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The stability of a two-dimensional vorticity 
filament under uniform strain 

By D. G. DRITSCHEL, P.H. HAYNES, M. N. JUCKES? 
AND T. G. SHEPHERDS 

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 
Silver Street, Cambridge CB3 9EW, UK 

(Received 16 February 1990 and in revised form 15 December 1990) 

The quantitative effects of uniform strain and background rotation on the stability 
of a strip of constant vorticity (a simple shear layer) are examined. The thickness of 
the strip decreases in time under the strain, so it is necessary to formulate the linear 
stability analysis for a time-dependent basic flow. The results show that even a strain 
rate y (scaled with the vorticity of the strip) as small as 0.25 suppresses the 
conventional Rayleigh shear instability mechanism, in the sense that the r.m.s. wave 
steepness cannot amplify by more than a certain factor, and must eventually decay. 
For y < 0.25 the amplification factor increases as y decreases ; however, it is only 3 
when y = 0.065. Numerical simulations confirm the predictions of linear theory at 
small steepness and predict a threshold value necessary for the formation of coherent 
vortices. The results help to explain the impression from numerous simulations of 
two-dimensional turbulence reported in the literature that filaments of vorticity 
infrequently roll up into vortices. The stabilization effect may be expected to extend 
to two- and three-dimensional quasi-geostrophic flows. 

1. Introduction 
A ubiquitous feature of strongly nonlinear, high-Reynolds-number two-dim- 

ensional flows is the presence of thin filaments of vorticity. Considered in isolation, 
such filaments are unstable by the conventional Rayleigh mechanism, and would be 
expected to roll up into discrete vortices. However, it is a striking aspect of many 
high-resolution numerical experiments (e.g. McWilliams 1984 ; Babiano et al. 1987 ; 
Juckes & McIntyre 1987; Brachet et al. 1988; Legras, Santangelo & Benzi 1988; 
Santangelo, Benzi & Legras 1989) that such behaviour is actually rather rare. The 
majority of thin filaments evolve passively under the influence of the large-scale flow 
(which is frequently dominated by a set of coherent vortices occupying a small 
fraction of the fluid domain). In this paper we consider an idealized problem that 
gives quantitative insight into this behaviour, wherein the large-scale flow is 
represented by a uniform strain field, and the consequent effects on the evolution of 
disturbances to a straight vorticity filament are studied. (The problem under 
consideration is to be distinguished from that studied by Moore & Saffman (1975) 
and Tsai & Widnall (1976) concerning the three-dimensional instability of a vortex 
tube in a strain field acting in the plane perpendicular to the axis of the tube. In that 
case the basic state is steady, the cross-section of the tube having adjusted to the 
strain by a suitable elongation.) 

t Present affiliation : Department of Meteorology, University of Reading, RG6 2AU, UK. 
$ Present affiliation: Department of Physics, University of Toronto, Toronto M58 1A7, Canada. 
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FIGURE 1. The simplest flow to be considered, in which a vorticity filament undergoes pure 
strain (8 = 0) whilst aligned parallel to the extensional axis (4  = q50 = 0). 

The vortex-sheet limit, where the thickness of the filament is regarded as much less 
than the wavelength of any disturbances, has been studied by Moore & Griffith-Jones 
(1974) and Moore (1976). For fixed initial disturbance wavelength these analyses 
predict finite amplification. In this sense strain stabilizes. However, the predicted 
amplification increases without bound as the initial wavelength tends to zero. This 
is an artifact of the vortex-sheet model, as verified by Dhanak (1981), who later 
examined the qualitative effects of finite thickness in the asymptotic limit of weak 
strain. In the present study we present quantitative results for finite thickness with 
no assumption of weak strain, and we include the important additional effect of 
background rotation. In fact the results differ appreciably from the asymptotic 
results even for values of the strain rate as small as 1 % of the vorticity contrast. 

The simplest relevant physical situation is depicted in figure 1. It is well known 
that, without strain, a strip of vorticity is unstable (Rayleigh 1880). Small 
undulations of the boundary grow exponentially provided that' the wavelength is 
greater than about five times the width of the strip. The effect of strain may be seen 
to be two-fold. First, it compresses the disturbance in the transverse direction, 
thereby reducing the growth rate; and second, it extends the disturbance in the 
longitudinal direction, causing its wavelength to increase with time. Since the growth 
rates in the linearized, unstrained problem tend to zero as the wavelength tends to 
infinity, one expects that, ultimately, this second effect causes the disturbances, at  
least those of small amplitude, to decay. However, there exists the possibility of 
transient growth before the inevitable asymptotic decay, and it is of interest to 
determine the maximum growth as a function of the ratio of stra.in rate to vorticity 
contrast. 

Implicit in the above is the assumption that the background strain field 
experienced by the filament be constant in time. It is clear that this is an over- 
simplification. For example, a vorticity filament in the irrotational flow outside a 
coherent vortex would be advected around the vortex, and so would see a rotating 
strain field. In a frame of reference rotating with the strain, this situation is simply 
a generalization of the above problem to include a uniform background vorticity. 
(The case where the filament is aligned along the streamlines and is not undergoing 
stretching was first studied by Rayleigh 1887 and nonlinear aspects of this problem 
have been examined by Dritschel 1989a.) Another generalization is to allow the 
initial orientation of the filament to lie at  an angle to the extensional strain axis; the 
strip is subsequently rotated towards this axis. 

The plan of the paper is as follows. The linearized form of the governing equations 
for the evolution of disturbances to a strip of uniform vorticity is derived in $2. Each 
Fourier component of the disturbance can be represented by two real numbers which 
are the solutions of two coupled first-order linear differential equations with non- 
constant coefficients. For finite strain, these equations do not appear to have a 
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closed-form analytical solution and are solved numerically. The solutions presented 
in $3, for the case of pure strain, confirm the qualitative picture presented above, 
including the existence of a period of temporary growth when the strain is sufficiently 
weak. The effect of rotation on the results is considered in $4. The possibility arises 
that the disturbances may achieve sufficient amplitude to enter a regime in which the 
linear theory, and therefore the prediction of ultimate decay, becomes invalid. In 
particular it is possible that the strip may roll up into vortices that can resist the 
strain field in the manner described by Moore &, Saffman (1971) and Kida (1981), 
rather than being torn apart. This possibility motivates numerical integration of the 
fully nonlinear equations in $ 5 using a contour dynamics algorithm. Calculations 
show that the initial wave slopes necessary for vortex roll-up are numerically small. 

2. Mathematical formulation 
The basic state consists of an infinitely long strip of uniform vorticity w and 

thickness D(t) orientated at an angle $(t) with respect to the x-axis (see figure 2), in 
the presence of a general linear strain field 

u(2, y) = YZ-QY, 4x9 y) = Qx-yy, ( l a ,  b) 

where y is the strain rate, and 252 the background vorticity, both constants. This is 
equivalent to an irrotational strain field of strength y rotating at  a rate -52. The 
equations are non-dimensionalized so that the anomalous vorticity of the strip, w ,  
and its initial width, D(O), are both equal to unity. There is no loss of generality in 
taking y to be positive. 

It is not difficult to show that this strain field causes the orientation 4 and 
thickness D of the strip to vary with time according to 

- -ycos2(b 
d4 * 1bD 
- = 4 = Q-ysin24, 
dt D dt 

-- - 

(Kida 1981 ; Dritschel 1990), from which it follows that 

where 4, = $ ( O ) .  Note that in the special case 51 = 0 and 4, = 0 depicted in figure 1, 
(3) is singular and (2b) gives simply D = exp ( -  yt). In general, if y 2 1521, then (2a) 
shows that ultimately 4 approaches the extensional axis #c = t sin-l(Q/y). The value 
of sin-’ is taken to lie between --$n and +in. Equation (2b) consequently implies 
D(t) - exp ( -  (y2-Q2)it) as t +  00. On the other hand, if y < 1521, the strip will thin 
and thicken periodically. In this paper we restrict our attention to extending (and 
thinning) strips, but note that the stability of the periodic case can be studied using 
Floquet theory (see Dritschel 1990 for details). 

The linear disturbance equations are derived as follows. We employ the coordinate 
system shown in figure 2, rotating at angular velocity 4 as given by (2a) ,  in which 
the strip is always parallel to the x’-axis. In these coordinates, the velocity (u‘, w’) is 
given by 

u’ = y(x’ cos 24 - y’ sin 24) + (4 - 52) y’ + u~ 

w’ = - y(y’ cos 24 +xlsin 24) - ( ~ - - s z )  zl+ w~ 
= y(x’ cos 24 - 2y’ sin 24) + u; 

= - yy’ cos 295 + w;, 

(4a) 

(4b) 
where (u;, wL) is the velocity associated with the strip of vorticity. 
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FIGURE 2. Diagram of a general flow configuration, with the filament aligned at an arbitrary angle 
9 + 0 to the extensional axis, defining the primed coordinate system that moves with the filament. 

For the undisturbed strip we have that (ug, v;) = (us(y’), 0), where 

+(t) if y’ > $D(t) ,  

{ @ ( t )  if y‘ < -p ( t ) .  
u,(y’) = -y’ if ly’l < L $ ( t ) ,  (5) 

It is evident from (4) and (5 )  that the undisturbed flow is a combination of pure strain 
ycos26 plus a piecewise-linear shear flow in the x’-direction. 

The vorticity of the flow being piecewise constant, the velocity field ug, v; is 
determined completely by the positions of the two edges of the strip, and, using the 
standard Green function for the Laplacian operator, may be written in the form 

(u6(x’, !/’I, v;w, y’)) = - log{(x’- OZ + (9’ - 6>2> (dt, d6) (6 )  
:x I, 

where V is the contour comprising the boundaries of the strip, traversed in such a 
way that the interior of the strip is on the left, and (dg, dc) is the vector tangent to 
the boundary. The boundaries of the strip are denoted by y’ = y’+(x‘, t ’ )  and, noting 
that y; will be expected to scale with D(t ) ,  we define the disturbance q+(x’, t ’) by 

(7) 
where E is a small parameter. We consider the evolution of disturbances of the form 

where k is a constant equal to the initial wavenumber and the factor D reflects the 
stretching in the x’ direction. Substituting (7) into (6 ) ,  using the kinematic boundary 
condition 

- 

y;(& t ’ )  = D(t) (+i+q*(z’, t ) ) ,  

q* = Re{q+(t)exp - (ikD(t)x’)}, (8) 

”Y;+u’(x’, y;,t)-- ay; - - v’(x, y;,t), 
at ax (9) 

and isolating O(E)  terms we arrive at the linearized governing equations, 

i* dt = +i[l-kd(l--/l)l.Ij+T~e-kdqT, - (10) 

where d = D2(t) 
and A = -2ysin2$ is the instantaneous value of the shear measured in a frame 
rotating with the strip. These equations may also be derived by direct consideration 
of a boundary-value problem for the disturbance following Rayleigh ( 1880) ; and the 
extension to single- and multi-layer quasi-geostrophic flows is possible by either 
method. They are precisely equivalent to Rayleigh’s equations except that A and A 
may vary with time and it may therefore not be assumed that growth or decay is 
exponential. 
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It is advantageous to rewrite (10) in terms of the quantities A = i+ + i- and B = 
i($+-$-), for then the resulting equations have real coefficients : 

dl? - = +~[l-kA(l-A)-ee-Ld]A. 
dt 

We have been unable to find closed-form analytic solutions to (1 1 a)  and (1 1 b )  and 
have resorted to numerical solution. Although analytical progress can be made in the 
small-strain limit (see $3) the results seem to be of limited usefulness. 

The quantity of interest is the amplification maximized over initial wavenumber 
k, and its variation with the initial orientation the strain rate y and the rotation 
rate SZ. We measure amplification by the increase in the r.m.s. wave slope 

The square of this quantity is proportional to the relative size of the nonlinear terms 
neglected in the derivation of (10). (Note that the validity of the linear theory 
requires only that the wave slope be small ; the displacements need not necessarily 
be small compared to the width of the strip.) Evaluating (12) with (AI2+ IBI2 = 1 at 
t = 0 (recall that A = 1 at t = 0 as well) and taking the square root then gives the 
corresponding amplification factor 

Jal = A(lA12+ IBI’)i. (13) 

The disturbance energy is proportional to At(lAl2+ IB12). However, this measure of 
amplification has a less direct relationship with the importance of nonlinearity. 

Note that for Stretching strips, A(t)  in (13) diminishes with time. Two effects of the 
external strain field are contributing to this. The first is simply the thinning of the 
width of the layer, and this contributes a factor D = At .  The second is the stretching 
of the disturbance wavelength as the strip stretches at  the same rate, and this 
contributes another factor of D. Both effects tend to work against wave-slope 
amplification. 

y ,  52 and t. The first 
two of these parameters can be eliminated by searching for the form of the initial 
perturbation that, by a given time t, has amplified the most. Because the two 
evolution equations are linear, any solution ( A ,  B )  can be expressed in terms of two 
independent solutions, say (Al,&) and (A2,B2) : 

d as defined by (13) depends on A(0)  and B(0) besides k, 

4 t )  = C1A,(t)+C,A,(t), (14a) 

B(t) = ClB,(t) +czB,(t), (14b) 

where c1 and c2 are complex numbers. The two solutions are made independent by 
choosing different initial conditions for them. A suitable choice is 

A,(O) = 1, B,(O) = 0, (15a) 

A2(0)  = 0, B2(0) = 1, (15b) 

in which case A(0)  = c1 and B(0) = c2. Putting c1 = e‘1cos9 and c2 = eiAzsin8 (to 
satisfy JA(0)I2+ IB(0)12 = i),  one simply maximizes IA(t)12 + IB(t)I2 with respect to 8 
and h = h,-hl .  In terms of the quantities Jalf = i (A;+B:) ,  di = i(AZ+Bi) and 
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= A,  A ,  +B, B,, it is straightforward to show that the most that a disturbance can 
amplify by time t is given by 

d ( k ,  q50, y ,  SZ, t )  = A((&: +di) + [ ( d i - 4 3 2 + W 2 ] f ) f .  (16) 

(This result depends only on the definition of &' and is independent of the specific 
form of the equations examined in this paper.) I n  order to determine d o n e  then has 
only to solve the evolution equations for the two initial conditions (Al, B,) and (A2,  

Finally, maximizing d- over time t and initial wavenumber k gives the required 
quantity dm(q50, y ,  52). For reference, we define tm(q50, y ,  52) and km(q50, y ,  52) 
respectively as the time to reach maximum amplification and the initial 
dimensionless wavenumber for which this maximum is achieved (i.e. -Pem(#o, y ,  52) = 
d-(km, q50, y ,  52, tm)).  Also, we define plm(q50,y, 52) as the initial phase differencc 
between the waves on the two interfaces for the optimal solution, namely plm = 
pl--v+ where r+ = R, eiF*. It follows from the definition of $* that plm is given by 
tan-l[lWI/(di --&:)I. Note that by symmetry, the optimal solution must have equal 
disturbance amplitude on both interfaces, namely R, = R-. 

I n  the next two sections dm and associated quantities are determined by 
numerical integration of (11) using the two initial conditions given in (15). The 
integration uses a standard fourth-order Runge-Kutta scheme with time step At = 
0.025 coupled with quadratic polynomial interpolation to determine the time when 
d-reaches its first maximum greater than 1. If such a maximum is not encountered 
before A ( t )  < 0.01, it is assumed that d-will never become comparable to 1 again. 
Should a maximum be found, the integration is not carried further to  check for other 
maxima. Tests have indicated that there is only one maximum in most cases, and if 
there are more than one, that the first maximum is the largest. This procedure is 
repeated for many wavenumbers k to determine dm, i.e. d- maximized over both 
time and wavenumber. 

B2). 

3. A strip in pure strain 
As a first problem we consider a strip of vorticity centred on the extensional axis 

of strain (q50 = 0) in the absence of rotation (52 = 0), as shown in figure 1. The layer 
thickness diminishes exponentially, D(t)  = c - y t ,  and the strip remains centred on the 
x-axis, $ ( t )  = 0. 

It is useful to recall that in the unstrained problem (where A remains equal to 1) 
disturbances are neutrally stable for k > k, A 1.28 and exponentially growing (or 
decaying) for k < k,, although the growth rate tends to zero as k + 0. Thus, given the 
tendency of the strain to diminish disturbance amplitudes and to decrease 
wavenumbers, we might expect that  for an initial condition with k > k,  a disturbance 
will initially decay, but then grow when the effective wavenumber kA reduces to 
values less than k, .  Ultimately kA becomes so small that any tendency for growth is 
overcome by the direct effect of the straining. 

A number of examples of the evolution of d for various cases, all having k = 
k ,  = 1.4776 but with a variety of initial phases, are shown in figure 3 ( a ) ,  for the case 
y = 0.05. Also plotted is the time variation of the amplification maximized over all 
initial phases, d-, again for k = k,. Note that for some of the initial conditions d 
increases initially, even though the initial wavenumber is greater than k,  (and 
therefore the qualitative arguments above would suggest initial decay). This is a 
manifestation of the temporary amplification possible in many systems, even when 
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-0.5 F 0 0.5 1.0 1.5 2.0 2.5 3.0 

Yt  

0 0.5 1 .o 1 

k 4 t )  
FIQURE 3. (a) Time evolution of the disturbance norm d for disturbances to an aligned strip in pure 
strain (a = 0), with y = 0.05, shown as dotted curves. The disturbances have initial wavenumber 
equal to that which gives the maximum amplification, and various initial phases, as labelled. The 
solid curve shows the evolution of the maximum possible amplification (over all initial phases) d-, 
for this initial wavenumber. A dashed curve shows d for the initial phase 9) = p,,, = 61.221°, that 
leads to the maximum amplification at any time, but this curve is indistinguishable from the solid 
curve. (b) The same, except that the logarithmic time rate of change of the various quantities is 
shown and plotted against the effective wavenumber (which decreases exponentially with time). 
The dash-dot curve is the growth rate predicted by a quasi-steady analysis, namely the growth rate 
in the unstrained stability problem, minus twice the strain rate. 
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25 
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15 

log -4, 

10 

5 
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Y Y 
FIGURE 4. Results for the case of an aligned strip in pure strain (a = O , # ,  = 0). The two curves 
correspond to qualitatively different maximizing disturbances : the solid curve to intermediate 
wavelengths and the dashed curve to long wavelengths (see txt for details). (a) log SQ, us. y ;  (6) k, 
vs. y ;  (c) yt, vs. y ;  ( d )  pm vs. y. 

there are no exponentially growing modes. Of course, the maximum amplification 
factor d-takes account of such temporary amplification. These features are apparent 
in figure 3 ( b ) ,  which shows, as a function of effective wavenumber k A ,  the growth 
rate (measured by the logarithmic rate of change with time) of d ,  for each of the 
cases shown in figure 3 ( a ) ,  and of d-. Also shown is the growth rate predicted by a 
quasi-steady calculation. (The coordinate k A  plotted along the abscissa decreases 
exponentially with increasing time.) It is noteworthy that the growth rate is 
generally underestimated by the quasi-steady approximation. 

Figure 4 ( a d )  shows log dm, k,, yt,, and vm as a function of the strain rate y .  In  
each of figures 4 (a ) ,  4 (c) and 4 (d )  there are two curves shown, each corresponding to 
a different amplification mode. The dashed curves correspond to the amplification of 
disturbances that have long wavelength ( k  < 1) initially. The solid curves correspond 
to the amplification of waves with intermediate wavelength initially. The 
corresponding initial wavenumbers are shown in figure 4 ( b ) .  The origin of these 
distinct modes of amplification is apparent from the variation of d maximized over 
time as a function of initial wavenumber k .  There are found to be two maxima, one 
at intermediate wavelength and the other a t  the long-wavelength limit, k = 0. For 
small y the value of d at  the latter is smaller, but as y increases the value of d a t  
intermediate wavelengths decreases, relative to that a t  k = 0. For y > 0.066 the 
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Y Y 
FIGURE 5. (a) Log dm for non-aligned strips in pure strain (a = 0, C, + 0). The results are given as 
a function of the straian rate y ,  for selected initial orientation, with 0 < y < 0.17 and -80" < 
4, < 80' as labelled. ( b )  The same, but for long-wave disturbances (k 4 1 )  with 0 < y < 0.5. 

maximum amplification is found in the long-wave limit analysed in Appendix A. It 
follows from this analysis that for y > a, all disturbances decay. 

The important implication of the results shown in figure 4 is that even weak strain 
can strongly inhibit the amplification of disturbances. For instance, a t  most a three- 
fold amplification can occur when y = 0.065 (figure 4a). Even for y = 0.05 the 
maximum amplification is only 6.5461. 

On the other hand, the amplification can be quite considerable when the strain rate 
is very small. This is, of course, consistent with the unbounded amplification that 
occurs in the absence of strain. The small-strain case may be examined by WKB 
analysis and Dhanak (1981) has shown that the largest factor in dm takes the form 
exp ( r / y )  where r is a positive constant. In Appendix B (equation (B 4a)) the constant 
r is found to be 0.188 and the asymptotic analysis is extended to give a fuller 
expression for dm that may be usefully compared with the numerical results. The 
details of the analysis in Appendix B suggest that values of y less than are 
necessary for good agreement with the asymptotic expression. dm is then greater 
than lo8'. For y = 0.05 the computed value of the asymptotic expression for SQ, is 
49.7, more than seven times larger than the actual value. 

A straightforward variation on the above problem is to allow the initial orientation 
of the strip as shown in figure 2 to be a t  an arbitrary angle, qi = qio say, to the 
extensional axis of the strain field. In time, the strip will become progressively 
aligned with the x-axis, except in the exceptional case for which qio = k i n  (where the 
strip remains aligned along the axis of contraction rather than extension and the 
strain field augments rather than inhibits the growth of disturbances). Solving (2a) 
directly (with 52 = 0) gives 

(17) 
while from (3) one has sin2qi(t) = d(t)sin2$,. Put together, one finds that the 
squared thickness of the strip evolves in time according to 

tan qi(t) = e-2yt tan q50, 

(18) 
1 

e2yt cos2 $o + e-2yt sin2 qio ' 
A(t)  = 

Figure 5 (a) shows a graph of log dm as a function of the strain rate for selected values 
of qi0 and figure 5(b) shows the corresponding result for long-wave disturbances. It 
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FIGURE 6. Results for aligned strips in a general strain field (9, = $c,y  > ISZI). The results am 
plotted aa a function of SZ and the stretching rate 8, = (y2-Q2)f ,  with -0.5 < SZ < 0.5 and 
0.01 < qc < 0.25. (a) L o g d , ;  ( b )  %Im; (c) k,; (d )  vm. 

is shown in Appendix A that the boundary separating amplitying and decaying 
disturbances in the ( y ,  $,)-plane is given by 4ycos2$, = 1.  Note that the greater the 
initial angle $o ,  the less the strip is stretched initially and the greater the 
amplification. Indeed if 1$,1 > in the initial effect of the strain is to thicken the strip 
and thereby augment the growth of disturbances. The asymmetry with respect to $, 
derives from the term A = -2ysin24 in (11). For A > 0 (4, $, < 0) ,  this term gives 
rise to ‘adverse shear’, a known stabilizing effect in the case of non-stretching, 
sheared strips (Rayleigh 1887; Dritschel 1989a), while A < 0, termed ‘cooperative 
shear ’, augments instability. 

4. A strip in strain with non-zero rotation 
In this section, a more general problem is considered for which both the strain rate 

and the rotation rate are non-zero, but attention is restricted to Iy( 2 181 so that, by 
(2a), the strip continually extends. We first consider a strip which is initially aligned 
at the equilibrium angle $c = #sin-l(O/y), so that $ remains equal to $c for all time. 
The case of arbitrary initial 4 is discussed briefly below. 

With $ = $c, (3) is singular; but solving (2b) one sees that the thickness of the strip 
diminishes exponentially, a t  the rate yc = (y2 -Q2)i = y cos 24c, while the shear across 
the layer, A ,  is given by A = -2ysin 2$c = - 2 8 .  Both yc and A remain constant in 
time. 

Figure 6(a-d) gives contour plots of logdm, k,, yetrn,  and cpm as a fucntion of yc 
and 8( = - ;A) .  As remarked in the previous section, adverse shear (8 -c 0) inhibits 
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the amplification of disturbances, while cooperative shear (52 > 0) enhances it. 
Whatever the value of 52, increasing yc reduces amplification. The corresponding 
results for long-wave disturbances are the same as already given in figure 4 (the 
dashed lines) with the substitution of yc for y .  (As shown in Appendix A, the results 
are independent of 52.) In  particular, a strain rate in excess of a suppresses the 
amplification of any disturbance. 

With q5 + q50, as in the analogous pure strain case considered in $3, the strip adjusts 
to  the extensional axis of strain and the amplification increases with lq5-q501 as a 
result. 

5. Finite-amplitude effects 
We next examine the evolution of disturbances a t  finite amplitude. The breakdown 

of the validity of the linearized form of (6) has been examined by Dritschel (1988, 
Appendix B) and Shelly & Baker (1990). It appears that  the linearization involved 
in the derivation of (1 1 a )  and ( 1  1 b )  breaks down when the wave slope (12) is of order 
unity. The linearization does not break down when the displacements are comparable 
to  the thickness of the strip (i.e. when Iq*l z O(1))  provided that the wave slope is 
still small. This is possible in the long-wavelength limit and will be discussed further 
below. We might then expect that  the prediction of maximum wave slope on the 
basis of linear theory would be a useful indicator of the potential importance of finite- 
amplitude effects in the real flow. Here, we investigate this hypothesis by following 
the nonlinear evolution of a series of flows differing only in the expected maximum 
wave slope predicted from linear theory. We examine just the case of pure strain 
(52 = 0) and aligned strip orientation (q50 = 0 ) ,  but we expect the results to  be 
indicative of the behaviour one would see in other circumstances. 

The calculations are performed using ‘contour surgery ’, an extended and refined 
version of contour dynamics, on a domain which is periodic in the x-direction and 
expanding with the straining flow. Full details of the numerical method can be found 
in Dritschel (1989 b).  

The initial conditions for the calculations consist of a strip plus a disturbance 
which has the same periodicity as the computational domain. The initial disturbance 
is chosen to  be the one that amplifies most in linear theory. The initial wave slope, 
Po say, is chosen such that the expected maximum wave slope, P,,, = dmP0,  takes 
prescribed values. We fix the strain rate a t  y = 0.05. At this value, dm = 6.5461. 

When p, < 0.2, nonlinear effects are not sufficient to prevent the ultimate decay 
of the disturbance. This may be seen in figure 7 (a) ,  which shows the evolution of the 
disturbed strip when the maximum steepness predicted by linear theory, Pm, is 0.1. 
The disturbance amplifies and then decays without noticeably altering the strip-like 
geometry of the vortex filament. The evolution according to  linear theory is shown 
by the dashed contours. Even a t  pm = 0.1 i t  is apparent that  nonlinearity affects the 
details of the evolution. It may also be seen that, although the wave slope remains 
small, the displacement becomes large relative to the thickness of the strip. As 
remarked above, this does not by itself lead to a breakdown of linear theory since the 
wavenumber becomes small. The prediction of the linearized long-wave equations 
studied in Appendix A, namely that the long-time configuration is a sinusoidally 
disturbed strip, with displacement increasing relative to the thickness of the strip but 
decaying in absolute value, is internally self-consistent. 

For Pm > 0.2 the strip rolls up into a vortex which is not extended indefinitely 
(consistent with Kida’s 1981 description of vortices in external strain fields). The 
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FIGURE 7 .  Fully nonlinear contour-surgery calculations of a disturbed strip of vorticity (under pure 
strain with y = 0.05). The disturbance is chosen to be the one that would amplify most in linear 
theory. The initial r.m.s. wave slope of the disturbance in this figure is chosen so that the maximum 
r.m.s. wave slope predicted by linear theory would be (a )  0.1, ( b )  0.2, (c) 0.3, (d )  0.4 and (e) 0.5. The 
time is given in the top left-hand corner of each panel. The evolution predicted by linear theory is 
shown in each case by the dashed contours. 

evolution for /Irn = 0.2, 0.3,0.4 and 0.5 is shown in figure 7 (b-e). As /3, increases, the 
size of the vortex increases, and the time it takes to form decreases. 

Computations for other values of the strain show that the critical value of pm for 
vortex roll-up decreases as the value of the strain decreases. Figure 8 summarizes the 
results of a number of experiments. Solid circles correspond to decay and open circles 
to roll-up. The transition between decay and roll-up as a function of strain rate is 
shown by the dashed curve. Reference to the relevant finite-amplitude evolution 
equations, e.g. the generalization of (B 12) in Dritschel (1988), to the case of a strip 
rather than a single contour, confirms that the wave steepness is the relevant 
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estimate of the importance of the nonlinear terms. It is therefore to be expected that, 
for all non-zero y ,  the criterion for roll-up be that the steepness exceed some finite 
value. We conjecture that the decrease of the transition value of Prn with y ,  
apparently towards zero as y tends to zero, is related to the secular effects of 
nonlinearity over the period of amplification, which increases in duration as 
- y-l log y in this limit. Some support for this explanation comes from the fact that, 
in the experiments conducted, the measured value of the steepness at the transition 
decreased less rapidly with y than the value of /3,. 

6. Discussion 
There seems to be a consensus that in a number of potentially unstable flows the 

effect of external strain is stabilizing. These include not only the case of the two- 
dimensional vorticity filament considered here, but also analogous three-dimensional 
geophysical cases where barotropic or baroclinic instabilities might have been 
expected. The purpose of this paper is to put this notion of stabilization by strain on 
a firmer quantitative footing. 

The effects of uniform strain on the instability of a filament of constant vorticity 
have been examined. The thickness of the strip decreases in time under the strain, 
and a linear stability analysis is performed on this time-dependent basic flow. Strain 
has two principal effects on the disturbance problem: first, to compress the 
disturbance in the transverse direction ; and second, to extend it in the longitudinal 
direction. The first effect is always stabilizing, while the second is ultimately so as 
well. All disturbances, in linear theory, eventually decay. However, there can be 
temporary amplification, quantified by the maximum possible increase in the r.m.s. 
wave slope ( 1 2 ) .  The question of how to quantify the amplification does not, of 
course, arise in the consideration of exponentially growing modes on a steady basic 
state, but seems to be crucial to any assessment of the stability of time-dependent 
flows. Indeed, the question has also arisen in Batchelor’s (1987) study of the stability 
of rising bubbles ; there, as here, the strain (at the forward edge of the bubble) exerts 
a stabilizing influence on the interface. Although that flow is steady, the author chose 
to analyse the behaviour of disturbances with a time-dependent (non-modal) spatial 
structure, and therefore had to examine the possibility of temporary growth within 
the context of an initial-value problem. 

As in Batchelor’s case it is also important to note that, since the amplification 
factor is finite, the initial scales and amplitudes of disturbances to the flow will play 
a role in determining whether or not they grow to finite amplitude (see also Moore 
& Griffith-Jones 1974). 

The effects of a uniform rotation of the strip relative to the background flow have 
also been included, for the special case in which the strip is aligned at  its equilibrium 
orientation q5 = q5c = +sin-l(Q/y), where 52 is the rotation rate and y the strain rate. 
The stretching of the strip then occurs at  a rate = (y2-522)i, and there is 
furthermore a shear flow parallel to the strip of strength A = -252. It is found that 
‘adverse’ shear ( A  > 0) inhibits disturbance amplification while ‘cooperative ’ shear 
( A  < 0 )  enhances it, a result that is consistent with the findings of Dritschel ( 1 9 8 9 ~ )  
on the stabilizing effects of shear alone. 

The analysis presented here has demonstrated that a stretching rate yc exceeding 
25 YO of the vorticity anomaly of a filament completely suppresses disturbance 
amplification, in the sense that the r.m.s. wave slope of disturbances can only decay 
with time. A stretching rate substantially less than this, about 6.5 YO in the case with 
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SZ = 0 for example, is enough to  prevent more than a three-fold amplification. This 
helps explain why the thin filaments of vorticity that arise in direct numerical 
simulations of two-dimensional turbulence (which exist in the presence of large-scale 
strain associated with coherent vortices) tend to behave quasi-passively, instead of 
rolling up into small vortices. 

It seems possible that in the diagnosis of realistic and complicated flows, both 
simulated and observed, the calculation of the local stretching and shearing rates 
could be a useful diagnostic procedure. The relevant stretching rate is simply the rate 
of separation of fluid particles along a strip of vorticity, while the relevant shearing 
rate is twice the rate a t  which the strip rotates relative to the ambient strain axes, 
that is A = 2(4-SZ) (by (2) and the definition of A ) .  For flows with continuous 
vorticity the stretching and shearing rates may be computed from the formulae 

7 = i.vu.f, (19a) 

where V u  is the velocity gradient tensor, f i  = Vw/lVwl a unit vector parallel to the 
vorticity gradient, w being the vorticity, and i = -gZ x f i  (a vector which points along 
contours of vorticity and has larger vorticity on the right). Dividing these quantities 
by the typical vorticity contrast across filaments, one could use the results of $4 as 
an indication of those parts of the flow that would remain filamentary. 

The question of whether vortex roll-up occurs is not only important for 
understanding idealized numerical simulations, but is also of considerable relevance 
to real geophysical flows, which often exhibit quasi-two-dimensional behaviour. For 
example, the flow in the winter hemisphere of the Earth’s stratosphere appears to be 
divided into two regions, namely a strong polar vortex surrounded by a ‘surf zone’ 
(see e.g. Juckes & McIntyre 1987). The two regions are of very different dynamical 
character and in the surf zone the motion appears to be a kind of two-dimensional 
turbulence. It is of crucial importance for quantifying such processes as chemical 
mixing to determine the nature of the turbulent motion, and in particular the extent 
to which i t  may be dominated either by thin, quasi-passive filaments of vorticity or 
by small-scale vortices with isolated cores. It is clear that the combined stabilizing 
effects of strain and shear must play a significant role in such considerations. It is 
possible that the quantitative results presented in this paper and their extension to  
spherical geometry (Dritschel & Polvani 1991) and stratified flows (Waugh & 
Dritschel 1991), can be incorporated in parametrizations of eddy transport and 
mixing, both in stratospheric and in other geophysical contexts. 
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Appendix A. The amplification of long-wavelength disturbances 
To study the amplification of disturbances with k Q 1, for t - O(1) it is sufficient 

to set k = 0 in (11 a,  b )  (this is not to say that the disturbances are independent of x). 
The equations are then independent of A and the two basic solutions are given by 

A ,  = 1, B, = 0; A ,  = - t ,  B, = 1. (A 1% b)  

The first corresponds to a sinuous mode of constant amplitude, the second to an 
increasing sinuous mode imposed on a constant varicose mode. 

The maximum amplification factor at  time t is 

dz = A'( 1 +itz +$(4 + t'))"). (A 2) 

The A2 factor corresponds to exponential decay, the other factor to algebraic growth ; 
evidently decay is therefore always ultimately unavoidable (within this linear 
theory). Whether or not there is an initial period of temporary amplification prior to 
the decay is determined by the sign of ad-/at at t = 0. Using (A 2) it is readily found 
that ad-/at > 0 at t = 0 if and only if 

- A / A  < a. (A 3) 

To find the maximum amplification d, and the time to maximum amplification t ,  
when ( A 3 )  is satisfied, one must determine the roots of a d / &  = O .  After some 
algebra, one finds that t ,  is a root of 

(t2+4)-i = - A / A .  (A 4 )  

In the case of the aligned strip, where A ( t )  = e-,7ct, (A 3) indicates that 
amplification occurs for jic < a ; otherwise all disturbances decay. When amplification 
does occur, the single solution to (A 4) is found to be 

and the maximum amplification is 

which is obtained by substituting t as given by t ,  in (A 5) into (A 2), together with 
A = e-8. This calculation is self-consistent provided that the initial value of k is small 
enough, even though t ,  b 1 for yc 4 1. To find the phase difference between the 
waves on the two interfaces, qm = q--q+, for the maximal solution, one uses (A 1) 
and (14) to obtain 

i j *  =i(ATiB) = Scos8-tmsin8Tsin8} (A 7) 

(taking A, = 0 and noting that A, = A, for the maximal solution), whence 

T sin 8 
tanq, = 

cos 8- t ,  sin 0 '  
Then using the fact that 

2 cos 26 
t ,  = ~ 

sin 28 
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for the maximal solution, i t  follows that 
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(A 10) 
2 

tm 
tanq, = -. 

Finally, in the case of non-aligned strips in a pure strain (g50 =k 0) ,  it is necessary to 
determine the roots of (A 4) numerically. (See the results in figure 5,  for the case 
51 = 0.) But the criterion for amplification is nevertheless easily found from (A 3):  
using the fact that, from ( 2 b ) ,  A / A  = -2y cos2q5, a t  t = 0, amplification obtains if 
and only if 

y cos 2g50 < 2. (A 11) 

Note that in the long-wavelength limit modes may, depending on A ,  be 
exponentially growing or decaying a t  vanishingly small rates, or have oscillatory 
behaviour. Neither of these can account for the amplification demonstrated above, 
which may be interpreted as follows. For A < 0, the difference in structure, in the 
long-wave limit, between a growing mode and its decaying conjugate vanishes. An 
initial condition made up of equal and opposite amounts of growing and decaying 
modes therefore has vanishingly small amplitude. The possibility of large 
amplification stems from the slowly increasing difference between the two. For A > 
0 long-wave disturbances are neutral, but a large temporary amplification results in 
a similar way. The difference between rightwards-propagating and leftwards- 
propagating, rather than growing and decaying, modes is then the relevant quantity 
that vanishes in the long-wave limit. 

Appendix B. The weak-strain limit 
Under the condition that the strip has reached an equilibrium orientation, so that 

it is subject to a strain Yc, it is possible to make analytical progress under the 
assumption that yC is small. The first steps in the analytical calculation for A = 0 
have been made by Dhanak (1981), who exploited a limiting process in which the 
integrated vorticity was tacitly assumed to remain constant as the thickness of the 
layer tended to zero, and the vorticity jump therefore increased. An expression for 
the largest contribution to the amplification factor is given by Dhanak (1981, 
equation 3.10). Here a closely related limit is considered, in which the strain rate jic 
is the small parameter. 

The relevant equations are (1 1 a )  and (1 1 b ) ,  with A = exp ( - 2jic t ) .  It is convenient 
to use K = kA > 0 as the independent variable so that ( l la)  and ( l i b )  reduce to 

(B 2 )  
dB 

and -27  K- = ;[i-~(i--/i)-e-"]A E 2K%(K)A. ' dK 

Note that the evolution of the solutions as t increases towards 00 is followed by 
letting K decrease towards zero. 

Inspection of the forms of B and g shows that for A 2 1 both are everywhere 
positive in K > 0 and the solutions A and B are therefore oscillatory. For A < 1 both 
8 and 59 tend to A -  1 as K + CO, and 9 has a single zero a t  K = K* > 0, say. For 
0 < A < 1 (adverse shear) 9l is positive for small K and has a single zero at K = K ~ ,  
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where 0 < K~ < K ~ .  Solutions of (B 1) and (B 2) are therefore oscillatory for 0 < K < 
K~ and for K~ < K .  For A < 0 (cooperative shear) $9 is negative for all K and solutions 
are therefore exponential for K < K~ and oscillatory for K > K ~ .  

Standard asymptotic methods may be used to solve these equations in the limit 
yc + O ,  although, in order to evaluate the maximum amplification factor (16) it is 
necessary to study in detail the form of the solution near the turning points, where 
one of the functions 9 or ’3 is zero. 

It follows from the turning-point analysis that, whatever the value of A ,  the 
largest amplification factor is achieved for an initial condition at 

K = K ~ +  1.174e(9’%)glKg 

where the notation 9’ is used for d9/dK (and 3’ will be used similarly). 
The resulting amplification depends on A as follows. 

( a )  1 > A  % yc 
The amplification factor, achieved at 

K = Kg-  1.019( -9%’$IKs’$, 

( b )  = W C )  

The maximum amplification occurs at K = yc wo, where w = wo is the maximum of 
wU(+-$i, 1, w )  exp (-$u), where A = yF1A and U is the confluent hypergeometric 
function defined by Abramowitz & Stegun (1960, equation 13.1.6). Given h the 
corresponding value of w may be evaluated numerically. The maximum amplification 
factor is given by 

where 

9,% and associated quantities are to be defined in (B 4a)  and (B 4 b )  with A = 0. The 
value of the integral appearing inside the last exponential in (B 4a)  is 0.188. 

(c) - A  % yc 
The maximum amplification is attained at  K = 277EG0/A, where 6 = Go is the 

argument for which the function ieK0(G) achieves its maximum, where KO is the 
modified Bessel function defined by Abramowitz & Stegun (1960, equation 9.6.13). 
It follows that the maximum amplification factor is given by 

0 . 7 2 1 ~ ~ ~ ( 9 ’ ~ % ) - ~ l ~ ~ y F % e x p  ( y ; ’ r  0 ( - 9 9 ) i d d ) .  (B 5 )  

It may be shown that the expression (B 5) agrees with (B 4a)  in the limit A+ co. 
Some indication of the smallness of yc required for the expressions (B 3b), (B 4a)  
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and (B 5 )  to be numerically accurate may be gained from inspection of the turning 
region at  K = K ~ .  For A = 0 for example, K~ x 1.28, 8’ = 0.154 and 9 = -0.119. 
Thus the width of the turning region, as defined by the rescaling, is 16.3e, J e g ual to 
0.75 when y = 0.01 and 0.163 when < 0.001 
is a likely requirement for the asymptotic estimate of the amplification factor to be 
in good numerical agreement with the actual value. 

= 0.001. It therefore appears that 
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