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A Wiener–Hopf type factorization for the exponential functional
of Lévy processes

J. C. Pardo, P. Patie and M. Savov

Abstract

For a Lévy process ξ = (ξt)t�0 drifting to −∞, we define the so-called exponential functional as
follows:

Iξ =

∫∞

0

eξt dt.

Under mild conditions on ξ, we show that the following factorization of exponential functionals:

Iξ
d
= IH− × IY

holds, where × stands for the product of independent random variables, H− is the descending
ladder height process of ξ and Y is a spectrally positive Lévy process with a negative mean
constructed from its ascending ladder height process. As a by-product, we generate an integral
or power series representation for the law of Iξ for a large class of Lévy processes with two-sided
jumps and also derive some new distributional properties. The proof of our main result relies on
a fine Markovian study of a class of generalized Ornstein–Uhlenbeck processes, which is itself
of independent interest. We use and refine an alternative approach of studying the stationary
measure of a Markov process which avoids some technicalities and difficulties that appear in the
classical method of employing the generator of the dual Markov process.

1. Introduction and main results

We are interested in studying the law of the so-called exponential functional of Lévy processes,
which is defined as follows:

Iξ =
∫∞

0

eξt dt,

where ξ = (ξt)t�0 is a Lévy process starting from 0 and drifting to −∞. Recall that a Lévy
process ξ is a process with stationary and independent increments and its law is characterized
completely by its Lévy–Khintchine exponent Ψ, which takes the following form:

log E[ezξ1 ] = Ψ(z) = bz +
σ2

2
z2 +

∫∞

−∞
(ezy − 1 − zyI{|y|<1})Π(dy), for any z ∈ iR, (1.1)

where σ � 0, b ∈ R and Π is a Lévy measure satisfying the condition
∫

R
(y2 ∧ 1)Π(dy) <∞;

see [1] for more information on Lévy processes.
The exponential functional Iξ has attracted the interest of many researchers over the last

two decades. This is mostly due to the prominent role played by the law of Iξ in the study
of important processes such as self-similar Markov processes, fragmentation and branching
processes but also in various settings ranging from astrophysics, biology to financial and
insurance mathematics; see the survey paper [5].
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So far there have been two main approaches which have been developed and used to derive
information about the law of the exponential functional. The first one uses the fact that
the Mellin transform of Iξ is a solution to a functional equation (see (4.1)), and is due to
Carmona et al. [9] and has been extended by Maulik and Zwart [20]. It is important to note
that (4.1) is useful only under the additional assumption that ξ possesses some finite, positive
exponential moments as then it is defined on a strip in the complex plane. This equation can be
solved for exponential functionals of the negative of subordinators and spectrally positive Lévy
processes yielding some simple expressions for their positive and negative integer moments,
respectively, which, in both cases, determine the law. Recently, Kuznetsov and Pardo [15] have
used some special instances of Lévy processes, for which the solution of the functional equation
can directly be guessed and verified from (4.1), to derive some information concerning the law
of Iξ. It is worth pointing out that, in general, it is not an easy exercise to invert the Mellin
(or moments) transform of Iξ since a fine analysis of its asymptotic behaviour is required.
This Mellin transform approach relies on two difficult tasks: to find a solution of the functional
equation and to provide a general criterion to ensure the uniqueness of its solution. For instance,
this approach does not seem to successfully cope with the whole class of spectrally negative
Lévy processes.

The second methodology, which has been developed recently by the second author in [23, 25],
is based on the well-known relation between the law of Iξ and the distribution of the absorption
time of positive self-similar Markov processes, which were introduced by Lamperti [17] in the
context of limit theorems for Markov processes. Indeed, in [25], it is shown that the law of
Iξ can be expressed as an invariant function of a transient Ornstein–Uhlenbeck companion
process to the self-similar Markov process. Using some potential theoretical devices, a power
series and a contour integral representation of the density are provided when ξ is a possibly
killed spectrally negative Lévy process.

In this paper, starting from a large class of Lévy processes, we show that the law of Iξ
can be factorized into the product of independent exponential functionals associated with
two companion Lévy processes, namely the descending ladder height process of ξ and a
spectrally positive Lévy process constructed from its ascending ladder height process. It is
well known that these two subordinators appear in the Wiener–Hopf factorization of Lévy
processes. The laws of these exponential functionals are uniquely determined by either their
positive or their negative integer moments. Moreover, whenever the law of any of these can
be expanded in series, we can, in general, develop the law of Iξ in series. Thus, for example,
the requirements put on the Lévy measure of ξ in [15] can be relaxed to conditions only
on the positive jumps (the Lévy measure on the positive half-line) of ξ, thus enlarging
considerably the class of Lévy processes ξ for which we can obtain a series expansion of the
law of Iξ.

Although our main result may have a formal explanation through the Wiener–Hopf
factorization combined with the functional equation (4.1), the proof is rather complicated and
involves a careful study of some generalized Ornstein–Uhlenbeck (for short GOU) processes,
different from the ones mentioned above. For this purpose, we deepen a technique used by
Carmona et al. [9, Proposition 2.1] and further developed in [16], which relates the law of Iξ to
the stationary measure of a GOU process. More precisely, we show that the density function of
Iξ, say mξ, is, under very mild conditions, the unique function satisfying the equation Lmξ = 0,
where L is an ‘integrated infinitesimal’ operator, which is strictly of an integral form. The latter
allows for a smooth and effortless application of Mellin and Fourier transforms. We believe that
this method itself will attract some attention as it removes generic difficulties related to the
study of the invariant measure via the dual Markov process such as the lack of smoothness
properties for the density of the stationary measure and also the application of transforms,
which usually requires the use of the Fubini theorem, which is difficult to verify when dealing
with non-local operators.
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Before stating our main result, let us introduce some notation. First, since in our setting ξ
drifts to −∞, it is well known that the ascending (descending) ladder height process H+ =
(H+(t))t�0 (respectively, H− = −H−,∗ = (−H−,∗(t))t�0) is a killed (respectively, proper)
subordinator. Then, we write, for any z ∈ iR,

φ+(z) = log E[exp(zH+(1))] = δ+z +
∫
(0,∞)

(ezy − 1)μ+(dy) − k+, (1.2)

where δ+ � 0 is the drift and k+ > 0 is the killing rate. Similarly, with δ− � 0, we have

φ−(z) = log E[exp(zH−(1))] = −δ−z −
∫
(0,∞)

(1 − e−zy)μ−(dy). (1.3)

We recall that the integrability condition
∫∞
0

(1 ∧ y)μ±(dy) <∞ holds. The Wiener–Hopf
factorization then reads as follows:

Ψ(z) = −cφ+(z)φ−(z) = −φ+(z)φ−(z), for any z ∈ iR, (1.4)

where we have used the convention that the local times have been normalized in a way that
c = 1; see [12, (5.3.1)]. We avoid further discussion as we assume (1.4) holds with c = 1.

Definition 1.1. We denote by P the set of positive measures on R+ that admit a non-
increasing density.

Before we formulate the main result of our paper, we introduce the two main hypotheses:

(H1) Assume that −∞ < E[ξ1] and that one of the following conditions holds:

E+ μ+ ∈ P and there exists z+ > 0 such that, for all z with �(z) ∈ (0, z+), we have
|Ψ(z)| <∞;

P+ Π+ ∈ P.

(H2) Assume that

P± μ+ ∈ P, k+ > 0 and μ− ∈ P.
Then the following result holds.

Theorem 1.2. Assume that ξ is a Lévy process that drifts to −∞ with characteristics of
the ladder height processes as in (1.2) and (1.3). Let either (H1) or (H2) hold. Then, in both
cases, there exists a spectrally positive Lévy process Y with a negative mean whose Laplace
exponent ψ+ takes the form

ψ+(−s) = −sφ+(−s) = δ+s
2 + k+s+ s2

∫∞

0

e−syμ+(y,∞) dy, s � 0, (1.5)

and the following factorization holds:

Iξ
d= IH− × IY , (1.6)

where
d= stands for the identity in law and × for the product of independent random variables.

Remark 1.3. We mention that the case when the mean is −∞ together with other
problems will be treated in a subsequent study as it demands techniques different from the
spirit of this paper.

The result in Theorem 1.2 can be looked at from another perspective. Let us have two
subordinators with Lévy measures μ± such that μ+ ∈ P, k+ > 0 and μ− ∈ P. Then, according
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to Vigon’s theory of philanthropy (see [30]), we can construct a process ξ such that its ladder
height processes have exponents as in (1.2) and (1.3) and hence ξ satisfies the conditions of
Theorem 1.2. Therefore, we will be able to synthesize examples starting from the building
blocks, that is, the ladder height processes. We state this as a separate result.

Corollary 1.4. Let μ± be the Lévy measures of two subordinators and μ+ ∈ P,
k+ > 0 and μ− ∈ P. Then there exists a Lévy process that drifts to −∞, whose ascending and
descending ladder height processes have the Laplace exponents (1.2) and (1.3), respectively.
Then all the claims of Theorem 1.2 hold and, in particular, we have the factorization (1.6).

We postpone the proof of the theorem to Section 4. In the next section, we provide some
interesting consequences whose proofs will be given in Section 5. Finally, in Section 3, we state
and prove several results concerning some GOU processes. They will be useful for our main
proof and, since they have an independent interest, we present them in a separate section.

2. Some consequences of Theorem 1.2

Theorem 1.2 allows for multiple applications. In this section, we discuss only a small number
of them but we wish to note that almost all results that have been obtained in the literature
under restrictions on all jumps of ξ can now be strengthened by imposing conditions only on
positive jumps. This is due to (1.6) and the fact that on the right-hand side of the identity the
law of the exponential functionals has been determined by its integral moments which admit
some simple expressions; see Propositions 4.6 and 4.7.

The factorization allows us to derive some interesting distributional properties. For instance,
we can show that the random variable Iξ is unimodal for a large class of Lévy processes. We
recall that a positive random variable (or its distribution function) is said to be unimodal
if there exists a ∈ R

+, the mode, such that its distribution function F (x) and the function
1 − F (x) are convex, on (0, a) and (a,+∞) respectively. It can be easily shown (see, for
example, [27]), that the random variable IY , as defined in Theorem 1.2, is self-decomposable
and thus, in particular, unimodal. It is natural to ask whether this property is preserved or not
for Iξ. We emphasize that this is not necessarily true even if IH− is unimodal itself. Cuculescu
and Theodorescu [11] provide a criterion for a positive random variable to be multiplicative
strongly unimodal (MSU), that is, its product with any independent unimodal random variable
remains unimodal. More precisely, they show that either the random variable has a unique mode
at 0 and the independent product with any random variable has also a unique mode at 0 or
the law of the positive random variable is absolutely continuous with a density m having the
property that the mapping x→ logm(ex) is concave on R. We also point out that it is easily
seen that the MSU property remains unchanged under rescaling and power transformations
and we refer to the recent paper [29] for more information about this class of random variables.

We proceed by recalling that, as a general result on the exponential functional, Bertoin
et al. [2, Theorem 3.9] have shown that the law of Iξ is absolutely continuous with a density
that we denote throughout by mξ.

In what follows, we show that when ξ is a spectrally negative Lévy process (that
is, Π(dy)I{y>0} ≡ 0 in (1.1) and ξ is not the negative of a subordinator), we recover the power
series representation obtained by the second author in [25] for the density of Iξ. We are now
ready to state the first consequence of our main factorization.

Corollary 2.1. Let ξ be a spectrally negative Lévy process with a negative mean.

(1) Then we have the following factorization:

Iξ
d= IH− ×G−1

γ , (2.1)
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where Gγ is a gamma random variable of parameter γ > 0, where γ > 0 satisfies the relation
Ψ(γ) = 0. Consequently, if IH− is unimodal, then Iξ is unimodal.

(2) The density function of Iξ has the form

mξ(x) =
x−γ−1

Γ(γ)

∫∞

0

e−y/xyγmH−(y) dy, x > 0, (2.2)

where Γ stands for the gamma function. In particular, we have

lim
x→∞xγ+1mξ(x) =

E[IγH− ]
Γ(γ)

.

(3) Moreover, for any 1/x < lims→∞(Ψ(s)/s),

mξ(x) =
E[IγH− ]

Γ(γ)Γ(γ + 1)
x−γ−1

∞∑
n=0

(−1)n Γ(n+ γ + 1)∏n
k=1 Ψ(k + γ)

x−n. (2.3)

(4) Finally, for any β � γ + 1, the mapping x �→ x−βmξ(x−1) is completely monotone
on R

+, and, consequently, the law of the random variable I−1
ξ is infinitely divisible with a

decreasing density whenever γ � 1.

Remark 2.2. (1) From [1, Corollary VII.5], we get that

lim
s→∞

Ψ(s)
s

=

{
b− ∫0

−1
yΠ(dy) if σ = 0 and

∫0

−∞(1 ∧ y)Π(dy) <∞,

+∞ otherwise.

Since we excluded the degenerate cases, we easily check that b− ∫0

−1
yΠ(dy) > 0.

(2) We point out that in [25] it is proved that the density extends to a function of a complex
variable which is analytical on the entire complex plane cut along the negative real axis and
admits a power series representation for all x > 0.

To illustrate the results above, we consider Ψ(s) = −(s− γ)φ−(s), s > 0, with γ > 0, and
where, for any α ∈ (0, 1),

−φ−(s) = s
Γ(α(s− 1) + 1)

Γ(αs+ 1)
(2.4)

=
∫∞

0

(1 − e−sy)
(1 − α) ey/α

αΓ(α+ 1)(ey/α − 1)2−α
dy =

∫∞

0

(1 − e−sy)πα(y) dy

is the Laplace exponent of a subordinator. Observing that the density πα(y) of the Lévy
measure of φ− is decreasing, we readily check that Ψ is the Laplace exponent of a spectrally
negative Lévy process. Next, using the identity IH−

(d)
= G1

α (see, for example, [26]), we get

Iξ
(d)
= G1

α ×G−1
γ ,

which, after some easy computations, yields, for any x > 0,

mξ(x) =
x−γ−1

Γ(γ)Γ(γ + 1)

∞∑
n=0

Γ(α(n+ γ) + 1)
(−x)−n

n!
(2.5)

=
Γ(αγ + 1)x−γ−1

Γ(γ)Γ(γ + 1) 1F0((α, αγ + 1);−x−1), (2.6)

where 1F0 stands for the so-called Wright hypergeometric function; see, for example,
[6, Section 12.1]. Finally, since G1

α is unimodal, we deduce that Iξ is unimodal. Actually, we
have a stronger result in this case since Iξ is itself MSU being the product of two independent
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MSU random variables, showing in particular that the mapping x �→ 1F0((α, αγ + 1); ex) is
log-concave on R for any α ∈ (0, 1) and γ > 0.

We now turn to the second application as an illustration of the situation P+ of Theorem 1.2.
We would like to emphasize that in this case, in general, we do not require the existence of
positive exponential moments. We are not aware of general examples that work without such
a restriction as (4.1) is always crucially used and it is of real help once it is satisfied on a strip.

Corollary 2.3. Let ξ be a Lévy process with −∞ < E[ξ1] < 0 and σ2 > 0. Moreover,
assume that

Π(dy)I{y>0} = cλ e−λy dy,

where c, λ > 0. Then we have, for any s > −λ,

ψ+(−s) = δ+s
2 + k+s+ c−

s2

λ+ s
,

where c− = c/φ−(λ) and δ+ > 0. Consequently, the self-decomposable random variable IY
admits the following factorization:

IY
d= δ+G

−1
θ2

×B−1(θ1, λ− θ1), (2.7)

where 0 < θ1 < λ < θ2 are the two positive roots of the equation ψ+(s) = 0 and B stands
for a beta random variable. Then, assuming that θ2 − θ1 is not an integer, we have, for any
1/x < lims→∞ |φ−(s)|,

mξ(x) =
k+Γ(λ+ 1)x−1

Γ(θ1 + 1)Γ(θ2 + 1)

(
2∑

i=1

E[Iθi

H− ]
Γ(θi + 1)

x−θiIφ−,i(θi + 1;−x−1)

)
,

where

Iφ−,i(θi + 1;x) =
∞∑

n=0

an(φ−, θi)
xn

n!
(2.8)

and

an(φ−, θi) =
2∏

j=1
j �=i

Γ(θj − θi − n)
Γ(λ− θi − n)

Γ(n+ θi + 1)∏n
k=1 φ−(k + θi)

, i = 1, 2.

Remark 2.4. The assumption σ2 > 0 and the restriction on θ2 − θ1 have been made in
order to avoid dealing with different cases, but they can both be easily removed. The latter
will affect the series expansion (5.3). The computation is easy but lengthy and we leave it out.

Remark 2.5. The methodology and results we present here can also be extended to the
case when the Lévy measure Π(dy)I{y>0} is a mixture of exponentials as in [8, 15] but we note
that here we have no restrictions on the negative jumps whatsoever.

We now provide an example of Theorem 1.2 in the situation P±.

Corollary 2.6. For any α ∈ (0, 1), let us set

Ψ(z) =
αzΓ(α(−z + 1) + 1)
(1 − z)Γ(−αz + 1)

φ+(z), z ∈ iR, (2.9)
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where φ+ is as in (1.2) with μ+ ∈ P, k+ > 0. Then Ψ is the Laplace exponent of a Lévy process
ξ that drifts to −∞. Moreover, the density of Iξ admits the following representation:

mξ(x) =
x−1/α

α

∫∞

0

gα((y/x)1/α)mY (y)y1/α−1 dy, x > 0, (2.10)

where gα is the density of a positive α-stable random variable. Furthermore, if
lims→∞ sα−1φ+(−s) = 0, then, for all x > 0,

mξ(x) =
k+

α

∞∑
n=1

∏n
k=1 φ+(−k)
Γ(−αn)n!

xn. (2.11)

Finally, the positive random variable IH− is MSU if and only if α � 1
2 . Hence, Iξ is unimodal

for any α � 1
2 .

Remark 2.7. The fact that IH− is MSU if and only if α � 1
2 is a consequence of the main

result of Simon [29].

Remark 2.8. Note that this is a very special example of the approach of building the Lévy
process from φ± when μ± ∈ P. One could construct many examples like this and this allows
for interesting applications in mathematical finance and insurance; see, for example, [24].

As a specific instance of the previous result, we may consider the case when

φ+(−s) = − Γ(α′s+ 1)
Γ(α′(s+ 1) + 1)

, s � 0,

with α′ ∈ (0, 1). We easily obtain from the identity (4.8) that

E[I−m
Y ] =

Γ(α′m+ 1 − α′)
Γ(1 − α′)

, m = 1, 2, . . . ,

that is, IY
d= G−α′

1−α′ . Hence, as the product of independent MSU random variables, Iξ is MSU
for any α′ ∈ (0, 1) and α � 1

2 . Moreover, using the asymptotic behaviour of the ratio of gamma
functions given in (5.7), we deduce that, for any α′ ∈ (0, 1 − α), we have

mξ(x) =
1

Γ(1 − α′)α

∞∑
n=1

Γ(α′n+ 1)
Γ(−αn)n!

(−1)nxn, (2.12)

which is valid for any x > 0.
We end this section by describing another interesting factorization of exponential functionals.

Indeed, assuming that μ− ∈ P, it is shown in [26, Theorem 1] that there exists a spectrally
positive Lévy process Ȳ = (Ȳt)t�0 with a negative mean and Laplace exponent given by
ψ̄+(−s) = −sφ−(s+ 1), s > 0, such that the following factorization of the exponential law

IH− × I−1
Ȳ

d= G1 (2.13)

holds. Hence, combining (2.13) with (1.6), we obtain that

Iξ × I−1
Ȳ

d= G1 × IY .

Consequently, we deduce from [28, Theorem 51.6] the following.

Corollary 2.9. If, in one of the settings of Theorem 1.2, we assume further that μ− ∈ P,
then the density of the random variable Iξ × I−1

Ȳ
, where IȲ is taken as defined in (2.13), is
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a mixture of exponential distributions and, in particular, it is infinitely divisible and non-
increasing on R

+.

Considering as above that IH−
(d)
= Gα

1 in Corollaries 2.1 and 2.3, we deduce from [26,
Section 3.2] that the random variable S−α

α × Iξ is a mixture of exponential distributions, where
Sα is a positive stable law of index α.

3. Some results on GOU processes

The results we present here will be central in the development of the proof of our main theorem.
However, they also have some interesting implications in the study of GOU processes, and for
this reason we state and prove them in a separate section.

We recall that, for a given Lévy process ξ, the GOU process Uξ is defined, for any t � 0,
x � 0, by

Uξ
t (x) = x eξt + eξt

∫ t

0

e−ξs ds. (3.1)

This family of positive strong Markov processes has been intensively studied by Carmona
et al. [9] and we refer to [22] for some more recent studies and references. The connection with
our current problem is explained as follows. From the identity in law (ξt − ξ(t−s)−)0�s�t =
(ξs)s�t, we easily deduce that, for any fixed t � 0,

Uξ
t (x) d= x eξt +

∫ t

0

eξs ds.

Thus, if limt→∞ ξt = −∞ almost surely (a.s.), we have that

U ξ
∞(x) d= Iξ,

and hence the law of Iξ is the unique stationary measure of Uξ; see [9, Proposition 2.1].
In what follows, we use the standard notation Cb(R) or Cb(R+) to denote the set of bounded

and continuous functions on R or on R+, respectively. Furthermore, we set V ′ = C2
b (R̄), where

C2
b (R̄) is the set of twice continuously differentiable bounded functions which together with its

first two derivatives are continuous on R̄ = [−∞,∞]. Then, we recall that (see, for example, [9]
for the special case when ξ is the sum of a Brownian motion and an independent Lévy process
with bounded variation and finite exponential moments and [16] for the general case) the
infinitesimal generator LUξ

of U ξ takes the form

LUξ

f(x) = Lξfe(lnx) + f ′(x), x > 0, (3.2)

whenever E[|ξ1|] <∞ and fe(x) = f(ex) ∈ Dom(Lξ), where Lξ stands for the infinitesimal
generator of the Lévy process ξ, considered in the sense of Itô and Neveu (see [19, pp. 628–630]).
Recall that in this sense V ′ ⊂ Dom(Lξ) and hence V = {f : R̄+ �→ R̄|fe ∈ V ′} ⊂ Dom(LUξ

).
In what follows, we often appeal to the quantities defined for x > 0 by

Π̄(x) :=
∫
|y|>x

Π(dy); Π̄±(x) :=
∫
y>x

Π±(dy), (3.3)

¯̄Π(x) :=
∫
y>x

Π̄(y)dy; ¯̄Π±(x) :=
∫
y>x

Π̄±(y)dy, (3.4)

where Π+(dy) = Π(dy)1{y>0} and Π−(dy) = Π(−dy)1{y>0}. Note that the quantities in (3.4)
are finite when E[|ξ1|] <∞. Moreover, when E[ξ1] <∞, (1.1) can be rewritten, for all z ∈ C,
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where it is well defined, as follows:

Ψ(z) = E[ξ1]z +
σ2

2
z2 + z2

∫∞

0

ezy ¯̄Π+(y) dy + z2

∫∞

0

e−zy ¯̄Π−(y) dy. (3.5)

For the proof of our main theorem, we need to study the stationary measure of Uξ and, in
particular, LUξ

in detail. To this end, we introduce the following functional space:

K =
{
f : R̄+ �−→ R̄|fe ∈ V ′; lim

x→−∞(|f ′e(x)| + |f ′′e (x)|) = 0;
∫

R

(|f ′e(x)| + |f ′′e (x)|) dx <∞
}
,

where fe(x) = f(ex).

Proposition 3.1. Let Uξ be a GOU process with E[|ξ1|] <∞. Then K ⊂ Dom(LUξ

).
Moreover, for any f ∈ K we have, for all x > 0,

LUξ

f(x) =
g(x)
x

+ E[ξ1]g(x) +
σ2

2
xg′(x)

+
∫∞

x

g′(y) ¯̄Π+

(
ln
y

x

)
dy +

∫x

0

g′(y) ¯̄Π−

(
ln
x

y

)
dy, (3.6)

where g(x) = xf ′(x). Finally, for any function h such that
∫∞
0

(y−1 ∧ 1)|h(y)| dy <∞ and f ∈
K, we have

(LUξ

f, h) = (g′,Lh), (3.7)

where (f1, f2) =
∫∞
0
f1(x)f2(x) dx and

Lh(x) =
σ2

2
xh(x) +

∫∞

x

(
1
y

+ E[ξ1]
)
h(y) dy

+
∫∞

x

¯̄Π−
(
ln
y

x

)
h(y) dy +

∫x

0

¯̄Π+

(
ln
x

y

)
h(y) dy. (3.8)

Remark 3.2. There are certain advantages when using the linear operator L instead of the
generator of the dual GOU. Its integral form allows for minimal conditions on the integrability
of |h| and requires no smoothness assumptions on h. Moreover, if h is positive, then Laplace and
Mellin transforms can easily be applied to Lh(x) since the justification of the Fubini theorem
is straightforward.

Proof. Let f ∈ K; then, by the very definition of K, we have that fe ∈ V ′ and, from (3.2),
we get that K ⊂ Dom(LUξ

). Next, (3.6) can be found in [16] but can equivalently be recovered
from (3.2) by simple computations using the expression for Lξ, which can be found in [1, p. 24].
To get (3.7) and (3.8), we recall that g(x) = xf ′(x) = f ′e(lnx) and use (3.6) combined with a
formal application of the Fubini theorem to write

(LUξ

f, h) =
∫∞

0

g(y)
y
h(y) dy +

σ2

2

∫∞

0

yg′(y)h(y) dy + E[ξ1]
∫∞

0

g(y)h(y) dy

+
∫∞

0

∫y

0

g′(v) ¯̄Π−
(
ln
y

v

)
dvh(y) dy +

∫∞

0

∫∞

y

g′(v) ¯̄Π+

(
ln
v

y

)
dvh(y) dy

=
∫∞

0

g′(v)
∫∞

v

h(y)
y

dy dv + E[ξ1]
∫∞

0

g′(v)
∫∞

v

h(y) dy dv +
σ2

2

∫∞

0

vg′(v)h(v) dv

+
∫∞

0

g′(v)
∫∞

v

¯̄Π−
(
ln
y

v

)
h(y) dy dv +

∫∞

0

g′(v)
∫v

0

¯̄Π+

(
ln
v

y

)
h(y) dy dv

= (g′,Lh). (3.9)
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To justify the Fubini theorem, note that f ∈ K implies that limx→0 g(x) = limx→0 f
′
e(lnx) = 0,

g(x) =
∫x

0
g′(v) dv and ∫∞

0

|g′(v)| dv =
∫

R

|f ′′e (y)|dy � C(g) <∞,

|g(x)| + x|g′(x)| = |f ′e(lnx)| + |f ′′e (lnx)| � C(g) <∞, (3.10)

where C(g) > 0. Note that (3.10) and the integrability of (1 ∧ y−1)|h(y)| imply that∫∞

0

∣∣∣∣g(y)y
∣∣∣∣h(y) dy �

∫∞

0

∫y

0

|g′(v)|dvy−1|h(y)| dy � C(g)
∫∞

0

y−1|h(y)| dy <∞,

and so the Fubini theorem applies to the first term in (3.9). The second term in (3.9) remains
unchanged, whereas for the third term we do the same computation noting that only y−1 is
not present. From (3.10) and the fact that ¯̄Π+(1) + ¯̄Π−(1) <∞ as E[|ξ1|] <∞, we note that,
for the other two terms, we have, with the constant C(g) > 0 in (3.10),∫x

0

|g′(v)| ¯̄Π−
(
ln
x

v

)
dv =

∫∞

0

|x e−wg′(x e−w)| ¯̄Π−(w) dw

� ¯̄Π−(1)
∫∞

0

|g′(v)| dv + C(g)
∫1

0

¯̄Π−(w) dw <∞,

∫∞

x

|g′(v)| ¯̄Π+

(
ln
v

x

)
dv =

∫∞

0

|x ewg′(x ew)| ¯̄Π+(w) dw

� ¯̄Π+(1)
∫∞

0

|g′(v)| dv + C(g)
∫1

0

¯̄Π+(w) dw <∞.

Therefore, we can apply the Fubini theorem, which completes the proof of Proposition 3.1.

The next result is known and can be found in [16] but we include it and sketch its proof for
the sake of completeness and for further discussion.

Theorem 3.3. Let U ξ be a GOU, where −∞ < E[ξ1] < 0. Then Uξ has a unique stationary
distribution which is absolutely continuous with density m and satisfies

Lm(x) = 0 for a.e. x > 0. (3.11)

Remark 3.4. Note that, due to the discussion in Section 3, m = mξ, that is, it equals the
density of the law of Iξ. Therefore, all the information we gathered for mξ in Section 2 is valid
here for the density of the stationary measure of Uξ, that is, m.

Remark 3.5. Equation (3.11) can be very useful. In this instance, it is far easier to be
studied than an equation coming from the dual process which is standard when stationary
distributions are discussed. It does not presuppose any smoothness of m, only its existence.
Moreover, as noted above, (3.11) is amenable to various transforms, and difficult issues such
as interchanging integrals using the Fubini theorem are effortlessly overcome.

Remark 3.6. It is also interesting to explore other cases when a similar equation to (3.11)
can be obtained. It seems the approach is fairly general but requires special examples to reveal
its full potential. For example, if L is an infinitesimal generator, N is a differential operator, L
is an integral operator and it is possible, for all f ∈ C∞

0 (R+), that is, infinitely differentiable
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functions with compact support, and a stationary density u, to write

(Lf, u) = (N f,Lu) = 0,

then we can solve the equation in the sense of Schwartz to obtain

ÑLu = 0,

where Ñ is the dual of N . If we show that necessarily for probability densities Lu = 0, then
we can use L to study stationarity.

Proof. From (3.7) and the fact thatm is the stationary density, we get, for all g(x) = xf ′(x),
with f ∈ C∞

0 (R+) ⊂ K,

(g′,Lm) = 0.

Then, from Schwartz theory of distributions, we get Lm(x) = C lnx+D a.e. Integrating
(3.8) and the right-hand side of this from 1 to z, multiplying the resulting identity by
z−1, subsequently letting z → ∞ and using the fact that m is a probability density, we
can show that necessarily C = D = 0. The last part requires some work, but it is mainly
technical.

Theorem 3.7. Let m̄ be a probability density function such that
∫∞
0
m̄(y)y−1 dy <∞ and

(3.11) holds for m̄; then

m(x) = m̄(x) a.e., (3.12)

where m is the density of the stationary measure of Uξ.

Remark 3.8. This result is very important in our studies. The fact that we have uniqueness
on a large class of probability measures allows us, by checking that (3.11) holds, to pin down the
density of the stationary measure of Uξ, which is of course the density of Iξ. The requirement
that

∫∞
0
m̄(y)y−1dy <∞ is in fact no restriction whatsoever as the existence of a first negative

moment of Iξ is known from the literature; see [3].

Remark 3.9. Also it is well known that if LÛ is the generator of the dual Markov
process, then LÛm̄ = 0 does not necessarily have a unique solution when LÛ is a non-local
operator. Moreover, one needs assumptions on the smoothness of m̄ so as to apply LÛ . Using
L circumvents this problem.

Proof. Let (Pt)t�0 be the semigroup of the GOU Uξ, that is, for any f ∈ Cb(R̄+),

Ptf(x) = E[f(U ξ
t (x))], x � 0, t � 0.

If (3.11) holds for some probability density m̄, then (3.7) is valid; that is, for all f ∈ K,

(LUξ

f, m̄) = (g′,Lm̄) = 0.

Assume for a moment that

PsK ⊂ K, for all s > 0, (3.13)

and there exists a constant C(f, ξ) > 0 such that, for all s � t,

|LUξ

Psf(x)| � C(f, ξ)(x−1 ∧ 1). (3.14)
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Then integrating out with respect to m̄(x) the standard equation

Ptf(x) = f(x) +
∫ t

0

LUξ

Psf(x) ds,

we get, for all f ∈ K, ∫∞

0

Ptf(x)m̄(x) dx =
∫∞

0

f(x)m̄(x) dx.

Since C∞
0 (R+) ⊂ K and C∞

0 (R+) is separating for C0(R+), the last identity shows that m̄
is a density of a stationary measure. Thus, by the uniqueness of the stationary measure, we
conclude (3.12). Let us prove (3.13) and (3.14). For f ∈ K write

gs(x) := Psf(x) = E[f(U ξ
s (x))] = E

[
f

(
x eξs +

∫s

0

eξv dv

)]
.

Put g̃s(x) = gs(ex) = (gs)e(x). Note that, since f ∈ K and 0 < ex+ξs � ex+ξs +
∫s

0
eξv dv, we

have the following bound:∣∣∣∣ex+ξsf ′
(
ex+ξs +

∫s

0

eξv dv

)∣∣∣∣+
∣∣∣∣e2(x+ξs)f ′′

(
ex+ξs +

∫s

0

eξv dv

)∣∣∣∣ � C(f), (3.15)

which holds uniformly in x ∈ R, s � 0. In view of (3.15), the dominated convergence theorem
gives

g̃′s(x) = E

[
ex+ξsf ′

(
ex+ξs +

∫s

0

eξv dv

)]
,

g̃′′s (x) = E

[
ex+ξsf ′

(
ex+ξs +

∫s

0

eξv dv

)]
+ E

[
e2(x+ξs)f ′′

(
ex+ξs +

∫s

0

eξv dv

)]
,

max{|g̃′s(x)|, |g̃′′s (x)|} � C(f). (3.16)

Clearly then, from (3.15) and (3.16), the dominated convergence theorem and the fact that
f ∈ K, which implies the existence of limx→∞ f ′′e (x) = b, we have

lim
x→∞ g̃′′s (x) = E

[
lim

x→∞

(
ex+ξsf ′

(
ex+ξs +

∫s

0

eξv dv

)
+ e2(x+ξs)f ′′

(
ex+ξs +

∫s

0

eξv dv

))]
= b.

Similarly, we show that limx→∞ g̃′s(x) = limx→∞ f ′e(x) and trivially limx→±∞ g̃s(x) =
limx→±∞ fe(x). Finally, using (3.15) and (3.16), f ∈ K, the dominated convergence theorem
and the fact that, for all s > 0, a.s.

∫s

0
eξvdv > 0, we conclude that

lim
x→−∞ |g̃′s(x)| + |g̃′′s (x)| � 2E

[
lim

x→−∞

∣∣∣∣ex+ξsf ′
(
ex+ξs +

∫s

0

eξv dv

)∣∣∣∣
+
∣∣∣∣e2(x+ξs)f ′′

(
ex+ξs +

∫s

0

eξv dv

)∣∣∣∣
]
,

which together with the limits above confirms that g̃s ∈ V ′ and proves that

lim
x→−∞ |g̃′s(x)| + |g̃′′s (x)| = 0.

Finally, since f ∈ K and (3.15) holds we check that

∫∞

0

|g̃′s(y)| dy � E

[∫∞
∫s
0 eξv dv

|f ′(u)| du
]

�
∫∞

0

|f ′(u)| du =
∫

R

|f ′e(u)| du < C(f)
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and ∫∞

0

|g̃′′s (y)| dy � E

[∫∞
∫s
0 eξv dv

(
u−

∫s

0

eξv dv

)
|f ′′(u)| du

]
�

∫∞

0

u|f ′′(u)| du

� 2
∫

R+

|f ′e(lnx)| + |f ′′e (lnx)|dx
x

= 2
∫

R

(|f ′e(y)| + |f ′′e (y)|) dy < C(f),

where C(f) is chosen to be the largest constant in all the inequalities above and we have used
the trivial inequality u2|f ′′(u)| � |f ′e(lnu)| + |f ′′e (lnu)|. Thus, using all the information above,
we conclude that gs = Psf ∈ K and (3.13) holds. Next we consider (3.14) keeping in mind that
all the estimates on g̃s that we used to show that gs ∈ K are uniform in s and x. We use (3.6)
with g(x) = xg′s(x) = g̃′s(lnx), the bounds on g̃s and its derivatives to get∣∣∣∣g(x)x + E[ξ1]g(x) +

σ2

2
xg′(x)

∣∣∣∣ � C(f)x−1 + C(f)|E[ξ1]| + C(f)
σ2

2
� C(f, σ,E[ξ1])(1 ∧ x−1).

Moreover, as in the proof of Proposition 3.1, we can estimate∣∣∣∣
∫x

0

g′(v) ¯̄Π−
(
ln
x

v

)
dv

∣∣∣∣+
∣∣∣∣
∫∞

x

g′(v) ¯̄Π+

(
ln
v

x

)
dv

∣∣∣∣
� ( ¯̄Π−(1) + ¯̄Π+(1))

∫∞

0

|g′(s)| ds+ C(f)
(∫1

0

¯̄Π−(s) ds+
∫1

0

¯̄Π+(s) ds
)

= (¯̄Π−(1) + ¯̄Π+(1))
∫∞

−∞
|g̃′′(y)| dy + C(f)

(∫1

0

¯̄Π−(s) ds+
∫1

0

¯̄Π+(s) ds
)
< C,

and therefore (3.14) holds since

LUξ

gs(x) =
g(x)
x

+ E[ξ1]g(x) +
σ2

2
xg′(x) +

∫x

0

g′(v) ¯̄Π−
(
ln
x

v

)
dv +

∫∞

x

g′(v) ¯̄Π+

(
ln
v

x

)
dv.

This concludes the proof.

Theorem 3.10. Let (ξ(n))n�1 be a sequence of Lévy processes with negative means
such that

lim
n→∞ ξ(n) d= ξ,

where ξ is a Lévy process with E[ξ1] < 0. Moreover, if, for each n � 1, m(n) stands for the law

of the stationary measure of the GOU process Uξ(n)
defined, for any t � 0, x � 0, by

Uξ(n)

t = x eξ
(n)
t + eξ

(n)
t

∫ t

0

e−ξ(n)
s ds,

and the sequence (m(n))n�1 is tight, then (m(n))n�1 converges weakly to m(0), which is the
unique stationary measure of the process Uξ, that is,

lim
n→∞m(n) w= m(0). (3.17)

Proof. Without loss of generality, we assume, using the Skorohod–Dudley theorem (see
[14, Chapter 3, Theorem 3.30]), that the convergence ξ(n) → ξ holds a.s. in the Skorohod
space D((0,∞)). Owing to the stationarity properties of m(n), for each t > 0, we have, for any
f ∈ Cb(R̄+),

(f,m(n)) = (P (n)
t f,m(n)) = (P (n)

t f − Ptf,m
(n)) + (Ptf,m

(n)),
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where P (n)
t and Pt are the semigroups of Uξ(n)

t and U ξ
t . For any x > 0,

|(P (n)
t f − Ptf,m

(n))| � 2||f ||∞m(n)(x,∞) + sup
y�x

|P (n)
t f(y) − Ptf(y)|

� 2||f ||∞m(n)(x,∞) + E

[
sup
y�x

|f(U ξ(n)

t (y)) − f(U ξ
t (y))|

]
. (3.18)

Taking into account that (m(n))n�1 is tight, we may fix δ > 0 and find x > 0 big enough
such that

sup
n�1

m(n)(x,∞) < δ.

Also, since f ∈ Cb(R+), it follows that f is uniformly continuous on R+. Therefore, to show that

lim
n→∞ E

[
sup
y�x

|f(U ξ(n)

t (y)) − f(U ξ
t (y))|

]
= 0,

owing to the dominated convergence theorem, all we need to show is that

lim
n→∞ sup

y�x
|U ξ(n)

t (y) − U ξ
t (y)| = 0. (3.19)

From the definition of Uξ(n)
and U ξ, we obtain that, for y � x,

|Uξ(n)

t (y) − U ξ
t (y)| � x|eξ

(n)
t − eξt | + |eξ

(n)
t − eξt |

∫ t

0

e−ξ(n)
s ds+ eξt

∣∣∣∣
∫ t

0

e−ξ(n)
s − e−ξs ds

∣∣∣∣ .
Since ξ(n) a.s.→ ξ in the Skorohod topology and

P({∃n � 1 : ξ(n)
t − ξ

(n)
t− > 0} ∩ {ξt − ξt− > 0}) = 0,

the first term on the right-hand side of the last expression converges a.s. to zero as n→ ∞.
The a.s. convergence in the Skorohod space implies the existence of time changes (λn)n�1 such
that, for each n � 1, λn(0) = 0, λn(t) = t, the mapping s �→ λn(s) is increasing and continuous
on [0, t], and

lim
n→∞ sup

s�t
|λn(s) − s| = lim

n→∞ sup
s�t

|λ−1
n (s) − s| = 0, (3.20)

lim
n→∞ sup

s�t
|ξ(n)

λn(s) − ξs| = lim
n→∞ sup

s�t
|ξ(n)

s − ξλ−1
n (s)| = 0. (3.21)

Hence, ∣∣∣∣
∫ t

0

e−ξ(n)
s − e−ξs ds

∣∣∣∣ �
∣∣∣∣
∫ t

0

e−ξ(n)
s − e

−ξ
λ
−1
n (s) ds

∣∣∣∣+
∣∣∣∣
∫ t

0

e
−ξ

λ
−1
n (s) − e−ξs ds

∣∣∣∣ .
The first term on the right-hand side clearly goes to zero due to (3.21), whereas (3.20) implies
that the second term goes to zero a.s. by the dominated convergence theorem and the fact that
pathwise, for s � t,

lim sup
n→∞

|e−ξ
λ
−1
n (s) − e−ξs | > 0

only on the set of jumps of ξ and this set has a zero Lebesgue measure. Thus, we conclude that

lim
n→∞ eξt

∣∣∣∣
∫ t

0

e−ξ(n)
s − e−ξs ds

∣∣∣∣ = 0.

Similarly, we observe that

lim
n→∞ |eξ

(n)
t − eξt |

∫ t

0

e−ξ(n)
s ds � lim

n→∞ t|eξ
(n)
t − eξt |esups�t(−ξ(n)

s ) = 0, (3.22)
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where the last identity follows from

sup
s�t

|(−ξ(n)
s )| � sup

s�t
|ξλ−1

n (s)| + sup
s�t

|ξ(n)
s − ξλ−1

n (s)| = sup
s�t

|ξs| + sup
s�t

|ξ(n)
s − ξλ−1

n (s)|,

and an application of (3.21). Therefore, (3.19) holds and

lim
n→∞ sup

y�x
|f(U (n)

t (y)) − f(U ξ
t (y))| = 0.

The dominated convergence theorem then easily gives that the right-hand side of (3.18) goes
to zero and hence

lim sup
n→∞

|(P (n)
t f − Ptf,m

(n))| � 2||f ||∞ sup
n�1

m(n)(x,∞) � 2||f ||∞δ.

As δ > 0 is arbitrary, we show that

lim
n→∞ |(P (n)

t f − Ptf,m
(n))| = 0.

Since (m(n))n�1 is tight, we choose a subsequence (m(nk))k�1 such that limk→∞m(nk) d= ν
with ν a probability measure. Then, for each t � 0,

(f, ν) = lim
k→∞

(f,m(nk)) = lim
k→∞

(P (nk)
t f,m(nk)) = lim

k→∞
(Ptf,m

(nk)) = (Ptf, ν).

Therefore, ν is a stationary measure for Uξ. But since m(0) is the unique stationary measure,
we conclude that

lim
n→∞m(n) w= ν = m(0).

This translates to the proof of (3.17).

4. Proof of Theorem 1.2

We start the proof by collecting some useful properties in two trivial lemmas. The first one
discusses the properties of Ψ.

Lemma 4.1 [28, Theorem 25.17]. The function Ψ, defined in (3.5), is always well-defined
on iR. Moreover, Ψ is analytic on the strip {z ∈ C;−a− < �(z) < a+}, where a−, a+ > 0 if
and only if E[e(−a−+ε)ξ1 ] <∞ and E[e(a+−ε)ξ1 ] <∞ for all 0 < ε < a− ∧ a+.

The second lemma concerns the properties of φ± and is easily obtained using Lemma 4.1,
(1.4) together with the analytical extension and the fact that subordinators have all negative
exponential moments.

Lemma 4.2. Let ξ be a Lévy process with E[ξ1] <∞. Then φ+ is always analytic on the
strip {z ∈ C;�(z) < 0} and is well-defined on iR. Moreover, φ+ is analytic on {z ∈ C;�(z) <
a+} for a+ � 0, if and only if E[e(a+−ε)ξ1 ] <∞ for some ε > 0. Similarly, φ− is always analytic
on the strip {z ∈ C;�(z) > 0} and is well-defined on iR, and φ− is analytic on {z ∈ C;�(z) <
−a−} for a− � 0, if and only if E[e(−a−+ε)ξ1 ] <∞ for some ε > 0. Finally, the Wiener–Hopf
factorization (1.4) holds on the intersection of the strips, where φ+ and φ− are well-defined.

4.1. Proof in the case E+

We recall that, in this section, we assume, in particular, that ξ is a Lévy process with a finite
negative mean and that there exists a+ > 0 such that |Ψ(z)| <∞ for any 0 < �(z) < a+.
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Next, we write θ∗ = max(θ, a+), where θ = inf{s > 0;Ψ(s) = 0} (with the convention that
inf ∅ = +∞). We also recall from [9] (see also [20]) that the Mellin transform of Iξ, defined by

Mmξ
(z) =

∫∞

0

xz−1mξ(x) dx,

satisfies, for any 0 < �(z) < θ∗, the following functional equation:

Mmξ
(z + 1) = − z

Ψ(z)
Mmξ

(z). (4.1)

We proceed by proving the following easy result.

Lemma 4.3. If μ+ ∈ P, then there exists a spectrally positive Lévy process Y with Laplace
exponent ψ+(−s) = −sφ+(−s), s � 0, and a negative finite mean −φ+(0). Moreover, if ξ has
a negative finite mean, then E[(IH− × IY )−1] = −φ+(0)φ′−(0+) < +∞.

Proof. The first claim follows readily from [1, Theorem VII.4(ii)] and by observing that
ψ′

+(0−) = φ+(0). From (4.8), we get that E[I−1
Y ] = k+. Next, since −∞ < E[ξ1] < 0, using

the dual version of Doney [12, Corollary 4.4.4(iv)], we get that −∞ < E[H−
1 ] < 0 and thus

φ′−(0+) <∞. From the functional equation (4.1), we easily deduce that E[I−1
H− ] = −φ′−(0+),

which completes the proof since the two random variables are independent.

Lemma 4.4. Assume that ξ has a finite negative mean and condition E+ holds. Let η be
a positive random variable with density κ(x), such that E[η−1] <∞ and E[ηδ] <∞ for some
θ∗ > δ > 0. Then, for any z such that �(z) ∈ (0, δ),

MLκ(z) =
∫∞

0

xz−1Lκ(x) dx =
Ψ(z)
z2

Mκ(z + 1) +
1
z
Mκ(z), (4.2)

and if MLκ(z) = 0, for 0 < a < �(z) < b < δ, then Lκ(x) = 0 a.e.
Furthermore, the law of the positive random variable IY × IH− , as defined in Theorem 1.2,

is absolutely continuous with a density, denoted by m̄, which satisfies

Lm̄(x) = 0 for a.e. x > 0. (4.3)

Remark 4.5. Note that the proof of this lemma shows that we have uniqueness for the
probability measures with a first negative moment that satisfy (4.1). This is a rather indirect
approach and seems to be more general than the verification approach of Kuznetsov and Pardo
[15, Proposition 2], where precise knowledge on the rate of decay of the Mellin transform
Mmξ

(z) is needed. In general, such an estimate on the decay seems impossible to obtain.

Proof. We start by proving (4.2). Note that since
∫∞
0
y−1κ(y)dy <∞, we can use

Proposition 3.1 to get

Lκ(x) =
σ2

2
xκ(x) +

∫∞

x

κ(y)
y

dy + E[ξ1]
∫∞

x

κ(y) dy +
∫∞

x

¯̄Π−
(
ln
y

x

)
κ(y) dy

+
∫x

0

¯̄Π+

(
ln
x

y

)
κ(y) dy. (4.4)
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As κ is a density, one can use the Fubini theorem to get, after some easy computations, that,
for any ε < �(z) < δ < θ∗, with 0 < ε < δ,

MLκ(z) =
∫∞

0

xz−1Lκ(x) dx

= Mκ(z + 1)
(
σ2

2
+

E[ξ1]
z

+
∫∞

0

¯̄Π−(y) e−zy dy +
∫∞

0

¯̄Π+(y) ezy dy

)
+

1
z
Mκ(z)

=
Ψ(z)
z2

Mκ(z + 1) +
1
z
Mκ(z).

Let MLκ(z) = 0 for ε < �(z) < δ. We show, using the fact that all terms in (4.4) are positive
except the negative one due to E[ξ1] < 0, that, with u = �(z),∫∞

0

xu−1|Lκ(x)| dx � Mκ(u+ 1)
(

Ψ(u)
u2

− 2
E[ξ1]
u

)
+

1
u
Mκ(u) <∞.

Given the absolute integrability of xz−1Lκ(x) along imaginary lines determined by
ε < �(z) < δ, we can apply the Mellin inversion theorem to the identity MLκ(z) = 0 to get
Lκ(x) = 0 a.e.; see [7, Section 6, Theorem 6].

Next it is plain that the law of IY × IH− is absolutely continuous since, for any x > 0,

m̄(x) =
∫∞

0

mY

(
x

y

)
y−1mH−(y) dy. (4.5)

Furthermore, from the Wiener–Hopf factorization (1.4) and the definition of ψ+, we have that
−z

Ψ(z)
=

−z
φ−(z)

−z
ψ+(z)

,

which is valid for any 0 < �(z) < θ∗. Thus, we deduce from the functional equation (4.1) and
the independency of Y and H− that, for any 0 < �(z) < θ∗,

Mm̄(z + 1) = − z

Ψ(z)
Mm̄(z). (4.6)

Next, since, from Lemma 4.3, we have that
∫∞
0
y−1m̄(y) dy <∞, we can use Proposition 3.1,

and thus (4.4) and subsequently (4.2) are valid for m̄. Moreover, owing to the representation
(3.5) of Ψ and relation (4.6), we have that, for any ε < �(z) < θ∗ with 0 < ε < θ∗/4,

MLm̄(z) =
Ψ(z)
z2

Mm̄(z + 1) +
1
z
Mm̄(z) = 0,

and we conclude that Lm̄(x) = 0 a.e.

We are now ready to complete the proof of Theorem 1.2 in the case E+. Indeed, since mξ,
the density of Iξ, is the density of the stationary measure of Uξ, we have that mξ is also a
solution to (3.11). Combining Lemma 4.4 with the uniqueness argument of Theorem 3.7, we
conclude that the factorization (1.6) holds.

4.2. Proof of the two other cases: P+ and P±

We start by providing some results that will be used several times throughout this section.

Proposition 4.6 (Carmona et al. [9]). Let H be the negative of a (possibly killed)
subordinator with Laplace exponent φ; then the law of IH is determined by its positive entire
moments as follows:

E[ImH ] =
Γ(m+ 1)∏m
k=1(−φ(k))

, m = 1, 2, . . . . (4.7)
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Proposition 4.7 (Bertoin and Yor [4]). Let Y be an unkilled spectrally positive Lévy
process with a negative mean and Laplace exponent ψ+; then the law of 1/IY is determined
by its positive entire moments as follows:

E[I−m
Y ] = E[−Y1]

∏m−1
k=1 ψ+(−k)

Γ(m)
, m = 1, 2, . . . , (4.8)

with the convention that the right-hand side is E[−Y1] when m = 1.

In order to get (1.6) in the case when ξ does not have some finite positive exponential
moments, we will develop some approximation techniques. However, the exponential functional
is not continuous in the Skorohod topology and therefore we have to find some criteria in order
to secure the weak convergence of sequences of exponential functionals. This is the aim of the
next result.

Lemma 4.8. Let (ξ(n))n�1 be a sequence of Lévy processes with negative means such that

lim
n→∞ ξ(n) d= ξ,

where ξ is a Lévy process with E[ξ1] < 0. Let us assume further that at least one of the following
conditions holds:

(a) for each n � 1, ξ(n) and ξ are unkilled spectrally positive Lévy processes such that

limn→∞ E[ξ(n)
1 ] = E[ξ1];

(b) for each n � 1, ξ(n) and ξ are the negative of unkilled subordinators;
(c) the sequence (mξ(n))n�1 is tight, where mξ(n) is the law of Iξ(n) .

Then, in all cases, we have

lim
n→∞ Iξ(n)

d= Iξ. (4.9)

Proof. To prove (4.9) in the case (a), we simply observe that writing ψ
(n)
+ for the

Laplace exponent of ξ
(n)
1 , we have, by the Lévy continuity theorem (see, for example,

[13, Theorem XIII.1.2]), that, for all s � 0, ψ(n)
+ (−s) → ψ+(−s) as n→ ∞. Next, putting

M
(n)
m for the sequence of negative entire moments of Iξ(n) , we easily deduce, from (4.8) for all

m = 1, 2, . . . , that limn→∞M
(n)
m = Mm, where Mm is the sequence of negative entire moments

of Iξ. These random variables being moment determinate (see Proposition 4.7), we conclude
(a) by invoking [13, Example (b), p. 269]. The second case follows by applying a similar line
of reasoning to the expression (4.7). Finally, the case (c) is a straightforward consequence of
(3.17) of Theorem 3.10.

Before stating our next result, we need to introduce the following notation. Let us first
recall that the reflected processes (R+

t = sup0�s�t ξs − ξt)t�0 and (R−
t = ξt − inf0�s�t ξs)t�0

are Feller processes in [0,∞) which possess local times L± = (L±
t )t�0 at the level 0. The

ascending and descending ladder times, i.e. l± = (l±(t))t�0, are defined as the right-continuous
inverses of L±, that is, for any t � 0, l±(t) = inf{s > 0;L±

s > t}, and the ladder height processes
H+ = (H+(t))t�0 and −H− = (−H−(t))t�0 are defined by

H+(t) = ξl+(t) = sup
0�s�l+(t)

ξs, whenever l+(t) <∞,

−H−(t) = ξl−(t) = inf
0�s�l−(t)

ξs, whenever l−(t) <∞.
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Here, we use the convention inf{∅} = ∞ and H+(t) = ∞ when L+
∞ � t and −H−(t) = −∞

when L−
∞ � t. From [12, p. 27], we have, for α, β � 0,

log E[e−αl+(1)−βH+(1)] = −k(α, β) = −k+ − η+α− δ+β

−
∫∞

0

∫∞

0

(1 − e−(αy1+βy2))μ+(dy1, dy2), (4.10)

where η+ is the drift of the subordinator l+ and μ+(dy1, dy2) is the Lévy measure of the
bivariate subordinator (l+,H+). Similarly, for α, β � 0,

log E[e−(αl−(1)−βH−(1))] = −k∗(α, β) = −η−α− δ−β

−
∫∞

0

∫∞

0

(1 − e−(αy1+βy2))μ−(dy1, dy2), (4.11)

where η− is the drift of the subordinator l− and μ−(dy1, dy2) is the Lévy measure of the
bivariate subordinator (l−,−H−).

Lemma 4.9. Let ξ be a Lévy process with triplet (a, σ,Π) and Laplace exponent ψ. Let,
for any n � 1, ξ(n) be the Lévy process with Laplace exponent denoted by ψ(n) and triplet
(a, σ,Π(n)) such that Π(n) = Π on R− and on R+

Π(n)(dy) = h(n)(y)Π(dy),

where, for all y > 0, 0 � h(n)(y) ↑ 1 as n→ ∞ and uniformly, for n � 1, we have that, for some
C � 0, lim supy→0 y

−1(1 − hn(y)) � C. Then,

lim
n→∞ ξ(n) d= ξ, (4.12)

and, for all α � 0, β � 0, we have, as n→ ∞,

k(n)(α, β) −→ k(α, β), (4.13)

k
(n)
∗ (α, β) −→ k∗(α, β),

where k(n)(α, β) and k
(n)
∗ (α, β) stand for the bivariate Laplace exponents of the ladder processes

of ξ(n), normalized such that k(n)(1, 0) = k
(n)
∗ (1, 0) = 1. Also k(α, β) and k∗(α, β) stand for

the bivariate Laplace exponents of the ladder processes of ξ, normalized such that k(1, 0) =
k∗(1, 0) = 1.

Remark 4.10. Denote by (l+(n),H
+
(n)) (respectively (l−(n),−H−

(n))) the bivariate ascending
(respectively descending) ladder processes of ξ(n) and (l+,H+) (respectively (l−,−H−)) the
bivariate ascending (respectively descending) ladder processes of ξ; then from the Lévy
continuity theorem we deduce that, as n→ ∞,

(l+(n),H
+
(n))

d−→ (l+,H+),

(l−(n),−H−
(n))

d−→ (l−,−H−), (4.14)

where in the convergence the sequence of killing rates of the ladder height processes also
converges to the killing rate of the limiting process.

Proof. For the sake of completeness and also to include both the compound Poisson case
and the cases when α = 0 and/or β = 0, we must improve the proof of Vigon [30, Lemma 3.4.2].
Next, since Π(n)(dx) v→ Π(dx), where v→ stands for vague convergence, we get (4.12) from, for
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example, [14, Theorem 13.14(i)]. We note the identity

ξ
d= ξ(n) + ξ̃(n), (4.15)

where ξ̃(n) is a subordinator with Lévy measure Π̃(n)(dy) = (1 − hn(y))Π(dy) and no drift, as
1 − hn(y) = O(y) at zero. Then, when ξ is a compound Poisson process we have that ξ̃(n) is a
compound Poisson process and, for all t > 0,

P(ξ(n)
t = 0) = P(ξt = 0, t < T̃ (n)) + P(ξ(n)

t = 0, t � T̃ (n)),

where T̃ (n) = inf{s > 0; ξ̃(n)
s > 0}. Since, for all y > 0, h(n)(y) ↑ 1, it follows that P(t > T̃ (n)) →

0 as n→ ∞ and

P(ξ(n)
t ∈ dy)I{y�0}

v−→ P(ξt ∈ dy)I{y�0}.

When ξ is not a compound Poisson process, the law of ξ(n) does not charge {0} and thus, as
n→ ∞,

P(ξ(n)
t ∈ dy)I{y>0}

v−→ P(ξt ∈ dy)I{y>0}.

Henceforth, from the expression

k(n)(α, β) = exp
(∫∞

0

dt

∫∞

0

(e−t − e−αt−βy)t−1
P(ξ(n)

t ∈ dy)
)
, (4.16)

which holds for any α > 0 and β > 0 (see, for example, [1, Corollary VI.2.10]), we deduce easily
that, for both cases,

lim
n→∞ k(n)(α, β) = k(α, β). (4.17)

Moreover, we can write

k(n)(α, β) = k(n)(0, 0) + k̃(n)(α, β), (4.18)

where k̃(n) are the Laplace exponents of unkilled bivariate subordinators; see [12, p. 27]. Note
from (4.16) that

k(n)(0, 0) = exp
(
−

∫∞

0

(1 − e−t)P(ξ(n)
t � 0)

dt

t

)
.

Next, from (4.15) and the fact that ξ̃(n) is a subordinator, we have that P(ξ(n)
t � 0) � P(ξt �

0) and, appealing to the monotone convergence theorem, we get that k(n)(0, 0) ↓ k(0, 0).
Hence, we deduce from (4.17) and (4.18) that, for any α, β > 0, k̃(n)(α, β) → k̃(α, β), where
k̃(α, β) = k(α, β) − k(0, 0). From the Lévy continuity theorem, we have, writing (l̃+(n), H̃

+
(n)) for

the unkilled versions of the ascending bivariate ladder processes, that (l̃+(n), H̃
+
(n))

d→ (l̃+, H̃+),
where (l̃+, H̃+) stands also for the unkilled version of (l̃+, H̃+). These probability distributions
being proper, we have that, for all α, β ∈ R, k̃(n)(iα, iβ) → k̃(iα, iβ); see [13, Theorem XV.3.2].
Hence, k(n)(0, iβ) → k(0, iβ) for all β ∈ R, which completes the proof for the ascending ladder
height processes. The proof of the convergence of the Laplace exponent of the bivariate
descending ladder process follows readily from the identities

ψ(n)(iβ) − α = −k(n)(α,−iβ)k(n)
∗ (α, iβ),

ψ(iβ) − α = −k(α,−iβ)k∗(α, iβ),

and the convergence of ψ(n) to ψ and k(n) to k.

4.2.1. The case P + . We first consider the case when ξ satisfies both the conditions P+
and E[ξ1] > −∞. We start by showing that the condition P+ implies that μ+ ∈ P. To this
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end, we shall need the so-called equation amicale inversée derived by Vigon, for all x > 0,

μ̄+(x) =
∫∞

0

Π̄+(x+ y)U−(dy), (4.19)

where U− is the renewal measure corresponding to the subordinator H−; see, for example, [12,
Theorem 5.16].

Lemma 4.11. Let us assume that Π̄+(x) has a non-positive derivative π+(x) defined for
all x > 0 and such that −π+(x) is non-increasing. Then μ̄+(x) is differentiable with derivative
u(x) such that −u(x) is non-increasing.

Proof. Fix x > 0 and choose 0 < h < x/3. Then we have the trivial bound using the non-
increasing property of −π+(x) and the description (4.19) of μ̄+(x)

|μ̄+(x± h) − μ̄+(x)|
h

�
∫∞

0

|Π̄+(x+ y ± h) − Π̄+(x+ y)|
h

U−(dy)

�
∫∞

0

(−π+(x+ y − h))U−(dy)

�
∫∞

0

(
−π+

(
2x
3

+ y

))
U−(dy).

We show now that the last expression is finite. Note that
∫∞

0

(
−π+

(
2x
3

+ y

))
U−(dy) �

∑
n�0

−π+

(
2x
3

+ n

)
(U−(n+ 1) − U−(n)).

From the trivial inequality U−(n+ 1) − U−(n) � U−(1) (see [12, Chapter 2, p.11]) and since
−π+(x) is the non-increasing density of Π̄+(x), we have, with C = U−(1) > 0,

∫∞

0

−π+

(
2x
3

+ y

)
U−(dy) � C

∑
n�0

−π+

(
2x
3

+ n

)

� −Cπ+

(
2x
3

)
+ C

∑
n�1

(
Π̄+

(
2x
3

+ n− 1
)
− Π̄+

(
2x
3

+ n

))

� −Cπ+

(
2x
3

)
+ CΠ̄+

(
2x
3

)
<∞.

Therefore, for all x > 0, the dominated convergence applies and gives

u(x) =
∫∞

0

π+(x+ y)U−(dy).

As −π+(x) is non-increasing, we deduce that −u(x) is non-increasing as well.

In the case P+, in comparison to the case E+, we have that ξ does not necessarily have
some positive exponential moments. To circumvent this difficulty, we introduce the sequence of
Lévy processes ξ(n) obtained from ξ by the following construction: we keep the negative jumps
intact and we discard some of the positive ones. More precisely, we to thin the jumps of ξ to
get a Lévy process ξ(n) with Π̄(n)

+ whose density has the form

π
(n)
+ (x) = π+(x)(I{0<x�1} + e−n−1(x−1)

I{x>1}). (4.20)
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Clearly, −π(n)
+ (x) is non-increasing and E[esξ

(n)
1 ] <∞ for s ∈ (0, n−1); see (4.20). Moreover,

since we have only thinned the positive jumps and pointwise limn→∞ π
(n)
+ (x) = π+(x),

see (4.20),

lim
n→∞ ξ(n) a.s.= ξ (4.21)

in the Skorohod space D(0,∞). Finally, since −∞ < E[ξ(n)
1 ] < E[ξ1] < 0 and −π(n)

+ (x) is non-
increasing, it follows that Lemma 4.11 applies and we deduce that the Lévy measure of the
ascending ladder height process of ξ(n) has a negative density whose absolute value is non-
increasing in x. Then, since, for each n � 1, ξ(n) has some finite positive exponential moments,
we have that

Iξ(n)
d= IH−

(n)
× IY (n) . (4.22)

Since we thinned the positive jumps of ξ, for all t � 0, ξ(n)
t � ξt and the monotone convergence

theorem together with (4.21) imply that

lim
n→∞ Iξ(n)

a.s.= Iξ. (4.23)

By the choice of the approximating sequence ξ(n), we can first use Lemma 4.9 to get

lim
n→∞H−

(n)

d= H−, (4.24)

and then Lemma 4.8(b) to obtain that

lim
n→∞ IH−

(n)

d= IH− . (4.25)

Again from Lemma 4.9, we deduce that k(n)(0,−s) → k(0,−s) for all s � 0, and
limn→∞ E[Y (n)

1 ] = − limn→∞ k(n)(0, 0) = E[Y1], so we can apply Lemma 4.8(a) to get

lim
n→∞ IY (n)

d= IY ,

which completes the proof in this case.

4.2.2. The case P±. First from the philanthropy theory developed by Vigon [30], we know
that the conditions μ+ ∈ P and μ− ∈ P ensure the existence of a Lévy process ξ with ladder
processes H+ and H− and such that the Wiener–Hopf factorization (1.4) holds on iR. Since
we also assume that k+ > 0, this Lévy process necessarily drifts to −∞. Next, let us introduce
the Laplace exponents

φ
(p)
+ (z) = δ+z +

∫
(0,∞)

(ezx − 1)μ(p)
+ (dx) − k+, (4.26)

φ
(n)
− (z) = −δ−z −

∫
(0,∞)

(1 − e−zx)μ(n)
− (dx), (4.27)

where we set μ(p)
+ (dx) = e−x/pμ+(dx), p > 0, and μ

(n)
− (dx) = e−x/nμ+(dx), n > 0. Plainly, for

any p > 0, n > 0, μ(p)
+ ∈ P and μ(n)

− ∈ P, hence there exists a Lévy process ξ(p,n) with Laplace
exponent Ψ(p,n) satisfying

Ψ(p,n)(z) = −φ(p)
+ (z)φ(n)

− (s), (4.28)

which is easily seen to be analytic on the strip −1/n < �(z) < 1/p. Moreover, from
[12, Corollary 4.4.4], we have E[ξ(p,n)

1 ] = −k+

(∫∞
0
x e−x/nμ+(dx) + δ−

)
, which is clearly finite

and negative. Hence, the conditions E+ are satisfied and we have, with obvious notation, that

Iξ(p,n)
d= IH−

(n)
× IY (p) ,
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where, for any p > 0, Y (p) is a spectrally positive Lévy process with Laplace exponent
ψ

(p)
+ (−s) = −sφ(p)

+ (−s), s � 0. Let us first deal with the case n→ ∞. Since φ(n)
− (s) → φ−(s)

for all s � 0, we have that

lim
n→∞H−

(n)

d= H−,

and from Lemma 4.8(b) we get that

lim
n→∞ IH−

(n)

d= IH− .

Thus, we deduce that, for any fixed p > 0, the sequence (Iξ(p,n))n�1 is tight. Moreover, for any
fixed p > 0, we also have ξ(p,n) d→ ξ(p), as n→ ∞, where ξ(p) has a Laplace exponent Ψ(p)

given by

Ψ(p)(z) = −φ(p)
+ (z)φ−(z). (4.29)

Indeed, this is true by the philanthropy theory. Then, from Lemma 4.8(c), we have that

lim
n→∞ Iξ(p,n)

d= Iξ(p)
d= IH− × IY (p) ,

which provides a proof of the statement in the case P± together with the existence of some
finite positive exponential moments. Next, as p→ ∞, φ

(p)
+ (s) → φ+(s) for all s � 0, and we

have that

lim
p→∞Y (p) d= Y,

where Y is a spectrally positive Lévy process with Laplace exponent ψ+(−s) = −sφ+(−s). As
E[Y (p)

1 ] = φ
(p)
+ (0) = −k+, we can use Lemma 4.8(a) to obtain

lim
p→∞ IY (p)

d= IY .

As above, we conclude from Lemma 4.8(c) that

lim
p→∞ Iξ(p)

d= Iξ
d= IH− × IY ,

which completes the proof of the theorem. �

5. Proof of the corollaries

5.1. Corollary 2.1

First, since ξ is spectrally negative and has a negative mean, it is well known that the function
Ψ admits an analytical extension on the right-half plane, which is convex on R

+ drifting to ∞,
with Ψ′(0+) < 0, and thus there exists γ > 0 such that Ψ(γ) = 0. Moreover, the Wiener–Hopf
factorization for spectrally negative Lévy processes boils down to

Ψ(s) =
Ψ(s)
s− γ

(s− γ), s > 0.

It is not difficult to check that, with φ+(s) = s− γ and φ−(s) = −Ψ(s)/(s− γ), we have
μ−, μ+ ∈ P. Observing that ψ+(s) = s2 − γs is the Laplace exponent of a scaled Brownian
motion with a negative drift γ, it is well known (see, for example, [31]) that

IY
d= G−1

γ .

The factorization follows then from Theorem 1.2 considered under the condition P±. Since the
random variable G−1

γ is MSU (see [11]), we have that if IH− is unimodal, then Iξ is unimodal,
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which completes the proof of (1). Next, (2) follows easily from the identity

mξ(x) =
1

Γ(γ)
x−γ−1

∫∞

0

e−y/xyγmH−(y) dy (5.1)

combined with an argument of monotone convergence.
Further, we recall that Chazal et al. [10, Theorem 4.1] showed that, for any β � 0, φβ(s) =

(s/(s+ β))φ−(s+ β) is also the Laplace exponent of a negative of a subordinator and with
obvious notation

mH−
β

(x) =
xβmH−(x)

E[IβH− ]
, x > 0. (5.2)

Then, assuming that 1/x < limu→∞ Ψ(u)/u, we have, from (4.7), (5.1) and (5.2),

mξ(x) =
1

Γ(γ)
x−γ−1

∞∑
n=0

(−1)nx
−n

n!

∫∞

0

yn+γmH−(y) dy

=
E[IγH− ]
Γ(γ)

x−γ−1
∞∑

n=0

(−1)nx
−n

n!
n!∏n

k=1 −(k/(k + γ))φ−(k + γ)

=
E[IγH− ]

Γ(γ)Γ(γ + 1)
x−γ−1

∞∑
n=0

(−1)n Γ(n+ γ + 1)∏n
k=1 −kφ−(k + γ)

x−n

=
E[IγH− ]

Γ(γ)Γ(γ + 1)
x−γ−1

∞∑
n=0

(−1)n Γ(n+ γ + 1)∏n
k=1 Ψ(k + γ)

x−n,

where we used an argument of dominated convergence and the identity −kφ−(k + γ) = Ψ
(k + γ). Next, again from (5.1), we deduce that

x−βmξ(x−1) =
1

Γ(γ)
xγ+1−β

∫∞

0

e−xyyγmH−(y) dy,

from which we easily see that, for any β � γ + 1, the mapping x �→ x−βmξ(x−1) is completely
monotone as the product of two Laplace transforms of positive measures. The proof of the
corollary is completed by invoking [28, Theorem 51.6] and noting that I−1

ξ has a density given
by x−2mξ(x−1), that is, with β = 2.

5.2. Corollary 2.3

We first observe from equation (4.19) that, in this case,

μ̄+(x) = c e−λx

∫∞

0

e−λyU−(dy)

= c−e−λx,

where the last identity follows from [12] and we have set c− = c/(φ−(λ)). From (1.5), we deduce
that Y is a spectrally positive Lévy process with Laplace exponent given, for any s < λ, by

ψ+(s) = δ+s
2 − k+s+ c−

s2

λ− s

=
s

λ− s
(−δ+s2 − (δ+λ+ k+ + c−)s− k+λ),

where δ+ > 0 since σ > 0; see [12, Corollary 4.4.4]. Thus, using the continuity and convexity
of ψ+ on (−∞, λ) and on (λ,∞), studying its asymptotic behaviour on these intervals and the
identity ψ′

+(0) = −k+ < 0, we easily show that the equation ψ+(s) = 0 has three roots that
are real, one is obviously 0 and the two others θ1 and θ2 are such that 0 < θ1 < λ < θ2. Thus,

ψ+(−s) =
δ+s

λ+ s
(s+ θ1)(s+ θ2), s > −λ.
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Next, from (4.8), we have, with C = k+(Γ(λ+ 1)/Γ(θ1 + 1)Γ(θ2 + 1)) and for m = 2, . . ., that

E[I−m
Y ] = Cδm−1

+

Γ(m+ θ1)Γ(m+ θ2)
Γ(m+ λ)

,

from which we easily deduce (2.7) by moment identification. Note that a simple computation
gives θ1θ2 = δ+λk+, securing that the distribution of IY is proper. Next, the random variable
I−1
Y being moment determinate, we have, for �(z) < θ1 + 1, that

E[Iz−1
Y ] = Cδ−z

+

Γ(−z + θ1 + 1)Γ(−z + θ2 + 1)
Γ(−z + λ+ 1)

.

Applying the inverse Mellin transform (see, for example, [21, Section 3.4.2]), we get

mY

( x
δ+

)
= C

2∑
i=1

x−θi−1Ii(−x−1), x > 0, (5.3)

where Ii(x)=
∑∞

n=0 bn,i(xn/n!), bn,1 =Γ(θ2−θ1−n)/Γ(λ− θ1 − n) and bn,2 = Γ(θ1 − θ2 − n)/
Γ(λ− θ2 − n). The proof of the corollary is completed by following a line of reasoning similar
to the proof of Corollary 2.1.

5.3. Corollary 2.6

For any α ∈ (0, 1), let us observe that, for any s � 0,

φ−(−s) =
αsΓ(α(s+ 1) + 1)
(1 + s)Γ(αs+ 1)

(5.4)

=
∫∞

0

(1 − e−sy)uα(y) dy, (5.5)

where uα(y) = e−ye−y/α/Γ(1 − α)(1 − e−y/α)α+1. We easily check that uα(y)dy ∈ P and
hence Ψ is a Laplace exponent of a Lévy process that drifts to −∞. Next, we know (see,
for example, [26]) that

IH̃−
d= S−α

α ,

where H̃− is the negative of the subordinator having Laplace exponent

φ̃−(−s) =
αΓ(αs+ 1)

Γ(α(s− 1) + 1)
.

Observing that φ−(−s) = (−s/(−s+ 1))φ̃−(−s+ 1), we deduce, from (5.2), that

mH−(x) =
x−1/α

α
gα(x−1/α), x > 0, (5.6)

from which we readily get the expression (2.10). Then we recall the following power series
representation of positive stable laws (see, for example, [28, Formula (14.31)]),

gα(x) =
∞∑

n=1

(−1)n

Γ(−αn)n!
x−(1+αn), x > 0.

Then, by means of an argument of dominated convergence justified by the condition
lims→∞ sα−1φ+(−s) = 0, we get, for all x > 0, that

mξ(x) =
k+

α

∞∑
n=1

(−1)n

Γ(−αn)n!
xn

∫∞

0

y−(n+1)fY (y) dy

=
k+

α

∞∑
n=1

∏n
k=1 φ+(−k)
Γ(−αn)n!

xn,
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where we used the identity (4.8), E[−Y1] = k+ and ψ+(−k) = −kφ+(−k). The fact that the
series is absolutely convergent is justified by using classical criteria combined with the Euler
reflection formula Γ(1 − z)Γ(z) sin(πz) = π with the asymptotics

Γ(z + a)
Γ(z + b)

= za−b(1 +O(|z|−1)) as z −→ ∞, |arg(z)| < π; (5.7)

see, for example, [18, Chapter 1]. We complete the proof by mentioning that Simon [29] proved
recently that the positive stable laws are MSU if and only if α � 1

2 , which implies, from (5.6),
that IH− is also MSU in this case.
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of Lévy processes’, Potential Anal. 17 (2002) 389–400.

4. J. Bertoin and M. Yor, ‘On the entire moments of self-similar Markov processes and exponential
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