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AbstratThere has been an ever-widening gap between proessor and memory speeds,resulting in a `memory wall' where the time for memory aesses dominates per-formane. To ounter this, arhitetures that use many very small threads thatallow multiple memory aesses to our in parallel have been under investigation.Examples of these arhitetures are the CARE (Compiler Aided Reorder Engine) ar-hiteture, miro-threading arhitetures and ellular arhitetures, suh as the IBMCylops family, implementing using proessors-in-memory (PIM), whih is the mainarhiteture disussed in this thesis. PIM arhitetures ahieve high performane byinreasing the bandwidth of the proessor to memory ommuniation and reduingthat lateny, via the use of many proessors physially lose to the main memory.These massively parallel arhitetures may have sophistiated memory models, andI ontend that there is an open question regarding what may be the ideal approahto implementing parallelism, via using many threads, from the programmer's per-spetive. Should the implementation be at language-level suh as UPC, HPF or



ivother language extensions, alternatively within the ompiler using trae-sheduling?Or should it be at a library-level, for example OpenMP or POSIX-threads? Or per-haps within the arhiteture, suh as designs derived from data-�ow arhitetures?In this thesis, DIMES (the Delaware Iterative Multiproessor Emulation System),whih is being developed by CAPSL at the University of Delaware, was used as ahardware evaluation tool for suh ellular arhitetures. As the programing example,the author hose to use a threaded Mandelbrot-set generator with a work-stealing al-gorithm to evaluate the DIMES thread programming model. This implementationwas used to identify potential problems and issues that may our when attemptingto implement massive number of very short-lived threads.
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Chapter 1
Introdution
The memory-wall [121℄ is a limiting fator in CPU performane, whih may be oun-tered by introduing extra levels in the memory hierarhy [15,121℄. However, theseextra levels inrease the penalty assoiated with a miss in the memory-subsystem,due to memory-aess times, limiting the ILP. Also, there may be an inrease indesign omplexity and power onsumption of the overall system. An approah toavoid this problem may be to feth sets of instrutions from di�erent memory banks,i.e. introdue threads, whih would allow an inrease in ILP, in proportion to thenumber of exeuting threads. There are issues with introduing multiple threads ofexeution, suh as they should not have data or ontrol �ow that is inter-dependantbetween any of the urrently exeuting threads. Another issue is that the ost forreating, synhronising and destroying threads should be very heap, whih on-strains the arhitetural design. The reason for this latter onstraint is that thelatenies to be mitigated against would be pipeline stalls, usually very short peri-ods of time, potentially between a few to tens of lok yles. Suh short threads,that are designed to mitigate against pipeline stalls, this thesis shall term as miro-threads. This de�nition is in slight ontrast to the de�nitions used within [13, 68℄,where the motivation for the de�nition ame from the di�ering size of the thread,i.e. that they laked a stak and ontext. Given that the threads to whih this thesisrefers, and the threads of [13,68℄ are all used to maintain pipeline throughput, thenthis modi�ed de�nition has some justi�ation. Note that these miro-threads arenot operating-system level threads, whih have large ontext, are potentially pre-1



Chapter 1. Introdution 2emptible and used for proess-level parallelism. Miro-threads would be designed tohave very little ontext, making reation and destrution heaper.Various arhitetures have been proposed that ould support miro-threads:
• The arhiteture of [13, 68℄, whih is designed to support the smallest variantof miro-threads.
• The CARE (Compiler Aided Reorder Engine) arhiteture desribed in [75℄,that supports strands, a variant of miro-threads, that ful�l the same goal,thus ome under the de�nition of miro-threads used in this thesis.
• The integration of proessing logi and memory [21, 41, 105, 106℄ within thesame hip, termed PIM. Suh integration may also improve both data-proessingand data-aess time.In this thesis the appliation of miro-threading to the �nal PIM arhiteture is whatwill be examined in most detail, with oasional referenes to the other arhitetures.A problem with integrating proessors and memory in the same spae is that theproessor speed and the amount of memory are redued [21℄. This may be overomeby onneting multiple, independent PIM ells, where the resultant arhiteture isdesribed as ellular. In this multi-threaded organisation, every thread unit servesas an independent single-issue, in-order proessor, thus able to potentially aessmemory independently, depending upon the exat details of the arhitetural design.This gives rise to a number of ode-generation problems, some of whih are dis-ussed in appendix C, entred around the fat that to provide omputational power,these systems are massively parallel. It is ommon folklore in the programmingommunity that writing orret and e�ient multi-threaded programs is hard. Thisproblem ould be ompounded for suh ellular arhitetures. Thus, onsiderableresearh e�ort has been targeted at ode generation, inluding thread generation,to support suh hardware. There is likely to be muh researh to do: to developompilers to generate multi-threaded ode, reate lower-level libraries that ease theburden of reating suh ode, and write debuggers that allow the programmer toe�etively debug suh programs.



Chapter 1. Introdution 3Thread-generating ompilers exist; for example, HPF and UPC [45℄. The Fortran-based HPF is very useful for mathematial problems, but less so for other problemdomains. Both ompilers speialise on parallelising loop-onstruts. Other C andC++ parallelising ompilers exist, but are largely based upon the OpenMP library,for example IBM XL Fortran and Visual Age C/C++, whih also tend to fous uponloops and a soure of parallelism. Alternatively, higher-level approahes, suh as aompiler that may automatially reate threads using the split-phase onstraint ex-ist for suh arhitetures as EARTH [109℄. The split-phase onstraint may be looselyde�ned as when the ompiler may generate a synhronization variable, and a destina-tion thread for a potentially, long-lateny load from remote memory. This EARTHompiler attempts to ful�l the promise of thread-generation for the programmer: itis automated, general-purpose - not limited to loops - and the shedules it reatesare provably fast and orret.Moreover, the di�erent memory hierarhies within ellular arhitetures add tothe multi-threaded ode-generation problem. Researh is in progress to address thisproblem: for example by plaing hardware memory-banks that have di�erent aessand onsisteny models at di�erent address ranges in the memory-map of the virtualmahine, known as loation onsisteny [40℄ is one approah. The EARTH ompilerand UPC both provide language, hene ompiler support, for suh features using thesplit-phase onstraint, or the use of the strit and relaxed keywords, respetively.The library-based approah to threading has often been made less e�etive by alak of language support, that would aid the expressiveness and use of thread-relatedonstruts (for example threads themselves and synhronization mehanisms). Forexample, the use of pragmas in the various implementations of OpenMP, and thefat that general-purpose languages have been very slow to adopt a su�iently so-phistiated abstration of the features of any mahine model. C/C++ has had thevolatile keyword for over a deade, but has made very limited use of it in supportingshared data, that may be aessible by more than one thread, an obvious use of thekeyword. (Indeed this use is to be introdued into the next C++ standard, to be �-nalised not before 2009.) This limitation has been noted (at the Assoiation of C andC++ Users Conferene, 2005, by B. Stroustrup, in one of his keynote presentations,



Chapter 1. Introdution 4and by others) and has apparently hampered development of multi-threaded pro-grams and the development of ompilers that might automatially generate threads.The author ontends that library-based solutions to threading are too dependantupon the programmer to use orretly. For example, the expliit use of loks in pro-grams is prone to error, with deadloks and rae-onditions that are hard to trakdown are easily introdued.The development of suitable tools to debug multi-threaded appliations has beenslow. Some tools are available (strae, truss, pstak and various debugger) but arevery limited in funtionality, with regards to threading. More useful debuggers arein development, for example for Cylops [29℄. But these are few, with urrentlylimited funtionality. Further development in this area would be vital to allow theprogrammer to debug their ode on suh systems. A more important aspet of thesetools would be to aid the programmer with regards to reasoning about the funtionof their multi-threaded ode, and thus avoid suh bugs.In the author's opinion, the leaders in this �eld are aiming at a language, notlibrary, based solution, whih would be the appropriate level of abstration for theexpression of parallelism within a program. The ompiler support would allowthe development of more powerful multi-threading abstrations, suh as variousalgorithms, that would help to divore the programmer from the omplex detailsof the underlying arhitetural support. But there are limitations in the diretionof suh urrent ompiler developments, for example, UPC apparently exposes onlyloop-based parallelism and HPF requires expliit statements within the ode to makethe ompiler generate multi-threaded ode whih also direted towards parallelisingloops. The author ontends that this would be far too limited for appliation togeneral-purpose programs.As identifying parallelism both orretly and e�iently has been very hard forthe programmer to do, the author ontends that they should not do it. When suhmassively-parallel arhitetures are developed, this proess should inlude time todevelop libraries that plug into the target ompilers to allow them to generate e�-ient ode for that arhiteture. Thus the programmer would identify variables andfuntions that they believe they may be able to parallelise, to guide the ompiler.



Chapter 1. Introdution 5The ompiler, equipped via these libraries with a detailed mahine-model would beable to re�ne and hone these gross indiations in the program to generate e�ientode. The author experiened only limited e�ort investigating the software aspetof the ode generation problem for massively parallel arhitetures. Unfortunately,if this ase should ontinue, this shortoming ould adversely a�et the popularityof suh systems and maintain the pereption that massively parallel arhiteturesare too speialized and thus too expensive to be of more general use. Given the pop-ularity of multi-ore proessors, this position is set to beome even more untenable.



Chapter 2
Related Work
2.1 The VLIW OriginsThe researh that has been done in the �eld of multi-threaded arhitetures, maybe onsidered to have been heavily in�uened by the work on VLIW arhitetures:one an onsider them to have a limited number of �live� threads at any one instant,limited not only by the number of slots in the instrution word, but also by theability of the ompiler to identify suh instrution-level parallelism. Some researhwork [83, 117℄ demonstrated that, in the SPEC95 benhmark suite, there has beenpotential for a large number of independent threads, up to the order of thousands.Unfortunately this motivating result was for VLIW mahine-models with ertain,ideal parameters; a ommon limit has been the number of available registers, orbypass buses, or an orale branh preditor within the ompiler. This gave impetusto the arhiteture �eld to researh these rih topis, and has provided very e�etivedynami, rather than ompile-time branh preditors. But the VLIW ompilers, thetrae ompilers of the time, required a ompile-time branh preditor to produeode that did not need expensive reovery mehanisms, and enable the ompiler toperform the whole-program, ode-motion optimizations it needed to do to extratthe ILP from the programs. Results for the register problem have been similarlymixed: due to the multi-ported nature of the register banks, there is a physial andtehnologial limit: having more registers sales the area of the hip linearly, butmore register ports (for bypass buses) sales the area geometrially. Tehnologial6



2.2. Beyond VLIW: Super-salar: the ombination of branh preditors,speulation and memory hierarhies 7limitations in hip fabriation limit the yield of the hips: the larger the area, thelower the yield in diret proportion. Thus adding a su�ient number of register portswill always reah a limit in the urrent tehnologial ability to produe eonomiquantities of suh hips.The instrution density in VLIW ode dereased for various reasons:
• a lak of an e�etive ompile-time branh preditor,
• ombined with limited register resoures,
• true data-dependenies,
• and strutural hazardsall of whih meant is was neessary to injet no-ops into the instrution stream.These no-ops have been of vital signi�ane: they were a diret indiation of theine�ieny of the ompiler and tool-hain, hene arhiteture, to extrat ILP fromthe instrution stream, and indiate an ine�ieny of both the software and theompiler. Consequently the e�etiveness of the VLIW arhiteture as a tehniqueto inrease performane, via extrating ILP, by re-ompiling the soure ode hadbeen onstrained.2.2 Beyond VLIW: Super-salar: the ombinationof branh preditors, speulation and memoryhierarhiesBut the researh yielded very useful results: the development of dynami, as opposedto the ompile-time branh preditors. These meant that speulative exeutionof ode was muh less likely to be wasted work. Thus the advent of super-salarproessors, but these had their problems: performane was hindered by slow memoryspeeds. So small ahes were implemented, based upon the assumption of data andontrol loality. The size of a hardware ahe has been hosen to be roughly 10%of the average size of the exeuting program the related data. These ahes have



2.2. Beyond VLIW: Super-salar: the ombination of branh preditors,speulation and memory hierarhies 8been omposed of very high speed memory, whih has been ostly to implement.They were also plaed diretly in line with the IF stage of the pipeline, allowingvery high-speed instrution-feth from the ahe, if there was a ahe hit [80℄. Also,regarding instrution feth: the auray of the branh preditor and plaing it veryearly in the pipeline has been vital. This is to allow the branh target addressesto be obtained (potentially via the BTC, or via a default predition, or a dynamipreditor may be used) before the instrutions that would generate the result of thatbranh ondition. This allowed the instrution ahe to pre-feth ahe-line sizedamounts of instrutions from slower hierarhies, using the pre-omputed, predited,branh-target address, and deliver them with minimal pipeline stalls to the IF stage.The data ahe has been more omplex, but the onept of implementing a small,write-bak, high-speed amount of memory so that register writes would be diretedto this memory has been relatively simple: it would at as a bu�er to the lower-level, slower memories, and allow memory reads to be potentially servied diretlyby the data ahe instead of from the lower-level memory hierarhies. Anothermajor fator has been out-of-order instrution exeution: if there were su�ientproessor resoures, instrutions ould be exeuted in parallel, although they wouldbe fethed in-order and potentially retired out-of-order. Moreover instrutions thatompleted faster need not be held up by slower instrutions that were ahead ofthem in the instrution stream. The use of a soreboard or register �le [59, 80℄allowed the data-dependenies between registers to be dynamially omputed whilstthe instrutions were in �ight in the pipeline. When these ahes were ombinedwith branh predition and speulation even more ILP, and performane, ould beextrated from the input instrution stream. In these arhitetures, the retirementof instrutions was linked to an arhitetural state (potentially implemented via areorder bu�er) that, if a mis-predition ourred, would have to be rolled bak, andthe instrution feth re-started from the alternative branh. Also, if a proessor wereto implement preise interrupts, for example to implement proessor exeptions, thena similar roll-bak, or ompletion, of in-�ight instrutions would need to our toensure that the proessor would be in an arhitetural state that would be onsistentwith the sequential program state.



2.3. Parallel Arhitetures 92.3 Parallel ArhiteturesThe roll-bak impliitly implemented within super-salar arhitetures has beenviewed as a problem: the inreased state due to deeper pipelines makes the hipsmuh more omplex. This inreasing omplexity has been viewed as one of the lim-its to the salability of the super-salar arhiteture. The impliit assumption inthe von Neumann arhiteture underlies this design, therefore more radial alterna-tives would need to be researhed if inreased performane may be obtained undersuh onstraints, for example data-�ow based ompilers [12, 99℄ and omputer sys-tems [48, 57℄. But the data-�ow arhiteture itself had problems: the arhiteturalstate was re�eted in inreasingly many registers, with inreasingly many ports, thusompliating hip design, in a similar manner to the VLIW register problems.The implementation of large quantities of memory with mixed exeution unitsmay be seen to have led to a few avenues of researh. The ones that are pertinentto this thesis are:
• EARTH and CARE,
• the miro-threaded arhiteture,
• and ellular arhitetures suh as IBM BlueGene/C and Cylops.In general these arhitetures examine various tehniques by whih the exess per-formane of the exeution units may be used to ameliorate the relatively limitedinstrution and data throughput rate from the memory subsystems. Threading theprogram attempts to divide the sequential program into data and ontrol dependentthreads. These dependenies imply a partial exeution order upon the threads thatmust be satis�ed to maintain the onsisteny of the original program, as expressedby the programmer in the target language, whih has often been a sequential lan-guage. By this tehnique the von Neumann arhitetural onept of strit instrutionfeth-deode-exeute-writebak ould be avoided. Instead there ould be, e�etivelymultiple exeution units, eah exeuting as a von Neumann arhiteture, within awhole arhiteture that would be applied to the program as a whole, thus attemptingto mine suh ILP as may be available within that program.



2.3. Parallel Arhitetures 102.3.1 EARTH, the EARTH ompiler and CARE2.3.1.1 The EARTH arhitetureThe EARTH arhiteture [53℄, was omposed of: a synhronization proessor andan exeution proessor, linked by two queues. The program would be written inThreaded-C, suh that those threads within the program would be sheduled by ansynhronization unit to exeute on onneted exeution unit, but only if all of therelated dependenies had been satis�ed. Due to the multi-proessor nature of thearhiteture the thread size would be hosen to optimize exeution so that any redu-tion in e�ieny due to long lateny delays aused by inter-proessor ommuniationwould be minimized. These delays ould be of many orders of magnitude longer thanlatenies due to branh mis-preditions, or loal memory aesses. Threaded-C re-quired the programmer to annotate their program with thread onstrutors to diretthe ompiler to generate multi-threaded ode.2.3.1.2 The EARTH CompilerTo overome the neessity for the programmer to annotate the program, Tang inhis work [109℄, desribes a ompiler that was able to take a C program and suitablyannotate it with the appropriate threads. Most importantly this ould be donewithout the programmer's intervention.The tehnique desribed in [109℄ is as follows: the ompiler tried to identify, withthe potential aid of type modi�ers, those operations that may have aused long la-tenies. Those memory aesses would be labeled using the loal or remote typemodi�er, and if no modi�er were used the ompiler had to assume that the aesswas remote, therefore the type modi�er would be remote. The remote type modi�erindiated to the ompiler that the memory aess would be of long lateny. Theselong-lateny operations, for example, memory aesses or funtion alls, would thenbe split into two threads. The �rst thread was the original thread and the seondthread ontained the ode that was data-dependent upon the long-lateny opera-tion. To ensure that the data dependene was satis�ed a synhronization variablewas introdued, suh that the seond thread waited upon this synhronization ob-



2.3. Parallel Arhitetures 11jet before it ould exeute, whih [109℄ terms as the split-phase onstraint. Togenerate these threads the ompiler reated a data dependene graph of the inputprogram, with the edges in the graph being labeled as remote and loal. Thoseremote edges would be split by the ompiler using the split-phase onstraint. Theompiler also builds up a program dependene �ow graph in whih the data andontrol dependenies of the program were hierarhially aptured. This graph in-luded the threaded representation of the original program from whih the ompilerthen identi�ed an optimal order that satis�ed all of the onstraints. This graph alsoallowed the ompiler to identify further optimizations:
• To redue thread swithing osts, ontrol and data independent threads shouldbe merged. This was done by omputing the remote level of eah node, andmerging those that have the same remote level.
• Within a thread, registers should be re-used and data shared with other in-strutions within the thread, to enhane loality and sequential performaneof the instrution stream.
• Long lateny operations ould be overed by ontrol and data independentloal operations, providing that the overall ontrol and data dependenies aresatis�ed.In [109℄, Tang showed that the optimization problem posed by ombining the abovedetails and minimizing the total exeution time was NP-hard. Thus an alternativepartitioning algorithm was required, to minimized ompilation time. Tang showedthat the list-based sheduling algorithm seleted was no worse than twie as slow asan optimal shedule of the nodes. This bound may be improved upon by reduingthe ost of remote ommuniation. Tang also examined the use of the various heapbased analysis to aid the thread partitioner so that it an reate more threads, ifrequired.The results presented in [109℄ showed that for randomly generated programgraphs, the list-based, thread-sheduling algorithm produed ode that was within7% of the ideal run-time, whih was lose to an optimal shedule. Also, for the



2.3. Parallel Arhitetures 12ustom benhmarks used by the paper, the thread sheduler produes ode that wasomparable in performane to optimized, hand-written ode. Their results showedthat the heap analysis tehnique improved the performane of the sheduler, whihmade use of the heap analysis to optimize the thread performane.2.3.1.3 The CARE ArhitetureIn [75℄ the basis of the large threads implemented within the EARTH was re-examined. In this ase the threads were muh redued in size. The onept behindCARE was that the instrution fether within the pipeline required more guidane tobe able to feth instrution pointers to single-entry single-exit basi bloks, termedstrands, that ould be exeuted without stalls within the pipeline. Therefore duringexeution, the instrution fether would have an opportunity to identify other suhstrands for subsequent exeution. Indeed eah strand would have a set of assoiated�ring rules that, if satis�ed, would allow that strand to be sheduled for subsequent,stall-free, exeution. These �ring rules would represent the data and ontrol depen-denies upon whih the instrutions within the strand depend. Thus the instrutionfeth unit would ontain a set of strands that have all of their �ring rules satis�ed,ready to be exeuted, and another set of strands, whih are awaiting their �ringrules to be satis�ed. The ompiler, in this arhiteture, would reate the strands,and identify the �ring rules and populate that data struture. Moreover, the initialordering of the strands within the instrution stream would be performed by theompiler. But the arhiteture, at run-time would be allowed to re-order strands, iftheir �ring rules were satis�ed.2.3.2 The Miro-Threaded ArhitetureIn [13℄ a mathematial model was presented that examined the latenies from ageneralized memory unit, modeled as a queue, to a generalized proessing unit,i.e. requests for data. Their results for a loal memory system, as opposed tonetworked, are reprodued in �gure 2.1. They demonstrated that to obtain over80% performane there need only be over 4 threads ready for exeution at any oneinstant in the program. This result was independent of the type of input program.
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Figure 2.1: P (n) for onventional memory with L0 = 1/T0, taken from [13℄.It was also independent of the exat memory sub-system implementation. Indeedthe only assumption that was made was the fat that the proessor arhiteture ansupport miro-threading, the exat implementation of the miro-threading beingabstrated out of the model. From the studies of available ILP within generalprograms, it would seem that the implementation of the tehnique of miro-threadingin a proessor would be extremely e�etive in maintaining proessor throughputduring memory loads. An important property of the miro-threads desribed in [13℄was that the ost of thread reation, destrution and synhronization must be veryheap, due to the number and frequent swithing of miro-threads. This propertyof miro-threads implied that there must be e�ient hardware support for them.To transform a generi program into a miro-threaded program implied that theontrol onstraints within the sequential program must be transformed into threadreation and synhronization onstraints. This task would be ahieved by a miro-threading stage within a suitable ompiler. Further work [68℄ within this �eld hasdemonstrated the feasibility of suh an arhiteture. A simple shemati of their
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Figure 2.2: Shemati of a miro-threaded, RISC arhiteture.implementation is provided in �gure 2.2.In this arhiteture, there are many very short threads, perhaps only 2-5 in-strutions in length. They wait upon only one data item, that may be viewed as asimpli�ed version of the �ring rules of CARE. The PCs of those threads that areready to exeute are stored in a ontinuation queue, for eventual exeution withinthe pipeline. Beause of the arhitetural speed of thread reation, synhronizationand destrution, no speulation would be done: all of those features would be on-verted into miro-threads, thus the exeution pipeline ould be a relatively simpleRISC-like pipeline.2.3.3 IBM BlueGene/C and CylopsThis arhiteture will be disussed in muh more detail in hapter 3.3 of this thesis,but for the purposes of this setion, a brief summary will su�e. This arhiteturewas a PIM-like arhiteture, termed ellular, that implements a number of exeutionunits and memory units on one die. Thus it has the ability to exeute many threads,has fast memory aess, and may be viewed, in some sense, as between the EARTH



2.3. Parallel Arhitetures 15arhiteture and the miro-thread arhiteture, in terms of a threading model.In order to overome the von Neumann-derived memory wall, some method ofoveroming the impliit data-feth delay should be implemented within the arhite-ture. Moreover, suh implementations usually imply multiple threads of exeution,whih further implies data and ontrol dependenies that must be resolved, eitherat ompile or run-time:
• Within EARTH and CARE this is at ompile-time: the synhronization unithas expliit dependenies upon whih it must wait, whih have been generatedat ompile time.
• Within miro-threaded arhitetures, these dependenies may be left to beresolved at run-time, as long as all potentially data-dependent instrutionsare suitably annotated by the ompiler.
• Within Cylops, as will be presented in hapter 3.3, the ontrol and datadependenies are muh more omplex due to the inreased omplexity of thearhiteture and the massive parallelism it makes available.Eventually this implies that some tehnique must be used, either expliitly or im-pliitly by the programmer to generate the required threads for the arhiteture.During the researh program, I hose to onentrate upon the Cylops arhite-ture for the rest of the program, as an example of the problems with programmingfor suh sets of threaded arhitetures.



Chapter 3
The limitations of super-salararhitetures: the memory wall
The ombination of data and instrution ahes e�etively deouples the proessorfrom the speed of the main-memory, by simply introduing more layers of ahesin the memory hierarhy. This deoupling has been highly suessful: the inreasein performane of proessors of the past deades has been greatly in�uened bythe dramati inrease in lok speed. The original 8086 was loked at roughly4MHz with no instrution ahe, the latest Pentium 4s have been loked at over3.4GHz [56℄. These latest Pentiums ould retire instrutions at a rate of roughlyten-times the main memory speed by using two to three ahe levels. But to get suhhigh speeds the pipeline depth has had to be inreased. The Pentium 4 has over 20stages; the AMD Opteron has 10-12 stages, and has been loked at approximately2.6GHz. With these proessors, if a branh mis-predition or proessor exeptionshould our and the state would have to be rolled bak, then instrution fethand the pipeline must be restarted, so it would take inreasingly long in a 20 stagepipeline to begin retiring instrutions after the restart. The auray of the branhpreditor has been paramount, to avoid suh time-onsuming re-starts. But if theproessor speed were to inrease, then more stages may be needed, and branh-mispreditions would beome even more ostly. Moreover, the inreased lateny ofinstrution feth from the mis-predited branh would inrease due to the divergentrelative speeds of the proessor and main memory. This problem has been termed16



3.1. Multiple ores and massively parallel arhitetures 17the memory wall [117℄.3.1 Multiple ores and massively parallel arhite-turesThe problem of the memory wall may be viewed as an e�et of the relative perfor-mane di�erene of main memory to proessor speed. If the instrution throughputould be inreased by reading instrutions from di�erent memory banks, then the in-strution issue rate is potentially limited by the number of available memory banks,and IF stages attahed to them.Multi-ore proessors develop this idea. Let us suppose that the OS supports pre-emptive multi-tasking, and these OS-level threads are guaranteed to have the inter-thread, data-dependenies expliitly spei�ed using kernel-level (thus arhitetural)synhronization primitives. If the resoures used for developing higher lok speedswere instead used in implementing another ore within the proessor pakage, thisextra ore would be viewed as an extra proessor by the OS for sheduling threadsupon. Moreover, if the program were suitably written, it ould take advantage ofany extra proessor resoures. But this requires extensive and potentially di�ultmodi�ations to the soure ode to allow it to take advantage of suh extra resoures.Moreover, the use of OS-level threads is expensive: they have a lot of ontext,beause eah thread must not only retain the proessor state, but the OS state, if itwere to be ontext-swithed o� the proessor. Arhitetural-level threading wouldseem to be a faster and more simple approah. Another limitation with multipleproessor ores is that the proessor ores take die spae away from the ahes andbranh-preditors, that are proven, high-performane solutions.Furthermore, there are osts assoiated with swithing between an OS-levelthread with onsiderable ontext. These osts inlude the memory aess timesto �ush the OS and arhitetural states to main memory, and the instrution- anddata-ahe misses inherent in suh a ontext swith. A tehnique to avoid theselatenies may be to redue the thread ontext to a level suh that any suh ontextould be maintained in the proessor, without having to be �ushed to a lower mem-



3.1. Multiple ores and massively parallel arhitetures 18ory hierarhy. But this implies a dramati redution in ontext: for miro-threadingthe ontext has been limited to only a program ounter - an extreme example. More-over this redution also implies that these threads would be unlikely to be managedat the OS-level.To ounter the memory latenies inherent in the super-salar designs, the ap-proah of plaing the exeution pipelines as lose to the memory as possible maybe taken. In this ontext lose means that the memory and the exeution pipelinesare on the same die. Eah instrution feth stage and the data-bus of a pipelinewould be fed diretly from an independent bank of memory. Thus the instrutionfethes and, more importantly, data reads and writes an our independently ofother pipelines on the same die and other dies. This integration has the advantagethat the lateny of memory aess would be dramatially redued. But to allow suhintegration, the pipelines are usually muh more simple than a super-salar pipeline.Often they have no branh predition, thus no speulation, whih allows the spaethat a pipeline onsumes on the die to be dramatially redued, thus allowing morememory and more exeution units per die. For example, in the pioChip [33℄ designthere are approximately 308 VLIW ores and a similar number of DSP pipelineson one die, with eah VLIW ore having diret, 1-lok yle aess to approxi-mately 64K of RAM. Alternatively in the IBM BlueGene/C design [4℄, desribedin setion 3.3, more sophistiated 64-bit ores are implemented with approximately64K of software-ontrolled data ahe, and another 4Gb of RAM on hip, but witha redued number of pipelines, in this ase approximately 96. Suh hips o�er aonsiderable instrution retirement throughput. To further inrease the bandwidth,the pioChip has 4 ports implemented on it for aessing other pioChips in a gridarrangement, and a memory port for aessing o�-hip memory. To date, arrays ofup to 16 pioChips have been built. The IBM BlueGene/C design has 6 inter-hiponnetion ports, allowing a ubi array of hips. Suh an arrangement of IBMBlueGene/C hips has been termed as a ellular arhiteture: eah ell would bean IBM BlueGene/C hip. The size of the entire IBM BlueGene/C array has beenenvisaged to sale up to potentially 10,000,000 individual ells.



3.2. The programming models: from ompilers to libraries 193.2 The programming models: from ompilers tolibrariesWith suh ompute bandwidth, and parallelism, a number of problems for the pro-grammer have been raised, primarily these are foused on the problems of memoryreads and writes. Super-salar hips have had mehanisms to hide these problemsfrom the programmer, but the ellular hips suh as pioChip and IBM BlueGene/Cdo not. Thus the programmer needs to know how memory reads and writes interatwith:
• the software-ontrolled data-ahe attahed to that pipeline,
• the software-ontrolled data-ahe of other on-hip pipelines,
• any global on-hip memory,
• the software ontrolled data-ahes of other o�-hip pipelines,
• the global on-hip memory that is on any other hips,
• any global memory that is not on any hip
• and �nally, given the massive parallelism available, how to make e�ient useof it.These issues give rise to various programming models, but initially the last pointwill be disussed. Given the evidene of ILP studies, the e�ient use of the massiveparallelism for general purpose programs suh as SPEC2000 is highly unlikely to beable to be parallelized to the extent of using a fration of the resoures of the IBMBlueGene/C design, and similarly with the smaller pioChip. The answer would bethat these arhitetures eshew the aspiration of being pratial for general-purposeuse. Instead they target spei�, embarrassingly-parallel problem domains.For a programmer, the memory aess models are important to understand, or tohave a library or ompiler that hides the details from the appliations programmer.In the remainder of this thesis the author will fous on the IBM BlueGene/C arhi-teture, and a prototype implementation of it alled Cylops, that was implemented



3.3. IBM BlueGene/C, Cylops and DIMES/P: the implementation of aellular arhiteture 20at CAPSL at the University of Delaware in ollaboration with the University ofHertfordshire. In the following setions the memory aess models will be disussed,leading on to a presentation of the author's experiene in developing a programfor suh an arhiteture. The experiene gained from this will allow the author todisuss the major problems that were faed, how, if at all, they were overome, andthe outstanding problem domains that, in the author's experiene, would hinder theaeptane of multi-ore hips and, moreover suh massively parallel designs as IBMBlueGene/C.3.3 IBM BlueGene/C, Cylops and DIMES/P: theimplementation of a ellular arhitetureThe IBM BlueGene/C arhiteture is desribed in detail in [4℄. Brie�y, this arhite-ture onsists of a large number of thread units, an equal number of memory banksand a large rossbar on one die. The exeution thread-units are linked to eah otherand the memory banks via the rossbar, whih also has at least 8 o�-hip interon-nets. These interonnets may be used to onnet more of these hips together ina large 3-d mesh. Of the order of 160 thread units are on a single die, with theorder of 2-4 Gbytes of DRAM, on-hip. This means that per hip there is a largeamount of available parallelism, and onsidering that the 3-d mesh may ontain ofthe order of 100,000 of suh hips. A further fator in this design is that there isno data ahe: instead there is a speialized portion of eah DRAM bank that isdiretly aessible via a related thread unit. Suh a portion of the DRAM is termedthe srath-pad memory, and is e�etively a software ontrolled data ahe. Thissrath-pad memory is aessible from that related thread unit without having to a-ess the rossbar. The other memory, not assoiated with any partiular thread-unitis termed as on-hip memory . This gives rise to di�erent memory aess models.These memory aess models are related to the work on loation-onsisteny, de-sribed in [40, 124℄. In brief, this is the onept that if a set of memory loationsare aessed from two di�erent thread units, the thread units will experiene dif-ferent memory aess models of those memory loations, upon simultaneous aess.



3.4. Programming Models on Cellular Arhitetures 21For example: simultaneous aesses, by di�erent thread units, to loation 1 mightprovide program onsisteny as the memory aess model, whereas for loation 2,with simultaneous aesses, by di�erent thread units, this might provide sequentialonsisteny. With regards to IBM BlueGene/C the srath-pad memory only guar-antees program onsisteny with regards to memory aesses. But for any memoryaessed via the rossbar, it guarantees sequential onsisteny.At CAPSL muh work had been done in ollaboration with IBM with regardsto an implementation of the BlueGene/C arhiteture alled Cylops. Initially,this work was implementing CylopsE [21℄, whih was developed into Cylops64,[30℄. The CylopsE arhiteture was prototyped in hardware, alled DIMES/P,[90,91℄. DIMES/P was used as the platform for exeuting the programming example,desribed in setion 4.With regards to any later disussions, it is very important to remember thateah of these arhitetures, IBM BlueGene/C, Cylops64, CylopsE and DIMES/Pdisplay the same features: multiple thread units and multiple memory onsistenymodels. This is simply beause they are all implementations of these same underly-ing onepts.3.4 Programming Models on Cellular ArhiteturesThe hardware di�erenes between ellular and super-salar arhitetures indiatethat di�erent programming models, are required to make e�etive use of the ellulararhitetures [40, 41, 120℄. In the �rst two of those three papers, their author pro-pose the use of a ombination of exeution models and memory models, as alreadydesribed in setions 3.2 and 3.3.The primary onerns when programming DIMES/P, and thus any Cylops-based arhiteture, were:
• How to manage the potentially large numbers of threads.
• How to easily express any parallelism within the input soure-ode.



3.5. Programming for Cylops 22
• How to make orret, and most e�etive use, of the memory onsisteny mod-els.Some researh has already been done regarding programming models for the thread-ing, suh as using thread perolation as a tehnique to perform dynami load-balaning [18, 53, 61℄. Another piee of researh [22℄ investigated using multi-levelsheduling-shemes: a work-stealing algorithm at the higher-level and a multi-threading tehnique at the lower-level to hide ommuniation latenies. A furtherpiee of researh [37℄ investigated the use of �laments as lightweight threads toe�iently implement thread ontrol.3.5 Programming for CylopsCylops has a set of partiular onerns assoiated with programming for it, someof whih have been investigated, but for alternative arhitetures. For Cylops, areasonable tehnique for implementing memory onsisteny models, thread manage-ment, and �nally making use of any parallelism was investigated.This started with investigating how to easily implement the memory-onsistenymodels. This was relatively simple: earlier, unpublished, work on the GCC-basedompiler had implemented a simple algorithm: all stati variables were stored inon-hip memory, and the funtion all stak, inluding all automati variables wasplaed in the srath-pad memory.As there was no language-level support for thread management, a library hadto be implemented to support the thread management instrutions in the CylopsISA. An early version of TNT [29, 31℄, alled threads was used as the basis forreating a higher-level C++ abstration. The author onsidered that the threadimplementation, that losely followed a POSIX-Threads API, was far too primitiveto be e�etively used for programming Cylops. The simple C++ API that wasdeveloped also inluded thread-management, ritial-setions, mutexes and eventobjets to allow for easier management of the lower-level objets.An abstration of the extration of parallelism from the range of possible ex-ample programs was not implemented for this thesis, as this was onsidered to be



3.5. Programming for Cylops 23potentially too losely oupled to the atual program in question. In the author'sopinion, not performing this abstration of parallelism was �awed, beause it iswhere the ruial, further generalisations take plae that allow a programmer to im-plement an algorithm with far less regard for the underlying arhitetural features.Thus the programmer would obtain muh greater bene�ts from this more powerfulabstration.To test these ideas, and the Cylops arhiteture, a simple program was hosen.It had the properties that it was a small problem and embarrassingly parallel, ideallysuited to CylopsE. Thus an implementation of a program to generate Mandelbrotsets was reated, whih will be desribed in the following hapter, 4.



Chapter 4
Programming the Mandelbrot SetAlgorithm for Cylops
In this hapter, whih is a more detailed desription of the work done in appendixC, the salient details of the Mandelbrot set and an informal algorithm will be givenfor generating the set. How this algorithm may be multi-threaded is presented, withpartiular attention to the implementation used for DIMES/P [90℄. This is a proto-type of the DIMES hardware that implements a redued version of CylopsE [21℄.Alternative algorithms are also presented, but were not implemented. A desriptionof how the threaded algorithm was implemented on the DIMES/P platform will bepresented, followed by an example of the appliation running and the operation ofthe work-stealing algorithm.Further details and the various presentations whih were based upon this workare given in appendies B (this was a presentation give to the University of Hertford-shire, upon my return from CAPSL, introduing DIMES and my work done there),A (this was a draft paper prepared at CAPSL in ollaboration with Dr. Egan, forsubmission to various onferenes) and C (this was a onferene paper that has beenaepted for publiation at ACSAC06).
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4.1. An Introdution to the Mandelbrot Set 254.1 An Introdution to the Mandelbrot SetThe Mandelbrot [10, 72℄ set is intimately related to the Julia set1 [60℄, disoveredin the 1910s. They are both mathematial entities alled fratals relating to thefat that they have a non-integer dimension. Fratals are part of the branh ofmathematial alled Chaos Theory, whih may be de�ned as the term for thosetheories relating to pseudo-random mappings and funtions. The appliations ofChaos Theory is widely varied and inludes suh appliations as ompression [85℄,ryptography [32℄, eonomis [82℄, seismology [114℄, the shape of naturally ourringobjets [10℄ suh as louds, trees [6℄ and landsapes, mediine suh as the modellingof �brillation in the human heart [44℄, whih is apart from the pure mathematialor aestheti nature of the objets.Both the Mandelbrot and Julia sets may be reated by iteration of a very simpleequation:
zn+1 = z2

n + c (4.1)In this equation, zn is a omplex number, where z0 = 0. c is also a omplexnumber, whih is initialised to a value onstant throughout the iterations. Theiteration of equation 4.1 terminates when:1. Either n reahes the so-alled �maximum iteration� value, m, a �xed onstant,greater than zero.2. Or | zn | exeeds the so-alled �bailout� value of 2, usually set to the real value
4 (=| zn |2), for e�ieny reasons. It has been proven that | zn |→ ∞ one
| zn |≥ 2.To generate the Mandelbrot set, algorithm 1 is used.Usually the seletion of c is not random, but a �raster-san� of the omplexplane. It is not neessary to san the whole of the omplex plane, as a property1Eah point in the Mandelbrot set is an �index� into the Julia set for that point.



4.1. An Introdution to the Mandelbrot Set 26Algorithm 1 The lassi algorithm used to generate the Mandelbrot set.1. Set the value of m, the maximum iterations, greater than zero.2. Selet a point from the omplex plane, and set c to that value.3. Initialise n = 0, z0 = 0.4. Exeute equation 4.1.5. Inrement n.6. If | zn |2≥ 4 then that c is not in the set of points whih omprise the Man-delbrot set. Go to 2.7. If n > m then that c is in the Mandelbrot set, i.e. c ⊂ M . Go to 2.8. Go to 4.

Figure 4.1: The lassi Mandelbrot set image generated by �Fratint� [119℄. Pointsoloured blak are in M .of the Mandelbrot set is that it is entirely ontained within the irle of radius 2,entred on the origin of the omplex plane. Another important property of theonversion to �oating-point arithmeti is that the distane between the suessivelyseleted points c is a �nite number representable by a �oating-point number, andnon-zero. In other terms, this distane is the resolution at whih the set is reated.Usually the set of points M is displayed as an image, with those points in theset oloured to ontrast with those that are not in the set. This gives the lassiimage in �gure 4.1. The blak region in �gure 4.1 is a basin of stability of algorithm1. Those points of whih it omprises remain within a �nite distane of the origin,
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Figure 4.2: A false-olour image of the Mandelbrot set generated by �Aleph One�[71℄.i.e. | zn |< ∞. Those outside this region are unstable, and eventually | zn |→ ∞.More ommonly, the points c have a value assigned to them that is derived from
n, the iteration at whih algorithm 1 terminated for that point. This gives a false-olour image, as shown in �gure 4.2 , in whih the points c of similar olour aretermed �level-sets�, basins of stability identi�ed by the algorithm that enlose theMandelbrot set.4.2 Threading and the Mandelbrot SetAn important property of algorithm 1 to generate the Mandelbrot set is that thelassi�ation of eah c in the omplex plane is independent of the lassi�ation ofany other c. Therefore the Mandelbrot set may be implemented as a massivelyparallel appliation, thus potentially suited to ellular arhitetures. Studies ofalternative implementations for di�erent arhitetures, suh as �ne-grain threaded-arhitetures [37℄ and NUMA arhitetures [22℄ have already been done. For ellulararhitetures, another important feature of this lassi�ation proess is that the�oating point support required may be implemented in �xed-point arithmeti usingup to 32 bits for the digits, as DIMES/P [90℄ laks �oating point support.The Mandelbrot set may be implemented using one algorithm per thread unit



4.2. Threading and the Mandelbrot Set 28within the ellular-arhiteture mahine. This approah would work well for massivelusters of ellular omputing nodes. (Remember that for an image of 100×100points, c, 10,000 thread units would be required with this tehnique.) Moreover,the lassi�ation of any randomly seleted c may take between 1 and m iterationsof the algorithm. In general it is not possible to know in advane how long suh a cwill take to lassify. Therefore the omputation time would take approximately mtimes the time per iteration loop in algorithm 1.Due to the properties of DIMES/P [90℄, this tehnique was not possible, as therewere only 8 thread units between two proessors. The hosen implementation, de-rived from the implementation used in [71℄, had the omplex plane divided into aseries of horizontal strips. Separate render threads, as the lassi�ation of the points
c within eah strip is independent of suh lassi�ation on other render threads.Therefore eah render thread implements a slightly modi�ed version of algorithm 1,whih is provided in algorithm 4. Only the oordinates for the bounding retangleare inter-related between the render threads. However, eah strip will, in general,take a di�erent amount of time to render, thus the render threads will ompletetheir assigned portion of work at di�erent times. This lead to the addition of aload-balaning algorithm moving unompleted work to threads that have alreadyompleted their assigned work. Thus a work-stealing algorithm 5 was added to per-form the load-balaning between the render threads. Alternative implementationsof the Mandelbrot set using a work-stealing algorithm [22℄ or �ne-grain threadedalgorithm [37℄ exist.The updates to the start, x, and �nish points of the strips for the render threads
Tc and Tl are performed atomially - the threads are suspended whilst these up-dates are done, either beause Tc is stopped or beause Tl is stopped by using amutex. (A mutex is required as the data to be updated is a two omplex numbers,
x and the �nish point, these must both be updated as a pair, atomially. In thisimplementation a omplex number onsists of two words - one for the real part,one for the imaginary part.) This is a dynami-programming solution to the load-balaning problem of work distribution between the render threads. Moreover, thealgorithm is robust: if the estimated ompletion-time, t, has an error, whih it is



4.2. Threading and the Mandelbrot Set 29Algorithm 2 The render-thread algorithm.1. Set the value of m, the maximum iterations, greater than zero. Set the es-timated ompletion-time, t, to the largest, �nite, representable time-periodpossible.2. Set c = x, where x is the top-left of the strip to be rendered.3. Initialise n = 0, z0 = 0.(a) Exeute equation 4.1.(b) Inrement n.() If | zn |2≥ 4 then that c is not in the set of points whih omprise theMandelbrot set. Go to 4.(d) If n > m then that c is in the Mandelbrot set, i.e. c ⊂ M . Go to 4.(e) Go to 3a.4. Inrement the real part of c. If the real part of c is less than the width of thestrip to be rendered, go to 3.5. Calulate the average of t and the time it took to render that line.6. Set the real part of c to the left-hand of the strip. Inrement the omplex partof c. If the omplex part of c is less than the height of the strip, go to 3.7. Signal work ompleted, set t = 0 (thus this thread is guaranteed not to beseleted by the work-stealing algorithm 5).8. Suspend.Algorithm 3 The work-stealing algorithm.1. Monitor render threads for a work-ompleted signal. That thread that om-pletes we shall denote as Tc.2. Find that render thread with the longest estimated ompletion-time, t, notethat eah render thread updates this time upon ompletion of a line. Call thisthread Tl.3. Stop Tl when it ompletes the urrent line it is rendering.4. Split the remaining work to be done in the strip equally between the two renderthreads Tc and Tl.5. Restart the render threads Tc and Tl.6. Go to 1.



4.3. A Disussion of the Work-Stealing Algorithm 5 30very likely to have, the algorithm merely performs exessive work-stealing opera-tions, but automatially tunes to �nd a loal minimum in the total ompletion timeurve. Experiments with [71℄ have shown that the algorithm an aommodate er-rors of over 100% in the estimated ompletion-times, and rapidly orrets to thenew loal minimum.4.3 A Disussion of the Work-Stealing Algorithm 5The algorithm 5 has some important features:
• The bandwidth of the single thread that implements that algorithm is the lim-iting fator in its ability to sale. Conversely, this algorithm is able to toleratefailures in render threads and is therefore robust. If a render thread stopsresponding, eventually it will be the slowest, un�nished render thread, and itswork will be stolen. It is possible to sale this work-stealing algorithm, if oneobserves that the work-stealing algorithm operates upon a slie of the omplexplane, demonstrating that the work-stealing algorithm is reursive. It is pos-sible to assign strips s0...j of the plane to independent sets of render threads,governed by their own work-stealing thread. These si strips are monitored bya work-stealing thread in turn, those strips returning an aggregate estimatedompletion time. But this has a limitation: One the number of render threadsbeomes of the order of the vertial resolution of the image, the ompletiontime is bounded by the maximum time it takes a render thread to generate asingle line. This line for the Mandelbrot set in �gures 4.1 and 4.2 is the line

(−2, 0) to (2, 0), whih has the most points within the set. These points take
m time to lassify. As the unit of work in the work-stealing algorithm is a line,this is the slowest line, and thus the ultimate limit of this algorithm, unlessthe resolution is inreased. This disussion leads to the following algorithm:

• If robustness is not required, then the image generated may be viewed as anarray of values, where eah of these values is the lassi�ation of c. Considerif there are p0...q threads, eah pn thread initially lassi�es a point in the array
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Figure 4.3: Simpli�ed shemati overview of the DIMES/P implementation of Cy-lopsE.o�set by n, and one ompleted, moves along the array using a stride of q. Thisallows the use of a number of threads that is bounded by the number of pointswithin the image. As this may be for an image of resolution 100×100, thus10,000 points, whih maps well on to the ellular arhitetures as desribedin [21℄. For more thread units, the image resolution would need to be inreased.Unfortunately, this algorithm does not have a natural ability to tolerate failuresin thread units, unlike the work-stealing algorithm, 5.4.4 DIMES/P Implementation of the Mandelbrot-set appliationA simpli�ed shemati diagram of the DIMES/P implementation (from [90℄) of theCylopsE proessor is given in �gure 4.3. The features of this arhiteture are thatthe memory model for the two types of memory, the srath-pad and the globalmemories are di�erent:
• Global memory obeys the Sequential Consisteny Model for all thread units.
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Figure 4.4: Layout of the render and work-stealing threads within the DIMES/Psystem.
• Srath-pad memory obeys the program onsisteny model for all thread units,apart from the thread unit to whih it is attahed.Suh di�erent onsisteny models a�et the way that the data for the Mandelbrot-set appliation is arranged in memory, but this will be disussed in more detail insetion 4.4.1.The stati layout of the render and work-stealing threads within the DIMES/Psystem is shown in �gure 4.4. The software threads that oupy the thread unitsare:
• The CRTS - Debug thread is required for the debugger, if it is exeuted. Asthreads are statially alloated at program start-up, this must be left free forthe debugger and Cellular Run-Time System (CRTS2) support.
• Main is the main loop of the Mandelbrot-set appliation.
• The Render Threads are the threads that exeute algorithm 4.2Not to be onfused with the ANSI/ISO 'C' Runtime.
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• Work-Steal Th is the thread that exeutes algorithm 5. Only one work-stealingthread was implemented, due to the limited number thread units per proessor.In priniple a render thread ould also run on this thread unit, but the CRTSdoes not support virtual threads, moreover the work-stealing thread atuallyhas to spin in a busy wait monitoring for ompletion of a render thread. Hene,for this appliation, it was deemed an unneessary omplexity.Further details regarding the implementation may be found in [70℄.4.4.1 The Memory LayoutAs far as the programmer is onerned, the two 64k global memory units omprisea single, ontiguous 128k blok of memory whih is for ode and global data. Theprogrammer has no aess to di�erentiate between them. Moreover, the CylopsEdesign is suh that aess times to them are the same, no matter whih thread unitfrom whih proessor aesses them. The programmer may ensure that data will beplaed in global memory by the ompiler by ensuring that it is stati. This may bedone by making it global, or using the C/C++ keyword �stati�. The ompiler plaesthe stak frame into the srath-pad memory, whih means that funtion all depth islimited, as there is only 4K stak spae per thread. The Mandelbrot-set algorithmas desribed does not need this muh spae for eah thread unit, thus all threadloal-data is plaed into the orresponding srath-pad memory for performane.The 40,000 bytes of image data (100×100 words, 1 word = 4 bytes) is plaed inglobal memory for implementation reasons. DIMES/P has no onsole, thus the onlyway that ommuniation with DIMES/P an our is via the global memory froma speially written program running on the host omputer.4.4.2 The Host InterfaeThe DIMES/P implementation is physially loated on an FPGA on a PCI board,with speialized hardware and software support for it to ommuniate with thehost omputer for loading programs, and ommuniating results, of whih detailsare given in [29, 90℄. A simple ommand-line program was written to periodially
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Figure 4.5: The image generated shortly after program start-up.
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{Figure 4.6: Image generation has progressed, shortly before a work-stealing event.feth the image data from the DIMES/P memory, and save it to a �le for subse-quent display. This program also allows the user to enter image parameter data forsubsequent ontrol of the image rendering on DIMES/P.4.4.3 Exeution details of the Mandelbrot-set appliationIn this example, there are three threads for simpliity:1. On program start, the render threads start to exeute and perform their as-signed work. The assigned work is initially equal 1

3
portions of the total image,arranged in horizontal strips. The top render thread is denoted by T0, the mid-dle by T1 and the lower by T2, although this relative position will hange later.The operation of the render threads may be seen in �gure 4.5. No work-stealinghas ourred, so there are just three strips, one per render thread, sanningfrom left to right, top to bottom.2. As the image generation proeeds, the T0 and T2 threads progress faster than

T1, as seen in �gure 4.6. Note how T0 has alulated more than T2 - the lighterareas take longer to alulate, and the strip generated by T0 is blak at thetop, and white at the bottom, but the onverse is true for T2.
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Figure 4.7: Just after the �rst work-stealing operation.
T1

T0

T2 {
{
{

Figure 4.8: The seond work-stealing operation.3. The �rst work-stealing operation has just ourred. T0 �nished and T1, theslowest (mainly white) has had the remaining work divided between it and T0,see �gure 4.7. Note how the end-point of T1 was assigned to be the new endpoint of T0 and the new end-point of T1 is the start-point of T0.4. Shortly after this �rst work-stealing operation ours, T2 ompletes its assignedwork. A seond work-stealing operation ours, see �gure 4.8. In this ase workwas again stolen from T1, and assigned to T2.5. After a pause T1 ompletes its assigned work, and another work-stealing op-eration ours, this time with T0, whih may be seen in �gure 4.9.6. Finally the set is ompleted, see �gure 4.10 , with no further work-stealingoperations, as the number of unompleted lines for any render thread is less
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Figure 4.9: The third work-stealing operation.
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Figure 4.10: The ompleted Mandelbrot set.than 2, and a line is the minimum unit of work for this algorithm.



Chapter 5
List of Ahievements
The following goals have been ahieved by the author in the ourse of the MS(Res)program:

• A ollaboration between the University of Hertfordshire and the CAPSL group,under Professor Gao at the University of Delaware, was set up by the author.As part of this ollaboration the author worked at the CAPSL group for ap-proximately 18 months.
• Two departmental seminars regarding this work were presented at CAPSL.
• A poster of the Mandelbrot set implementation on the DIMES/P-2 platformwas shown at Super Computing '03, amongst other posters from the CAPSLgroup regarding DIMES.
• Two departmental seminars on regarding this work were presented at the Uni-versity of Hertfordshire, shortly after the author's return from the CAPSL.
• A onferene paper by the author has been aepted for the 11th Asia-Pai�Computer Systems Arhiteture Conferene, titled: �The Challenges of E�-ient Code-Generation for Massively Parallel Arhitetures�, also to be pre-sented by the author. It is inluded in appendix C.

37



Chapter 6
Summary
The limitations of DIMES/P prevented further study of the properties of this pro-gram: salability and timings were not done beause of the limited number of threadunits (8) and memory apaity (128k). Despite this, the development of the programwas instrutive: an initial ontention of this thesis was that the memory models andmassive parallelism (i.e. large numbers of miro-threads) inherent in ellular arhi-tetures would make programming for them hard. This was experiened to di�erentmeasures, relating to the memory model support, the thread library and thereforethe miro-thread support.With regards to the memory model support, the fat that the ompiler madenatural use of language-level syntax to map data into srath-pad and on-hip mem-ory (using the C/C++ keyword stati) made using these di�erent memory mod-els easy. But this simpliity was at a prie: Cylops only has word-sized, atomimemory-operations, and these operations were apparently unused for this problem.The author ontends that suh multiple, read-modify-write operations that must bemaintained as an atomi unit hampered the performane of the program on Cylops,beause they ould not make use of the hardware-level support for atomi opera-tions. So the more usual barriers suh as mutexes and ritial setions were needed.This implies that the manual loking that had to be applied should really have beenimplemented within the ompiler-provided support via the stati keyword. If thiswere the ase then it may have been possible for the ompiler to perform optimiza-tion on the loking of aess to the data, and improved program performane, with38



Chapter 6. Summary 39apparently no impat upon the developer. As already mentioned, ertain membersof the C++ standards ommittee are proposing the extension of the exeution modelwithin the C++ standard to support the onepts of memory onsisteny within theC++ standard. That this proposal will address the problem outlined above is notyet lear. It is the author's ontention that there should be support for suh loking(in some manner implemented within the ompiler or a run-time library) if pro-grams more sophistiated than the one desribed in this thesis are to be suessfullywritten for these arhitetures.With regards to the thread library: the omplexity of POSIX-Threads has been ahindrane to suessful multi-thread program reation. Indeed this opinion has beenvoied by some members of the C++ standards ommittee at the ACCU 2004, 2005and 2006 onferenes. The reation of a C++ wrapper to hide thread reation anddestrution, and ombine with that thread, any loal storage in an e�ient manner,was only partially suessful: The onept that a thread is an objet has not been notuniversally aepted, beause this means that the data to be manipulated beomesintimately intermingled with the thread-management ode. This would be an evengreater problem when onsidering miro-threads in that they have little, or indeedno ontext, thus mingling threading onstruts with data is potentially in direton�it with the design of miro-threads. Even for this simple example program,this mingling was evident in the work-stealing algorithm, and the way it interatedwith the start and end-points of the worker threads. For more omplex, largerprograms, suh omplexity would be likely to make writing them orretly, andmodifying them later very hard. Subsequent updates to the thread model, whihbeame TNT, desribed in [31℄, are still largely POSIX-Thread based, and whihis a low-level API. The onept that data and exeution should be kept separateis ommonly and naturally embodied in programming via the syntax of �main�. Ithas been ontended by members of the C++ Standards ommittee that this patternshould be dupliated for thread libraries: that there should exist a pool of threads,to whih work is passed. This work would be asynhronously exeuted, on a threadwithin the pool. With the results returned from that pool via a wait-able objet.This onept is similar to the data-�ow designs that preeded VLIW, indeed it has



Chapter 6. Summary 40been argued that this onept is a software emulation of data-�ow.When onsidering the harder problem of reating an e�etive algorithm to imple-ment miro-threading and representing that in ode, learly the example programdesribed above was very limited in its ahievements. The work-stealing algorithmwas intimately related to the program design. The ability to abstrat the work-stealing operation to other problems would be very limited using that design. Al-ternative approahes have been examined, suh as in [88℄, using OpenMP, whihwas still used as a library to express the parallelism, but OpenMP poorly maps tomiro-threads, the primitives it implements, arguably, have been too tied into theproess-level parallelism for whih it was originally designed. Alternatively, if one isto onsider the suggestion above, of a miro-thread pool into whih work is submit-ted, then the details of how the pool works beome separated from the work itself.The fat that the pool balanes work between threads using a master-slave, or work-stealing algorithm should be independent of the work: a natural division of onepts.If this were the ase, then the programmer would be free to add work to the poolas desired. The parallelism of the algorithm would be more naturally expressed interms of operations on data. If one is to onsider this further: the atual exeutableode (in terms of the funtion pointer, in miro-threading terms a program ounter)and the data are passed to the pool together. It ould be then possible for the poolto be designed to make use of data loality and ode loality: Did a previous threadexeute that ode before? If so, prefer to run that work on that thread. If thereare �liques� of threads, related due to resoure asymmetry, then one might reate apool to represent the partiular feature of that resoure. For example a Cylops hipmight be represented as a miro-thread pool, ontained within a greater thread poolthat represents the mahine, due to the fat that o�-hip memory aess makes useof a message-passing protool, rather than the rossbar network embedded withinthe hip, that allows muh more rapid memory aess.It is still an open question regarding what may be the ideal approah to im-plementing parallelism via miro-threading: language-level support suh as UPC,HPF or other language extensions, or within the ompiler using trae-sheduling, orshould it be at a library-level using, for example OpenMP or POSIX-Threads, or



Chapter 6. Summary 41should it be within the arhiteture, suh as the miro-threaded arhitetures [13℄of Luo et al [68℄, CARE [75℄ or Cylops [31℄.
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Appendix A
Implementing Appliations on aCellular Arhiteture - theMandelbrot-set.
This was a draft paper prepared at CAPSL, at the University of Delaware in ol-laboration with Dr. Egan, for submission to various onferenes, before the authorleft Delaware.Authors: Jason MGuiness1,2, Colin Egan2, Guang Gao1.1University of Delaware, Newark, DE.
2University of Hertfordshire, Hat�eld, Hertfordshire, U.K. AL10 9AB.mguines�apsl.udel.edu.egan�herts.a.ukggao�ee.udel.eduA.1 Abstrat.There is an ever widening gap between CPU speed and memory speed, resulting ina 'memory wall' where the time for memory aesses dominate performane. Cellu-lar arhitetures, suh as the Cylops family, have been developed to overome this'memory wall' by implementing proessors-in-memory (PIM) on the same hip. PIM57



A.2. Introdution. 58arhitetures ahieve high performane by inreasing the bandwidth of proessor-memory ommuniation and reduing lateny. In this paper we introdue DIMES(the Delaware Iterative Multiproessor Emulation System) whih is being developedby CAPSL at the University of Delaware, as a hardware validation tool for ellulararhitetures. The version of DIMES used in this paper is a simpli�ed hardwareimplementation of the Cylops-64 ellular arhiteture developed at the IBM T. J.Watson Researh Center. Sine DIMES is a hardware validation tool, its hardwareimplementation is onstrained to a dual proessor where eah proessor has fourthread units. DIMES memory is restrited to 16K of loal srath-pad memoryper proessor and 64K global shared memory. Additionally DIMES is linked to ahost omputer for I/O. We have hosen to use a Mandelbrot-set generator (writtenin C++) with a work-stealing algorithm as our metri to evaluate the program-ming model on DIMES. The Mandelbrot-set generator has been threaded, and thework-stealing algorithm ahieves load balaning between the DIMES' threads. TheMandelbrot example demonstrates the e�etive use of DIMES' threads, the e�etiveuse of DIMES srath-pad memory and the e�etive use DIMES global memory inits CRTS environment. The results of the study are highly promising and show thatDIMES is an ideal hardware tool for validating future Cylops enhanements.A.2 Introdution.High performane proessors, in partiular super-salars, exploit instrution levelparallelism (ILP) by overlapping instrution exeution (pipelining) and using multi-ple instrution issue (MII) per lok yle [101℄. Although, this approah improvesproessor performane, it does not improve performane of the memory subsystem.Researhers improve CPU speed by inreasing the number of instrutions issued ineah lok yle or by inreasing the depth of the pipeline, whih an ause a bot-tlenek in the memory-subsystem. This is termed as the memory-wall and impatson overall system performane [121℄.One approah to overome the memory-wall is to improve data throughput anddata storage between the memory subsystem and the CPU by introduing extra



A.2. Introdution. 59levels in the memory hierarhy [15, 121℄. However, introduing extra levels in thememory hierarhy inreases the penalty assoiated with a miss in the memory-subsystem, whih limits the amount of ILP and impats on proessor performane.Also, there is an inrease in design omplexity and an inrease in power onsumptionof the overall system. Furthermore, inreasing the number of levels in the memoryhierarhy does not improve memory aess times.An alternative approah to overome the memory-wall is to improve both data-proessing and data-aess time by the integration of proessing logi in memory[21, 41, 105, 106, 116℄. The idea of integrating proessors-in-memory (PIMs) is tosimplify the memory hierarhy design, to ahieve higher bandwidth and to reduelateny. There are several PIM arhitetures being developed, for example, theCylops family of PIM arhitetures by IBM [21℄, the Gilgamesh PIM arhitetureby NASA [105, 106℄, the polymorphous TRIPS arhiteture at Austin, Texas [92℄and the Shamrok PIM arhiteture at Notre Dame, Frane [64℄.A problem with integrating a proessor and memory on in the same silion spaeis that the proessor speed is redued in omparison with a high performane pro-essor and the amount of memory is also redued [21℄. To overome the redution inproessing power and the redution in the amount of available memory and thereforelateny, multiple PIM hips are onneted together forming a network of ells, wherea single PIM hip is onsidered to be a ell and the whole arhiteture is desribedas ellular.To overome the data aess problem, eah ell is threaded suh that eah threadunit is independent from all other thread units. In this multi-threaded organisation,every thread unit serves as an independent single-issue in-order proessor, whihshares omputationally expensive hardware resoures suh as �oating-point unitsand ahes.In this paper we introdue DIMES (the Delaware Iterative Multiproessor Em-ulation System) whih is being developed by CAPSL at the University of Delaware[29,90℄. DIMES is a hardware validation tool for ellular arhitetures, in partiularthe Cylops family [21℄. DIMES plaes the Cylops arhitetural design into a sin-gle FPGA. The idea behind DIMES is to emulate Cylops yle by yle, to be far



A.3. Programming Models on Cellular Arhitetures. 60faster than software based simulations, and to diret future Cylops enhanements.A.3 Programming Models on Cellular Arhitetures.Cellular arhitetures require di�erent programming models to the general-purposeode exeuted by super-salar proessors [40, 41, 120℄. Gao proposes the use ofa ombination of exeution models and memory models, beause of the ellulararhitetures multiple exeution units within eah ell.Gao's programming model evaluates multiple threads in eah ell due to the largenumber of exeution units within Cylops. For example, one programming modeluses thread perolation as a tehnique to perform dynami load-balaning [18,53,62℄.Additionally, in ellular arhitetures, multiple threads perform memory aessesindependently. As a result of this, the memory subsystem requires some form ofaess model that allows these memory referenes to be e�etively served. Forexample, the use of the loation-onsisteny model was suggested as a memoryaess model by [40℄.A.4 Conlusion/Disussion.The threaded algorithm shows that the Mandelbrot set is an ideal mehanism forevaluating ellular arhitetures and programming models on the DIMES hardware.Currently DIMES is targeted towards CylopsE, however DIMES ould be expandedto the full IBM Cylops family and other ellular arhitetures, suh as those atGilgamesh at NASA and Shamrok at Notre Dame.Future enhanements to DIMES may inorporate more hardware to allow benh-marks, suh as Tabletoy and others. This will also allow us to evaluate furtherenhanements to the ellular programming model.



Appendix B
Implementing Appliations on aCellular Arhiteture - theMandelbrot-set.
This was a presentation give to the University of Hertfordshire, upon the author'sreturn from CAPSL, introduing DIMES and the work that was done.Authors: Jason MGuiness1,2, Colin Egan2, Guang Gao1.
1University of Delaware, Newark, DE.
2University of Hertfordshire, Hat�eld, Hertfordshire, U.K. AL10 9AB.mguines�apsl.udel.edu.egan�herts.a.ukggao�ee.udel.edu
B.1 Overview:Reap from last week:

• The memory wall and ellular arhitetures: a solution?
• Programming models on Cellular Arhitetures, followed by a brief overviewof Cylops and DIMES/P-2. 61



B.2. A reap on the memory wall. Part I:The proessor viewpoint. 62New this week:
• An introdution to the Mandelbrot set.
• Threading and Work-Stealing applied to the Mandelbrot set.
• The programming implementation with regard to DIMES/P-2 and the exeu-tion details of the Mandelbrot-set appliation. PLUS A LIVE DEMONSTRA-TION OF THE PROGRAM!!!
• Latest work: Global Updates Per Seond (GUPS) benhmarks.
• Conlusions & Future Work.B.2 A reap on the memory wall. Part I:The proessor viewpoint.

Wall

Processor Memory

• Higher performane may be ahieved through ILP by MII and/or pipelining.Various tehniques are used to implement these goals, e.g. Register Renaming,Out-of-order instrution issue/exeution, Branh Predition, dynami instru-tion sheduling, Value Predition, Instrution Reuse, et.
• But this auses a bottle-nek - upon a miss the reovery ost beomes in-reasingly high, beause the memory annot keep up with the required fethrate.
• This leads to attempts to improve the performane of the memory.



B.3. A reap on the memory wall. Part II:The memory viewpoint. 63B.3 A reap on the memory wall. Part II:The memory viewpoint.
o Wall

L2L1

Processor

Main Memory

• Inreasing the levels of memory in the hierarhy, by plaing levels of ahesbetween the main memory and the CPU (or on the CPU).
• This redues the memory wall, but on a ahe miss the penalty is more severe.(Also this does not redue the memory sub-system lateny for an initial aess,only upon subsequent aess.)
• In both ases:� The hardware omplexity and ost is inreased.� The rewards obtained are balaned against known disadvantages.B.4 The memory wall and ellular arhitetures: asolution?
• Why not plae the proessor in the memory, e.g. PIM arhitetures? Doesthis remove the memory wall?
• In priniple due to the proximity of the exeution units to the memory ells,the lateny and bandwidth should be redued.
• But due to the mixture of logi units on the silione die, the gate density isredued.



B.5. Programming models on Cellular Arhitetures. 64
• To maintain gate density, more simple exeution ores are used, suh as RISCpipelines whih may also omit branh predition, for example.
• Thus the memory density and exeution unit throughput are redued. Howmay this be ountered?� With the addition of a network interfae to interonnet between the PIMhips. Thus eah hip beomes a ell.� Thus redued individual performane may be ountered by interonnet-ing many of these ells together to build up a ellular arhiteture, e.g.Cylops developed at IBM, Gilgamesh at NASA and Shamrok at NotreDam.B.5 Programming models on Cellular Arhitetures.Cellular arhitetures have partiular features that mean that their programmingmodel is di�erent to super-salar proessors:
• They have large (millions) of exeution (or in ellular arhitetures threadunits) whih are simple.
• Memory aess is irregular: Some memory is very lose, thus fast, the rest iso�-hip, so muh slower.Researh into appropriate programming models is on-going, the urrent model ispthread, but future diretions inlude:
• For example thread perolation as a tehnique to perform dynami load-balaning.
• In ellular arhitetures, multiple threads perform memory aesses indepen-dently. As a result of this, the memory subsystem ould have some form ofaess model that allows these memory referenes to be e�etively served. Forexample, the use of the loation-onsisteny model ould be used as a memoryaess model.



B.6. A brief overview of Cylops and DIMES/P-2. 65B.6 A brief overview of Cylops and DIMES/P-2.At the University of Delaware the �rst hardware simulation of a ellular arhiteturehas been built under Hiro Sakane's group:
• This is alled DIMES/P-2.
• It is a simpli�ed implementation of the 32-bit CylopsE design, one of thefamily of Cylops arhitetures developed at the IBM T.J. Watson ResearhCenter.
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B.7 An introdution to the Mandelbrot set.The Mandelbrot set is a fratal named after Professor B.B. Mandelbrot, who dis-overed the set in the 1960s. It is intimately related to the Julia set, also a fratal,disovered in the 1910s.Both the Mandelbrot and Julia sets may be reated by iteration of a very simpleequation:



B.8. The lassi algorithm used to generate the Mandelbrot set: 66
zn+1 = z2

n + c (B.7.1)In this equation, zn is a omplex number, where z0 = 0. c is also a omplexnumber, whih is initialized to a value onstant throughout the iterations. Theiteration of equation terminates when:1. Either n reahes the so-alled �maximum iteration� value, m, a �xed onstant,greater than zero.2. Or | zn | exeeds the so-alled �bailout� value, a �xed onstant, usually set tothe real value 4, for e�ieny reasons.
B.8 The lassi algorithm used to generate the Man-delbrot set:1. Set the value of m, the maximum iterations, greater than zero.2. Selet a point from the omplex plane, and set c to that value.3. Initialize n = 0, z0 = 0.4. Exeute equation B.7.1.5. Inrement n.6. If | zn |≥ 2 then that c is not in the set of points whih omprise the Mandelbrotset. Go to 2.7. If n > m then that c is in the Mandelbrot set, i.e. c ⊂ M . Go to 2.8. Go to 4.



B.9. Threading applied to the Mandelbrot set. 67B.9 Threading applied to the Mandelbrot set.An overview of threading the Mandelbrot-set generation algorithm:
• An important property of algorithm to generate the Mandelbrot set is that thelassi�ation of eah c in the omplex plane is independent of the lassi�ationof any other c. Thus the Mandelbrot set may be implemented as a massivelyparallel appliation, thus potentially suited to ellular arhitetures. Indeedthe Mandelbrot has has been used in as a benhmark for di�erent arhitetures,suh as �ne-grain threaded-arhitetures and NUMA arhitetures.The omplex plane is divided into a series of horizontal strips. These strips may bealulated or rendered independently of eah other, using separate render threads,as the lassi�ation of the points c within eah strip is independent of suh lassi�-ation on other render threads. Therefore eah render thread implements a slightlymodi�ed version of the lassi algorithm, whih is given in the threaded algorithm,given next.B.10 The Render-Thread Algorithm.1. The algorithm:(a) Set the value of m, the maximum iterations, greater than zero. Set the esti-mated ompletion-time, t, to ∞.(b) Set c = x, where x is the top-left of the strip to be rendered.() Initialise n = 0, z0 = 0.i. Exeute equation B.7.1.ii. Inrement n.iii. If | zn |≥ 2 then that c is not in the set of points whih omprise theMandelbrot set. Go to 4.iv. If n > m then that c is in the Mandelbrot set, i.e. c ⊂ M . Go to 4.v. Go to 3a.



B.11. The Work-Stealing Algorithm. 68(d) Inrement the real part of c. If the real part of c is less than the width of thestrip to be rendered, go to 3.(e) Calulate the average of t and the time it took to render that line.(f) Set the real part of c to the left-hand of the strip. Inrement the omplex partof c. If the omplex part of c is less than the height of the strip, go to 3.(g) Signal work ompleted, set t = 0 (thus this thread is guaranteed not to beseleted by the work-stealing algorithm).(h) Suspend.A load-balaning algorithm was added to move unompleted work to threads thathave ompleted their assigned work. This is beause eah strip will take a di�erentamount of time to render.B.11 The Work-Stealing Algorithm.1. Monitor render threads for a work-ompleted signal. That thread that om-pletes we shall denote as Tc.2. Find that render thread with the longest estimated ompletion-time, t, notethat eah render thread updates this time upon ompletion of a line. Call thisthread Tl.3. Stop Tl when it ompletes the urrent line it is rendering.4. Split the remaining work to be done in the strip equally between the two renderthreads Tc and Tl.5. Restart the render threads Tc and Tl.6. Go to 1.This is a dynami-programming solution to the load-balaning problem of workdistribution between the render threads. Due to the seletion of the slowest renderthread, this algorithm may been see to be optimal. The author believes that this isan original appliation of work-stealing to Mandelbrot-set generation.



B.12. A Disussion of the Work-Stealing Algorithm. 69B.12 A Disussion of the Work-Stealing Algorithm.
• The bandwidth of the single thread that implements that algorithm is thelimiting fator in it's ability to sale.
• It is possible to sale this work-stealing algorithm, if one observes that thework-stealing algorithm operates upon a slie of the omplex plane. This luedemonstrates that the work-stealing algorithm is reursive.
• Conversely this algorithm is able to tolerate failures in render threads. If arender thread stops responding, eventually it will be the slowest, un�nishedrender thread, and it's work will be stolen.If robustness is not required, thenthe image generated may be viewed as an array values. Eah of these valuesis the lassi�ation of c. Thus if one has p0...q threads, eah pn thread initiallylassi�es a point in the array o�set by n, and one ompleted, moves along thearray using a stride of q.
• This allows the use of a number of threads that is bounded by the number ofpoints within the image. As this may be for an image of resolution 100×100,thus 10,000 points, this maps well on to ellular arhitetures.



B.13. The stati layout of the render and work-stealing threads withinthe DIMES/P-2 system is shown below: 70B.13 The stati layout of the render and work-stealingthreads within the DIMES/P-2 system is shownbelow:
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B.14 Exeution Details of the Mandelbrot-set ap-pliation.B.15 Superomputing Benhmarks: Global UpdatesPer Seond (GUPS).The GUPS benhmark is a very simple program that is e�etively a ross-setionbandwidth benhmark. It makes a large number of random updates to a large array:



B.16. GUPS and DIMES. 71Figure B.1: The image generatedshortly after program start-up.
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Figure B.2: Image generation has pro-gressed, shortly before a work-stealingevent.
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Figure B.4: The seond work-stealingoperation.
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• for (i = 0; i < 30000000; ++i) table[random_integer℄ += random_value;
• This is ompliated beause for Cylops we wish to perform this operation onthe table aross multiple proessors.
• The limiting fator for the program is the memory aess time due to therandom reads & writes this onfounds arhitetural features that may attemptto improve memory performane.
• But we are allowed to have a 0.1% errors in the table at the end of the benh-mark.This error rate is vital as it allows us to relax the loking used to aess the globaltable. This relaxation means that updates to the table may not be done in sequentialprogram order, thus introduing errors.B.16 GUPS and DIMES.Currently there have been three simple, initial implementations of this program, allrun on DIMES/P-2:



B.17. Limitations of urrent GUPS & DIMES. 721. A sequential implementation, with no threading.2. Multi-threaded implementations:(a) Full loking on the table aess, thus giving a zero error rate.(b) No loking at all on the table aess, thus sari�ing error rate for speed.The error rate is as yet unmeasured, but this appears to run 10 timesfaster than the fully loked version above.The justi�ation for implementing GUPS with no loking is a statistial one. Asthe amount of memory on Cylops is 1Gb/hip, with only 320 thread units/hip,then the likelihood of any two thread units aessing any one memory loation atthe same time is very low, muh lower than 0.001 (our permissible error rate).B.17 Limitations of urrent GUPS & DIMES.
• The pthread programming model is too simplisti:� It does not re�et the memory hierarhy. More sophistiated memorymodels (suh as loation onsisteny) will be needed to aid the program-mer in e�etively lay out the global table to make the memory aessesfaster.� It does not diretly support data or thread perolation.
• The DIMES/P-2 hardware has too few resoures (only 8 thread units and128Kb RAM) to be a realisti platform upon whih to run these more sophis-tiated benhmarks.B.18 Conlusion & Future Work.
• The Mandelbrot set is an ideal program to demonstrate and test massivelyparallel arhitetures, suh as ellular arhitetures.



B.18. Conlusion & Future Work. 73
• The urrent run-time system and pthread programming model, although sim-ple, is su�iently powerful only for a ertain sub-set of sophistiated applia-tions.
• Future development of the Cylops arhiteture towards Cylops-64, with thedevelopment of DIMES/P-8 with more hardware resoures (at least 32 threadunits and 512Kb RAM) will allow the development and testing of more sophis-tiated programs, suh as superomputing benhmarks. These benhmarksand the greater hardware resoures will allow further experimentation with thesophistiated programming models that have been suggested, suh as threadperolation and loation onsisteny.



Appendix C
The Challenges of E�ientCode-Generation for MassivelyParallel Arhitetures.
This is opy of a onferene paper submitted and aepted for the 11th Asia-Pai�Computer Systems Arhiteture Conferene.Jason M MGuiness1, Colin Egan1, Brue Christianson1 and Guang Gao2.Department of Compiler Tehnology and Computer Arhiteture, University ofHertfordshire, Hat�eld, Hertfordshire, U.K. AL10 9AB. .egan�herts.a.uk1CAPSL, University of Delaware, Delaware, U.S.A. g.gao�apsl.udel.edu2C.1 AbstratOveroming the memory wall [121℄ may be ahieved by inreasing the bandwidthand reduing the lateny of the proessor to memory onnetion, for example byimplementing Cellular arhitetures, suh as the IBM Cylops. Suh massivelyparallel arhitetures have sophistiated memory models. In this paper we usedDIMES (the Delaware Iterative Multiproessor Emulation System), developed byCAPSL at the University of Delaware, as a hardware evaluation tool for ellulararhitetures. The authors ontend that there is an open question regarding thepotential, ideal approah to parallelism from the programmer's perspetive. For74



C.2. Introdution 75example, at language-level suh as UPC or HPF, or using trae-sheduling, or at alibrary-level, for example OpenMP or POSIX-threads. To investigate this, we havehosen to use a threaded Mandelbrot-set generator with a work-stealing algorithm toevaluate the DIMES thread programming model for writing a simple multi-threadedprogram.C.2 IntrodutionIntegrating the proessing logi and memory [21℄, termed PIM, is an approahto overome the memory wall [121℄. PIM arhitetures may improve both data-proessing and data-aess times, but the ombined proessor speed and the amountof memory may be redued [21℄. This may be overome by onneting multiple, inde-pendent PIM ells, giving a ellular arhiteture. In this organisation, every threadunit is an independent single-issue, in-order proessor, thus able to potentially a-ess memory independently. Moreover, the di�erent memory hierarhies may havedi�erent aess timings and onsisteny models suh as loation onsisteny [40℄.This gives rise to a number of ode-generation problems, entred around the fatthat to provide omputational power, these systems are not only massively parallel,but have omplex memory hierarhies.Researh also proeeded towards thread-generating ompilers, for example, HPFand UPC [45℄, IBM XL Fortran and Visual Age C/C++, largely based upon OpenMP,all of whih have their ompromises. Some of these also have support for the variousmemory models.Unfortunately general-purpose languages have been slow to adopt a sophistiatedabstration of the mahine model, library-based approahes have developed, forexample, the various implementations of OpenMP. But, the authors ontend thatlibrary-based solutions to threading are too dependent upon the programmer to usee�etively. For example, the expliit use of loks in programs is prone to error, withdeadloks and rae-onditions that are hard to trak down easily, introdued, evenon systems with only a few proessors. The development of suitable tools to debugmulti-threaded appliations has also been slow. Debuggers are in development, for



C.3. Related Work 76example for Cylops [42℄, but there have been too few, with limited funtionality.As identifying parallelism both orretly and e�iently is very hard for the pro-grammer to do, the authors ontend that they should not do it. The ompiler,equipped via these libraries with a detailed mahine-model, ould be able to usethe programmer-identi�ed parallelize-able variables and funtions, to generate moree�ient ode. The authors identi�ed little work investigating the software aspetof the ode-generation problem for massively-parallel arhitetures. Unfortunately,if this ase would ontinue, this shortoming ould adversely a�et the popularityof suh systems and maintain the pereption that massively parallel arhiteturesare too speialised and thus too expensive to be of more general use. Given thepopularity of introduing multi-ore proessors, this position is set to beome evenmore untenable.C.3 Related WorkC.3.1 The Programming Models: from Compiler to LibrariesWith suh ompute bandwidth, and parallelism, a number of problems for the pro-grammer have been raised, primarily these are foused on the problems of memoryreads and writes. Super-salar hips have had mehanisms to hide these problemsfrom the programmer, but the ellular arhitetures of suh hips as pioChip [33℄and IBM BlueGene/C [4℄ do not. Thus the programmer needs to know how memoryreads and writes interat with:
• the software-ontrolled data-ahe attahed to that pipeline,
• the software-ontrolled data-ahe of other on-hip pipelines,
• any global on-hip memory,
• the software ontrolled data-ahes of other o�-hip pipelines,
• the global on-hip memory that is on any other hips,
• any global memory that is not on any hip



C.3. Related Work 77
• and �nally, given the massive parallelism available, how to make e�ient useof it.For a programmer, the memory aess models are important to understand, or tohave a library or ompiler that hides the details from the appliations programmer.In the remainder of the paper the authors will fous on the IBM BlueGene/C ar-hiteture, and a prototype implementation of it alled Cylops [21, 30℄, that wasimplemented at CAPSL at the University of Delaware in ollaboration with theUniversity of Hertfordshire. The Cylops arhiteture was prototyped in hardware,alled DIMES/P, [91℄ whih was used as the platform for exeuting the programmingexample, desribed later in this paper. In the following setions the memory aessmodels will be disussed, leading on to a presentation of the authors' experiene indeveloping a program for suh an arhiteture. The experiene gained from this willallow the authors to disuss the major problems that were faed, how, if at all, theywere overome, and the outstanding problem domains that, in the authors' experi-ene, would hinder the aeptane of multi-ore hips and, moreover suh massivelyparallel designs as IBM BlueGene/C.C.3.2 Programming Models on Cellular ArhiteturesThe hardware di�erenes between ellular and super-salar arhitetures indiatethat di�erent programming models, to those used for super-salar arhitetures, arerequired to make e�etive use of the ellular arhitetures [40, 42℄. In the �rst twoof those three papers, their authors propose the use of a ombination of exeutionmodels and memory models, as already noted in this paper.The primary onerns when programming DIMES/P, and thus any Cylops-based arhiteture, were:
• How to manage the potentially large numbers of threads.
• How to easily express any parallelism within the input soure-ode.
• How to make orret, and most e�etive use, of the memory onsisteny mod-els.



C.4. Programming for Cylops - threads 78Some researh has already been done regarding programming models for the thread-ing, suh as using thread perolation as a tehnique to perform dynami load-balaning [62℄. Another piee of researh [22℄ investigated using multi-level sheduling-shemes: a work-stealing algorithm at the higher-level and a multi-threading teh-nique at the lower-level to hide ommuniation latenies. Alternatively there isresearh [88℄ into how to implement OpenMP e�iently on ellular arhiteturessuh as IBM BlueGene/C.C.4 Programming for Cylops - threadsThis setion will very brie�y desribe the thread programming model, whih is anearly version of TNT [31,42℄, then how it was used to implement the programmingexample, followed by a disussion of the implementation.The implementation of the memory onsisteny models was relatively simple:earlier, unpublished, work on the GCC-based ompiler had implemented a simplealgorithm: all stati variables were stored in on-hip memory, and the funtion allstak, inluding all automati variables was plaed in the srath-pad memory.As there was no language-level support for thread management, a library hadto be implemented to support the thread management instrutions in the CylopsISA, whih was used as the basis for reating a higher-level C++ abstration. Thiswas beause the thread implementation, that losely followed a POSIX-ThreadsAPI, was onsidered far too primitive by the authors to be e�etively used forprogramming Cylops. This C++ API also inluded ritial-setion, mutex andevent objets to allow for easier management of the lower-level objets.To test these ideas, and the Cylops arhiteture, a small, simple and embarrass-ingly parallel program to generate Mandelbrot sets [72℄ was reated. In the followingsetions a brief overview of how this how this program may be implementation forDIMES/P.



C.4. Programming for Cylops - threads 79Algorithm 4 The render-thread algorithm.1. Set the value of m, the maximum iterations, greater than zero. Set the estimated ompletion-time, t, to ∞.2. Set c = x, where x is the top-left of the strip to be rendered.3. Initialise n = 0, z0 = 0.(a) Exeute zn+1 = z2
n + c.(b) Inrement n.() If | zn |≥ 2 then that c is not in the set of points whih omprise the Mandelbrot set. Go to 4.(d) If n > m then that c is in the Mandelbrot set, i.e. c ⊂ M . Go to 4.(e) Go to 3a.4. Inrement the real part of c. If the real part of c is less than the width of the strip to be rendered, go to 3.5. Calulate the average of t and the time it took to render that line.6. Set the real part of c to the left-hand of the strip. Inrement the omplex part of c. If the omplex part of

c is less than the height of the strip, go to 3.7. Signal work ompleted, set t = 0 (thus this thread is guaranteed not to be seleted by the work-stealingalgorithm 5).8. Suspend.Algorithm 5 The work-stealing algorithm.1. Monitor render threads for a work-ompleted signal. That thread that ompletes we shall denote as Tc.2. Find that render thread with the longest estimated ompletion-time, t, note that eah render thread updatesthis time upon ompletion of a line. Call this thread Tl.3. Stop Tl when it ompletes the urrent line it is rendering.4. Split the remaining work to be done in the strip equally between the two render threads Tc and Tl.5. Restart the render threads Tc and Tl.6. Go to 1.C.4.1 Threading and the Mandelbrot SetDue to the properties of DIMES/P, alternative tehniques were not possible, as thereare only 8 thread units between two proessors. In this implementation, the omplexplane was divided into a series of horizontal strips. Those strips may be alulatedindependently of eah other, using separate threads, implemented as algorithm 4.However, eah strip will, in general, take a di�erent amount of time to omplete,thus the threads would have ompleted their assigned portion of work at di�erenttimes. Thus a work-stealing algorithm 5 performed the load-balaning between thethreads.



C.5. Disussion 80The bandwidth of the work-stealing thread, algorithm 5, limited saling to moreworker threads, algorithm 4. But algorithm 5 would able to tolerate failures: if aworker thread stopped responding, its work would have been eventually stolen.If robustness is not required, then the image generated may be viewed as anarray values. Eah of these values would be the lassi�ation of c. Thus if one has
p0...q threads, eah pn thread initially lassi�es a point in the array o�set by n, andone ompleted, would move along the array using a stride of q. This would allowthe use of a number of threads that is bounded by the number of points within theimage.C.4.2 DIMES/P Implementation of the Mandelbrot-set ap-pliationIn threads, eah software thread was statially alloated to one of the 8 hardwarethread-units in DIMES/P at program start-up. The software threads were:1. The a thread was required for threads support and the debugger [42℄, if itwere to be run.2. The main loop of the Mandelbrot-set appliation.3. The thread that exeuted the work-stealing algorithm 5. In priniple, a workerthread ould also run on this thread unit, but threads did not support virtualthreads.4. The remaining 5 threads were worker threads that exeuted algorithm 4.Further details regarding the implementation may be found in [70℄.C.5 DisussionThe limitations of DIMES/P prevented further study of the properties of this pro-gram: salability and timings were not done beause of the limited number of threadunits (8) and memory apaity.



C.5. Disussion 81The memory model support, using the C/C++ keyword stati by the ompiler,made natural use of language-level syntax to map data into srath-pad and on-hip memory made using these di�erent memory models. The atomi, word-sized,memory-operations on Cylops were not used for this problem, beause of the mul-tiple, read-modify-write operations that had to be maintained as an atomi unit. Ifthe manual loking had been implemented within the ompiler, then it may havebeen possible for the ompiler to perform optimization on the loking of aess tothe data.With regards to the thread library: in the opinion of the author's, the om-plexity of POSIX-Threads has been a hindrane to suessful multi-thread programreation. Abstrating the algorithms that expressed the parallelism within the Man-delbrot program, for example the work-stealing algorithm, was not implemented forthis paper, as this was onsidered to be potentially too losely oupled to the atualprogram in question. Ultimately this deision, in the authors' opinion, was �awed,and by extrating and abstrating the work-stealing algorithm from both the pro-gram and Cylops, would have allowed a programmer to reuse that algorithm withother programs, thus separating the design of the parallelism from the details of theprogram that would wish to use it.It is still an open question regarding what may be the ideal approah to paral-lelism: language-level support suh as UPC, HPF or other language extensions, orwithin the ompiler using trae-sheduling, or should it be at a library-level using,for example OpenMP or POSIX-Threads, or should it be within the arhiteture,suh as the data-�ow design. If programs more sophistiated than the one desribedin this paper are to be suessfully written for these ellular arhitetures, thenbased upon this brief examination, it is the authors' ontention that it would behighly advantageous to have:
• Compiler support for making use of any available the memory model of thearhiteture.
• Compiler support for loking, whih would aid the programmer with writingode that avoids rae-onditions.
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• Reusable abstrations of tehniques of implementing parallelism, suh as work-stealing, or master-slave models. These abstrations ould make use of bothdata and ode loality to ensure that a thread unit re-exeutes the same ode,if desirable.The researh presented in this paper is supported by the Engineering and PhysialResearh Counil (EPSRC) grant number: GR/S58492/01.


