
Tackling the PAN’09 External Plagiarism Detection Corpus
with a Desktop Plagiarism Detector∗

James A Malcolm
University of Hertfordshire

College Lane, Hatfield, Herts
j.a.malcolm@herts.ac.uk

Peter C R Lane
University of Hertfordshire

College Lane, Hatfield, Herts
p.c.lane@herts.ac.uk

Abstract: Ferret is a fast and effective tool for detecting similarities in a group of
files. Applying it to the PAN’09 corpus required modifications to meet the require-
ments of the competition, mainly to deal with the very large number of files, the
large size of some of them, and to automate some of the decisions that would nor-
mally be made by a human operator. Ferret was able to detect numerous files in the
development corpus that contain substantial similarities not marked as plagiarism,
but it also identified quite a lot of pairs where random similarities masked actual
plagiarism. An improved metric is therefore indicated if the “plagiarised” or “not
plagiarised” decision is to be automated.
Keywords: Ferret, trigrams, plagiarism detection

1 Introduction

In this paper we describe how we approached
the challenge of the PAN’09 Plagiarism De-
tection Competition using the Ferret plagia-
rism detection software. We outline Ferret’s
strengths in normal use, highlight the diffi-
culties we had in using Ferret for the com-
petition task, and describe the results of the
improvements that we made as a result of en-
tering the competition.

The “external plagiarism analysis” task of
the PAN’09 Plagiarism Detection Competi-
tion (International Competition on Plagia-
rism Detection, 2009) is an example of cate-
gory 1 plagiarism (Lyon and Malcolm, 2002),
as we have the source(s) in our hand. This
suggests that Ferret is the tool for the job.

Ferret (Lyon, Barrett, and Malcolm, 2004;
Lyon, Malcolm, and Barrett, 2005) is a tool
that (when used on student work) is primar-
ily good for detecting collusion rather than
plagiarism (though it has been extended to
generate search terms to drive an Internet
search (Malcolm and Lane, 2008b)). It is
a desktop plagiarism detector, which means
that it is fast and interactive. It has to
be fast, because a human is waiting for the
results, and because it is interactive, hu-
man input is available and appropriate: after

∗ We thank Bob Dickerson who developed the core

from which the original Ferret code was developed.

all, plagiarism is an academic judgement not
something that can be measured by a ma-
chine (Flint, Clegg, and Macdonald, 2006;
Lyon, Barrett, and Malcolm, 2004). Before
tackling the competition we had done little
to automate the decision making process: “is
this plagiarism or not”; Ferret tells its user
which pairs to look at (and helps in review-
ing those pairs) but leaves the actual decision
has to him or her. There is therefore no need
for the software to draw a dividing line – a
ranked list is sufficient.

The competition did highlight what we
knew to be Ferret’s strengths and weak-
nesses: we came second on recall, but pre-
cision was poor as Ferret is too fine grained
in its identification of similarities.

2 Ferret’s Strengths

Assuming, as in the competition, that we al-
ready have the sources of all the copying,
then there are two tasks in identifying pla-
giarism in a collection of documents: finding
which pairs of documents to look at and (once
a pair has been selected for further examina-
tion) finding the blocks of matching text.

In the case of the competition there ap-
pear to be (7214)2 comparisons to be made.
In the more general case usually considered
by Ferret, every file needs to be compared
with every other, giving n·n−1

2
comparisons

(which for source and suspicious files together

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/1639823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

is 104,076,378 pairs). But it is important to
note that the way Ferret works these com-
parisons are not made explicitly; as the doc-
uments are read by Ferret it creates a data
structure which enables the most similar pair
of documents to be selected without making
a direct comparison of those two documents.
To be more specific, it remembers every three
word sequence (triple) that it has seen, and
which input files that triple appears in. Sim-
ilar files are those with the largest number
of common triples. This simple approach is
what makes Ferret fast.

The Ferret user interface then allows the
operator to display the similar documents
side by side with the similar text highlighted.
For large documents, it can take as long to
display one pair as it does to find all the sim-
ilarities in the set (we mention this to high-
light the speed of the first phase, rather than
as a deficiency of the user interface).

There is no specific support in Ferret for
finding the sections of a source that has been
copied. This is done by the operator (al-
though he or she can click on any one of
the matching triples to find where in the two
compared documents it appears).

We expect to look at the most similar pairs
(in descending order of similarity) and stop
when we judge that plagiarism is no longer
occurring. In effect this is a corpus spe-
cific threshold (partly mitigating the problem
mentioned in section 3.2).

3 Adapting for the Competition

The problems that have to be solved in order
to use Ferret for the competition relate firstly
to the large volume of data to be examined
and secondly to the difference between how
we would normally use Ferret and how the
competition is run.

3.1 Scale

To deal with the large volume of data in the
competition, we had to divide the input into
batches that were processed in turn as we did
not have a machine with sufficient RAM to
deal with all the data in one go. We esti-
mate that 32GB would be enough; our ma-
chine was 9GB (for normal use, Ferret runs
in 512KB or less). If batching is necessary,
it is most efficient if half the available mem-
ory is used for source documents, and half for
suspicious documents.

If M is the available memory, the num-
ber of batches of source documents, NO, will

be 2|O|
M

(where |O| is the total size of all the
source documents in the corpus). The num-
ber of batches of suspicious documents, NU ,

should be 2|U |
M

. The number of runs, NO ·NU ,

will thus be 4|O||U |
M2 which is quadratic in cor-

pus size; doubling the memory available will
make the system four times faster.

3.2 Automation

We needed to automate the decision between
“plagiarised” and “innocent similarity”. At
present Ferret supports two possible metrics:
a count of the number of common triples, and
the Jacquard coefficient, ‘R’.

Some of the files are very big, but these
are mixed with quite small files so our current
metric does not work very well. The copied
chunks vary from a couple of sentences up,
but it is the huge size of some of the files
that causes the problem, because the number
of randomly matching triples in a huge file
is bigger than the size of one of the smaller
copied chunks.

Examining results for the first 100 sus-
picious files in the Development corpus we
found that we should take the 50 most simi-
lar pairs to catch all the suspicious files where
artificial plagiarism had been introduced.

Ferret picks out many very small similar-
ities. Eliminating these “accidental” similar-
ities (common triples, typically isolated) was
a problem that we had to address with code
if we were to have success in the competition.
It was not a problem we had seen before be-
cause of the way we use Ferret.

3.3 Improvements

Our submission was the first run of the com-
plete system.

We later revised it to take some account
of the order of triples in the source docu-
ment when deciding if matching triples in the
suspicious document are part of a matching
block or just a random match. This code is
quite slow, and there are now a lot of param-
eters that can be fiddled to change how well
Ferret would perform in the competition:

• How many triples matching is considered
too small to be worth considering as in-
put to the second phase: currently less
than 50 (or R < 0.007).

• How many documents to keep in the
“most similar pairs” list: 5 on the first
(submitted) run, but considering 50.

• The unmatched gap between matching
sections that can be merged: 1 in the
first run; considering up to 4.

• How many sections before or after the
current section we can jump when merg-
ing: no restriction in first run; consider-
ing a range from 5 before to 10 after.

4 How the system operates

4.1 Identifying Similar Pairs

First we run Ferret on the complete corpus.
A bash script make-input-document-list
that creates an input file for the ferret -f
(definition file) option. Several copies of the
make-input-document-list script are com-
bined in a script that does multiple runs of
Ferret to do (small) groups of suspicious files
against (largish) groups of source files to pro-
duce a set of output files.

4.2 Identifying Sources

We read the output files generated by step
1 to select the likely sources for a given sus-
picious document. This uses a ruby script
process-output that runs ferret -x to
produce an XML file highlighting the simi-
larities in a particular suspicious-source pair
where the number of matches and/or resem-
blance metric meets hard coded (but easy
to change) constraints. This produces a set
of XML files (one for each ferret -x run);
these are scanned by another ruby script:
read-ferret-xml-files to produce output
in the required XML format. Formatting the
results to meet the competition requirements
raised a minor difficulty that the source off-
set required was not available in our system;
fortunately it did not appear to be part of
the evaluation metric.

5 Resource Analysis

Tackling more than about 500 files at a time
on a 1GB laptop led to it thrashing. On a
9GB server, about 5000 files at a time could
be dealt with comfortably.

For the development corpus, the out-
put from Ferret was divided into 146 files:
each file has results for about half of the
source files (numbers 1-3999 or 4000-7214)
and about 100 suspicious files. As explained
above, this is not the best way of organising

the data, but it was initially easier to test a
few suspicious files at a time.

Step 1 produces a lot of output. As an
indication of the scale of the problem, run-
ning the Unix wc (word count) utility on the
complete set of output files took about 37
minutes, involving 7 minutes CPU time. The
average size of the files is around 45MB, and
the total size about 6.5GB.

This emphasises the quadratic nature of
plagiarism detection: every suspicious file has
to be checked against every possible source
file. In the case of the competition this is
52,041,796 comparisons. As mentioned ear-
lier, Ferret usually compares every file with
every other, but fortunately we had already
implemented a grouping facility (it has sev-
eral other applications) whereby files in a
group are not compared with each other, but
only with files in other groups. We should
have filtered out the least similar pairs be-
fore generating the output from phase 1, as
the set of phase 1 output files is considerably
larger than the set of suspicious documents.
In normal use, Ferret displays a list of the
most similar pairs; the user only looks at the
most similar and because the rest of the list is
in memory there is little extra cost involved.

6 Results

Here now are our observations on running the
system we built around Ferret on the develop-
ment corpus (we do not yet know the “correct
answers” for the competition corpus).

We group the pairs into 5 types depending
on the kind of artificial plagiarism:

• raw plagiarism (without obfuscation)

• low obfuscation

• high obfuscation

• plagiarism by translation

• no artificial plagiarism

We plotted the value of R for each of these
types: figure 1 shows (for first 500 suspicious
documents of each type in the development
corpus) how documents which were identified
as plagiarised (with various degrees of obfus-
cation) differed from those where no similar-
ity was intended.

We see immediately that Ferret is (as ex-
pected) ineffective at detecting plagiarism by
translation (the line on top of the x-axis), so
this is left out of the later graphs.

Figure 1: R for the first 500 pairs of each type

We also note some very high values for R,
and not just where there is introduced plagia-
rism. Some of the pairs where there was no
artificial plagiarism showed very high similar-
ity using Ferret; there are some very high val-
ues of R before the graph flattens off. In to-
tal 49 pairs (in the development corpus) have
R > 0.5. Twelve of these are pairs where no
plagiarism is alleged. We looked at each of
these pairs in detail, and present the results
in Table 1.

The worst case was suspicious document
1302 which had R = 0.91 when compared to
source document 5069. It turned out that
these were both Project Gutenberg (1971-
2009) “READ ME” documents with no other
text. I guess this could be viewed as an acci-
dent on the part of the compilers of the cor-
pus (Potthast, Martin et al. (editors), 2009).
Some of the other similarities are more in-
teresting, such as R = 0.80 between “The
Impossibles” and “Out Like a Light”, both
by the same author. Despite the consider-
able number of small changes between the
two documents, Wikipedia Authors (2009)
suggest this is a re-publication of the same
work under a new title.

Most of the high similarities in documents
not alleged to be plagiarised were different
editions of the same work, such as a volume
which is repeated (with numerous spelling
corrections) in the collected works or a “Sec-
ond Edition Revised and Enlarged” with ob-
viously a considerable overlap with the first
edition.

In most of these 12 cases, we have differ-
ent editions of the same work, or different
collections containing most of the same ma-
terial. A few are incomplete fragments, pos-
sibly arising from the way in which Project

Suspicious Source R Cause

00569 04692 .533 editions
01302 05069 .917 read me
01656 04163 .501 editions
01756 03972 .662 editions
01862 03766 .640 editions
02483 05054 .550 fragments
02730 01431 .629 fragments
04740 04973 .717 editions
05096 00620 .622 fragments
05959 06555 .706 editions
05964 06148 .816 editions
06188 05357 .798 plagiarism?

Table 1: Most similar non-plagiarised pairs

Gutenberg used to be distributed, so it is
hard to tell how the similarity to other frag-
ments came about.

We would presume that R values below 0.5
also indicate similar situations, as previous
work has shown that R > 0.04 is the limit
for “accidental similarity” but maybe a larger
value is appropriate for this corpus.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

No obfuscation
Low obfuscation
High obfuscation

Truncated
No plagiarism

Figure 2: R for the first 100 pairs of each type

In figure 2 (where R is plotted for only the
first 100 pairs of each type), it can be seen
more clearly that the graphs for obfuscated
plagiarism are higher than for raw, maybe be-
cause the obfuscated cases are longer: the av-
erage amount of source material in suspicious
documents containing raw (un-obfuscated)
plagiarism was 20,628 whereas for low and
high obfuscation the average lengths were
about 50% higher at 30,402 and 33,330 re-
spectively.

Figure 3 compares R for the four types
across the full range of pairs. Here the x-
axis is a percentage of the total number of

pairs of the type and the most similar pairs
of each type (R > 0.4) have been omitted.
The big difference between plagiarised and
non plagiarised is evident, but also we note
that at the RHS of the diagram these lines
merge. This is because the influence on the R

metric for small pieces of plagiarism in large
documents is rather too small.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50 60 70 80 90 100

No plagiarism
No obfuscation

Low obfuscation
High obfuscation

Figure 3: R for all the pairs of each type

7 Conclusions and Future Work

Producing a corpus with no similar text ex-
cept that which has been added deliberately
is hard: there is far too much duplicate data
on the Internet to make it easy. It is for this
reason that this paper concentrates on the
Development corpus, as we know which parts
of it are supposed to be plagiarised. However
the competition organisers have done an ex-
cellent job in encouraging research.

The competition has clearly shown us that
a better metric than R is needed. As we have
suggested before (Malcolm and Lane, 2008a),
a metric that takes account of the order of the
similar features looks promising. Calculating
the longest common subsequence of triples
would probably work well, but is computa-
tionally costly; we want to take care not to
slow Ferret down.

We need to develop better approaches to
spanning gaps caused by obfuscation, espe-
cially in very long files as our current algo-
rithm can still get two isolated triples that
happen to be in the right order, for example a

b c X k l m turning into a 7 word match, which
is probably long enough to appear in the out-
put. We should also optimise the other pa-
rameters listed in subsection 3.3.

Ferret’s strength is its speed: we were able
to upgrade our machine from 9 to 32GB of

RAM, so can now process the entire compe-
tition corpus in a single ferret run of 1h42m.
This works out at an effective rate of compar-
ison of 50,000 pairs per second. The input is
read at 450kB/s (this includes all ferret’s pro-
cessing, including writing out the very large
results file).

References

Flint, Abbi, Sue Clegg, and Ranald Mac-
donald. 2006. Exploring staff percep-
tions of student plagiarism. Journal of
Further and Higher Education, 30(2):145–
156, May.

International Competition on Plagiarism De-
tection. 2009. http://www.webis.de/
pan-09/competition.php.

Lyon, Caroline, Ruth Barrett, and James
Malcolm. 2004. A theoretical basis to the
automated detection of copying between
texts, and its practical implementation in
the ferret plagiarism and collusion detec-
tor. In Plagiarism: Prevention, Practice
and Policies Conference, June.

Lyon, Caroline and James Malcolm. 2002.
Experience of plagiarism detection and
prevention in higher education. In Pro-
ceedings of the World Congress, Net-
worked Learning in a Global Environment:
Challenges and Solutions for Virtual Ed-
ucation. ICSC-NAISO Academic Press.

Lyon, Caroline, James Malcolm, and Ruth
Barrett. 2005. The ferret copy detector:
finding similar passages in large quantities
of text. In Submitted to the 43rd Annual
Meeting of the Association for Computa-
tional Linguistics.

Malcolm, J.A. and P.C.R. Lane. 2008a.
An approach to detecting article spin-
ning. Proceedings of the Third Interna-
tional Conference on Plagiarism.

Malcolm, James A. and Peter C. R. Lane.
2008b. Efficient search for plagiarism on
the web. In Proceedings of i-TCE 2008.

Potthast, Martin et al. (editors). 2009. PAN
Plagiarism Corpus PAN-PC-09. http:
//www.webis.de/research/corpora.

Project Gutenberg. 1971-2009. http:
//www.gutenberg.org/.

Wikipedia Authors. 2009. http:
//en.wikipedia.org/wiki/Mark
Phillips (author).

