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Abstract—We propose specific modulation block codes
for weakly-constrained coding and demonstrate that their
performance is close to the theoretical limit. We also
show that when such codes are used for the mitigation
of patterning effects in optical fibre communications, a
gain of about 1 dB is possible under realistic conditions,
if only at the expense of small redundancy (≈ 10%).

Index Terms—patterning effects, weakly-constrained
codes, optical communication, information theory, coding
theory

I. INTRODUCTION

The patterning effect due to inter-symbol interference
(ISI) is the dependence of the transmission result for
one bit of data on the values of its neighbours. ISI
is one of the most severe limiting factors in system
performance at high data rates. A continuing increase of
channel rates with the corresponding decrease of the car-
rier pulse width and large bit-overlapping during trans-
mission makes effects of ISI even more important for
future ultra-high-bit-rate fibre communication systems.
In fibre optic communication ISI can result from physical
mechanisms of widely varying origins. For instance, the
pattern dependence of errors can be caused by the gain
saturation of a semiconductor optical amplifer (see, e.g.,
[1]) or by resonance interactions between pulses in bit-
overlapping quasi-linear transmission regimes.
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A very important practical example of ISI in high-
bit-rate transmission (at channel rates higher than 40
Gbit/s) is the effect of intra-channel four-wave-mixing
(ICFWM) [2,3] that leads to the generation of ”ghost”
pulses that cause performance degradation. In the case
of transmission affected by ICFWM, the main con-
tribution to the bit error rate comes from the ghost
pulses that appear in logical-zero time slots surrounded
by symmetric patterns of logical-ones. Channel pre-
encoding has already been considered for mitigation of
channel impairments (see e.g. [4-11]) in high-bit-rate
systems. In particular, suppression of ICFWM effects
by using certain modulation codes was proposed in
[5]. Note that advanced FEC coding schemes can also
take into account the particular channel error statistics
freeing up additional power budget. However, close to
the operational regimes where the FEC characteristics
get steeper, the transition between error-free performance
and performance severely degraded by errors when FEC
fails becomes very sharp, which is undesirable from
the system design view point. Therefore, even using
advanced FEC schemes, it might be practically very im-
portant to use channel pre-encoding in the BER feedback
loop to reduce the impact of transmission impairments.
Below we present modulation block codes for weakly-
constrained channel encoding and demonstrate that their
performance is close to the theoretical limit.
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TABLE I
ERROR STATISTICS FOR 5X40 GBIT/S WDM RZ-DBPSK

SMF/DCF LINE

Triplet Ch. 1 Ch. 2 Ch. 3 Ch. 4 Ch. 5
000 0 2 4 2 6
001 1216 1353 1471 1559 1604
010 7081 7154 7783 8299 8470
011 111 123 181 190 192
100 1064 1250 1286 1422 1464
101 7650 8029 8590 9298 9354
110 94 122 134 145 168
111 42 53 70 60 93

Fig. 1. Triplet error weights for OOK transmission format

II. EXAMPLES OF PATTERNING EFFECTS IN FIBRE

COMMUNICATION SYSTEMS

Recent investigations dedicated to data transmission
through optical channels [9,10] indicate that patterning
effects take place in optical lines of various structure.
For example, in [9] the WDM RZ-DBPSK SMF/DCF
channel with hybrid Raman/EDFA amplification was
examined. The error statistics for this model are given
in Table I.

In [10] a transmission line using the OOK format is
described. As shown in [10], the OOK format leads to
error statistics in which the 101 triplet error probability
is at least 10 times the error probability of any of the
other triplets.

In Fig.1 the error statistics for the same line as the
one in [9] are given. Here Ei is the error count for the
ith triplet and E =

∑7
i=0Ei is the total error count.

The Fig.1 contains data for the OOK format, and the
table statistics are for the DPSK format. Evidently, the
101 triplet makes the largest contribution to BER in any
case, which make it important to try to suppress the
errors associated with it. This can be done by the skewed
encoding scheme, proposed in [7].

III. SKEWED ENCODING AND ITS ASSOCIATED

REDUNDANCY

In this section we provide the information theory
analysis of the skewed coding. This analysis will be used
below.

We define the BER of a received message as fol-
lows: BER =

∑7
k=0QkRk, where Qk is the average

frequency of the triplet k in the input bit string, and
Rk is the error probability for the central digit in the
triplet (we enumerate triplets according to their binary
code, e.g. triplet 6 is 110). The message is assumed
to be long enough to neglect the triplets arising on its
ends that involve bits outside the message. An uneven
distribution of errors Rk caused by the patterning effects
makes it possible to reduce the error rate by reducing
the frequency of the triplets that affect the BER most.
This requires a mapping of the source message onto
code words with an uneven (skewed) statistics of triplets,
which is a process that we call skewed pre-encoding.
Obviously, skewed preencoding can only be achieved
at the expense of the information content, which it
is convenient to associate with the transmitted signal
entropy H (measured in bits/digit). The trade-off here is
between the BER improvement, the reduction of the data
rate and the increased complexity of the encoder/decoder.

First, we must describe the source information content
as a function of the pre-encoding skew. We model the
encoder as a general Markov chain shown in Fig.2.
The vertices of the graph correspond to the state of
the process, which consists of the three most recently
transmitted digits including the current one. The trans-
mission of the next digit is depicted as the transition
from the current state to the next, keeping the most
recent two bits and adjoining to them a new one (either
0 or 1), with a probability that depends on the current
state. We use dashed arrows for transitions that produce
a zero, and solid ones for those producing a one (see
[7] for more detail). All transitions in the diagram
generally occur with a probability different from 1/2,
which corresponds to a random bit stream without pre-
encoding. The difference between the two probabilities
from the same state k: εk = Tk,2k − Tk,2k+1, assuming
modulo 8 indexing, is a measure of the statistical skew
of the encoder.

The stationary distribution corresponding to the
Markov process presented in Fig.2 must satisfy the
condition: T̂

→
Q =

→
Q, where T̂ = Tk,l is the process

transition matrix graphically described in Fig.2. The
solution of this equation normalized by

∑7
k=0Qk = 1

gives the frequency of the triplet k in an infinite string
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of bits. In the particular case of our channel, the goal
is to reduce the frequency of triplet 5 (101) which was
found to be the main cause of errors [9]. This can be
done by applying ε0 = ε1 = ε3 = ε4 = ε5 = ε7 = 0,
ε2 = ε6 = −ε (cf [7]). Then the probability of the
transitions leading to the bad state 101 is (1− ε)/2, and
the probability of the transitions leading to a neighboring
”good” state 100 is (1 + ε)/2. In this case the per-bit

entropy of the transmitted signal is: h =
3 + g(ε) + ε

4 + ε
,

and the redundancy R =
1− g(ε)

4 + ε
, where g(ε) =

−1 + ε

2
log2

1 + ε

2
− 1− ε

2
log2

1− ε
2

.
Generalizing the result of [5], [7] presents the solution

of the general Markov process in a closed form. Since
the purpose of encoding is to favor particular states and
avoid others, no matter what current state, it may suffice
to select the skew parameters in a manner that ignores
the source state. In other words we could set ε0 = ε4,
ε1 = ε5, ε2 = ε6, and ε3 = ε7. As a result, the general
solution of the stationary process reads:

Q0 =
(1− ε0)(1− ε2)(1− ε3)

Σ
,

Q1 = Q4 =
(1 + ε0)(1− ε2)(1− ε3)

Σ
,

Q2 =
(1 + ε0)(1− ε1)(1− ε3)

Σ
, (1)

Q3 = Q6 =
(1 + ε0)(1 + ε1)(1− ε3)

Σ
,

Q5 =
(1 + ε0)(1 + ε2)(1− ε3)

Σ
,

Q7 =
(1 + ε0)(1 + ε1)(1 + ε3)

Σ
.

Here the normalizing factor is Σ = 8 + 2(ε1 − ε2) +
6(ε0−ε3)+2(ε0ε1−2ε0ε3+ε2ε3). Importantly, the state
probabilities are now quite reversible: by computing the
ratio Q2k/Q2k+1, one can easily find all εk given all Qk,
and so the skew parameters can be expressed directly in
terms of the triplet frequency contrasts.

IV. WEAKLY-CONSTRAINED BLOCK CODES FOR

MODULATION

Initially weakly-constrained codes were presented by
K.A.S.Immink in [12] and exploited in magnetic record-
ing systems. These codes in contrast to constrained
(strictly-constrained) codes do not strictly observe the
channel constraints, rather their codewords violate the
channel constraints with a small probability. Thanks
to the method of weakly-constrained coding the most

Fig. 2. The encoder model

effective RLL-codes have been constructed ([13]). Mod-
ulation codes described below are weakly-constrained
also, because their application depends on the ε param-
eter (0 ≤ ε ≤ 1). This parameter is the “degree of
weakeness” for our modulation code: when ε = 1, the
code is strongly-constrained; and when ε = 0 the code
has no constraints whatsoever.

A. The idea of block code

The idea of modulation block code is as follows.
Consider a block of m bits. Out of the 2m bit pat-
terns there will be some Gm,0 patterns that contain no
combination 101, Gm,1 patterns that contain exactly one
such combination, etc. Let Wm,k be a list of all bit
patterns (in some order) that contain no more than k
101-combinations. The list is Lm,k =

∑k
i=0Gm,i entries

long. Denote as Wm,k(j) the jth entry of the list. Now
we define the block code Bm,k thus:

yi = Wm,k

(⌊
s

(Lm,k)i

⌋
mod Lm,k

)
, (2)

where s =
∑n−1

i=0 xi2i is the whole n-bit source message
interpreted as a binary number and each yi is an m-bit
sequence representing one output block. The output is
thus the sequence ~y = (y0, y1, ..., yimax

), 0 ≤ i ≤ imax,
where imax is such that (Lm,k)i ≤ s < (Lm,k)i+1. This
can be thought of as the conversion of s from binary
to the positional number system based Lm,k, where yi

play the role of ”digits”. Such a conversion is reversible.
The function W (j) is obviously invertible since it is
an injection by construction and consequently allows
unambiguous decoding.
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For a long enough source sequence xi, the code
redundancy tends to

R =
m− log2 Lm,k

m
.

The per-bit density of the 101 combination in the output
is approximately

1
mLm,k

k∑
i=0

iGm,i

This is an approximation that neglects the 101 combi-
nation at the junctures of neighbouring blocks. These
depend on the frequency of certain bits at the beginning
and end of a bit pattern. Indeed, the combination 101
will arise around the starting bit of a pattern that starts
with 01, provided that it follows a pattern ending with
1. Similarly, a 101 combination around the last bit of
a pattern arises when the pattern ends with 10, and the
next one starts with 1. The exact per-bit frequency of the
101 combinations is thus:

Q5 =
1

mLm,k

k∑
i=0

iGm,i + (φe1φb01 + φe10φb1)/m .

Here φb01,φb1,φe1, and φe10 are frequencies of the pat-
terns that begin with 01, begin with 1, end with 1,
and end with 10, respectively, for the given m and k.
Note that due to the assumed randomness of the source
bit stream, the neighbouring patterns are uncorrelated,
which justifies the use of products of frequencies in the
above formula.

We have constructed block codes in table form for
m=8,16 and 28 by exhaustively searching the bit pattern
space by computer. For each code we also quantified the
φ frequencies and computed Lm,k for the first few values
of k. For the purposes of comparing these codes with the
Markov chain described earlier, we have computed the
effective ε, i.e the value at which P5 of the Markov chain
matches the above value for the block code. This enabled
us to plot R vs effective ε for all codes and the Markov
chain in a single graph, see Fig.3.

It is clear from the figure that the Markov chain is an
ideal case of the block codes, which they very slowly
approximate as the code size m increases. Codes with
m = 8 and m = 16 are quite practical as table codes,
since the table can easily be provided in Read-Only
Memory of a very small size (64K entries at most). The
28-bit code is less so as it requires 256M entries of 3.5
bytes each, totalling about 1Gb, but even a code as large
as this does not approximate the redundancy level of the
Markov chain well enough, especially at small ε. For

larger block codes which ensure better redundancy, the
table method is impractical, and an effective encoding
algorithm is required. This algorithm was proposed in
[14]. Using it the code with 128-bit block length has
been built (its redundancy is shown in Fig.3, curve 5).

B. Theoretical limit of block code redundancy for arbi-
trary ε

Denote as P (x) the probability that the bit sequence
x occurs in the encoded message. For example, P(1010)
is the probability that four consecutive bits taken at
random will turn out to be the sequence 1010. Also
denote as S(m, k) a set of length-m sequences, where
each sequence has exactly k triplets 101.

Lemma 4.1: For any k ≥ 0, m ≥ 5 , the equation
P (00000) = P (00100) holds.

Proof: Since neither the replacement 00000 →
00100, nor its inverse modifies the frequency of 101s in
the sequence, these replacements exchange a codeword
B ∈ S(m, k) with another codeword B′ ∈ S(m, k).
Similarly it can be proven that P (00001) = P (00011)
and P (00010) = P (00110).

We also observe that for block codes P0 6= 0 since
the 000 triplet cannot induce an occurrence of 101, so
it would not be removed from any codewords. Conse-
quently ε0 6= 1. Furthermore, ε0 6= −1, otherwise the
probability of any triplet would be equal to zero except
the probability of 000, which is impossible.

Bearing the above lemma in mind and remembering
the transition probabilities of the Markov chain, we
derive:
P (00001) = Q0P0→0P0→1;
P (00011) = Q0P0→1P1→3; hence ε1 = −ε0.
P (00010) = Q0P0→1P1→2 and
P (00110) = Q1P1→3P3→6; hence ε3 = ε1 = −ε0.
P (00000) = Q0P0→0P0→0;
P (00100) = Q1P1→2P2→4;
hence

ε2 = 1− (1− ε0)3

(1 + ε0)2
=
ε0(ε20 − 2ε0 + 5)

(1 + ε0)2
.

The skew parameter vector for the block code is given
by the following expression:

→
ε = ε0 (1,−1,

ε20 − 2ε0 + 5
(1 + ε0)2

,−1,

1,−1,
ε20 − 2ε0 + 5

(1 + ε0)2
,−1

)
, (3)

where every skew parameter is expressed in terms of
a single skew ε0. However, to be able to juxtapose
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the multi-skew block code and a single-skew Markov
chain, we must first define the basis for comparison.
Such a basis could be an effective skew value εeff
such that the density of 101 in the block code at a
given ~ε corresponds to the density of 101 in the single-
skew Markov chain at the skew value εeff. In other
words, εeff indicates how much the single-skew Markov
chain would have to be skewed to achieve the same
density of the undesirable states. The latter is simply
Q5 = (1− εeff)/(8 + 2εeff) whereas from the Markov
chain density and the ~ε expression above we get

Q5 =
ε40 + 6ε20 + 8ε0 + 1

8(2ε20 + ε0 + 1)
= (1− εeff)/(8 + 2εeff) ,

Provided that we can solve the quartic equation, this
gives us ε0 in terms of εeff.

C. Calculation of the redundancy

The above-mentioned quartic equation is of the form:

ε0
4 + 2ε02(3− 8Q5) + 8ε0(1−Q5)− 8Q5 = 0

and can be proven to have a single root in the interval
−1 ≤ ε0 ≤ 1 given that 0 ≤ Q5 ≤ 1/8. Obtaining the
root numerically presents no technical problem, so ε0
can be assumed to be functionally dependent on εeff in
a known way.

Consequently, let us express the entropy in terms of ε0.
Using the general formula from [7] and interpreting ~ε as

a function of ε0 we get h(ε0) = −
7∑

k=0

Qk(~ε)f(εk(ε0)),

where f(x) =
1 + x

2
log2

1 + x

2
+

1− x
2

log2

1− x
2

.
Using Eqs. 1 and 3 we establish that

h(ε0) = f(ε0)(Q0(ε0) +Q1(ε0) +Q3(ε0) +

Q4(ε0) +Q5(ε0) +Q7(ε0)) +

f(ε2(ε0))(Q2(ε0) +Q6(ε0)).

By varying εeff (and via it, ε0) over its range, we
obtain curve 7 in figure 3. This is a theoretical curve
which corresponds to block code for infinite m. Observe
that block size 128 is roughly as close to the single-skew
Markov chain result obtained previously as the theoreti-
cal limit of skewed block codes, i.e. curve 7, except they
deviate on either side of the curve. It seems likely that for
any practical purpose block size 128 will be sufficient,
while any further increase in the block size would not
yield a significant improvement in code redundancy,
while potentially making the encoding/decoding process
far more expensive. Another consideration would be the

Fig. 3. R(ε) graph 1 — bit-stuffing; 2 — Bk8; 3 — Bk16; 4 —
Bk32; 5 — Bk128; 6 — Markov chain with one parameter (ε2 = −ε);
7 — limiting (block size →∞) code redundancy.

required level of interleaving and/or FEC to mitigate
significant error propagation that a block code longer
than 128 would be prone to.

D. Code gain

We assume that the vector of error probabilities
is, as before,

→
R = K · (1, 1, 1, 1, 1,M, 1, 1), and

set K = 10−3 for the sake of certainty. To quan-
tify the BER improvement due to our block code
we introduce an effective code gain defined as Γ =
20 log10(A(M,K)/Ac(M,K, ε)), where A(M,K) is
the RMS of the effective AWGN over the source signal,
i.e. the magnitude that corresponds to the observed BER,
and where Ac(M,K, ε) is the RMS of the effective
AGWN after the block coding. The value of Γ corre-
sponds to the increase of SNR that delivers the same
error probability reduction in the case of AGWN without
patterning as the block code delivers under the patterning
defined by the vector R.

Let’s present the error probability as the sum of
the probabilities specified by both linear and nonlin-
ear effects: BER = BERL + BERNL. BERL =∑7

k=0K ·Qk = K, BERNL = Q5K(M − 1). Since
the linear and nonlinear contributions are uncorrelated,
A2(M,K) = σ2

L + σ2
N , where σ2

L is the standard varia-
tion of the linear, and σ2

1 of the nonlinear contributions.
We assume that both contributions are AWGN (even
though the nonlinear one is not), and so BERL =
1
2
· Φ
(

1
σ0

√
2

)
, and BERN =

1
2
· Φ
(

1
σ1

√
2

)
. Here

Φ(x) is a complementary error function and BERL and
BERN are error probabilities for the linear and nonlin-
ear contributions, respectively. From these equations one
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Fig. 4. Block code gain versus BER (R = 10.27%)

can obtain σL and σN for arbitrary BER values. Con-
sequently, A2

c(M,K, ε) = (σ′L)2 + (σ′N )2, where (σ′L)2

is the variation of the linear contribution for the encoded
signal, and (σ′N )2 that of the nonlinear contribution.

Finally we get Γ = 10 log10

σ2
L + σ2

N

(σ′L)2 + (σ′N )2
.

Figure 4 shows the code gain as a function of the
BER for a long block code (depicted as curve 7 in fig 3)
taken at 10% redundancy. It is remarkable that a gain of
about 1dB is possible from such a simple code. It should
be borne in mind that the gain displayed in the figure
does not take into account any processes associated with
decoding (and long block codes are almost as prone to
error propagation as convolution codes). Nevertheless,
if adequately protected by FEC, the effects of error
propagation with a moderate block size can be alleviated.
It may also be possible to devise a soft decoding scheme
based on the algorithm presented in the next section,
which is less prone to these effects.

V. CONCLUSIONS

A detailed analysis of block codes for weakly-
constrained encoding/decoding is presented following
the first theoretical results in [7]. The redundancy mea-
sure is obtained against the effective factor ε for specific
block codes, which in some cases turns out to be
somewhat better than the theoretical model published
previously. This effect is explained by the fact that the
correct Markov model for real codes is multiparametric,
not uniparametric as in [7]. It is remarkable, nevertheless,
that the uniparametric Markov chain still approximates
the real behaviour so well. The effective code gain for

practical block codes has been obtained and plotted
against a range of bit error rates at various magnitudes of
the patterning effect. It is shown that using these simple
codes in a hard-decision situation provides an effective
gain of about 1dB.

This work was funded in part by Interdisciplinary
Grant No 42 of the Russian Academy of Science Siberian
Branch.
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