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DK-1D: A drift-kinetic simulation tool for modelling
the shear Alfvén wave and its interaction with
collisionless plasma

C E J Watt and R Rankin
Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2G7, Canada

E-mail: cwatt@phys.ualberta.ca

Abstract. We present a highly accurate tool for the simulation of shear Alfvén waves
(SAW) in collisionless plasma. SAW are important in space plasma environments
because for small perpendicular scale lengths they can support an electric field parallel
to the ambient magnetic field. Electrons can be accelerated by the parallel electric
field and these waves have been implicated as the source of vibrant auroral displays.
However, the parallel electric field carried by SAW is small in comparison to the
perpendicular electric field of the wave, making it difficult to measure directly in the
laboratory, or by satellites in the near-Earth plasma environment. In this paper,
we present a simulation code that provides a means to study in detail the SAW-
particle interaction in both space and laboratory plasma. Using idealised, small-
amplitude propagating waves with a single perpendicular wavenumber, the simulation
code accurately reproduces the damping rates and parallel electric field amplitudes
predicted by linear theory for varying temperatures and perpendicular scale lengths.
We present a rigorous kinetic derivation of the parallel electric field strength for small-
amplitude SAW and show that commonly-used inertial and kinetic approximations are
valid except for where the ratio of thermal to Alfvén speed is between 0.7 and 1.0.
We also present nonlinear simulations of large-amplitude waves and show that in cases
of strong damping, the damping rates and parallel electric field strength deviate from
linear predictions when wave energies are greater than only a few percent of the plasma
kinetic energy, a situation which is often observed in the magnetosphere. The drift-
kinetic code provides reliable, testable predictions of the parallel electric field strength
which can be investigated directly in the laboratory, and will help to bridge the gap
between studies of SAW in man-made and naturally occuring plasma.

PACS numbers: 94.05.-a 94.30.Aa 52.35.Mw 52.65.Tt



1. Introduction

Shear Alfvén waves (SAW) are an important wave mode in both space and laboratory
plasma. They allow the transport of energy and information throughout space plasma,
in the solar corona, the solar wind, in planetary magnetospheres and are also important
in more distant astrophysical plasma. In the laboratory, early experiments demonstrated
that magnetic disturbances can be guided along the magnetic field at the appropriate
Alfvén phase velocity, whereas more modern experiments reveal that the detailed wave
characteristics of SAW predicted by theory can be reproduced convincingly in the
laboratory (see review by Gekelman (1999), and references therein).

There is a growing body of observational evidence which suggests that shear Alfvén
waves play a key role in the acceleration of auroral electron acceleration in the Earth’s
magnetosphere (Keiling et al., 2002; Mende et al., 2003; Semeter et al., 2005), and
transport a significant amount of energy from the magnetosphere into the ionosphere
and upper atmosphere (Chaston et al., 2007). The analysis of SAW using kinetic theory
reveals that field-aligned electron acceleration may be achieved when the perpendicular
scale length of the SAW is short in comparison to electron kinetic scale lengths in the
plasma, resulting in the generation of a field-aligned component of the electric field
(Hasegawa, 1976; Goertz and Boswell, 1979). SAW which travel through plasma with
Uth,e <K Va, Where vy, . is the electron thermal speed and vy is the Alfvén speed, will
carry a significant parallel electric field when their perpendicular wave number &, . ~ 1,
where d, = c¢/w,, is the electron inertial length. Waves fulfilling this criteria are often
referred to as inertial SAW, since the parallel electric field is due to electron inertia. In
the opposite limit, SAW in plasma with vy, 3> v4 are sometimes referred to as kinetic
SAW, and will carry a significant parallel electric field when &k d.vsp e /va ~ 1.

In-situ satellite observations suggest that magnetospheric SAW that are important
for auroral acceleration originate in the plasma sheet or plasma sheet boundary layer
of the magnetosphere (Wygant et al., 2000, 2002; Dombeck et al., 2005; Keiling et al,
2005), and contribute to electron acceleration at some point along the geomagnetic field
between the plasma sheet and the upper atmosphere. The location of this wave-mediated
acceleration region is still under debate. Many observations (see review by Mozer et al.,
(1980) and references therein) suggest that acceleration takes place at an altitude of 1-
2Ry, where the plasma will typically have electron number density n, ~ 10% — 108 m 3,
electron temperatures 7, ~ 1 eV and ambient magnetic field strength By = 1000 n'T
(Kletzing et al., 1998). This results in plasma with vy, . < v4, i.e. in the inertial regime.
On the other hand, conditions in the plasma sheet and plasma sheet boundary layer
(ne ~ 10* —10° m=3, T, ~ 500 — 3000 eV, and By ~ 100 —400 nT) are also conducive to
shear Alfven wave electron acceleration (Wygant et al., 2002; Watt and Rankin, 2007b)
and researchers have presented observational evidence that the acceleration may begin
at higher altitudes (3 —4Rg) (Janhunen et al., 2004, 2006). The warm plasma sheet has
Uth,e > U4, and is typically not warm enough to be in the kinetic regime, but in some
intermediate stage where both inertial and kinetic effects are important.
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The parallel electric fields predicted in the inertial and kinetic limits described
above have opposite signs, and it has been suggested that for vy, . ~ vy, i.e. in the
magnetospheric plasma sheet, the parallel electric field contributions may act to cancel
each other out (Chaston et al., 2003a). Subsequent analysis (Shukla and Stenflo, 2004)
has suggested that a more rigorous approach is necessary to investigate the behaviour
of SAW when vy, ~ wvy. It is essential that the parallel electric field carried by
SAW in plasma conditions appropriate to the magnetospheric plasma sheet is correctly
determined in order to identify the location of auroral electron acceleration.

Detailed observational studies of SAW with short perpendicular scale lengths in
naturally occuring space plasma present significant challenges. Spacecraft travel through
the plasma at speeds ~ 10 km/s, at angles which can be highly oblique to the local
magnetic field direction, and often only catch a glimpse of the SAW which race along
the geomagnetic field at speeds v4 > 1000 km/s. Accordingly, there has been significant
interest in using other methods to study this wave-particle interaction, namely direct
laboratory experiments and numerical computer modelling.

Laboratory experiments on shear Alfvén waves require large, dense and highly
magnetized plasma. In order to provide results which are easily transferable to space
plasma phenomena, the laboratory plasma should be created such that ionization is
maximised and particle collisions are minimised. Under these circumstances, laboratory
experiments at the Large Plasma Device (LAPD) at the University of California at
Los Angeles have determined that the propagation of SAW from a finite, small source
region is significantly modified due to the presence of small perpendicular wavelengths
introduced by the source (Gekelman et al., 1994; 1997). For plasma with vy, < vy4,
magnetic disturbances are shown to spread in the perpendicular direction, as predicted
by the kinetic theory of inertial SAW (Morales et al., 1994). Gekelman et al . (1994)
also presented indirect evidence for a laboratory observation of the parallel electric
field associated with SAW in the inertial limit, by showing that the observed wave
radiation patterns could only be explained by including kinetic Landau damping into
the theoretical model. Recent laboratory experiments have concentrated on possible
generation mechanisms for SAW, applicable to space plasma (Van Compernolle et al.,
2005; 2006). Most pertinent to the present work, a study using the LAPD has measured
SAW dispersion in the plasma regime vy, ~ vy (Kletzing et al, 2003) and shown
that the best agreement between theory and experiment is obtained when the fully
complex kinetic dispersion relation is used. In this paper, we will use the simulation
code to investigate this regime further, using both small-amplitude linear waves and
large amplitude waves which show nonlinear effects.

The study of shear Alfvén wave physics is also promoted by numerical modelling.
Magnetospheric physicists are largely interested in the possiblity of SAW-mediated
electron acceleration, which requires parallel electric fields and therefore short
perpendicular scale lengths. Numerical modelling of the shear Alfvén wave-plasma
interaction is not straightforward. Kinetic equations must be used to describe the
parallel electric wave field, which is strictly forbidden in ideal magnethydrodynamics
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(MHD). On the other hand, the length and time scales of the shear Alfvén waves in
collisionless space plasma are many times larger than the Debye length and plasma
period which are important in kinetic simulations. Assumptions are therefore required
to obtain tractable numerical models. The most straightforward way to study electron
acceleration in SAW is to use a modified fluid code to predict the size of the parallel
electric field using linear kinetic approximations (Rankin and Tikhonchuk, 1998; Rankin
et al., 1999a, 1999b; Streltsov and Lotko, 1999). Specific aspects of the electron
accleration mechanism can then be studied by following test-particles as they are
influenced by the moving parallel electric field structure (Thompson and Lysak, 1996;
Chaston et al., 2000; 2002; 2003a; 2003b; Kletzing, 1994; Kletzing and Hu, 2001;
Su et al., 2004). However, these methods lack self-consistency, and agreement with
observations can sometimes only be obtained through application of specific plasma
conditions which may prove too restrictive in the Earth’s magnetosphere.

Full self-consistent simulations of SAW have been achieved using particle in cell
(PIC) simulations (Clark and Seyler, 1999; Génot et al., 2000; 2001; 2004; Tsiklauri
et al., 2005; Seyler and Liu, 2007), which demonstrate that nonlinear wave evolution
is a key part of the SAW-electron acceleration process. Hybrid codes (drift-kinetic
PIC electrons, fluid ions) have also been used to study the SAW-electron interaction
(Damiano et al., 2003; 2005; 2007; Swift, 2007). However, PIC simulations suffer from
noise and it is difficult to diagnose the strength and form of the parallel electric field
which results from the SAW without significant averaging over time and space in the
simulation. Direct comparisons between E) from PIC simulations and theory is therefore
challenging. Attempts have been made to minimise the numerical noise inherent in
particle simulations, but this can yield a simulation which is restricted to certain plasma
regimes, e.g. where the wave phase velocity is small compared to the plasma thermal
velocity (Lin and Chen, 2001). This hybrid model has been used successfully to study the
cross-field propagation of kinetic Alfvén waves in a toroidal magnetic field geometry with
plasma conditions appropriate for laboratory experiments (Nishimura et al., 2007). In
order to apply such a model to space plasma regimes, it would be necessary to overcome
the restriction of small wave phase velocity compared to electron thermal velocity. The
simulation developed by Lee et al., (2001) lifts this restriction, employing a sophisticated
split-weight scheme to model the gyrokinetic response of both electrons and ions to SAW.
This reduced-noise particle simulation can be used over the entire range of plasma beta
B = 2uon.kpT./B2, and has been used to model nonlinear electrostatic ion temperature
gradient instabilities in conditions appropriate to laboratory plasma experiments (Lin
et al., 2007).

For specific studies of the parallel electric field strength and resulting electron
acceleration due to electromagnetic SAW, it is desirable to have a self-consistent kinetic
code with minimal numerical noise and appropriate assumptions on the length and time
scales to allow for a reasonable simulation runtime. We have developed DK-1D, a drift-
kinetic one-dimensional Eulerian plasma simulation code (Watt et al., 2004) based upon
the drift-kinetic treatment [e.g. Catto et al., (1981)]. We neglect the ion response to
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the SAW, and the evolution of the perpendicular wavenumber, in order to maintain a
reasonable size of computational domain. However, even with these assumptions, results
from DK-1D have successfully been compared against in-situ satellite measurements of
electron acceleration, and have provided valuable interpretation of the details of the
observations (Watt et al., 2005; 2006). The resonant acceleration of electrons by SAW
has been demonstrated to rely upon the strength of the parallel electric field, and the
phase velocity of the wave relative to the thermal spread of the electrons in velocity space
(Watt and Rankin, 2007a). Here, we demonstrate the accuracy and utility of the plasma
simulation for a wide range of plasma parameters, for both small and large amplitude
plasma waves. We will show that DK-1D is a valuable tool which can bridge the gap
between laboratory investigations and measurements of natural plasma phenomena in
space.

We proceed in Section 2 with a description of the governing equations and
assumptions used in DK-1D. Section 3 presents results from the simulation code which
are used to investigate the damping rates and paralel electric field strength for SAW
with different perpendicular scale lengths and wave amplitudes in plasmas with varying
Usn.e/va- In Section 4, we present a discussion of these results and the implications for
analysing SAW in laboratory experiments and in observations of solar system plasma,
before presenting our conclusions in Section 5.

2. Simulation Code

For the simulations reported in this paper, we use the drift-kinetic simulation detailed
in Watt et al. (2004). The governing equations are derived assuming that the ions carry
the perpendicular current of the shear Alfven wave and the electrons carry the parallel
current. Other perpendicular electron drifts are neglected. The plasma response in the
parallel direction can therefore be fully described using only the equations of electron
motion, and ion motion is ignored. The simulation therefore cannot include any finite
ion temperature effects. This simulation follows three physical variables on a fixed grid
as they evolve in time ¢; the scalar potential ¢(z), where z is the coordinate along the
ambient magnetic field direction:

e )

ot 0z
the electron distribution function f(z,p,u), where p| = v + (ge/m.)A) is the parallel
canonical momentum per unit mass and p is the magnetic moment,

of | of . dA; 99\  u 9By] Of
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and finally the parallel component of the vector potential A (z):
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We use the parallel canonical momentum p instead of the parallel velocity v to avoid
including a term of the form 0A| /0t in the kinetic equation (2). It is very difficult to
find a stable explicit algorithm to integrate the distribution function forward in time
when it depends upon another temporal derivative so we circumvent the problem by
changing the coordinates (Jenko, 2000).

The parallel electric field Ej(2) is calculated as a diagnostic of the simulation, it is
not required in any of the three governing equations:

By = —? - aaﬂ- (4)

z ¢

In this paper, we simulate the electron response to SAW in a uniform magnetic field,
hence the mirror force term [the last term in square parentheses in (2)] is not required,
and we can reduce f to a function of z and p;. The electron distribution function is
defined on a fixed grid which is uniform in 2z and p|, respectively. The vector potential
A is defined on the same spatial grid as f, whereas the scalar potential ¢ occupies
grid points half-way between the Aj points. A MacCormack algorithm (Horne and
Freeman, 2001) is used to evaluate (2), and the inpairs algorithm described by Horne
and Freeman (2001) is used to evaluate the moments in (3). A and f are calculated at
integer timesteps nAt and ¢ is evaluated at half-timesteps (n 4 1/2)At using a leapfrog
algorithm.

In this paper, we investigate idealized, infinite shear Alfvén waves, hence the
boundary conditions in the spatial direction are periodic. The boundary conditions
in parallel momentum space for the distribution function assume that the distribution
function is Gaussian for values of |p)| which are greater than the maximum value
simulated pp,q; ~ 5vsp .. The grid resolution in the spatial direction is N, ~ 200 points,
whereas the grid resolution in parallel momentum space is 500 < N, < 7000 points.
Extra fine grid resolution is required when v4 ~ vy, ¢, since the plasma interacts strongly
with the wave fields, resulting in perturbations in f which can quickly approach the grid
resolution unless it is originally set to be very fine. Too coarse a parallel momentum grid
quickly results in numerical instabilities, often referred to as filamentation instabilities
in Vlasov-style simulation codes, which quickly swamp the physical solution [see e.g.
Klimas (1987)]. However, even with a large number of momentum grid points, each of
the simulations reported in this paper takes less than ~ 24 hours on a serial computing
facility.

3. Simulation Results

3.1. Linear waves

In this section, we investigate waves with amplitudes such that |ge¢maz|/kpTe is very
small (< 1%), where ¢4, is the maximum value of scalar potential in the simulation. By
choosing small-amplitude waves, the simulation is guaranteed to follow plasma physics
in the linear regime, allowing us to rigorously test and monitor the performance of
DK-1D before studying nonlinear and non-idealised wave-particle interactions.
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We avoid any possible mis-application of initial plasma and wave conditions by
initialising the wave potentials to zero and driving a propagating wave in the simulation.
Plasma behaviour and wave evolution is then studied once the driver has been turned
off. A term of the form —Rw sin(kz — wt) is added to (1), where kj = 27/L,, L, is the
length of the simulation domain, R is a ramping factor (usually < 1), and w is the real
part of the solution to the warm plasma kinetic dispersion relation:

w? = k1vi

1 Z'(¢) =0 5
t R, 2 =0 (5)

where Z'(() is the derivative of the plasma dispersion function (Fried and Conte, 1961)
with respect to its argument ¢ = w/(kjvs). For all waves studied in this paper, the real
frequency is small compared to the ion gyrofrequency.

We will compare damping rates and parallel electric field strength between many
simulations with different plasma and wave parameters. The parallel electric field is
a diagnostic of the simulation code, and does not directly form part of the governing
equations (1-3). We also want to compare the parallel electric field strength determined
in the simulations with that predicted by linear kinetic theory. We obtain an expression
for the ratio of parallel to perpendicular electric field for a warm electron plasma with
cold ions by following the method of Nakamura (2000) (see Appendix for full derivation):

oL 1 )

Vih s

R R e[
Note that the right hand side of this equation will in general have a complex value, since
the plasma dispersion function Z is complex.

The evolution of the parallel electric field in a typical small-amplitude wave
simulation run is shown in Figure 1. In this case, the ambient magnetic field strength
By = 400 nT, the electron number density n, = 3x10° m~ and the electron temperature
T. = 334 €V (hence vy,/va = 0.68). These values are typical for the plasma sheet of
the magnetosphere [see Wygant et al (2000)]. A wave with & = 1.2 x 1077 m™!,
ki =515 x 10° m ! and w = 1.83 rad/s is driven for three wave periods. Figure
1(a) shows a contour plot of the parallel electric field as a function of space and time in
the simulation. The amplitude of the oscillation grows steadily over three periods until
the driver is turned off (this time is indicated by the dashed line in all four panels).
Once the driver is turned off, the wave amplitude decreases through Landau damping.
Figure 1(b) shows the Fourier transform (in spatial dimension) of the parallel electric
field, as a function of time. The enhancement due to the driven wave can be clearly
seen at the lower boundary of the figure. Whilst the wave is being driven, we can see
there is electric field power at larger values of k||, but this is likely due to the imposed
driving function. The enhancements at high k| disappear after the wave driving term
has been switched off, and the only significant parallel electric field signal is from the
desired wave. Figure 1(c) shows the time evolution of the Fourier amplitude of the
driven wave mode (kj = 1.2 x 107" m~"). For times after the driver has been turned
off, the wave mode decays exponentially. The wave damping rate is calculated by using
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linear regression to fit the slope of the logarithm of the fourier amplitude of the driven
mode. Finally, Figure 1(d) shows the ratio of the parallel to perpendicular electric field
as a function of time. This ratio is calculated by determining the maximum values of
|Ej| and |E, | at each timestep in the simulation. This ratio is highly variable whilst the
wave is being driven, before settling down to a quasi-static level later in the simulation.
We will compare the ratio Ej/E, for different plasma and wave parameters by taking
the average value of E)/E (t) for times after the wave driver has been switched off.

The variation of damping rates and Ej/E, as a function of perpendicular scale
length is shown in Figure 2, for an ambient magnetic field strength By = 400 nT,
electron number density n, = 3 x 10° m~3 and electron temperature 7, = 500 eV (hence
vn/va = 0.83). Figure 2(a) shows the damping rates calculated from different simulation
results (crosses) and the predicted linear damping rates from solutions to the dispersion
relation in (5) (solid line), which are in very good agreement, even for damping rates
which are a significant fraction of the real frequancy w = 1.9 rad/s. Figure 2(b) shows
the ratio £ /E, for the simulation (crosses) compared with the prediction given by
(6) (circles), again showing excellent agreement between simulation and theory. The
difference between theoretical linear approximations and simulation results for |y| is
<1%, and for E/E, is <3%. For all simulation results shown in Figure 2, the ratio
of wave potential energy to plasma energy |g.¢|/(ksT.) < 0.002, ensuring that the
simulation is reproducing the linear behaviour of the wave.

We study the effects of varying vy, /va between 0.1 and 10.0 in Figure 3. This
range of values encompasses both the inertial and kinetic regimes. Figure 3(a) shows
the simulation damping rates (black '+’ signs) compared with the theoretical predictions
from the solutions to (5) (red crosses), and just as in Figure 2(a), agreement is excellent.
Figure 3(b) shows the simulation Ej/E, (black '+’ signs) compared with the theoretical
predictions from (6). Across the entire range of vy, /v 4, the simulation results agree with
the theoretical predictions: the difference between theoretical linear approximations and
simulation results for |y| is <6%, and for E/E, is <7%. Again, the ratio of wave
potential energy to plasma energy is very small for all simulation results used in this
figure, |g.¢|/(ksT.) < 0.005.

3.2. Nonlinear Waves

In this section, we study waves with larger amplitudes, to discover whether nonlinear
effects change the strength of the parallel electric field associated with shear Alfvén
waves. In our first comparison, we study waves with large damping rates, with vy, /v4 =
0.83, k10, = 1.0 and |y|/w = 0.2. Figure 4(a) shows the evolution of the parallel and
perpendicular components of the electric field, and the perpendicular component of the
magnetic field for the driven wave mode for a simulation with |g¢,q./(ksTe)| = 0.045
(note that these perpendicular wave field components are calculated from the simulation
potentials by multiplying by k). The wave is driven until t = 7.6 s (dashed line), after
which the perpendicular electric and magnetic field components decay rapidly until
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t = 9.5 s. After this time, the wave amplitudes oscillate in time, as is expected from
nonlinear Landau damping (O’Neil, 1965). The parallel electric field evolves differently
to the perpendicular perturbations, exhibiting damping until ¢ = 11.7s. Aftert = 11.7 s,
there is a slight increase in the amplitude of the parallel electric field, but this is a much
more subtle effect than seen in the perpendicular field components.

It is important to remember that the parallel electric field is a diagnostic of the
simulation code, and is not explicitly required in the governing equations due to the
change of variables from parallel velocity to parallel canonical momentum per unit mass
(Jenko, 2000).

Figure 4(b) shows the perpendicular electric field evolution from seven simulation
runs with different driving rates R, labelled with the ratio of wave potential energy
to plasma energy at the time when the wave reaches its highest amplitude. The time
at which the driver is turned off is indicated by the dashed line. The low amplitude
simulations damp at the predicted constant rate. As the wave amplitude is increased, we
observe nonlinear effects becoming more and more important, and the wave amplitude
does not decay to such low levels. Initial damping rates increase as the wave amplitude
is increased. For |q¢mq./(kgT.)| = 0.074, the wave decays for less than 1.5s before being
stabilised by nonlinear particle trapping.

Figure 5 shows the related evolution of the ratio of parallel to perpendicular electric
field for each of the seven simulations, all on the same vertical scale. We concentrate on
the evolution of E/E, for times ¢t > 7.6 s, i.e. after the driving term has been switched
off. The lowest amplitude simulation (shown at the top of the figure) evolves in the
same way as the linear simulation run shown in detail in Figure 1. The simulations
with large amplitude waves evolve differently from the linear case. The ratio of parallel
to perpendicular electric field increases in each case above the linear approximation
given by equation (6) F||/E, = 0.005, in some cases by more than a factor of three.
In the lowest five panels in Figure 5, there is a peak in the value of Ej/E, which is
followed by a gradual drop towards a common asymptotic level, which is less than half
that predicted by the linear theory. We can see from Figure 4(a) that the differences
in evolution between the parallel and perpendicular electric fields can account for these
changes in E||/E,: for the interval between the driver being turned off and the first
minimum in £, the damping rate of Ej is much less than that of £, hence the ratio
of the two components will increase. As £ approaches its first maximum, Ej is still
decreasing, and so the ratio of the two electric field components will decrease.

We concentrate now on cases with weaker damping, with vy, /v4 = 0.83, k; 6. = 0.2
and |y|/w = 0.01. Figure 6 shows the evolution of (a) the amplitude of the parallel
electric field of the driven wave mode and (b) Ej/E. for three different simulations
with different driving rates R. The three simulation results shown in this figure
have |¢@maz/(ksTe)| = 0.03 (solid line), |g¢mas/(ksTe)| = 0.08 (dot-dashed line) and
|q®Omaz/(ksTe)| = 0.16 (dashed line), although they are difficult to distinguish, and
all follow the same linear evolution seen in Figure 1. Even when the wave potential
energy rises to 16% fo the plasma energy, nonlinear effects do not become important
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in the simulation, and all the wave fields (perpendicular and parallel electric field, and
perpendicular magnetic field) decay at the rate predicted by linear theory.

4. Discussion

It is important to note that the correct application of (6) is vital when predicting
the ratio of Ej/E, since the right-hand side of (6) is complex. When making the
comparisons in Figures 2(b) and 3(b), (6) was evaluated using measured values of
average number density, average temperature, real frequency and damping rate from the
simulations, and the input values of By, k and &k, (these are fixed). Figure 7(a) shows
the absolute value of E/E (solid line), the real part (dashed line) and imaginary part
(dot-dashed line) for the plasma parameters investigated in Figure 3. From Figure 7(a),
it appears to be necessary to include the full complex kinetic treatment when estimating
the parallel electric field strength due to a shear Alfvén wave in warm plasma. This
echoes the discovery of Kletzing et al (2003), who demonstrated that measurements of
the SAW phase velocity were best described using solutions for the full warm plasma
dispersion relation.

However, using the full expression (6) can be unwieldy, and requires detailed
knowledge of all the plasma and, more specifically, the wave parameters (complex
frequency, parallel and perpendicular wavenumber) in order to evaluate it correctly.
This information may be difficult to obtain when studying space observations, and is
not always well-defined in numerical models and simulations which do not include full
kinetic effects. Analytic approximations to (6) are often used in the inertial (Lysak,
1990):

E O¢
(ET) S TTgzetihe ()
and in the kinetic regime:
E
(E—D = pikykL, (8)
k

where p2 = 0207, ,/v%. In one publication (Chaston et al., 2003a), kinetic and inertial
effects were combined to produce:

B _ k(LK) - (A +kTp) (©)
E ), ki 1+ k162

although the two limits are not strictly compatible. Note that in (9), we have

taken the limit of cold ions to keep the expression consistent with the simulation
conditions used in this paper. Figure 7(b) shows the absolute value of Ej/E
obtained from (6) (solid line) compared with the three approximations given above:
the inertial approximation (dashed line); kinetic approximation (dot-dashed line) and
the ’combined’ approximation (grey crosses). From this analysis, it would seem that
the full kinetic expression given by (6) is required to calculate the ratio Ej;/E only for
a small region of parameter space around vy, . ~ v4. This will make the analysis of in
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situ observations more straightforward in some plasma regimes, since wave parameters
such as wavenumber and the imaginary part of the frequency are difficult to obtain from
single-spacecraft measurements.

When we compare linear to nonlinear behaviour, we see that for strongly damped
waves, nonlinear effects are important once the wave potential energy is more than a
few percent of the plasma energy. Figure 8 shows the distribution function for two
of the cases shown in Figure 4: [¢@maz/(kpTe)| = 0.002 and |q@maz/(ksTe)| = 0.045.
Figure 8(a) and 8(c) show a surface plot of the spatial variation of the distribution
function at ¢ = 15 s for the two different cases; particle trapping due to the propagating
waves is clearly seen in Figure 8(c) for 2 x 10° < v < 4 x 10°® m/s. Figure 8(b) and
8(d) show the spatially-averaged distribution function feo for v > 0 at ¢ = 0 (thin line)
and t = 15 s (thick line). In Figure 8(b), there is very little evolution of f during the
15s interval. In this case, the initial wave energy is small, and the gain of energy by
electrons due to Landau damping is not large enough to show up in the plot. On the
other hand, the plateau formation associated with Landau damping of the SAW can
be seen clearly in the larger amplitude simulation shown in Figure 8(d). The trapping

/2 and is shown in Figure 8(d) using

width is estimated using v; ~ (2¢.E)/(mek)))
dashed lines.

The high-frequency shear Alfvén waves observed by Wygant et al. (2002) have an
estimated wave potential energy of around 100-4000 V in the magnetospheric plasma
sheet with an electron temperature 7, ~ 2 keV. Observations of SAW which are
important for electron acceleration therefore indicate that they are large-amplitude
nonlinear waves. The detailed DK-1D simulations presented in this study show that
linear estimates [e.g. from the analysis by Lysak and Lotko (1996)] are inadequate in
this regime, and that full nonlinear simulations are required. It is important to note that
the nonlinear behaviour in the DK-1D simulation code results from the response of an
electron population with a finite temperature to a large amplitude wave. Other known
nonlinear effects are not included in this simulation, such as wave energy transfer to ion
plasma waves (Seyler and Liu, 2007). In their study, Seyler and Liu (2007) note that
wave breaking and the subsequent excitation of ion cyclotron and ion acoustic waves
“requires a sufficient number of resonant electrons” to undergo resonant acceleration
and form a field-aligned beam. The particle-in-cell simulations of Seyler and Liu (2007)
therefore represent more extreme cases than shown here. The DK-1D results reported
in this paper demonstrate that the nonlinear electron response is sufficient to cause a
deviation from linear theory predictions even when the wave amplitudes are relatively
small and no wave steepening is observed.

5. Conclusions

The DK-1D simulation code presented in this paper is a highly accurate nonlinear
numerical model which can be used to study shear Alfvén wave behaviour in collisionless
plasma. It reproduces the damping rates and parallel electric field strength predicted by
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linear theory over a wide range of plasma conditions, including regimes important for
magnetospheric and laboratory plasma physics. For small-amplitude waves in plasma
with vye/va < 0.7, the parallel electric field calculated using the standard inertial
approximation (7) is reasonably accurate, whereas for v ./vs > 1.0, the parallel
electric field calculated using the standard kinetic approximation (8) gives satisfactory
values. For linear waves in plasma with 0.7 < vy, ./va < 1.0, the ratio of parallel to
perpendicular electric field must be calculated using the modulus of the complex number
returned by the linear equation, which is rigorously derived in the appendix. Any other
estimate produces misleading results.

The damping rates and parallel electric field strength of SAW are modified by
nonlinear effects when the wave amplitude is increased. Damping is reduced due to
particle trapping, and the parallel electric field strength exhibits a more complicated
evolution when the wave potential energy is more than a few percent of the plasma
energy. Amplitudes of this magnitude are often observed in magnetospheric plasma,
demonstrating the need for fully self-consistent nonlinear plasma simulations like DK-
1D.

The DK-1D simulation code can be used to study the details of the wave-particle
interactions involving SAW, and can provide scaling laws that facilitate analysis of
laboratory plasma experiments which elucidate physics governing the natural plasma
environment of our solar system. A natural extension of the current DK-1D simulation
is to extend the code to two-spatial dimensions using a hybrid method similar to that
used by Damiano et al (2003) and Swift (2007). Fluid ion equations can be added
to the drift-kinetic equations, which would allow the inclusion of finite temperature
ion effects, that are important in laboratory plasma and in some regions of our near-
Earth space environment. The advantages of the relatively noise-free DK-1D simulation
studies demonstrated in this paper could therefore be extended to the study of more
complicated plasma physics processes.
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Appendix: Derivation of E/E, in warm plasma

We follow the method of Nakamura (2000), and assume that the system is uniform
and linear. The magnetic field is in the z-direction and there is no uniform electric
field. We will assume cold ions to make the calculation consistent with the simulation
results. Perturbations all have the form exp[i(k. r—wt)] where k is the wavevector and
r= (z,y, z). The parallel current density jj and perpendicular current density j, may
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be connected through current continuity:
kJ_jJ_+k||j” = 0. (A1)

The perpendicular current can be obtained from the polarization current equation:
1 OF L W

= = - E A2

JL 100 Ot 100’ L (A.2)
whereas the parallel current is defined by:

J = qe/ vy fdvy, (A.3)

where 0f is the perturbation in the distribution function due to the waves. The
unperturbed part of the distribution function is denoted fy. The perturbation in f
can be obtained from the linearized Vlasov equation:

e Ey(9fo/0v))

§f = —i Ad
me (w - k”?)”) ( )
Substitute (A.4) into (A 3) to obtain:
- UnEn (0fo/0vy)
= / dvj| w—kyop) (A.5)

We assume that the unperturbed part of the distribution function can be described by
a Maxwellian, hence:

0fo ne| ”H

—— =-2 : A6
dv| T M (A.6)

Substitute (A.6) into (A.5) and perform a change of variables such that h = v} /v,

L Wi exp[ h2]
I = —21 7T1/2Uth k|E|/ dh—————— 5 (A7)

where ¢ = w/ (v cky). Adding —(% 4 ¢? to the numerator of the integrand allows us to
manipulate the integral into a form which resembles the plasma dispersion function:

"B {<+<2 1/2/ dhiex;;[__?]}, (A.8)

i 2 w
==
’fn

where we have used the standard results:

/oo exp(—az?)dr = (g)lp, (A.9)

—00

and:

/Oo r exp(—az?)dz = 0, (A.10)

—0o0

Fried and Conte [1961] define the plasma dispersion function as:
2
/ dheXp[ h ] (A.11)

although note that Nakamura (2000) quotes the definition with an opposite sign. To

T1/2

obtain the ratio of parallel to perpendicular electric fields, we substitute (A.11) into
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(A.8), and then proceed to substitute the expressions we have calculated for j; and j.
into (A.1). Rearranging this expression, we obtain (6). Note that the expression differs
from Nakamura’s Equation (5) by a factor of 2 (which arises from the derivative of the
Maxwellian distribution function) and by a different sign (which can be explained by
the different definitions of the plasma dispersion function).
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Figure captions

Figure 1. (a) Evolution of E as a function of distance along the simulation domain;
(b) Evolution of the spatial discrete fourier transform of FEj in the simulation; (c)
Evolution of the driven wave mode amplitude; (d) Evolution of the ratio Ej/E..
Driving term in simulation is turned off after three periods, indicated by the dashed
line. Simulation has By = 400 nT, n, = 3 x 10> m~3 and T, = 334 eV (hence
ven/va = 0.68).

Figure 2. (a) Damping rates from theory (solid line) and simulation (black crosses) as
a function of perpendicular wavenumber; (b) E;/E, from (6) (circles) and simulation
(crosses) as a function of perpendicular wavenumber.

Figure 3. (a) Damping rates from theory (red crosses) and simulation (black '+’
signs) as a function of the ratio of thermal speed to Alfvén speed; (b) Ej/E. from (6)
(red crosses) and simulation (crosses) as a function of the ratio of thermal speed to
Alfvén speed.

Figure 4. (a) Evolution of the perpendicular magnetic field, and perpendicular and
parallel electric field components derived from simulation potentials for a simulation
with |g.¢|/kpTe = 0.045. (b) Evolution of driven wave mode from seven simulations
with different driving rate R for a case of strong damping (|y|/w = 0.2). Each
line represents a different simulation and is labelled with the maximum value of
|ge@|/(kBT.) attained during the simulation run. In both (a) and (b), the dashed
line indicates the time at which the driving term is switched off.

Figure 5. Evolution of Ej/E, from simulations with different driving rate R for a
case of strong damping (|y|/w = 0.2). The maximum value of ¢¢/(kpT.) obtained
during each simulation run is indicated to the right of the figure. Each panel shows
the same vertical scale.

Figure 6. Evolution of (a) driven wave mode and (b) Ej/E, from simulations with
different driving rate R for a case of weak damping (|y|/w = 0.01). The maximum
value of g¢/(kpT.) attained during the three simulations shown here was 0.03 (solid
line), 0.08 (dot-dashed line) and 0.16 (dashed line) although the evolution in each case
is very similar.
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Figure 7. (a) Absolute (solid line), real (dashed line) and imaginary (dot-dashed line)
parts of E/E, as given by (6). (b) E)/E. given by (6) - solid line; (7) - dashed line;
(8) - dot-dashed line; and (9) - grey crosses.

Figure 8. (a) Surface plot of the distribution function at ¢t = 15 s during a simulation
with g¢/(kpT.) = 0.002; (b) feo at t = 0 (thin line) and ¢ = 15 s for the same
simulation; (c) Surface plot of the distribution function at ¢ = 15 s during a simulation
with g¢/(kpT.) = 0.045; (b) feo at t = 0 (thin line) and ¢ = 15 s for the same
simulation.
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