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Abstract

Unicellular, diazotrophic cyanobacteria temporally separate dinitrogen (N2) fixation and photosynthesis to prevent
inactivation of the nitrogenase by oxygen. This temporal segregation is regulated by a circadian clock with oscillating
activities of N2 fixation in the dark and photosynthesis in the light. On the population level, this separation is not always
complete, since the two processes can overlap during transitions from dark to light. How do single cells avoid inactivation of
nitrogenase during these periods? One possibility is that phenotypic heterogeneity in populations leads to segregation of
the two processes. Here, we measured N2 fixation and photosynthesis of individual cells using nanometer-scale secondary
ion mass spectrometry (nanoSIMS) to assess both processes in a culture of the unicellular, diazotrophic cyanobacterium
Crocosphaera watsonii during a dark-light and a continuous light phase. We compared single-cell rates with bulk rates and
gene expression profiles. During the regular dark and light phases, C. watsonii exhibited the temporal segregation of N2

fixation and photosynthesis commonly observed. However, N2 fixation and photosynthesis were concurrently measurable at
the population level during the subjective dark phase in which cells were kept in the light rather than returned to the
expected dark phase. At the single-cell level, though, cells discriminated against either one of the two processes. Cells that
showed high levels of photosynthesis had low nitrogen fixing activities, and vice versa. These results suggest that, under
ambiguous environmental signals, single cells discriminate against either photosynthesis or nitrogen fixation, and thereby
might reduce costs associated with running incompatible processes in the same cell.
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Introduction

Dinitrogen (N2) fixation and photosynthesis are two crucial

metabolic processes in diazotrophic cyanobacteria. However,

cyanobacterial photosynthesis leads to the production of O2,

which inactivates the key enzyme for N2 fixation, nitrogenase

[1,2]. The two processes can thus not be performed concurrently

within one cell. To overcome this problem, cyanobacterial

diazotrophs separate N2 fixation and photosynthesis, either

spatially or temporally. The development of specialized cells in

filamentous cyanobacteria provides a spatial separation, with N2

fixation occurring in the thick-walled heterocysts that lack the

oxygenic photosystem (PS) II. Unicellular cyanobacteria separate

N2 fixation and photosynthesis temporally, with the former

occurring during the dark and the latter in the light [3–6]. This

segregation of N2 fixation and photosynthetic activity is regulated

by a circadian clock [4,7–9]. Cyanobacteria possess the simplest

version of a circadian regulatory network with the key proteins

encoded by the kaiABC genes (for review see [10]). A recent study

suggests that this circadian clock is directly entrained by light-

driven changes in energy metabolism [11]. Since the circadian

clock controls the expression of the nitrogenase, the direct

entrainment of the clock by light leads to a temporal separation

of the two processes.

However, this separation may not always be complete. Several

studies suggest that photosynthesis and nitrogen fixation could

occur concurrently, at least on the population level, during

transitions from dark to light [12] or in studies where the light

conditions are experimentally shifted relative to the clock [13].

However, both studies did not directly measure N2 fixation and

photosynthesis at the single-cell level leaving the question whether

individual cells actually do perform both processes. There is

evidence that some populations have the capacity to adjust their

cellular metabolism in order to fix N2 and CO2 simultaneously

after acclimation to continuous light [6]. So far, this observation

appears to be restricted to the unicellular diazotrophic cyanobac-

PLOS ONE | www.plosone.org 1 June 2013 | Volume 8 | Issue 6 | e66060

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OceanRep

https://core.ac.uk/display/16399935?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


teria Gloeothece sp. [6,14] and Synechococcus sp. RF-1 [15]. Recently,

it has also been observed that the unicellular diazotrophic

cyanobacterium Crocosphaera watsonii was able to grow diazotro-

phically in continuous light, however, the question remains

whether this involves simultaneous or time-resolved fixation of

N2 and CO2 [16].

These results raise the question of how individual cells manage

the activities of the two processes under such conditions. Does the

observation of photosynthesis and nitrogen fixation at the

population level mean that each cell performs these processes

simultaneously – or do single cells preferentially perform one or

the other process thereby indicating phenotypic heterogeneity

between genetically identical cells of a population? A number of

recent studies have reported on the latter, for diverse phenotypic

traits including behavior [17] growth rate [18,19], and gene

expression [20].

N2 fixation of single cells has already been analyzed in previous

studies including field studies [21]; for example, Teredinibacter

turnerae was shown to exhibit population heterogeneity in N2

fixation [22] whereas vegetative cells in Anabaena oscillarioides

filaments had a rather uniform distribution of recently fixed

nitrogen from the heterocysts [23]. The former is a heterotrophic

proteobacterium which is diazotrophic but not photosynthetic,

and the latter is a heterocystous cyanobacterium which fixes N2

and is photosynthetic but has the capability of spatially separating

N2 fixation and photosynthesis. In contrast, C. watsonii is a

unicellular diazotrophic cyanobacterium that can only separate

the two processes temporally, indicating the need for a tight

temporal regulation such as a circadian clock [13].

Here, we combined the measurement of bulk rates of N2

fixation and photosynthesis in a population of C. watsonii WH8501

with single-cell measurements using nanoSIMS throughout dark-

light and continuous light phases. We complemented rate

measurements with the analysis of gene expression patterns at

the population level for genes that are involved in these two

processes. This allowed us to assess the level of phenotypic

heterogeneity during regular light-dark cycles, and under condi-

tions where populations that are ‘scheduled’ to perform O2-

sensitive N2 fixation are exposed to light, and thus potentially are

subject to a physiological dilemma posed by the opportunity to

simultaneously carry out two incompatible processes.

Results and Discussion

N2 Fixation and Photosynthesis at the Population Level
N2 fixation rates in C. watsonii determined via the acetylene

reduction assay (ARA) followed the diel pattern known for this

organism [24,25] during the first 24 h of the experimental phase

encompassing a 12:12 h dark:light cycle with N2 fixation occurring

during the dark phase (Figure 1A). N2 fixation rates measured via

the incorporation of 15N2 into biomass (Figure 1A) closely matched

the observed reduction of acetylene with a ratio of 4.5:1 of

ethylene produced to N2 fixed, which compared well with the

conversion factor of 4:1 [26] (ratio from total dark N2 fixation).

Inorganic carbon fixation was confined to the light phase of the

dark:light cycle (Figure 1B), in line with the well-established

temporal separation of N2 fixation and photosynthesis in

unicellular, diazotrophic cyanobacteria [2,3,5,6].

We then exposed C. watsonii to a 24 h continuous light period

just after a 12:12 h dark:light cycle to determine how this

bacterium regulates N2 fixation and photosynthesis considering

the dilemma that continuous light poses on the population.

Unexpectedly, both inorganic carbon and N2 fixation rates were

measurable concurrently at the population level (Figure 1) during

the subjective dark phase in which the cells were kept in

continuous light rather than returned to the expected dark phase.

However, N2 fixation only reached 14% of the maximum

observed during the regular dark phase. Photosynthetic rates

during the subjective dark phase continuously declined to 42% of

its maximum regular light phase activity at the end of the

subjective dark period. This indicates that photosystem compo-

nents are not entirely degraded at the ‘‘scheduled’’ end of the light

period and can be activated upon illumination [25]. The relative

rates of carbon and nitrogen accumulation in the biomass during

the subjective dark phase are reflected in the dynamics of the

molar C:N (carbon:nitrogen) ratio of the biomass (Figure 1B). The

increase in C:N decelerates compared to the previous light phase,

but is still significantly positive (regression analysis; p,0.05).

Taking into account the measured rates of N2 fixation and

photosynthesis as well as the molar C:N ratio of the biomass, about

67% of this deceleration could be attributed to the sustained but

lower rates of photosynthesis and N2 fixation. We attribute the

other 33% to additional respiration, which may have supported

nitrogenase activity in the light [27].

We then measured the expression of genes related to N2 fixation

and photosynthesis in order to analyze how the co-occurrence of

N2 fixation and photosynthetic activity during subjective dark

would manifest at the transcriptional level. Interestingly, expres-

sion levels of nifH did not show any differences in peak activity

Figure 1. N2 fixation and photosynthesis during the dark-light
and subjective dark-light phases. A. N2 fixation measured via
acetylene reduction assay (ARA; filled circle) and 15N2 incubation (open
circle). B. Photosynthesis measured via NaH13CO3 incubation (filled
circle) and molar C:N ratio (open circle). The grey bars indicate the
regular dark phase and the striped grey bars indicate the subjective
dark phase. Symbols and error bars represent mean 6 SE of triplicate
cultures.
doi:10.1371/journal.pone.0066060.g001
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between the regular and the subjective dark phase (Figure 2). This

indicates that the reduction of N2 fixation in the subjective dark

phase may have been regulated post-transcriptionally [28],

possibly resulting from the inactivation of the nitrogenase complex

by photosynthetically evolved O2. All genes analyzed here showed

cyclic patterns comparable to those found in the regular dark and

light phases (Figure 2) suggesting circadian regulation of N2

fixation and photosynthesis in C. watsonii [13]. We also analyzed

two genes coding for proteins of the cyanobacterial circadian

clock, kaiA and kaiC. Both genes showed cyclic expression patterns

throughout the entire experimental phase giving further evidence

for circadian regulation in which cyclic gene expression is

maintained for several cycles in continuous light (e.g. [29]).

N2 Fixation and Photosynthesis at the Single-cell Level
In general, the single-cell analysis using nanoSIMS revealed the

same temporal pattern of N2 fixation and photosynthetic activity

during the regular light-dark cycle as the bulk population

measurements (Figure 1). Cells fixed N2 during the regular dark

period with no dissolved inorganic carbon (DIC) uptake, and

photosynthesized with no N2 fixation during the regular light

period (Figures 3 and 4, Table 1).

These figures reveal substantial variation in 15N enrichment

between individual cells during the regular dark period. This

variation can have diverse sources, including measurement error

and temporal fluctuations in nitrogen fixation. However, given

that the measurements are clearly above background (comparing

Fig. 4A and Fig. 4B), and given the long duration of the incubation

(3 hours), we conclude that this pattern likely reflects actual

variation in activity between single cells, as for example reported in

[19]. During the subjective dark, single-cell analysis provided

insights that could not be gained from the bulk measurements.

While the average 13C-DIC uptake and the average 15N2-fixation

were both significantly larger than zero (Wilcoxon Signed Rank

Test, p,0.0001), the two processes were negatively associated

between cells: cells that showed high rates of photosynthesis

showed low rates of nitrogen fixation, and vice versa (nonpara-

metric test; Spearman’s Rho = 20.156; p (2-tailed) = 0.016). These

results indicate that photosynthesis is mainly regulated by the

availability of light, and nitrogen fixation by the circadian clock,

and that both processes are thus triggered during the subjective

dark period: The internal signal ‘scheduled’ the population for N2

fixation by increasing the necessary gene transcripts (Figure 2) and

probably protein synthesis. On the other hand, the presence of

light promoted photosynthesis and O2-production, generating a

metabolic conflict with nitrogen fixation. While most cells in the

population carried out photosynthesis under these conditions,

some cells engaged mostly in N2 fixation, and attained rates of

activity that were comparable to the rates achieved during the

regular dark. That these cells had low rates of photosynthesis

presumably allowed them to avoid inactivation of the nitrogenase

by oxygen, and thus to circumvent the biochemical incompatibility

of these two processes.

Figure 2. Gene expression analysis shown as enrichment factor of relative transcript abundance. The genes are indicated in the top
right corner of each panel. Filled circles represent the experimental data during the 48 h phase. The grey bars indicate the regular dark phase and the
striped grey bars indicate the subjective dark phase. Symbols and error bars represent mean 6 SE of triplicate cultures.
doi:10.1371/journal.pone.0066060.g002
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The molecular basis of the negative association between

photosynthesis and nitrogen fixation at the single-cell level is

currently not clear. One possibility is that the differential response

of individual cells is due to differences in cellular capacities.

Lechene and colleagues [22] suggested that such differences could

explain individual N2 fixation rates. The study by Rust and

colleagues [11] indicated that the circadian clock, and thus

nitrogen fixation, is directly entrained by each cell’s energy

metabolism. Stochastic differences in photosynthetic activities

between cells could thus translate into slight differences in the

phase of their circadian clock, and thus into different levels of

nitrogen fixation. Another possibility could be the availability of

iron for each individual cell. Saito et al. [30] showed that C. watsonii

engages in ‘‘hotbunking’’ and recycles its iron from photosynthesis

for N2 fixation and vice versa. This strategy reduces the cellular

iron demand and could lead to a competitive advantage in iron-

deplete oceanic regions [30]. However, the recycling would also

enable the individual cells to only perform one of the two processes

during the subjective dark period, as observed here. The fact that

most cells engage in photosynthesis rather than N2 fixation could

indicate that the former may be the metabolically more important

process [31].

Stochasticity is only one of several causes for phenotypic

heterogeneity (for review see [32,33]). Ryall and colleagues [34]

elaborated several aspects of phenotypic heterogeneity within

populations with respect to a population response to a single

environmental shift. This includes variation in growth rate,

intracellular signals, age and size of cells, and external signals.

Further, transcriptional responses can lead to bimodality, i.e.

similar to an all-or-none response or the formation of subpopu-

Table 1. Summary of single-cell photosynthesis (DIC uptake) and N2 fixation rates.

DIC uptake (regular dark)* (regular light) (subjective dark) (subjective light)

range 25.09–6.78 20.34–11.23 24.70–11.17 24.58–10.44

mean 6 SD 0.1962.34 4.6162.51 3.7562.55 3.4462.61

median 20.05 4.79 3.96 3.62

N2 fixation (regular dark){ (regular light)` (subject. dark){ (subject. light)`

range 20.23–2.35 20.19–0.14 20.07–4.03 20.06–0.20

mean 6 SD 0.4060.60 0.0260.07 0.1760.37 0.0560.03

median 0.13 0.03 0.09 0.05

Values are in fmol C and N cell21 h21 for DIC uptake and N2 fixation, respectively, and represent mean 6 SD.
*significantly different from all other phases, all other phases are not significantly different from each other.
{not significantly different from each other, but from `.

`not significantly different from each other, but from {.

doi:10.1371/journal.pone.0066060.t001

Figure 3. Enrichment in 15N (color scale: 15N/14N) due to N2 fixation by individual C. watsonii cells. A. Regular dark phase. B. Regular light
phase. C. Subjective dark phase. D. Subjective light phase. (Scale bars: 5 mm in A, C and D, 2 mm in B). E–H. Secondary electron images
(complementary to A–D.) which are simultaneously recorded during the measurement and showing the individual cells. The aggregation of cells was
an artifact of filtration; the C. watsonii cells are unicellular (as per microscopic observation), however, gather in trenches upon filtration due to the
unevenness of the filtration devices at the micrometer scale.
doi:10.1371/journal.pone.0066060.g003
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lations [34,35]. Here, this could mean the formation of cells that

carry out N2 fixation and others that engage in photosynthesis

during the subjective dark period. Even though we did not detect

changes in the relative transcript abundance of genes involved in

N2 fixation and photosynthesis during the subjective dark period,

any transcriptional shifts from a single population with medium

transcript abundances to a population in a bimodal state may be

covered up by the bulk measurement of transcripts via real-time

quantitative PCR (RT-qPCR). Due to the pre-existing heteroge-

neity in N2 fixation and photosynthesis during the regular dark

and light period, respectively, we think that the underlying

stochasticity and the possible formation of bimodality during the

subjective dark period (i.e. some cells engage in N2 fixation

whereas the majority continues photosynthesis) are likely causes

for the observed negative correlation between the two metabol-

ically incompatible processes here.

Our approach allowed to directly measure metabolic activities

of single cells, and thus to gain additional and more direct

information about each cell’s state than by using transcriptional

reporters. We observed large variation between cells in photosyn-

thesis and nitrogen fixation (Figure 3 and 4). Additionally, and

importantly, we find that these two processes were negatively

correlated between cells in conditions where the circadian clock

and the external signals do not match. Such negative associations

between incompatible cellular activities can arise from simple

regulatory circuits, for example from the proposed entrainment of

light-driven metabolic states on the circadian clock. In the case of

unicellular cyanobacteria, such correlated heterogeneity could

potentially optimize a clone’s performance during transitions from

light to dark: Single cells would switch rapidly from photosynthesis

to nitrogen fixation, and thus avoid the costs of running

incompatible processes in the same cell – but the moment of

switching would be variable among individuals.

Materials and Methods

Experimental Setup
Axenic batch cultures of Crocosphaera watsonii WH8501 were

grown in 2-L polycarbonate bottles at 28uC in phosphate and

trace metal amended YBCII medium [36] without combined

nitrogen in a 12:12 h dark:light cycle with a light intensity of ,
70–100 mE m22 s21. The growth rate at the time of the

experiment was 0.14 d21 with cell densities ranging from 6.4 to

9.26105 cells ml21. The experimental phase consisted of a 24 h

phase under growth conditions followed by a 24 h continuous light

phase. Cultures were kept in temperature- and light-controlled

incubators with opposite dark:light regimes to facilitate sampling.

Subsamples for stable isotope incubations and acetylene reduction

assay to assess N2 fixation rates were taken every 4 and 3 h,

respectively. Samples for gene expression analysis were taken every

4 h during the experimental phase. Cell abundance for calcula-

tions of cell-based rates was assessed at the beginning of each

experimental dark or light phase using analytical flow cytometry.

Subsamples for nanoSIMS analysis were taken from the stable

isotope incubations at the end of the following incubation phases:

the middle of the regular dark phase, the middle of the regular

light phase, the middle of the subjective dark phase and the end of

the continuous light phase.

Acetylene Reduction Assay (ARA)
N2 fixation rates were assessed by incubating 3 ml of culture in

8.65 ml septum-capped vials containing 650 ml of acetylene in the

headspace. Incubations lasted for , 3 h and ethylene (C2H4)

concentrations were then measured in a 250 ml headspace sample

using a Shimadzu GC-14B gas chromatograph equipped with a

flame ionization detector (FID) and a RT Alumina Plot column.

C2H4 concentrations were calibrated with a dilution series ranging

from 1 to 1000 ppm C2H4. C2H4 production was converted to N2

fixation with a conversion factor of 4:1 (C2H4 produced:N2 fixed)

[26].

Stable Isotope Incubations
N2 and inorganic carbon fixation rates were determined by

simultaneous incubation of C. watsonii with 280 ml 15N2 [37] and

NaH13CO3 (1% of 2500 mmol L21) in 100 ml glass serum bottles

every 4 h during the 48 h experimental phase. Aliquots for

elemental stoichiometry and bulk stable isotope analysis as well as

for nanoSIMS (nanometer-scale secondary ion mass spectrometry)

analysis were taken at the end of each , 3-h incubation. Samples

for bulk stable isotope analysis were filtered onto pre-combusted

(450uC, 4 h) GF/F filters (Whatman), oven-dried (60uC for 6 h)

and stored until analysis. Filters were pelletized in tin cups and

analyzed using isotope ratio monitoring mass spectrometry.

Samples for nanoSIMS were preserved with formaldehyde (1%

(v/v) final) for up to 24 h at 4uC and subsequently filtered onto

Au/Pd-sputtered GTTP filters (Isopore, 0.22 mm pore size,

25 mm). Filters were rinsed with sterile-filtered (0.2 mm) phos-

phate-buffered saline solution (PBS buffer), air-dried for 20 min

and stored at 220uC until analysis.

Figure 4. 15N2 fixation and photosynthesis (NaH13CO3 uptake) rates as calculated from the isotopic enrichment of individual cells
(each symbol represents one individual cell). The corresponding dark or light phase is indicated in the upper right corner of each panel. The
large variability in the 13C signal/photosynthesis for the regular dark phase is due to the precision of the nanoSIMS measurement combined with the
low labeling during the non-photosynthetic phase.
doi:10.1371/journal.pone.0066060.g004

Single-Cell N2 Fixation and Photosynthesis

PLOS ONE | www.plosone.org 5 June 2013 | Volume 8 | Issue 6 | e66060



NanoSIMS Analysis
The NanoSIMS 50L (CAMECA) instrument was used for

analysis. The sample surface was sputtered with a cesium primary

ion beam with a current of 1–2 pA and an energy of 16 keV. The

beam was focused to a nominal spot size of 130 nm. NanoSIMS

working as an ion microprobe rastered the scanning area with the

primary ion beam with a 2566256 pixel resolution and a dwelling

time of 1 ms/pixel. Multiple scans were recorded for each area.

Secondary ions extracted from each pixel of the sample surface

were mass separated according to their mass to charge (m/z) ratio

and counted in separated electron multiplier detectors. A mass

resolving power of .7500 was used to separate secondary ions of

the desired isotopes from mass interference from secondary ions

with close m/z ratios. Two-dimensional images of the sample

content were recorded for chosen ions (12C, 13C, 12C14N, 12C15N,
31P). Secondary electron images were recorded which provided

information on surface topography. Regions of interest (ROI) were

chosen around each individual cell. The isotopic ratios of

individual cells were calculated for each ROI only taking ions

originating from the cell into account.

Calculation of N2 Fixation and Inorganic Carbon Uptake
Rates

Biomass-specific N2 fixation and inorganic carbon uptake rates

were calculated based on the atom percent of 15N and 13C in the

particulate organic nitrogen or carbon (PON or POC) within

either the bulk or the single-cell measurements. The 15N

enrichment in the N2 pool was calculated from previous

measurements of 15N2 concentration during a 3-hour incubation

period under the same conditions [38]. Cellular rates were based

on the bulk nitrogen and carbon content of the population divided

by the total number of cells.

Gene Expression Analysis
RNA extraction, cDNA synthesis and real-time quantitative

PCR (RT-qPCR) were carried out as described previously [25].

Transcript levels of genes related to N2 fixation, photosynthesis

and the cyanobacterial circadian clock were detected using C.

watsonii-specific primers (Table 2). Transcript levels were calculat-

ed according to the 22DDCt method [39,40] and are presented as

enrichment factor relative to the expression of rpbI (RNA

polymerase) which was chosen as the calibrator.

Statistical Analysis
Statistical analysis was performed using IBM SPSS Statistics

19.0.0 (SPSS Inc.).
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3. Colón-López MS, Sherman DM, Sherman LA (1997) Transcriptional and

translational regulation of nitrogenase in light-dark- and continuous-light-grown

cultures of the unicellular cyanobacterium Cyanothece sp. strain ATCC 51142.
J Bacteriol 179: 4319–4327.
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