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Abstract
Dysfunction of the visual object recognition system in
humans is briefly discussed and a basic connectionist
model of visual object recognition is introduced.
Experimentation in which two variants of this model are
lesioned is undertaken. The results suggest that the well
documented phenomenon of superordinate preservation is
model independent. Differential category specific
recognition deficits are also observed in this model,
however these are sensitive to each particular variant.

Introduction
Connectionist models of neuropsychological phenomena
can provide a potentially useful insight into the nature of
cognitive information processing within the brain.  In
particular, the ability to damage a neural network and
observe the resulting behaviour can throw light upon
aspects of cognitive dysfunction.  In this paper we show
how two variations on a modular connectionist model,
can be trained to map a pictorially  represented object to
a semantic feature vector.  Both models are then lesioned
and the results obtained are compared with known
neuropsychological phenomena. One the major issues
addressed is the extent to which phenomena in the model
are persistent across the two variants.

Background
Visual Object Recognition (VOR), that is the ability to
perceive and comprehend physical objects in our
environment, is well known to be disrupted by a range of
organic and non-organic brain disorders, such as
Alzheimer’s Disease [Hodges, Salmon & Butters, 1992;
Done and Gale 1997] and Traumatic head injury [Funnell
& Sheridan, 1992]. Although  sources of injury often
vary, the psychological functioning of  visual agnosics
can be remarkably consistent.

The best documented neuropsychological finding is  loss
of accuracy for fine-grained detail, in contrast to a marked
preservation of general information. Patients will often
use the superordinate term, such as fruit, when naming a
specific object (e.g. apple). This phenomenon has been
used as evidence for the disruption of the semantic
system, where fine-grained knowledge is used to
disambiguate similar objects. Possible interpretations of
this finding are: (1) pre-semantic processes are intact, but
the information needed to imbue the percept with
meaning is either lost, degraded or inaccessible; (2) the

inaccessible; (3) both perceptual and semantic processes
are compromised.

A second finding is the emergence of category specific
recognition deficits (CSRD). Patients with CSRD
typically exhibit poor comprehension of some object
classes (e.g. living things)  yet have no difficulty with
others (e.g. non-living things) [Farah, Meyer &
McMullen, 1996]. As with preservation of
superordinate knowledge it is not clear whether CSRDs
arise through disrupted cognitive or perceptual
mechanisms or a combination of both [Sartori & Job,
1988; Humphreys, Riddoch, Quinlan, 1988].

Artificial Neural Networks (ANNs) offer
neuropsychologists increasing insight into the nature of
disordered brain processes e.g. [Hinton and Shallice,
1991; Plaut and Shallice, 1993; Tippett, McAuliffe &
Farah, 1995]. In the absence of neurophysiological data
they facilitate refinement of theories and often generate
hypotheses which can be tested in controlled patient
studies. ANNs can be powerful tools when used to
simulate the role of individual modules within a larger,
more complex, system and this has strong implications
for the study of normal and disordered VOR since it
permits a line of investigation  not possible with
human subjects.

Details of the Model
We have developed two modular models of VOR that
incorporate an unsupervised perceptual processing
module and a supervised semantic memory module,
see figure 2.  An important feature of these models is
that the perceptual processing module uses real
pictorial data and represents  the data using an
unsupervised self organising feature map (SOFM), so
that there is no inbuilt bias as to salient visual features.

The semantic memory module takes the form of a
feedforward pathway ending in either a single layer
attractor  (type-A network) or a multiple layer attractor
network (type-B network, such as that described by
[Hinton & Shallice, 1991]). In the first case the output
from the semantic units is passed through 30 clean up
units, before back-propagation of errors, and in the
second case the output is iterated eight times through
the clean-up units with back-propagation through time,
learning taking place on the last 3 iterations.  Testing
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robustness to training variation. Additionally the
performance of the type-A model has been verified as
consistent with data obtained from psychological,
electrophysiological and primate learning studies of VOR
[Gale, Done & Frank, submitted].

The separation of perceptual and semantic process in both
models allows investigation of each process
independently. This is an approach which is of relevance
to study of preservation of superordinate information and
CSRDs, but cannot be achieved with patients.

Representation of Information in the Model
Our model attempts to remove some of the problems
which arise from the use of feature-based input
representations by using real pictorial stimuli. The
training set comprised a total of 560, 8 bit greyscale
images deriving from the 4 superordinate categories of
animals, musical instruments, clothing and furniture.
Each object was depicted in a canonical perspective and
all background detail was removed. Each superordinate
category comprised 7 basic-level categories, so animal is
subdivided into: bird, snake, spider, fish, deer, mouse
and frog, Each basic-level category is further divided into
5 subordinate categories; for example fish are: pike, carp,
salmon, herring and bass. These categorical levels
reflected the tripartite hierarchy of increasing specificity
originally proposed by [Rosch et al. 1976]. Each
subordinate was represented by 4 versions of the same
exemplar, which varied  on dimensions of contrast and
left-right inversion. Some example images are displayed
in figure 1.

       

Figure 1:  Examples of greyscale images presented to our
modular architecture. Each image fits within a 50 by 50 pixel
grid such that the principal dimension comes within one
pixel of the grid border. These examples depict the 5
subordinate images of the basic level category ‘clock’
which, in turn, is one of the 7 basic level categories
representing furniture.

Each image was processed by a self-organising feature
map (SOFM) [Kohonen, 1982; 1988] similar to that
used by [Schynns 1991]. The output of the SOFM, for
each image, was presented to the semantic module.

The output vector for each pattern is a distributed binary
representation of 32 bits. To prevent bias all patterns are
coded by the same number of active bits and each unit is
active for the same number of patterns. The 32 bits
encode both superordinate and basic-level properties of
each exemplar. Each unit plays an equal role in the
representation of each feature type, thus removing any
architectural distinction between superordinate and basic-
level information. Complete counterbalancing within the

SOFM Output (100 real-valued units)

Hidden Units

32 Semantic Output units

Figure 2:  A representation of the full model showing
intersection between the perceptual and semantic modules

Lesioning was operationalised in both types of the
model by random removal of connections (i) between
the SOFM and hidden layers and (ii) within the
semantic memory module (i.e. deletion of intra-layer
connections).

In the type-A model severity levels were set at 5%,
10%, 20% and 40%, deletion of connections at each
lesion site. Each increase was calculated on a
cumulative basis, so that connections deleted on earlier
occasions were not re-instated on subsequent lesions.
Furthermore, each lesion was performed in 10 random
variations. The effects of lesioning were operationalised
in terms of mean unit output discrepancy (UOD) for
each feature type within each pattern. This involved
taking the modulus of the discrepancy between the
actual and desired activation value for each semantic
output unit, and averaging across both sets of semantic
output units (i.e. superordinate or basic level) for a
single training pattern. Twelve semantic memory
modules were trained, each with output from a different
SOFM and each with a random configuration of
starting weights. Results of lesioning were averaged
across all random variations for all 12 networks,
resulting in a mean basic-level and superordinate level
UOD for each of the 4 categories (A, F, MI and C) at
each of the 2 lesion sites.

In the type-B model an increasing percentage (10%
through to 50%) of connections were deleted at each
lesion site. Again each lesion was performed in 10
random variations for each lesion site. The results were
averaged.  In both cases a pattern was labelled as



vector against the target was above 0.8 and the next
closest vector had an overlap of no more than 0.75.

Results
Superordinate level, basic-level and exemplar level
information is lost in both types of model during early
and late lesioning. Exemplar level information is initially
lost more rapidly than superordinate information. This
loss of information occurs independently of  the site of
any damage.

Networks lesioned late in the process, within the
semantic memory module experienced a net gain in
category level information throughout lesioning, see table
1. However lesioning early in the process exhibited a
category dependant change to superordinate information.
Within the musical instrument and animal categories
both exemplar and superordinate level information was
lost, whilst a minimal net gain in superordinate
information was exhibited in each of the clothes and
furniture categories.

LESIONING SEVERITY
LESION 10% 20% 30% 40% 50%
Early SO 165 182 173 175 178
Early EX 247 165 123 90 73
Late SO 51 87 107 133 154
Late EX. 500 461 436 404 370

Table 1: Number of patterns recalled correctly at
Superordinate level only  (SO) and Exemplar level (EX-
including correct superordinate recall)

Category specific recognition deficits (CSRDs) were
exhibited in both model types; however the extent of the
recognition deficit was more widespread in the type-A
model. In the type-A model CSRDs occurred for different
categories as a function of both lesion site (early or late)
and type of semantic representation (superordinate or
basic-level), see table 2. Early lesions generated a higher
number of errors for animal and musical instrument basic
level categories. Late lesions have less impact on model
accuracy overall (see figure 3). However, a superordinate
CSRD for furniture was consistently observed. It is also
interesting to note that clothing items are the most
robust category to semantic layer lesioning. In this
respect they seem to behave in a similar way to animate
categories and musical instruments. However, this is
perhaps unsurprising given that the perceptual qualities of
clothes are largely dictated by the shape of body parts, a
category that is considered by most to be biological in
nature.

LESIONING SEVERITY

LESION
Cat-
egory

5% 10% 20% 40%

Early SO A 0.07 0.19 0.30 0.21
Early SO F 0.04 0.14 0.31 0.27
Early SO MI 0.04 0.19 0.22 0.63
Early SO C 0.05 0.15 0.26 0.49
Early BL A 0.17 0.33 0.41 0.47
Early BL F 0.06 0.21 0.30 0.38
Early BL MI 0.11 0.30 0.37 0.46
Early BL C 0.05 0.15 0.25 0.37
Late SO A 0.00

5
0.045 0.07 0.19

Late SO F 0.02
5

0.08 0.15 0.22

Late SO MI 0.01 0.05 0.10
5

0.15

Late SO C 0.01 0.05 0.08 0.075
Late BL A 0.04 0.075 0.18 0.215
Late BL F 0.01 0.09 0.14

5
0.24

Late BL MI 0.01
5

0.075 0.15
5

0.165

Late BL C 0.01
5

0.045 0.07
5

0.14

Table 2:  Mean UOD of superordinate (SO) and basic level
(BL)  classifications of each taxonomic category (A:
Animals; F: Furniture; MI: Musical Instruments; C:
Clothes) after lesioning in type-A model.
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Figure 3: An example of the errors made with late
lesioning in a type-A network. The figure shows the mean
basic level UOD for each taxonomy as semantic layer
lesion severity increases. At mild severity levels, animal
basic-level representations were more severely affected.
Across all other severity levels clothing basic-level
representations were consistently better preserved.

Discussion
At all levels of lesion severity and for all lesion sites,
superordinate information was better preserved. This
concurs with a wealth of neuropsychological data
suggesting that relative preservation of superordinate
knowledge is consistent across different forms of visual
agnosia. In this type of model, superordinate features
are better preserved because they are activated more
frequently than basic-level features and hence form
stronger inter-connection weights.

Both type-A and type-B models suffer semantic errors



Early lesions generated a higher number of errors for
animal and musical instrument basic level categories.
The most likely reason for this is that these categories are
perceptually homogenous [Gaffan and Heywood, 1993;
Gale et al., 1998] meaning that their exemplars differ
from each other on only a few perceptual dimensions.
Early damage results in less perceptual information
passing through the network so there is a high risk that
these exemplars will no longer be discriminable from
their associates. Conversely, for perceptually
heterogeneous categories where exemplars are
differentiated over many dimensions, a reduction in
information is less likely to prevent the model from
discerning between category members.

During late lesioning a superordinate CSRD for furniture
was consistently observed in the type-A model. The
most plausible explanation for this is that furniture is a
perceptually diverse category characterised by high
variation on input dimensions. Whilst this may render
fine-grained discrimination between furniture patterns
easy, it creates difficulties when the model has to group
these exemplars together into one superordinate category.
The connections in the semantic layer seem to be
particularly important in this task, in contrast to other
categories where superordinate coherence seems to be
achieved earlier on in the processing cycle.

The two models exhibited a differential generation of
error when submitted to late lesioning. It is thought that
within the type-A model the semantic attractor layer was
performing more of the semantic association than the
same layer in the type-B model.  The multiple semantic
attractor layers in type-B model may be sharing the
development of a final attractor state and consequently the
errors produced when the single layer is lesioned will be
more significant than those errors produced when a single
layer from a multiple layer attractor system is lesioned.

Conclusions
The fundamental underlying behaviour of superordinate
preservation is evident in both type-A and type-B
models. This preservation is independent of the site of
damage.

Category specific damage was evident in both type-A and
type-B models however, the nature of the errors appears
to be specific to the variant of the model used. The
differential generation of errors within our models
indicates that, contrary to previous work [Hinton and
Shallice, 1991], the nature of the model’s architecture
and training regime can influence the exact nature of the
error. Results from this study and others (e.g. [Gale et
al., 1998]) suggest that CSRDs arise through categorical
structure inherent in some perceptual representations
rather than through anatomical separation of category
representations in the brain.
References
Done, D.J. and Gale, T.M.  (1997)  Attribute verification

in dementia of Alzheimer's Type: Evidence for the
preservation of distributed concept knowledge.
Cognitive Neuropsychology,14, 547-571.

Farah, M.J., Meyer, M.M., and McMullen, P.A.  (1996)
The living/non-living dissociation in not an artifact:

Funnell, E., and Sheridan, J.  (1992)  Categories of
knowledge? Unfamiliar aspects of living and
nonliving things.  Cognitive Neuropsychology, 9,
135-153.

Gaffan, D., and Heywood, C.A.  (1993)  A spurious
category-specific visual agnosia for living things in
normal human and non human primates. Journal of
Cognitive Neuroscience, 5, 118-128.

Gale, T.M., Done, D.J., and Frank, R.J.  (1998)
Modelling visual object recognition with a modular
neural network architecture.  Cognitive Science,
submitted.

Hinton. G.E., and Shallice, T.  (1991)  Lesioning an
attractor network: Investigations of acquired dyslexia.
Psychological Review, 98, 74-95.

Hodges, J.R., Salmon, D.P., and Butters, N.  (1992)
Semantic memory impairment in Alzheimer's
disease: Failure of access or degraded knowledge?
Neuropsychologia, 4, 301-314.

Humphreys, G.W., Riddoch, M.J., and Quinlan, P.T.
(1988)  Cascade processes in picture identification.
Cognitive Neuropsychology, 5, 67-103.

Kohonen, T.  (1982)  Self-organised formation of
topologically correct feature maps.  Biological
Cybernetics, 43, 59-69.

Kohonen, T  (1988)  Self-Organisation and
Associative Memory.  Berlin: Springer-Verlag.

Plaut, D.C., and Shallice, T.  (1993)  Deep Dyslexia:
A case study of connectionist neuropsychology.
Cognitive Neuropsychology, 10,  377-500.

Rosch, E., Mervis, C.B., Gray, W.D., Johnson,
D.M., and Boyes-Braem, P.  (1976)  Basic objects
in natural categories.  Cognitive Psychology, 8, 382-
439.

Sartori, G., and Job, R.  (1988)  The oyster with four
legs: A neuropsychological study on the interaction
between vision and semantic information.  Cognitive
Neuropsychology, 5, 105-132.

Schynns, P.G.  (1991)  A modular neural network
model of concept acquisition.  Cognitive Science, 15,
461-508.

Tippett, L.J., McAuliffe, S., and Farah, M.J.  (1995)
Preservation of categorical knowledge in Alzheimer's
disease: A computational account.  Memory, 3, 519-
533.


