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EXPLICIT SINGULAR VISCOSITY SOLUTIONS OF THE

ARONSSON EQUATION

NIKOLAOS I. KATZOURAKIS

Abstract. We establish that when n ≥ 2 and H ∈ C1(Rn) is a Hamilton-

ian such that some level set contains a line segment, the Aronsson equation

D2u : Hp(Du)⊗Hp(Du) = 0 admits explicit entire viscosity solutions. They
are superpositions of a linear part plus a Lipschitz continuous singular part

which in general is non-C1 and nowhere twice differentiable. In particular, we

supplement the C1 regularity result of Wang and Yu [W-Y] by deducing that
strict level convexity is necessary for C1 regularity of solutions.

Résumé. Nous démontrons que, pour n ≥ 2 et un Hamiltonien H ∈ C1(Rn)
tel qu’au moins une de ses lignes de niveau contienne un segment de droite,

l’équation de Aronsson D2u : Hp(Du) ⊗ Hp(Du) = 0 admet des solutions

de viscosité explicites définies sur Rn. Elles sont superpositions d’une partie
linéaire et d’une partie continue, lipschitzienne, singulière qui, en général, n’est

pas C1 et est nulle part deux fois dérivable. Plus précisément, nous complétons

le résultat de régularité établit par Wang et Yu [W-Y] en montrant que la
stricte convexité des lignes de niveau est nécessaire pour que les solutions

soient C1.

1. Introduction

Let H ∈ C1(Rn) be a Hamiltonian function and n ≥ 2. We discuss aspects of
the C1 regularity problem of viscosity solutions to the Aronsson equation, which is
defined on smooth u ∈ C2(Rn) by

A[u] := D2u : Hp(Du)⊗Hp(Du) = 0.(1)

Here, A[u] is understood as
∑n
i,j=1D

2
ijuHpi(Du)Hpj (Du) and Hpi = DpiH. For-

mula (1) defines a quasilinear highly degenerate elliptic PDE. It arises in L∞ varia-
tional problems of the supremal functional E∞(u,Ω) := ‖H(Du)‖L∞(Ω), as well as

in other contexts (Barron-Evans-Jensen [BEJ]). When H(p) = 1
2 |p|

2, (1) reduces
to the ∞-Laplacian:

(2) ∆∞u := D2u : Du⊗Du = 0.

Under reasonable convexity, coercivity and regularity assumptions on H, there ex-
ists a unique continuous solution of the Dirichlet problem with Lipschitz boundary
data, interpreted in the viscosity sense of Crandall-Ishii-Lions [CIL]. Moreover,
any continuous viscosity solution to (1) is actually Lipschitz continuous. The C1

regularity problem for (1) however remains open. Wang and Yu [W-Y] established
that when n = 2, H is in C2(R2) with H ≥ H(0) = 0 and it is uniformly convex
on the plane (i.e. there exists a > 0 such that Hpp ≥ aI), then continuous viscosity
solutions of (1) over Ω ⊆ R2 are in C1(Ω). When n > 2, viscosity solutions are

Key words and phrases. Aronsson Equation, Viscosity Solutions, C1 Regularity Problem, Ex-

plicit solutions, Calculus of Variations in L∞.
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linearly approximatable at all scales in the sense of De Pauw-Koeller [DePK], hav-
ing approximate gradients. In the special case of ∆∞ and when n = 2, solutions
are C1+α (Savin [S], Evans-Savin [E-S]). Recently, Evans and Smart established
everywhere differentiability of ∞-Harmonic functions [E-Sm].

Herein we prove that when a level set {H = c} of H contains a straight line
segment, there exists an entire viscosity solution of (1) given as superposition of a
linear term plus a rather arbitrary Lipschitz continuous term. The latter may not
be C1; moreover, it may well be nowhere twice differentiable with Hessian realized
only as singular distribution and not as Radon measure, as we show by examples.

We note that our only assumption is H being constant along a line segment but
arbitrary otherwise. This suffices for these solutions to appear. Actually, they arise
as almost everywhere solutions of the Hamilton-Jacobi equation

(3) H(Du) = c.

In order to keep the proof self-contained and direct, we work with the second order
PDE (1) ignoring the relation between viscosity solutions of (1) and differentiable
solutions of (3). We just notice that in the classical C2 context, the identity

(4) D2u : Hp(Du)⊗Hp(Du) = Hp(Du) ·D
(
H(Du)

)
suffices to imply A[u] = 0, whenever H(Du) = c. Let us now state our result.

Theorem 1. We assume that H ∈ C1(Rn), n ≥ 2 and there exists a straight

line segment [a, b] ⊆ Rn along which H is constant. Then, for any f ∈ W 1,∞
loc (R)

satisfying ‖f ′‖L∞(R) < 1, the formula

(5) u(x) :=
b+ a

2
· x + f

(
b− a

2
· x
)
, x ∈ Rn,

defines an entire viscosity solution u ∈W 1,∞
loc (Rn) of the Aronsson equation.

We deduce that the existence of the non-C1 solutions (5) implies the following

Corollary 2. Strict level convexity of the Hamiltonian H is necessary to obtain
C1 regularity of viscosity solutions to the Aronsson PDE in all dimensions n ≥ 2.

In particular, the uniform convexity assumption of Wang and Yu [W-Y] can not
be relaxed to mere convexity, unless if strict level-convexity is additionally assumed.

We observe that C1 regularity of solutions is not an issue of regularity of H; the
singular solutions (5) persist even when H ∈ C∞(Rn). The sensitive dependence of
regularity on the convexity of H is a result of the geometric degeneracy structure
of the PDE A[u] = 0 which in view of (4) can be rewritten as the perpendicularity
condition Hp(Du) ⊥ D

(
H(Du)

)
. Also, the singular solutions persist for arbitrarily

small straight line segments, as long as the segments do not trivialize to a point.

2. Proofs

For the definition and the properties of viscosity solutions we refer to Crandall-
Ishii-Lions [CIL]. We will first prove Theorem (1) for smooth functions f and then
deduce the full result by approximation.

Lemma 3. Let u be given by (5) with f ∈ C2(R) satisfying ‖f ′‖L∞(R) < 1. Then,
(i) Du(Rn) ⊆ (a, b), i.e. the range of its gradient Du is valued in the open segment
(a, b) = {x ∈ Rn | x = λa+ (1− λ)b, λ ∈ (0, 1)},
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(ii) Hp

(
Du(Rn)

)
⊆ (span[b − a])⊥, i.e. the gradient of H restricted on Du(Rn) is

normal to (a, b).

Proof of Lemma 3. By differentiating (5), we have

(6) Du(x) =
b+ a

2
+

1

2
f ′
(
b− a

2
· x
)

(b− a),

for all x ∈ Rn. By rearranging (6), we have

(7) Du(x) =

(
1

2
− 1

2
f ′
(
b− a

2
· x
))

a +

[
1−

(
1

2
− 1

2
f ′
(
b− a

2
· x
))]

b.

Since ‖f ′‖L∞(R) < 1, there exists a δ > 0 such that

(8) δ ≤ 1

2
− 1

2
f ′
(
b− a

2
· x
)
≤ 1− δ,

for all x ∈ Rn. Hence, Du(x) is for all x ∈ Rn a strict convex combination of a and
b. Thus, (i) follows. Since H is constant on [a, b], there exists c ∈ R such that, for
all t ∈ (0, 1), we have

(9) H
(
tb+ (1− t)a

)
= c.

Since H ∈ C1(Rn), we may differentiate to find

(10)
d

dt

(
H
(
tb+ (1− t)a

))
= (b− a) ·Hp

(
tb+ (1− t)a

)
,

for all for 0 < t < 1. Hence, we obtain that (b − a) · Hp(q) = 0 for all q ∈ (a, b).
Since by (i) we have Du(Rn) ⊆ (a, b), (ii) follows as well. �

Lemma 4. Let u be given by (5) with f ∈ C2(R) satisfying ‖f ′‖L∞(R) < 1. Then,

(5) defines a C2(Rn) solution of the Aronsson PDE (1).

Proof of Lemma 4. By (5) and our assumption, the Hessian D2u(x) exists for all
x ∈ Rn. By differentiating (6), we have

(11) D2u(x) =
1

4
f ′′
(
b− a

2
· x
)

(b− a)⊗ (b− a).
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We now calculate using (11) and (6):

A[u](x) = D2u(x) : Hp

(
Du(x)

)
⊗Hp

(
Du(x)

)
=

1

4
f ′′
(
b− a

2
· x
)

(b− a)⊗ (b− a) :

: Hp

(
b+ a

2
+

1

2
f ′
(
b− a

2
· x
)

(b− a)

)
⊗(12)

⊗Hp

(
b+ a

2
+

1

2
f ′
(
b− a

2
· x
)

(b− a)

)
.

By employing Lemma 3, we have

A[u](x) =

{
(b− a) ·Hp

(
b+ a

2
+

1

2
f ′
(
b− a

2
· x
)

(b− a)

)}2

·

· 1

4
f ′′
(
b− a

2
· x
)

(13)

= 0

and the Lemma follows. �

Hence, in the case of smooth u the PDE (1) is satisfied because the Hessian D2u is
normal to Hp(Du)⊗Hp(Du) in the space of symmetric matrices. Now we conclude
with the general case of merely Lipschitz f .

Proof of Theorem 1. Let u be given by (5) with f ∈W 1,∞
loc (R) and ‖f ′‖L∞(R) < 1.

Let ηε, ε > 0, be the standard mollifier and define fε := f ∗ ηε ∈ C∞(R). Let also
uε be given by (5) with fε in the place of f . Then, fε −→ f in C0(R) as ε → 0
and hence uε −→ u in C0(Rn) as ε→ 0. Moreover,

(14) ‖fε′‖L∞(R) ≤ ess sup
x∈R

∫
R
|f ′(x− y)| |ηε(y)|dy

and hence ‖fε′‖L∞(R) ≤ ‖f ′‖L∞(R) < 1. Consequently, by Lemmas 3 and 4, all uε

are smooth entire solutions to PDE (1): A[uε] = 0. By the stability of viscosity
solutions, we have A[u] = 0 on Rn in the viscosity sense and Theorem 1 follows. �

Example 5. The choice f(t) := 1
2 |t| for |t| ≤ 1 and f(t+ 2) = f(t) gives a non-C1

solution u to the PDE (1). The choice f(t) := 1
2

∫ t
0
Kα,ν(s)ds with Kα,ν ∈ C0(R)

the singular function of [K] gives a nowhere twice differentiable solution u to (1)
with D2u existing only as a singular first order distribution.
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