�i	 �� d�factor 
 d�pv�target�i	

enddo

release �d�pv�target�

d�factor �� ���

d�pv �� pointer to �t�

endif

end procedure

The forward accumulation step y �� sin�x� described earlier is implemented as follows
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y�dash�normalized �� false

if x�dash�normalized then

y�dash�factor �� cos �x�value�

else

y�dash�factor �� x�dash�factor 
 cos�x�value�

endif

y�dash�pv �� x�dash�pv

y�dash�pv�target�usecount �� y�dash�pv�target�usecount � �

y�value �� sin �x�value�

This code contains an explicit check of normalized to avoid an unnecessary multiplic�
ation by one� In practice� the check will be done by the hardware rather than explicitly in
code� Indeed� checking in code may lead to a slowdown because of failed branch prediction
in the instruction prefetch unit� From now on� we do not write such checks explicitly in
our code� but assume them in our operation count analysis�

The reverse accumulation code for x �� v � w is

if w�bar�pv � null then

w�bar�normalized �� false

w�bar�factor �� x�bar�factor 
 v�value

w�bar�pv �� x�bar�pv

w�bar�pv�taget�usecount �� w�bar�pv�taget�usecount � �

else

renormalize �w�bar�

for each component i of x�bar�pv�target do

w�bar�pv�target�i	 �� w�bar�pv�target�i	

� x�bar�pv�target�i	
v�value

enddo

endif

followed by similar code for v�bar�

� Performance Analysis

The deployment of dirty vectors can save a large amount of memory management overhead
and storage and dramatically reduce in the number of �oating�point arithmetic operations
required for derivative calculation�

In this section we examine the conditions under which a saving is produced� For this
analysis� we assume that the following �oating�point operations are available�

a� x unary plus
a� x unary minus
a � x �d� unary multiply
f�x� �d� unary non�linear function

�includes sinx� 
�x� ln x etc��
x� y binary plus
x� y binary minus
x � y �d� binary multiply
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Here x and y are program variables� and a is any constant� Operations marked with
�d� are referred to as dilations�

Consider a computational graph �or Wengert list� for F � Suppose that it contains N
nodes �elements�� indexed by integers i � f
� � � � � Ng� Each node has an associated value
vi� Apart from the �rst n nodes� which correspond to independent variables� each node
also has associated with it an operation �drawn from the above list� and either one or two
arguments� Assume that the vector vi

� associated by the forward mode with vi has pi
elements and that the vector �vi associated by the reverse mode with vi has qi elements� If
full vectors are used then pi � n and qi � m for all i�

��� Examples

Example� Suppose in forward mode that the program contains the line

y �� log�sin�x������

corresponding to the Wengert list fragment�

v��� � sin�v����� v��� � log�v�������

and no other use is made of v����
Then the use of dirty vectors saves at least p��� � � multiply operations� since we

need never evaluate v���� explicitly� A naive vector forward AD implementation would
require p��� multiplications by cos�v���� to form v���� and a further p��� multiplica�
tions by 
�v��� to form v����� If dirty vectors are used� then v���dash�pv points to
the same values as v����dash�pv but has v���dash�factor � v���dash�factor
cos

�v����value� evaluated at a cost of one multiply� The vector v����dash�pv ini�
tially also points to the same values as v����dash�pv but has v����dash�factor �

v���dash�factor�v���value requiring one further multiply� Finally� before we can use
the components of v���� they must be renormalized� at a cost of p��� multiply operations�
We defer this renormalization until we are sure that it is required� Only at this point must
actual vector storage for v����dash be allocated� We never allocate or garbage�collect
vector storage for v���dash� nor do we traverse the elements of v����dash�pv to form
v���dash�

Example� In forward mode

v��� � log�v����� v��� � sin�v����� v��� � cos�v�������

and no other use is made of v���� This saves at least p��� � � multiply operations� since
we never evaluate v���� explicitly� but require an extra multiply operation to evaluate
v����dash�factor�

Example� In forward mode

v��� � log�v����� v��� � sin�v����� v��� � v� � v������

produces no saving in operation count� although it does reduce the memory overhead�
Example� In forward mode

v��� � log�v����� v��� � sin�v����� v��� � v� � v������

produces a saving of p��� � � multiply operations� provided no other use is made of v����



Sharing Storage Using Dirty Vectors �

Example� In forward mode

v��� � v��� � ���� v��� � sin�v������

produces no saving in operation count� although it does save some vector storage�
Example� Suppose in reverse mode the program contains the line

y �� log�v � w����

corresponding to the Wengert list fragment

v��� � v��� � v���� v��� � log�v�����
��

and no other use is made of v����
Then the use of dirty vectors saves at least q��� � � multiply operations� since we need

never evaluate v���� explicitly�
Example� In reverse mode

v��� � log�v����� v��� � v��� � v����

�

and no other use is made of v����
Then the use of dirty vectors saves at least q��� � � multiplies�

��� Bene�ts

In forward mode� dirty vectors save operations whenever a node produced by a unary
dilation operation is read only by dilation operations� In the case of reverse mode� the dual
condition is that a node produced by a dilation operation be read just once� and only by a
dilation operation�

Definition ���� Write i � j if node j has node i as an argument� Let ai be the number

of nodes that are arguments to node i� Let ri be the number of nodes that have node i as
an argument� Call node i read�once if ri � 
� Let U�i� be the assertion that operation i is
unary� D�i� that operation i is a dilation� and R�i� that node i is read�once�

Let Mp be the subset of f
� � � � � Ng consisting of those i for which

U�i� � D�i� � �i � j �� D�j���

Dually� let Mq consist of those i for which

R�i� � D�i� � �i � j �� D�j���

Proposition ���� The use of dirty vectors in forward mode saves at least

X

i�Mp

�pi � ri � 
� multiply operations�

The use of dirty vectors in reverse mode saves at least

X

i�Mq

�qi � ai � 
� multiply operations�
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Note that the savings given in Proposition ��
 are conservative�
The saving in storage management is more di�cult to quantify� In principle� the cost of

one vector allocate and one release� together with the overhead of accessing and traversing
the vector elements� can be saved for each element of Mp or Mq� Although the sharing
of vectors may result in additional page faults when the shared nodes are not nearby� it
is always possible to copy the dirty vector instead of sharing� The bottom line is that
the careful introduction of dirty vectors cannot make memory management overhead worse
than it already is� and may make it considerably better�

Obtaining the full theoretical bene�t available would require a number of implementa�
tion subtleties� such as a shadow�copy mechanism and deferred updates� These re�nements
are unnecessary in practice� Experiment shows that naive implementations of the type
outlined in the preceding section deliver equivalent performance in all but carefully crafted
pathological cases�

In the forward case� the dirty vector technique amounts to a run�time variant of the
technique of hoisting 	��� The dirty vector technique does not require the unary operations
to be adjacent in the Wengert list� in graphical terms they may form a tree rather than
a linear sequence� In the reverse case� dirty vectors provide at least the same savings
in operation count savings and temporary variable storage overhead as the compile�time
technique of preaccumulating individual assignment statements used by ADIFOR 	��� The
dirty vector technique allows additional automatic savings across sequences of assignment
statements� even when these are separated by procedure call boundaries or occur in di�erent
loop iterations�

A further bene�t is obtained by modifying the procedure for adding together two dirty
vectors that point at the same v� so that it simply adds the factors� This is useful when
reverse accumulating sequences of assignment statements in which some variables enter
more than once on the right hand side�

��� Limitations

Using dirty vectors does have some performance limitations� In the case of forward mode�
the maximum size of Mp is Mu� where Mu is the number of unary operations in the
calculation of F � Typically Mu � Mb� where Mb is the number of binary operations in
the calculation of F � If no suitable sequences of consecutive operations exist� then no
saving occurs�

In the case of reverse mode� the situation is more complex� We may� if we are lucky�
have an ideal situation� a number of expression trees with no shared intermediate variables�
which are combined near the end of the calculation to form the dependent variables� In
this case we get the entire Jacobian �which may be full� for a �oating�point cost of about
three evaluations of F � However� we are unlikely to be so lucky in general� In the �equally
unlikely� worst case� where every node �apart from the dependent variables� is read twice�
no saving occurs at all� Both of these extremes are illustrated in the next section� Neither
case is typical�

We can make a rough theoretical estimate of the typical expected saving from using
dirty reverse in the absence of a high level of sparsity� Let Mr be the number of nodes
�including independent variables� that are read exactly r times� Then

total nodes � N � n�Mu �Mb � m�M� �M� �M� � � �

total arcs �Mu � �Mb �M� � �M� � �M� � � � �
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so

M� � �M� � �M� � � � � �Mb �m� n�

Experience shows that most computational graphs consist of a large proportion of nodes
that are read once� and a small proportion that are read many times� If dirty vectors are
used and m is reasonably large� then the reverse accumulations to the read�once nodes have
negligible cost relative to the others� The number of m�vector accumulation steps required
for the read�many nodes is

A � �M� � �M� � �M� � � �

� �Mb �m� n� � �M� �M� �M� � � � ��

� �Mb � n� � �N �M���

so A�Mb is likely to be not much larger than one�
Since the read�many nodes are relatively infrequent� each path joining them is likely to

contain at least one dilation� so each arc in A is likely to require an m�vector multiply�
and�add� Even if it does not� the overhead of accessing and traversing the vector elements
typically outweighs the �oating�point arithmetic costs� In either case� the cost of reverse
is about Mu � �Mb without dirty vectors� compared with A �Mb to �rst order with dirty
vectors�

Of course� this analysis is crude� and takes no precise account of sparsity or of exactly
where the dilations fall� However� it is consistent with experiment� as illustrated by the
last test problem in the next section�

� Performance Experience

We have implemented dirty vectors in Fortran��� at the Numerical Optimisation Centre at
Hat�eld� in a package that runs on top of a sparse vector implementation� In this section
we use dirty vectors to reverse�accumulate Jacobians for four test functions� The �rst two
of these are designed to illustrate cases where dirty vectors produce no savings at all� The
third illustrates the case of optimum savings� and the fourth is a realistic problem�

F� is de�ned as follows�
n � m � ��

v�� �
P

��
i�� ui

vi � vi�� � vi�� i � �� � � � 
�� ���

zj � v�������j � j j � 
 � � � ��

F� is de�ned as follows�
n � m � ��

zj � g�uj� � j j � 
 � � � ��

where g�x� � sin�sin � � � sin�x��� �z �
��� times

F� is de�ned as follows�
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n � m � ��

v�� �
P��

i�� ui
vi � sin�vi��� i � �� � � � 
�� ���

zj � v������ � j j � 
 � � � ��

The function F� is a constraint function vector evaluation taken from a standard trajectory
problem� This is then expressed as a sum of squared terms and solved by using a
least squares optimization algorithm from the OPTIMA subroutine library 	
��� linked
to a reverse accumulation package� For further details� visit our WorldWideWeb page at
http���www�cs�herts�ac�uk��matqmb�ad�html�

Table 
 shows the time in seconds to evaluate the Jacobian matrix of each test function
using a variety of di�erent reverse accumulation approaches� In the �rst column� the
Jacobian is evaluated without using vector arithmetic at all� by repeated traversal of the
computational graph� once for each component� In the last three columns� a vector is
associated with each adjoint� in column two� full vectors are used� in column three� sparse
vectors are used� and in column four� dirty vectors �pointing to sparse vectors� are used�
The target platform was a DEC Alpha�

Problem Multipass Full Sparse Dirty
Scalar Vector Vector Vector

F� ��
 ��� ��� ���

F� ��� ��� ��� ���

F� ��
 ��� ��� ���

F� ��� ���� ���
 ��
�

Table �

Table � � Jacobian matrix evaluation �time in seconds�

The function F� is designed in such a way that every intermediate node is read twice and
the adjoint vectors are full at each node� As expected� dirty vectors give no improvement�

The function F� contains no shared threads� and each node a�ects only one of the
dependent variables� Each adjoint vector contains a single nonzero component� The use of
sparse vectors gives a big improvement over full vectors� but� as expected� the use of dirty
vectors gives no further improvement�

The function F� contains a single long thread that a�ects all dependent variables� The
majority of adjoint vectors are full� In this case the use of dirty vectors produces a dramatic
improvement� in spite of the fact that the dirty vector �gure includes the overhead of using
sparse vectors�

Even though the internal sparsity in F� �lls out quite rapidly over successive timesteps�
the use of dirty vectors produces a ��� saving over the use of full vectors�

� Going Further

Dirty vectors represent an attractive proposition because they require few mechanisms not
already present in a sophisticated AD implementation� and they can provide a substantial
performance bene�t at little or no cost� But the bene�t of dirty vectors in the form so
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far described is limited� To obtain further sizable performance improvements� we need to
extend the dirty vector technique to vectors that are linear combinations of a small number
of other �long� vectors� This extension amounts to a run�time technique for preaccumulation

of shared threads of computation 	
�� �also called interface narrowing 	
���� corresponding
to the change�of�variable rule from calculus�

Under certain circumstances� it is advantageous to �preaccumulate� a section of the
computational graph 	�� ��� replacing the section by a much smaller set of nodes representing
the output values from that segment of the graph� together with their derivatives with
regard to the input variables for that section� These preaccumulated values are then used
as the basis of application for the chain rule on a subsequent accumulation pass �which may
itself be a recursive preaccumulation of a larger part of the graph��

The dirty vector technique can be generalized and combined with an existing sparse
vector AD package to give a cheap implementation of certain forms of preaccumulation� We
introduce a �short� sparse vector each of whose elements is a record of type dirty vector�
with the pointer �eld pv being used as the sparse component index� �The use of pointers
as index values is a device to minimize page faults on traversal�� The adjoint of a node is
a sparse vector of the new type�

The user gives a hint about the location of a convenient graph section for preaccumu�
lation by making a call to a special routine before and after evaluating f � The decision
whether actually to preaccumulate a graph section or subgraph can be made at run time�
For example� in reverse mode� consider a subfunction f of F � Suppose that f produces
q outputs each of which a�ects r outputs of F � where r � n� Suppose also that f has p
inputs which may themselves be further subfunctions or independent variables �i�e� inputs
to F �� If the computational e�ort of evaluating the Jacobian of f is equivalent to W vector
multiply�and�add operations� then it will certainly be better to preaccumulate f if

W �
pqr

r � q
�

If the Jacobian of f is sparse� or if dirty vectors are being used within f to obtain the
Jacobian� then preaccumulation may give a time saving under even weaker conditions� In
e�ect� we are treating the outputs of f as new dependent variables and eliminating them
�by multiplying them out� when the beginning of f is reached on the reverse pass�

By making forward quantities sparse vectors� and adjoint quantities pointers to nodes�
as described in 	��� the techniques discussed here can also be adapted to extract Hessians
and higher derivatives in the same way as there�
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