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Sharing Storage Using Dirty Vectors
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Abstract

Consider a computation F' with n inputs (independent variables) and m outputs
(dependent variables), and suppose that we wish to evaluate the Jacobian of F.
Automatic differentiation commonly performs this evaluation by associating vector
storage either with the program variables (in the case of forward-mode automatic
differentiation) or with the adjoint variables (in the case of reverse). Each vector
component contains a partial derivative with respect to an independent variable, or a
partial derivative of a dependent variable, respectively. The vectors may be full vectors,
or they may be dynamically managed sparse data structures. In either case, many of
these vectors will be scalar multiples of one another. For example, any intermediate
variable produced by a unary operation in the forward mode will have a derivative
vector that is a multiple of the derivative for the argument. Any computational graph
node that is read just once during its lifetime will have an adjoint vector that is a
multiple of the adjoint of the node that reads it.

It is frequently wasteful to perform component multiplications explicitly. A scalar
multiple of another vector can be replaced by a single multiplicative “scale factor”
together with a pointer to the other vector. Automated use of this “dirty vector”
technique can save considerable memory management overhead and dramatically
reduce the number of floating-point operations required. In particular, dirty vectors
often allow shared threads of computation to be reverse-accumulated cheaply. The
mechanism permits a number of generalizations, some of which give efficient techniques
for preaccumulation.

keywords: computational graph, copy-on-write, Jacobian, preaccumulation, reducing FLOP
count, sparse vectors.

1 Introducing Dirty Vectors

Consider a computation F' with n inputs (independent variables) w; and m outputs
(dependent variables) z;, and suppose that we wish to evaluate the Jacobian of F.
Automatic differentiation (AD) [13] commonly performs this evaluation by associating
vector storage either with the program variables (in the case of forward-mode AD) or
with the adjoint variables (in the case of reverse) [8, 11]. Each vector component contains
a partial derivative with respect to an independent variable, or a partial derivative of
a dependent variable, respectively. The vectors may be full vectors, or they may be
dynamically managed sparse data structures [1, 9].

Many of these vectors will be scalar multiples of one another. For example, if the
program contains the line

(1) y = sin(x),
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then in the forward node we will have y' = cos(z)z’, where z’ and 4’ are respectively the
vectors with components 0x/0u; and dy/0u;. In fact, any intermediate variable produced
by a unary operation in the forward mode will have a derivative vector that is a scalar
multiple of the derivative vector of the argument.

Dually, in reverse mode, any graph node (Wengert variable) [13, §4] that is read just
once during its lifetime will have an adjoint vector that is a scalar multiple of the adjoint
of the node that reads it. For example, if the program contains the line

(2) T =% w,

and this is the only use made of w before it is overwritten, then we will have w = vZ, where
w and Z are the vectors with components 0z;/0w and 0z;/0x.

It is frequently wasteful of both space and time to perform such component-by-
component multiplications explicitly. A scalar multiple of another vector can be replaced by
a “dirty vector” consisting of a single multiplicative “scale factor” together with a pointer
to the other vector. A Boolean flag indicates whether scaling multiplications need to be
carried out when the dirty vector contents are subsequently accessed.

Here is an appropriate data structure

type dirty_vector is
normalized : boolean
factor : real
pv : pointer to vector
end type

The vector v to which pv points may be a full or sparse vector. Every element of the
vector v is to be regarded as scaled (multiplied) by the scale factor. Several different
dirty vectors (possibly with different scale factors) may point to the same vector v. The
header of vector v includes a usecount, which indicates how many dirty vectors point to
v. Whenever a dirty vector is initialized to a multiple of v then the usecount of v is
incremented. Conversely, the call release(v) will decrement the usecount of v and, if the
count reaches zero, will garbage-collect the storage for v. We adopt the convention that a
dirty vector has the value zero if the pointer pv is null. If the actual values of a dirty vector
are required then we can explicitly renormalize

procedure renormalize (d : dirty_vector) is
if not d.normalized then
declare t : vector = allocate (size_of (d.pv.target))
t.usecount := 1
d.normalized := true
for each component i of d.pv.target do
t[i] := d.factor * d.pv.target[il
enddo

release (d.pv.target)
d.factor := 1.0
d.pv := pointer_to (t)
endif
end procedure

The forward accumulation step y := sin(z) described earlier is implemented as follows



y.dash.normalized := false
if x.dash.normalized then

y.dash.factor := cos (x.v
else

y.dash.factor := x.dash.f
endif
y.dash.pv := x.dash.pv

y.dash.pv.target.usecount
y.value :

sin (x.value)
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alue)

actor * cos(x.value)

:= y.dash.pv.target.usecount + 1

This code contains an explicit check of normalized to avoid an unnecessary multiplic-
ation by one. In practice, the check will be done by the hardware rather than explicitly in
code. Indeed, checking in code may lead to a slowdown because of failed branch prediction
in the instruction prefetch unit. From now on, we do not write such checks explicitly in
our code, but assume them in our operation count analysis.

The reverse accumulation code

if w.bar.pv = null then
w.bar.normalized := false
w.bar.factor := x.bar.fac

w.bar.pv :
w.bar.pv.taget.usecount :
else
renormalize (w.bar)
for each component i of x
w.bar.pv.target[il]
+ x.bar.pv.target[i
enddo
endif

x.bar.pv

W

followed by similar code for v.bar.

2 Performance Analysis

forz:=v+xwis

tor *x v.value

w.bar.pv.taget.usecount + 1

.bar.pv.target do
.bar.pv.target[il
I*v.value

The deployment of dirty vectors can save a large amount of memory management overhead
and storage and dramatically reduce in the number of floating-point arithmetic operations

required for derivative calculation.
In this section we examine the

conditions under which a saving is produced. For this

analysis, we assume that the following floating-point operations are available:

y

unary non-linear function

(includes sinz, 1/z,Inz etc.)

a+x unary plus
a— unary minus
axx (d) unary multipl
f(z)  (d)

T4y binary plus

T —y binary minus

zxy (d) binary multip

ly
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Here z and y are program variables, and « is any constant. Operations marked with
(d) are referred to as dilations.

Consider a computational graph (or Wengert list) for F. Suppose that it contains N
nodes (elements), indexed by integers ¢ € {1,..., N}. Each node has an associated value
v;. Apart from the first n nodes, which correspond to independent variables, each node
also has associated with it an operation (drawn from the above list) and either one or two
arguments. Assume that the vector v;’ associated by the forward mode with v; has p;
elements and that the vector v; associated by the reverse mode with v; has ¢; elements. If
full vectors are used then p; = n and ¢; = m for all 7.

2.1 Examples
Ezample. Suppose in forward mode that the program contains the line

(3) y = log(sin(z)),

corresponding to the Wengert list fragment:
(4) v102 = sin(vio1), vi03 = log(viez)

and no other use is made of vygs.

Then the use of dirty vectors saves at least pigr — 2 multiply operations, since we
need never evaluate v}, explicitly. A naive vector forward AD implementation would
require pig; multiplications by cos(vip1) to form v}y, and a further pjp; multiplica-
tions by 1/vip2 to form vjys. If dirty vectors are used, then v102.dash.pv points to
the same values as v101.dash.pv but has v102.dash.factor = v102.dash.factor*cos
(v101l.value) evaluated at a cost of one multiply. The vector v103.dash.pv ini-
tially also points to the same values as v101.dash.pv but has v103.dash.factor =
v102.dash.factor/v102.value requiring one further multiply. Finally, before we can use
the components of v103, they must be renormalized, at a cost of pi1g; multiply operations.
We defer this renormalization until we are sure that it is required. Only at this point must
actual vector storage for v103.dash be allocated. We never allocate or garbage-collect
vector storage for v102.dash, nor do we traverse the elements of v101.dash.pv to form
v102.dash.

Ezample. In forward mode

(5) vig2 = log(vip1), w103 = sin(vig2), Vips = cos(vig2)

and no other use is made of vyg2. This saves at least p1p; — 3 multiply operations, since
we never evaluate v}y, explicitly, but require an extra multiply operation to evaluate
v104.dash.factor.

Ezample. In forward mode

(6) vi02 = log(vip1), w103 = sin(vio2), V104 = V1 + vip2

produces no saving in operation count, although it does reduce the memory overhead.
Ezample. In forward mode

(7) vio2 = log(vi01), w103 =sin(vip2), vip4 = V1 * V102

produces a saving of pig3 — 3 multiply operations, provided no other use is made of vyp2.
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Ezample. In forward mode
(8) v102 = w101 + 2.0, w1p3 = sin(vig2)

produces no saving in operation count, although it does save some vector storage.
Ezample. Suppose in reverse mode the program contains the line

(9) y := log(v *x w)

corresponding to the Wengert list fragment

(10) V103 = V101 * V102, V104 = log(vip3)

and no other use is made of vyg3.

Then the use of dirty vectors saves at least 194 — 3 multiply operations, since we need
never evaluate v}; explicitly.

Ezample. In reverse mode

(11) vip3 = log(vip1), w104 = Vio2 * V103

and no other use is made of vyg3.
Then the use of dirty vectors saves at least gig4 — 2 multiplies.

2.2 Benefits

In forward mode, dirty vectors save operations whenever a node produced by a unary
dilation operation is read only by dilation operations. In the case of reverse mode, the dual
condition is that a node produced by a dilation operation be read just once, and only by a
dilation operation.

DEFINITION 2.1. Write i < j if node j has node i as an argument. Let a; be the number
of nodes that are arguments to node i. Let r; be the number of nodes that have node i as
an argument. Call node i read-once if r; = 1. Let U(i) be the assertion that operation i is
unary, D(i) that operation i is a dilation, and R(i) that node i is read-once.

Let M, be the subset of {1,...,N} consisting of those i for which

U(i) & D(i) & (i < j = D(j5)).
Dually, let M, consist of those i for which
R(i) & D(i) & (i < j = D(j)).
PROPOSITION 2.1. The use of dirty vectors in forward mode saves at least

Z (pi —r; — 1) multiply operations.
iEM,

The use of dirty vectors in reverse mode saves at least

Z (q; — a; — 1) multiply operations.
iEM,
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Note that the savings given in Proposition 2.1 are conservative.

The saving in storage management is more difficult to quantify. In principle, the cost of
one vector allocate and one release, together with the overhead of accessing and traversing
the vector elements, can be saved for each element of M, or M,. Although the sharing
of vectors may result in additional page faults when the shared nodes are not nearby, it
is always possible to copy the dirty vector instead of sharing. The bottom line is that
the careful introduction of dirty vectors cannot make memory management overhead worse
than it already is, and may make it considerably better.

Obtaining the full theoretical benefit available would require a number of implementa-
tion subtleties, such as a shadow-copy mechanism and deferred updates. These refinements
are unnecessary in practice. Experiment shows that naive implementations of the type
outlined in the preceding section deliver equivalent performance in all but carefully crafted
pathological cases.

In the forward case, the dirty vector technique amounts to a run-time variant of the
technique of hoisting [2]. The dirty vector technique does not require the unary operations
to be adjacent in the Wengert list: in graphical terms they may form a tree rather than
a linear sequence. In the reverse case, dirty vectors provide at least the same savings
in operation count savings and temporary variable storage overhead as the compile-time
technique of preaccumulating individual assignment statements used by ADIFOR [3]. The
dirty vector technique allows additional automatic savings across sequences of assignment
statements, even when these are separated by procedure call boundaries or occur in different
loop iterations.

A further benefit is obtained by modifying the procedure for adding together two dirty
vectors that point at the same v, so that it simply adds the factors. This is useful when
reverse accumulating sequences of assignment statements in which some variables enter
more than once on the right hand side.

2.3 Limitations

Using dirty vectors does have some performance limitations. In the case of forward mode,
the maximum size of M, is M,, where M, is the number of unary operations in the
calculation of F. Typically M,, < M,, where M, is the number of binary operations in
the calculation of F. If no suitable sequences of consecutive operations exist, then no
saving occurs.

In the case of reverse mode, the situation is more complex. We may, if we are lucky,
have an ideal situation: a number of expression trees with no shared intermediate variables,
which are combined near the end of the calculation to form the dependent variables. In
this case we get the entire Jacobian (which may be full) for a floating-point cost of about
three evaluations of F. However, we are unlikely to be so lucky in general. In the (equally
unlikely) worst case, where every node (apart from the dependent variables) is read twice,
no saving occurs at all. Both of these extremes are illustrated in the next section. Neither
case is typical.

We can make a rough theoretical estimate of the typical expected saving from using
dirty reverse in the absence of a high level of sparsity. Let M, be the number of nodes
(including independent variables) that are read exactly r times. Then

total nodes = N=n+ M, + My,=m+ My + My + M3 ---

total arcs = M, + 2My = M; + 2My + 3M3z + - - -
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SO
M2+2M3+3M4+---:Mb—l—m—n.

Experience shows that most computational graphs consist of a large proportion of nodes
that are read once, and a small proportion that are read many times. If dirty vectors are
used and m is reasonably large, then the reverse accumulations to the read-once nodes have
negligible cost relative to the others. The number of m—vector accumulation steps required
for the read-many nodes is

A = 2Ms+ 3Ms+4My---
= (My+m—n)+ M+ Ms+My+--)
= (My —n)+ (N — M),

so A/Mj, is likely to be not much larger than one.

Since the read-many nodes are relatively infrequent, each path joining them is likely to
contain at least one dilation, so each arc in A is likely to require an m—vector multiply-
and-add. Even if it does not, the overhead of accessing and traversing the vector elements
typically outweighs the floating-point arithmetic costs. In either case, the cost of reverse
is about M, + 2M, without dirty vectors, compared with A =~ M, to first order with dirty
vectors.

Of course, this analysis is crude, and takes no precise account of sparsity or of exactly
where the dilations fall. However, it is consistent with experiment, as illustrated by the
last test problem in the next section.

3 Performance Experience

We have implemented dirty vectors in Fortran-90 at the Numerical Optimisation Centre at
Hatfield, in a package that runs on top of a sparse vector implementation. In this section
we use dirty vectors to reverse-accumulate Jacobians for four test functions. The first two
of these are designed to illustrate cases where dirty vectors produce no savings at all. The
third illustrates the case of optimum savings, and the fourth is a realistic problem.

F is defined as follows:
n=m = 50

Us1 = 2?21 Uj
V; = Vj—1 * V-2 1= 52...10,050

2j = 10,0004 + J J=1...50

F5 is defined as follows:
n=m = 50

zj =g(uj) +j j=1...50

where g(z) = sin(sin.. . sin(z))

200 times

F3 is defined as follows:
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n=m = 50

v = Y520 u
v; = sin(vj_1) 1=>52...10,050

Zj:’l)l(),gg)g-{—j g =1...50

The function F} is a constraint function vector evaluation taken from a standard trajectory
problem. This is then expressed as a sum of squared terms and solved by using a
least squares optimization algorithm from the OPTIMA subroutine library [12], linked
to a reverse accumulation package. For further details, visit our WorldWideWeb page at
http://www.cs.herts.ac.uk/“matgmb/ad.html.

Table 1 shows the time in seconds to evaluate the Jacobian matrix of each test function
using a variety of different reverse accumulation approaches. In the first column, the
Jacobian is evaluated without using vector arithmetic at all, by repeated traversal of the
computational graph, once for each component. In the last three columns, a vector is
associated with each adjoint: in column two, full vectors are used; in column three, sparse
vectors are used; and in column four, dirty vectors (pointing to sparse vectors) are used.
The target platform was a DEC Alpha.

Problem | Multipass | Full Sparse | Dirty
Scalar Vector | Vector | Vector
Py 3.1 4.0 4.6 4.6
Fy 5.3 6.3 0.4 0.4
F; 6.1 4.0 5.0 0.3
Fy 0.28 0.25 0.21 0.15
TABLE 1

Table 1 : Jacobian matriz evaluation (time in seconds)

The function F} is designed in such a way that every intermediate node is read twice and
the adjoint vectors are full at each node. As expected, dirty vectors give no improvement.

The function F5 contains no shared threads, and each node affects only one of the
dependent variables. Each adjoint vector contains a single nonzero component. The use of
sparse vectors gives a big improvement over full vectors: but, as expected, the use of dirty
vectors gives no further improvement.

The function F3 contains a single long thread that affects all dependent variables. The
majority of adjoint vectors are full. In this case the use of dirty vectors produces a dramatic
improvement, in spite of the fact that the dirty vector figure includes the overhead of using
sparse vectors.

Even though the internal sparsity in F} fills out quite rapidly over successive timesteps,
the use of dirty vectors produces a 40% saving over the use of full vectors.

4 Going Further

Dirty vectors represent an attractive proposition because they require few mechanisms not
already present in a sophisticated AD implementation, and they can provide a substantial
performance benefit at little or no cost. But the benefit of dirty vectors in the form so
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far described is limited. To obtain further sizable performance improvements, we need to
extend the dirty vector technique to vectors that are linear combinations of a small number
of other (long) vectors. This extension amounts to a run-time technique for preaccumulation
of shared threads of computation [14] (also called interface narrowing [10]), corresponding
to the change-of-variable rule from calculus.

Under certain circumstances, it is advantageous to “preaccumulate” a section of the
computational graph [4, 7], replacing the section by a much smaller set of nodes representing
the output values from that segment of the graph, together with their derivatives with
regard to the input variables for that section. These preaccumulated values are then used
as the basis of application for the chain rule on a subsequent accumulation pass (which may
itself be a recursive preaccumulation of a larger part of the graph.)

The dirty vector technique can be generalized and combined with an existing sparse
vector AD package to give a cheap implementation of certain forms of preaccumulation. We
introduce a (short) sparse vector each of whose elements is a record of type dirty_vector,
with the pointer field pv being used as the sparse component index. (The use of pointers
as index values is a device to minimize page faults on traversal.) The adjoint of a node is
a sparse vector of the new type.

The user gives a hint about the location of a convenient graph section for preaccumu-
lation by making a call to a special routine before and after evaluating f. The decision
whether actually to preaccumulate a graph section or subgraph can be made at run time.
For example, in reverse mode, consider a subfunction f of F. Suppose that f produces
q outputs each of which affects r outputs of F', where r > n. Suppose also that f has p
inputs which may themselves be further subfunctions or independent variables (i.e. inputs
to F'). If the computational effort of evaluating the Jacobian of f is equivalent to W vector
multiply-and-add operations, then it will certainly be better to preaccumulate f if
par
r—q
If the Jacobian of f is sparse, or if dirty vectors are being used within f to obtain the
Jacobian, then preaccumulation may give a time saving under even weaker conditions. In
effect, we are treating the outputs of f as new dependent variables and eliminating them
(by multiplying them out) when the beginning of f is reached on the reverse pass.

By making forward quantities sparse vectors, and adjoint quantities pointers to nodes,
as described in [5], the techniques discussed here can also be adapted to extract Hessians
and higher derivatives in the same way as there.

w >
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