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Abstract

Riccati-Bessel functions, written as combinations of amplitude and phase functions,
have been used to re-express Mie theory. This leads to a simple physical
explanation of the scattered phase angle as the sum of a phase shift arising from the
optical path difference across the particle radius and an interfacial phase difference
at the surface of the particle. The mathematical properties of the different phase
angles are examined in detail by treating the order as a continuous variable.

1 Introduction
It has been shown that Riccati-Bessel (R-B) functions and their derivatives with respect to the wave

variable z = kr can be usefully represented in terms of amplitude and phase functions [1,2]. Thus for
spherical R-B functions:

¢,(z) =M, (z)sin 6,(z) @.(z)=N, (z)cos ¢,(2)
2,(2)=—M, (z)cos b, (z) 71 (z)=N,(z)sing,(z) (1)
E(z)=—iM, (z)expib, (z) & (z)=N,(z)expid,(z)

in which the spatial phase angles 6,(z)and ¢,(z) have the forms:
0(z)=z—nzn/2+y,(z)

2
3,(2)=0,(2)+ A, (2) @
and the amplitudes are related by
M, (z)N, (z)cos A, (z) = 1. (3)
Here, 6,(z) is fully defined by
0,(z) = tan”' {——9"" (2)} 4)
X,(2)

together with the boundary condition 8,(0) = 0. Also, the auxiliary phase angle y, (z) and the phase shift
A, (z) (associated with differentiation w.r.t. z) are constrained by nz/2>y,(z)> 0 and z/2> A, (z)> O .
z=0 Z>® =0 z—>0
From Egs. (1), (2) and (3), three ratio functions can be derived which will be applied later when
analysing light scattering. These are

¢,(2)

—Z" ) =—tand, (z)

P2 _ 21 L A (2)} 5)
¢, (z) M. (2)| tanb, (z)

Ziz) 1
PR [tan6,(z)+ tan A, (2) ]

Note that the definitions given here for spherical R-B functions differ from those given in Handbook of
Mathematical Functions [2,3].

2 Re-expression of Mie theory

To apply our treatment to light scattering, we consider the case of a homogeneous sphere of radius a and
refractive index m . This has external and internal size parameters « = ka and S = mka respectively for

light with a propagation constant of k. Hence the Mie scattering coefficients, obtained from the boundary
conditions of the electromagnetic fields at the surface of the sphere, are:
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4 = 2P, (@)-my,(Pp,(@)
" elB)s, (@)= me, () (@)
PR A I ACH R AVIACY

" ome (B, (@) 9, (B (a)

for n=1,2,3,.... Unfortunately, Egs. (6) contain no meaningful physics but this can be partially remedied by

(6)

. . . |
introducing the scattered phase angles u,,v, through the relations: a, = E(l—exp i2u,) and

b, = %(l—expinn) to give:

_ 2. (B, (@) = mp,(Bg, (@)
o (P x,(@)—mo,(B) ()
mel(Bp, (@) - 9, (P (@)
me, By, (@) -0, (B (a)
Moreover, contributions to the scattered phase can arise from only two possible sources which are:
(a) a phase shift 8,(f) -6, («a) associated with the optical path difference of intrinsic waves across the

particle radius, and
(b) an interfacial phase change u!, v across the particle surface.

Thus, the total scattered phase angles are assumed to have the form

u u'
{ n}ZHn(ﬂ)—Hn(a)Jr{ f} (8)
v, v

Egs.(8) are verified by substituting for u, and v, in Egs. (7) followed by the use of Egs. (5) to
eliminate 6,(a) from both sides of the equations so as to derive:
1

tanu,

7)

tanvy, =

tan[ 0,(6) 44, ] = —————
wng,5) " }
an6,
A (©)
tan| 0, (B)+V =<,
L.+ ]=— V
| tand,(p) "
2 2
where 4 :M”—z(a), B! =tanA (a)— A} tanA, (f) and 4 :M,Bﬁ =tanA, (a)— 4, tan A (B). Finally,
mM () M, (B)
u' and v are completely separated as
, [1-4!- B! w@nd, (B |and, (B
t =
e = B an 6, (f)+ tan’ 6, () 10)
- [1-4) - B} @n6,(B) |an6,(B)
tanv, = =——— 5 .
A’ + B tan@, () + tan” 6,(f)
3 Results
Although the treatment above was for spherical R-B functions, it may now be generalized to all R-B
functions having the form:
any = 2P0~ 9.(Be. (@) (11)

bocpl(Pa(a) -, (B ri(e)
in which ¢ is a constant for all orders and v=n+xfor0<x<1;n=0,1,2,.... Relations (8), (9) and (10) are
still valid and so:

u,=0,(f)-0,@)+u, (12)
an[ 6,08+, ] ———— (13)
{V +Bv}
tan 6, (/)
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[1-4,-B,tan6,(B) ]an6,(B)

tanu, = > , (14)
A,+ B, tan 8 (f)+tan” 6 (f)
M} (a)
where 4, =c—%—=, B, =tanA (a)— A4, tanA (f) .
M (p)

Egs. (7) have, however, been previously examined by van de Hulst [4] and this analysis too can be
extended for general R-B functions so as to yield the following results.
(a) Nodes of the first kind

These occur when 6, (f) = pzr since then ¢ (£)=0 and

tan{uv}zmz—tanﬁv(a) (15)
v, x(@)

to give u!,v, =0 and u,,v, =6,(8)— 60, (a). It may also be shown that v, and v, have the same
phase as v, , hence all four modes satisfy the conditions

VoV tt, = 6,(8) =0, (a) (16)

v

v-1°
and

viouvivl, ul =0. 17)

v=1° v+l

(b) Nodes of the second kind
These are present when ¢, ()= (p +1/2)x corresponding to ¢/(8)=0 and

tan{uv} ACII : (18)
v,|  xia) tang(a)
Thus,
u,=¢,(f-9,()=0,(H-06,()+A,()-A, () (19)
and
v, = A (B)- A (a). (20)

Such generalized expressions are valuable when investigating scattering since, by treating the order
as a continuous variable, quasi-continuous graphs can be plotted of the various phase angles rather than
the sparse sets of discrete points associated with spherical results alone. It should however be
remembered that in the notation P e e S
of general R-B functions, 9.425 S T T
spherical R-B functions
correspond to the orders 7 854
v=n+1/2. e =20, =30

Plots of the various 6283

contributions to the scattered
phase angles are presented

in figures 1-3 for a hypothetical
R-B particle having external and s 142 .
internal size parameters of 20 / — 6,(B)-6y()
and 30 respectively. In figure 1, ;
nodes of the first kind are 1.571 5
indicated by the crossing of all /

three traces at 6,(8) = p7 0.000

. 0.000 3.142 6.283 9.425 12.566 15.708 18.850 21.991 25.133 28.274 31.416
while for nodes of the second 0.(B) in rads
A%

kind only the u, and v, curves
cross at 6,(8)=(p+1/2)z. The Figure 1: Display of van de Hulst's nodes of the first kind at
nodes are similarly recognized 6,(p) = pr and the second kind at 6,(8)=(p+1/2)x.

in figure 2 where they are
displayed as a function of order and the positions of the v, and v ,, modes obtained. Finally figure 3

presents the interfacial phase difference as a function of order. Other features of interest are:
(a) modes make a maximum contribution to scattering whenever u,,v, = (p +1/2)z and the “half-power

points” are obtained from u v, = (p+1/4)z and (p + 3/4)x, (b) the two step edges of height 7 between

4.712 X

Phase Angle (rad)
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orders 25 and 26 are characteristic of resonance scattering and (c) an effective cut-off order exists for the

model sphere at v: 26.

4 Discussion
9.425
General R-B functions have been

shown to play a crucial role in 7.854
understanding the physical
principals underlying light
scattering from a homogeneous
sphere. As a consequence, the
scattered phase angles u, v, of
a hypothetical R-B particle can be
fully explained in terms of the 3.142
optical phase associated with the

optical path difference 1571
0.(p) -0, (a) of intrinsic waves

across the particle radius and an 5000

6.283

4.712

Phase Angle (rad)

— 6,(B)-6,()

|
v b e b b by gy g

0=20, p=30

interfacial phase difference u!,v! 0

at the surface of the sphere. The
latter functions can be calculated

directly from Egs. (10).

Furthermore, the present analysis

provides a physical rationale for 1.047
the sequence of steps in the form
of a descending staircase
reported in Ref. [1] for anomalous
diffraction at a large sphere.
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Figure 2. Comparison of the scattered phase angles u,, v,
with 6,(8)—-6,(a).

40

0.000

Other applications are light
scattering from:

(i) multi-layered spheres and
(after some modification)

(ii) infinite homogeneous circular
cylinders, but also

-0.524

-1.047

Phase Angle (rad)

40

(iif) acoustic scattering at a S Uy :
homogeneous elastic sphere and ’ vl |
(iv) nuclear scattering at a |
spherical square well. 2.094 5
_2.618 T R R AP SR G R B
0 5 10 15 20 25 30 35
Order,v
Figure 3. Interfacial phase difference at the surface of the
sphere.
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