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SUMMARY 
We consider the problem of constructing balance dynamics for rapidly rotating fluid systems. It is argued 

that the conventional Rossby number expansion-namely expanding all variables in a series in Rossby number- 
is secular for all but the simplest flows. In particular, the higher-order terms in the expansion grow exponentially 
on average, and for moderate values of the Rossby number the expansion is, at best, useful only for times of 
the order of the doubling times of the instabilities of the underlying quasi-geostrophic dynamics. Similar 
arguments apply in a wide class of problems involving a small parameter and sufficiently complex zeroth-order 
dynamics. 

A modified procedure is proposed which involves expanding only the fast modes of the system; this is 
equivalent to an asymptotic approximation of the slaving relation that relates the fast modes to the slow modes. 
The procedure is systematic and thus capable, at least in principle, of being carried to any order-unlike 
procedures based on truncations. 

We apply the procedure to construct higher-order balance approximations of the shallow-water equations. 
At the lowest order quasi-geostrophy emerges. At the next order the system incorporates gradient-wind 
balance, although the balance relations themselves involve only linear inversions and hence are easily applied. 
There is a large class of reduced systems associated with various choices for the slow variables, but the simplest 
ones appear to be those based on potential vorticity. 

1. INTRODUCTION 

The large-scale circulation of the mid-latitude atmosphere and oceans can be partially 
characterized by the Rossby number 

& =  VffL,  

where V is a typical velocity magnitude, L is a typical length scale, andfis a characteristic 
value of the Coriolis parameter. For the atmosphere one usually takes V = 10 m s-l, 
L = lo6 m, and f = 10-4s-', in which case E = 0.1. A still smaller value typifies the large- 
scale ocean circulation. The fact that the Rossby number is small and that the evolution 
is slow compared with the frequencies of gravity-inertial waves suggests the application 
of a formal asymptotic analysis of the (mid-latitude) equations of motion. Specifically 
one expands all dependent variables in a series in Rossby number and solves to leading 
order to obtain simplified, quasi-geostrophic dynamics (Pedlosky 1987). A similar 
procedure is widely used to simplify the dynamics in other branches of fluid mechanics, 
a notable example being the equations for flow in incompressible fluids at small Mach 
number. 

While the conventional Rossby-number expansion referred to above has been widely 
accepted as providing a justification for quasi-geostrophic theory, it is purely formal and 
not always valid. It will, not surprisingly, break down if the scaling is either internally 
inconsistent (as is the case for ultralong waves or equatorial motion on the sphere) or 
does not remain uniformly valid in time (as appears to be the case near developing fronts 
or cyclones, for example). Furthermore the expansion only appears to have been carried 
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out beyond leading order when the underlying flows are relatively simple. We argue 
below that the conventional expansion is non-uniformly valid for realistic flows with 
chaotic quasi-geostrophic dynamics, in the sense that higher-order terms are secular and 
grow exponentially at  a rate determined by the instabilities of the associated quasi- 
geostrophic flow. While this may or may not be surprising, it does raise questions about 
the validity of quasi-geostrophic theory on moderate to long timescales, and about how 
quasi-geostrophy might be extended to higher order in a systematic fashion. We note 
with regards to the first of these that the non-uniformity may merely be a reflection of 
the lack of predictability of complex systems and the related difficulty of constructing 
approximations to specific trajectories for extended periods of time. The optimist might 
argue that, despite the non-uniformity , quasi-geostrophy still gives a meaningful leading- 
order long-term description in some statistical or climatological sense. On the other 
hand, the pessimist might worry that quasi-geostrophy might fail even in a statistical 
sense owing to the cumulative effect of small terms (much in the same way as the addition 
of a small amount of friction alters the long-term behaviour of a pendulum). This problem 
of long-term accuracy is an extremely difficult one which we do not attempt to deal with 
here. 

The quasi-geostrophic equations are an example of a balance model. By a balance 
model we mean a reduced set of evolution equations that filters out fast oscillations and 
describes the slow-time evolution of a system. The concept of fast and slow motion, of 
course, only has a meaning in the presence of a timescale separation. Although our 
objective in this paper lies in small Rossby number balance, the considerations apply to 
any balance model that can be understood in these terms. Balance models involve two 
components: 

(i) A balance relation, which filters the fast oscillations and thereby reduces the 
dimensionality of the system. 

(ii) Balance, reduced or slow dynamics, which describes the slow-time evolution. 

It may be that balance relations remain accurate while balance dynamics does not; in 
which case it is of interest to modify the conventional expansion in a manner that 
separates these two aspects. This turns out to be possible with the aid of a variant of the 
bounded derivative method (Kreiss 1979, 1980, 1985), the method of elimination of fast 
variables (Van Kampen 1985), and the normal-mode initialization procedures developed 
by Baer (1977), Machenhauer (1977), Leith (1980), Lorenz (1980) and others. The 
bounded derivative method has the advantage that rigorous results are available for some 
systems. 

The balance relation for the shallow-water equations in the small Rossby number 
limit is given by the geostrophic relation jk x v = -gVq to leading order (see section 4 
for further definitions), while the balance dynamics is described by the usual quasi- 
geostrophic potential-vorticity equation. The geostrophic relation is often said to be 
diagnostic since it represents an instantaneous relation between fields. Following Van 
Kampen (1985) and others, we shall employ the term ‘slave relation’ to emphasize that 
the related variables are in fact independent from the standpoint of the full equations*. 
While various versions of higher-order balance systems have been proposed (e. g. Charney 
1955; Phillips 1960; McWilliams and Gent 1980; Lynch 1989; Allen et al. 1990) which 
are formally and numerically more accurate than quasi-geostrophy, most are based on 
truncations of the equations of motion and therefore cannot be extended beyond first 

* Hoskins et al. (1985) use the term ‘invertibility principle’ in this context. 
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order in the Rossby number?. Iterative procedures have been proposed by Allen (1993) 
and by M. E. McIntyre and W. A. Norton (personal communication) which, as in our 
approach, do not suffer from this limitation. 

There are ambiguities inherent in the notion of balance which are, in a certain sense, 
present even at the leading order. Thus the geostrophic relation can be viewed as implying 
either that the velocity is determined by the height or that the height is determined by 
the velocity. For the shallow-water system one can also regard the free-surface height, 
q,  and the divergent part of the velocity as slaved to the rotational part of the velocity, 
i.e. 

v = U,(v) x= q v )  
where v and x are the stream function and velocity potential, respectively, and where 

fv u =- U,=O. 
” g 

Alternatively one can use q as the slaving variable and write 

Other possibilities also exist. It turns out that it is best to view balance geometrically as 
a surface or manifold in an appropriately defined phase space (Leith 1980; Lorenz 1980). 
This is most easily illustrated in the case of doubly periodic flows when the Fourier 
coefficients of the dependent variables are used as coordinates of the phase space. 
The geostrophic relation defines a hyperplane or ‘geostrophic manifold’ in the (infinite 
dimensional) phase space. The notion of an ‘approximately invariant manifold’ arises for 
flows that are initially close to this geostrophic manifold and which remain in its proximity 
at subsequent times. The’motion will then also be slow in the sense that the acceleration 
terms in the momentum equations remain small. 

The assumption that there exists an infinite-order generalization of geostrophy is 
equivalent to assuming the existence of either a linear or nonlinear slaving condition 

where the slaving and slaved variables x and y together represent a complete set of 
dependent variables. Approximate balance relations come in a variety of forms since the 
accuracy of an approximation does not determine the form uniquely. As an example we 
note that it is often argued that while conventional scaling leads, to order E ,  to the 
Charney balance equation 

(J stands for Jacobian), the expressions 

and 

t It seems worthwhile to point out that the 3-D geostrophic momentum approximation (Hoskins 1975) is 
formally not more accurate than quasi-geostrophy under conventional scaling (McWiltiams and Gent 1980) but 
appears to have the merit of remaining accurate in the vicinity of weakly curved fronts where the conventional 
scaling breaks down (Craig 1993). 
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obtained by using geostrophy to replace all or some of the terms I# in the (small) nonlinear 
term by r ) ,  have the same formal accuracy. Since there are, in fact, an infinity of balance 
relations of a given (formal) accuracy, the choice can be made on the basis of some other 
criteria (e.g. the variables observed, numerical efficiency, preservation of conservation 
laws and/or symmetries when coupled with dynamics, etc.). 

Note that if q is given, (3) is linear in q, whereas the Charney balance equation is 
nonlinear and requires the satisfaction of a side condition to ensure invertibility , namely 
that the usual ellipticity condition V21c,* -f/2 must be satisfied. However this is a 
somewhat artificial distinction, because inversion is always possible provided the scaling 
is respected, since the ratio of relative to absolute vorticity is then of order E .  A violation 
of the ellipticity condition therefore merely serves as a warning that the balance equations, 
and probably the rationale for balance itself, fail. It is emphasized that these conclusions 
depend on the particular scaling chosen. In the case of the shallow-water equations, 
Charney balance is formally accurate to leading order when the Rossby number is 
of order unity and the Froude number is small; this may represent a suitable scaling in 
the tropics, away from convective complexes (Charney 1963; Browning et af. 1980). 

The non-uniformity of the conventional expansion and the proposed modification 
are most easily illustrated via a purely formal discussion which is presented in sections 2 
and 3. The formal discussion emphasizes the fact that the methodology applies to any 
system involving fast and slow motion. The method is then applied, in section 4, to the 
rapidly rotating shallow-water equations, and the results are summarized in section 5 .  

2. REGULAR PERTURBATIONS OF COMPLEX SYSTEMS 

Consider first an initial-value problem consisting of a system of coupled ordinary or 
partial differential equations with a single timescale of the form 

au 
at 
- = N(u; E ) ,  

in the limit of small E .  Here the dependent variable u is a vector function possibly 
depending on spatial variables and time t ,  while N(u; E )  is a nonlinear operator or function 
of u. To fix the scaling it is assumed that N(u; 0) # 0. 

Substituting 

u = u(0) + m(1) + . . , 
into ( 5 )  and equating powers of E gives the following sequence: 

etc., expanding on N(u; E )  about u = do) and E = 0. Here 3 is a linear operator which 
depends on u(O). We note that it is not necessary, neither is it expected, that the series 
converges for E #  0. All that is required is that it be asymptotic, i.e. 

J(u - u(0) - . , . - Pu(m)ll 
-0  

B 
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as E+ 0 for each m, where 1 1 ~ 1 1  denotes an appropriate norm. In other words, the error 
in taking a given number of terms can be made as small as desired by taking E sufficiently 
small. For a fixed but small E it often happens in practice that the error decreases with 
m up to some order and thereafter increases. 

The leading-order dynamics is therefore described by (6), and it might be expected 
that a more accurate description could be obtained by proceeding to higher order. 
However, there is a real possibility that dl) becomes unbounded in time since (7) is 
linear in dl), and 2 depends on time and perhaps space through do). This is in fact the 
case if the zeroth-order solution is chaotic and exhibits sensitivity to the initial conditions, 
since the homogeneous version, 

_ -  a@ - 2(U(O)(t))@, 
at 

represents the linearization of the zeroth-order system about a solution. The quantities 
@ and hence dl) then grow exponentially on average at a rate determined by the largest 
Liapunov exponent, k ,  which is a measure of the strength of the strongest instability* 
(e.g. Guckenheimer and Holmes 1983). In contrast to the usual initial growth rates of 
classical linear instability theory, the Liapunov exponents measure the instability of the 
final or long-term solution. The quantity dl) consequently grows without bound, becom- 
ing of the same order as do) in times, T ,  of the order of -(log &)/A, which, for moderate 
values of E, is a few doubling times of the strongest instability. The direct expansion is 
therefore not uniformly valid in the sense that it is not asymptotic for times of order T 
or larger. The quantity also evolves according to an equation of the form of (7) with 
a forcing depending linearly on dl), and so might amplify even more quickly than dl). 
(Secular growth is also possible when A = 0, though it will then be linear rather than 
exponential in time .) 

While the non-uniform validity is perhaps not surprising, given the supposed insta- 
bility of the zeroth-order flow, it renders the direct expansion useless on long timescales. 
Secular behaviour also often signals a breakdown of the zeroth-order dynamics on 
long timescales. In some problems the time interval can be extended by appropriately 
modifying the expansion (using the method of multiple scales for example) by including 
feedbacks to the leading-order dynamics. Such methods hold little promise here owing 
to the fact that the secular growth is much stronger than the algebraic or weak exponential 
growth usually treated (e.g. in weakly nonlinear problems), and that the methods require 
a reasonably detailed knowledge of the solutions, which is not available in general. 

The only approximation procedure that we are aware of which would avoid secular 
growth involves truncating the Taylor-series expansion of N in E to obtain the sequence 

-= N ~ ( u )  + &N1(U) + . . . 
at 

+ PN,(u). 

Here 0 s m d n ,  where n is the number of models in the hierarchy; n may be finite or 
infinite depending on the &-dependence of N. Other systems can be obtained by trans- 
forming to a new variable, viz. 

ii = G(u; E),  

where G is an order unity one-to-one transformation. This permits a certain degree of 
control over the hierarchy through the choice of G .  

* The solutions do not have exponential time dependence since 9 depends on t. 
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3. SINGULAR PERTURBATIONS OF COMPLEX SYSTEMS 

Next consider singular systems of ordinary or partial differential equations for which 
the order in time changes when the small parameter vanishes, i.e. systems involving a 
combination of fast and slow modes of the form 

d.9 
- = S(s, f; &) 
at 

and 

af rf 
- + - = F(s, f; E )  
dt & 

(9) 

where S and F are nonlinear vector operators or functions that are non-zero when 
E ,  f = 0. Here f and s denote fast and slow modes, respectively, and r is an invertible 
linear operator (independent of E ,  time and space) such that the equation 

af rf 
at E 
- + - = o  

has normal-mode solutions of the form 

@,(x)exp(io, t ~ - l ) ,  

where w, is real and 

I w,I 3 1 for all v 

Kreiss 1985). This ensures that the partition into fast and slow modes is unambiguous 
and that their interaction will be weak. As will be discussed in the next section, the 
planar rotating shallow-water equations under the usual quasi-geostrophic scaling fall 
into this class, although the spherical system does not. We note that when E is not small 
or when the constraint on the frequency is not satisfied then the distinction between the 
fast and slow modes becomes blurred. Spatially infinite or semi-infinite systems with a 
non-dispersive 'fast' branch (e.g. sound waves or Kelvin waves) with wk = kc, where k 
is the modulus of the spatial wave number, do not satisfy the frequency constraint, since 
long waves with k = O(E) are not fast and can, in principle, interact strongly with the 
slow modes and participate fully in the evolution. In this case the notions of balance and 
slaving are more difficult to support, as is the relevance of asymptotic arguments to the 
initialization problem of numerical weather prediction. 

We note that there is nothing to be gained in displaying the slow dispersion relation 
explicitly, since (8) is fully nonlinear and linear dispersion relations are relevant only in 
the small-amplitude limit. Similarly r, which plays a central role in the reduction, is well 
defined and significant only when E is small, so the notion of slow motion and balance 
can be defined unambiguously only in the presence of a small parameter. 

(a)  Direct expansion 
If slow solutions to (8) and (9) are sought by substituting the expansions 

s = do) + + . . . and f = f(O) + d(l) + . . . 
into (8) and (9), we obtain 
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at leading order; while at the next order we have 

(13) f ( 1 )  = r - 1 ~  ( (0) 

Here SO(s) = S(s, 0; 0), F,(s) = F(s, 0; 0), and 2, N and 93 follow directly on expanding 
S about s = do), f = 0, and E = 0, respectively. In particular, 2 is the linearization of 
S(s, 0; 0) about do). Eliminating f(') then gives 

n s 1. 

which has the same form as (7). Since the homogeneous version of this equation describes 
the divergence of the trajectories of (lo), s(l) amplifies exponentially on average when 
the leading-order system is chaotic, implying that the expansion becomes disordered (i.e. 
s(') = O(E- ' ) ,  etc.) on timescales determined by the largest Liapunov exponent. 

(b )  Slaving 
The assumption that an arbitrary flow with slow forcing and small Rossby number 

can be described asymptotically by an infinite-order variant of quasi-geostrophic theory 
(after an initial transient phase), would appear to be equivalent to assuming the existence 
of a 'slow manifold' A, which can be represented by a graph 

f = U(s; €) (15) 
that is approximately invariant in the sense that trajectories are attracted to, and 
subsequently remain within, thin neighbourhoods of A. The manifold is 'slow' in the 
sense that nearby trajectories are balanced and satisfy the bounded derivative condition, 
i.e. the first n time derivatives of the dependent variables, with respect to the slow time, 
relax to order unity (Kreiss 1985). While this definition is somewhat weaker than earlier 
versions (Leith 1980; Lorenz 1980), which required that the manifold also be invariant*, 
the existence of At remains in doubt; although a weaker result due to Kreiss (1979, 1980, 
1985) indicates that the bounded derivative condition defines a sequence of manifolds 
A, that are approximately invariant for some finite (possibly small) slow time. If the A, 
could also be shown to be attracting, then the time interval could be extended to infinity 
and they would represent a sequence of approximately invariant manifolds. If no such 
sequence with these properties exists then the relevance of quasi-geostrophy , the bounded 
derivative method, and related initialization schemes, to the long-term dynamics needs 
to be re-examined. 

It is perhaps worth emphasizing that Kreiss's results do not make explicit use of the 
dissipative structure of the equations, which is probably required to control the fast 
modes. Also the slow manifold as defined here is distinct from inertial or approximately 
inertial manifolds (Debussche and Temam 1991a, b), although the formal constructions 
have similarities. Roughly speaking, an inertial manifold is a finite-dimensional invariant 
manifold that attracts orbits exponentially so that there is a decomposition of the form 
u = u, + u' where u, is finite dimensional (e.g. it has a finite spectral representation) and 

* i.e. that trajectories initially in Y remain in A, or equivalently that there is an exact balance relation such 
that initially balanced flows remain balanced. 
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the residual u' is slaved after a transient period, i.e. u' = f(u,). Inertial manifolds involve 
slaving of strongly dissipated modes and, in contrast to the slow manifold as defined in 
meteorology and oceanography, make no reference to a frequency separation. 

Substituting (15) into (9) and using (8) yields the 'superbalance equation' (Lorenz 
1980) 

a(u) = &~s(s ,  u; E)  + ru - EF(S, u; E )  = 0, (16) 
where 3 denotes the linearization of U about s .  Similarly substituting (15) into (8) gives 

as 
- = S(S, U(s; E ) ;  &) 
at 

for the evolution of the slow variables alone. If solutions to (16) could be found that 
were analytic in E, then an invariant slow manifold would exist; (15) would represent an 
exact interaction law between the fast and slow modes, while (17) would give an exact 
description of the slow dynamics. Exact slaving seems unlikely, however (Lorenz 1986; 
Vautard and Legras 1986; Warn and Menard 1986), although the expansion 

generated from (16) leads to the bounded derivative manifolds At,, which provide a 
sequence of approximate slave relations. Here the notation (.) 1 o(cn) denotes the O( c") 
approximation. Substituting (18) into (8), expanding and truncating then gives a hierarchy 
of reduced or slow systems. 

(c )  Modijied expansion 
The expansion above can be seen to be equivalent to constructing slave relations 

with the aid of the expansions 

s = s f = f(O) + Ef(l) + . . . (19) 

i.e. by expanding only the fast modes in both the fast and slow equations and then using 
the equations 

af as 

at at 
- = (P) + &-(I) + . . .) - = (3@) + E T ( I )  + . . .)S(s, f; E ) ,  

where 3(") denotes the linearization of f(") = f(")(s) with respect to s, before equating 
powers of E. The full slow equation is then used to generate reduced dynamics (cf. Van 
Kampen 1985). 

The first few models in the hierarchy are: 

O(1): f = 0, 
as 
- = S(S, 0; 0) 
at 

as 

at O(E) 
O(E): f = d - l F ( s ,  0; 0), - = S(s, f; E)  I (22) 

as 
O(6"): f = d-l{F(S, f; E)  - ~ S ( S ,  f; E ) }  -= S(s,f; E )  1 . (23) 

o(En- l ) '  at O ( 0  

Although (23)  appears to be implicit in f, it is not so because each term in the expansion 
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(19) of f can be solved for in a sequential manner. The method is demonstrated in section 
4 by an application to the rapidly rotating shallow-water equations. 

It should be noted that the expansion method depends only on the choice of the 
slow variable. The evolution equations do not have to be in the normal form (8)-(9), 
nor is it necessary to restrict considerations to the variables f and s. Any set of variables 
(x ,y)  can be used provided that they are independent to leading order and that the 
slaving variable x projects onto the slow modes. It turns out that the final form of the 
resulting balance approximations and reduced dynamics generally depends on this choice. 

( d )  Iterative approximation 
An alternative approach to approximating the superbalance equation (16) is an 

iteration procedure, defined by the equation 

Un+l = Er-l{F(S, U,; E )  - ~ , S ( S ,  U,; E ) } ,  (24) 
with the starting point Uo = 0, where 9, denotes the linearization of U, with respect to 
s. (We denote iterates by subscripts, and terms in the asymptotic expansion by 
superscripts.) This can be seen to be equivalent to iterating the fast variables but not the 
slow variables. The nth-iterate of the system (8)-(9) is evidently 

with the starting point fo = 0. Equation (26) may be written in the form 

f, = ET-l(F(s, f,,-i; E )  - 5,-1 S(S, f,-l; E ) }  (27) 
which is equivalent to (24) with the identification f, = U,. The iterative approximation 
has recently been proposed by Allen (1993) in the context of small Rossby number 
balance. 

There are obvious similarities between the two approaches, as can be seen by 
comparing (23) with (25) and (27). The modified expansion contains only terms up to 
O( E") , while the nth-order iterative approximation will generally contain higher-order 
terms as well. In the special case where F and S are both linear in f and contain no 
explicit dependence on E, the two approaches are equivalent. 

Both approaches have the merit of avoiding the problem of secular growth of the 
slow variable. But it must be emphasized that the problem of long-term accuracy has not 
been solved. The accuracy of a given model refers to the accuracy of the balance 
relation-not of the balance dynamics. 

4. THE SHALLOW-WATER SYSTEM 

(a) Preliminaries 
In a frame rotating with constant angular velocity, the equations of motion can be 

written in the dimensionless form 

dv 1 
dt E 
-=  --(k X v + 0 ~ )  
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dq 1 
F r - +  F r q V - v =  - - V - v  

dt E 

where v is the horizontal velocity of the fluid, q is the free-surface displacement, d/dt is 
the material derivative, and k is the unit vector in the vertical. Here E is the Rossby 
number defined by (l), and Fr, defined by the expression 

f 2L2 

gH 
Fr = - 

is the (square) rotational Froude number; f, H ,  and g are the Coriolis parameter, the 
mean fluid depth and the acceleration of gravity, respectively, and V and L are typical 
velocity and length scales. It is assumed that the Rossby number is small and that the 
rotational Froude number is unity. Other choices are also possible (e.g. Browning et al. 
1980). 

If we introduce the potential vorticity, q, defined by the equations 

1 + EV22y v2w- 17 - 4 =  1 + & q  
1 + E q =  

1 + ET] 

the divergence, D ,  given by 

D = V - v  = V 2 x  

and the geostrophic departure, S2 (Browning and Kreiss 1987; Lynch 1989), given by 

52 = v*q - v * q  (32) 

where the Helmholtz decomposition, v = k x V?# + V x ,  has been used and ?# and x are 
the stream function and velocity potential, then the equations of motion can be written 
in the form 

Here J(  a, p) = a;, py - ay px, subscripts denoting partial derivatives, and X = V 2  - 1. 
Suppose also that the geometry and boundary conditions ensure that V 2  and X are 
invertible (as is the case for doubly periodic flows and localized flows that vanish 
sufficiently rapidly at infinity). If q and ( D ,  Q) are identified as slow and fast variables, 
respectively, then (33) to (35) are seen to be of the form (8)-(9). 

(b )  Direct expansion 
If all quantities are expanded as power series in the Rossby number then (30) to 

(35) give 
x ( o )  = 0 Q(0) = 0 q(o)  = x p  
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and 

at the leading order, which is the usual shallow-water quasi-geostrophic system. At the 
next order we obtain 

Q(') = -2J(d"), #') (36) 

where A = XV2, which are versions of the usual balance and omega equations, and 

where 

L!?(q(O)) = - J ( y P ) ,  (a)) + J(q'"', %?'(a)) 

and 

B(q(O)) = -Vq(O)* V{AP'J(V(",, V2@O))} + 
+ J(q(O), 2K1J(d0) ,  I@)) + X-'(I /J( ' )~( ' ) ) ) .  

Thus, as noted in the last section, the first-order correction evolves according to a 
linear forced problem with the associated homogenous part given by the linearization of 
the zeroth-order problem. The quantity q(') therefore grows exponentially, on average, 
when the underlying quasi-geostrophic system is chaotic. The direct expansion is therefore 
secular. 

(c )  Potential- vorticity slaving 
The secular behaviour noted above can be avoided using the modified expansion 

discussed in section 3, i.e. by expanding all quantities except the slaving variable in a 
series in the Rossby number. The choice ( 4 ,  Q, 0)  with q as the slaving variable is 
perhaps the simplest, since the equations are then in the normal form (8)-(9). Moreover, 
it leads to reduced dynamics that maintains the material conservation of q. 

Expanding all quantities except q in (30)-(35) gives Q(O) = 0 and x ( O )  = 0, as before, 
and 

V 2 q p )  - (0) - v - 4 ,  
whickprovide the leading-order slave relations for the velocity and height in terms of q. 
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At the next order (36) and (37) are recovered, while (39) is replaced by the equation 
V2@) - r(l) r'o'q. 

The quantities qj(l) and are therefore determined, given q. If we take 

q = W'O'  + Ew(1) x = x(0) + & X (1) 

then the reduced system takes the concise form 

aq - + v - v q  = 0, 
at 

where v is determined from the relations 

Ax = FJ(y, V2Y) 

nq = v2q + 4 V 2 ( y q )  + W Y , ,  Y y N  

and 

with y = q ( O )  = X - l q .  We note that potential vorticity is exactly 
mass is conserved to O(E). A commendable feature of this system 
are linear in x and q. 

The Charney balance system (Allen et al. 1990) has the form 

dV2?+!J D 
-+](I), V2q)  + V p q v x )  + - = 0 

at & 

D 2 + J ( W ,  7) + V . ( r  VX) + ; = 0 
at 

v2q - V2q = -2&l(q,, qy). 
Although the system seems to be of second order in time, it is not 

(42) 
conserved, and that 
is that (41) and (42) 

(43) 

(44) 

(45) 
so, owing to the fact 

that the balance constraint involves only q and 7 and can be used to eliminate one of 
the time derivatives. However, the system is of second order in time if the planetary 
vorticity gradient p is included, since the balance constraint then also involves the 
divergent part of the velocity. The system (43)-(45) can be expressed in terms of potential- 
vorticity advection, (40), together with two diagnostic relations which determine x and 
W .  These diagnostic relations are identical to (41)-(42) to the first order. Thus the 
Charney balance system, although formally of the same accuracy as (40)-(42), differs 
by the inclusion of higher-order terms which guarantee mass conservation in addition 
to material conservation of potential vorticity. 

Lynch (1989) also derived a first-order balance model by dropping the time tend- 
encies in (34)-(35) while keeping the potential-vorticity evolution equation. Formally, it 
has the same accuracy as (40)-(42). Unlike the Charney balance system, Lynch's 
method4ike our own-does not introduce spurious modes when the peffect is included. 

One advantage of the present approach is that we may proceed systematically to 
higher order. At second order, for example, we obtain (40) with 

Ax = &G(Y) + J m Y )  

AV = V 2 q  + &(y) + t?P(y) 

(46) 

(47) 

and 

where G(y), C(y), R(y)  and P(y)  are defined by the equations 
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G(Y) = J(Y7 V2Y)  

W Y )  = V 2 ( Y d  + W Y * ,  Y y )  

C(Y) = w ( a , W I J ( y ,  q)}, Y y )  + W(Y,, a y W  -'J(Y, 4))) + J W W Y ) ,  V2Y)  + 

- V2[J(Y, X - W Y )  - Y4) + W - ' w Y ) ?  Y) + v.(YV(A-'G(Y))ll 

+ J ( y ,  V 2 A - ' R ( y ) )  + V.{V2yV(A- 'G(y ) ) }  - 

fYY)  = v 2 w  W Y )  - Y 4 ) d  + Ye -lJ@ -'J(Y, 417 V2Y)  + 

+ W(ax(A-'R(Y)), VJ + W(Yx7 ay(A-lR(Y))),  

+ X - ' J ( y ,  V2Xe- ' J ( y ,  9))  - J (A- 'G(y ) ,  V 2 y )  + V2J(A- 'G(y) ,  y) + 

where a, and d y  denote partial derivatives with respect to x and y ,  respectively. Here we 
have used the relation yt = -Xe-'J(y,  q )  to eliminate the time derivatives of a(') and D(l ) ,  
consistent with the accuracy of the model. 

( d )  Height slaving 
As mentioned earlier, any variable that projects onto the slow modes at leading 

order can, in principle, be used as a slaving variable. From this perspective, there is 
nothing particularly exceptional about the potential vorticity. For example, if one chooses 
height as the slaving variable, then a mass-conserving slow dynamics will result if a slave 
relation is constructed in the manner suggested above and substituted into (29). 

Allen (1993) used height as the slaving variable and implicitly used an iterative 
approximation of the superbalance equation (see section 3(d)) by iterating all variables 
except height. A direct comparison of our expansion procedure with Allen's iterative 
procedure reveals the similarity of the two methods in this case. 

We start by rewriting the shallow-water equations (28) and (29) in the form (with 
Fr = 1) 

1 
- ( v  - k X V q )  = k X 
E 

D 
at & 
2+ V.(qV) + - =  0. (49) 

This is not in the standard form of (8) and (9). Yet we may still regard (49) as the 
equation for the slaving variable q, and expand all variables except q. At the leading 
order we obtain geostrophic balance, i.e. 

(50) y(0) = k x V q  V2@) = V2q D(0) = 0. 

At 0(1)  we obtain 

with 

2 + V . (~"(0 ) )  + D (1)  = 0. (52) at 

The term D ( ' )  may be eliminated from (52) by using (51) and (50), thus yielding the 
quasi-geostrophic system 
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(53) 
ar (V* - 1) - + J ( q ,  v2q - q) = 0 
at 

as the leading-order model in the hierarchy. The slaving relations for the velocity, to 
O(E) ,  are 

(54) 

V21Y(l) = - Z ( q x ,  qJ (55 )  

D(1) = -V2 - aq - J(  q J 2 r l )  
at 

where d q / &  is evaluated from (53). The balance model to O(E) is obtained from the 
condition 

+ ( ~ ( 1 ) .  V)v(o) + ( ~ ( 0 ) .  v)v(') I (56)  

together with (49), taking v = do) + EV( ' ) ,  D =  ED(^) + t?D('). Here do), v(') and D(l) are 
known in terms of q from (50),  (54) and (55) ,  while D(*) may be obtained from 
(56).  Since the height equation includes the term DIE, the O(E)-system requires the 
determination of D('), for which one must evaluate the time derivative of V2$'). This 
complexity arises because height, unlike potential vorticity, is not unequivocally slow; in 
the linear equations height can undergo fast oscillations whereas potential vorticity 
cannot. 

We now consider the iterative procedure. At leading order this yields geostrophic 
balance, i.e. 

vo = k X V q  V 2 v o  = V2q Do = 0. 

At 0(1) we obtain 
(57) 

with 

(59) 
D1 d'l + V.(qvo) + - = 0. 

d t  & 

Elimination of Dl in (59) via (58) gives the quasi-geostrophic equations (53) once again. 
The slaving relations, to O(E),  are 

dl? D1 = -&V2-- - d(q, V2q) 
at (60) 

(61) V 2 v 1  = v2r - 2 4 %  VJ 

where dq/at in (60) is determined from (53). The O(E)-model is obtained from the 
condition 

~2 = k X V q  + & X (62) 

with 

(63) 
0 2  'I + v * (qv1) + - = 0. 

at & 
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The balance model (63) is identical to Allen’s (1993) model (B.lO). 
The only difference between the expansion and iteration procedures at this order is 

that the condition (62), from which Dz is determined, contains the cross-term (v(’).V)v(’) 
while the condition (56) does not. This leads to an extra (higher-order) term 
2 V .  (v(~)V*I/J(’)) in the iterative balance model (63). We conclude that the two procedures 
are largely similar, and have the same formal accuracy. 

5 .  DISCUSSION AND CONCLUSION 

In this paper we have considered approximations to the shallow-water equations in 
the limit of small Rossby number. The conventional expansion in powers of the Rossby 
number has been shown to lead to a problem of secularities: if the lowest-order evolution 
is chaotic then variables which project onto the slow modes at leading order grow 
exponentially in time at first order, while the remaining variables grow at the next order. 
The expansion therefore ceases to be uniformly valid in time. This point has also been 
made by Allen (1993) when considering approximations to the dynamics of a rotating 
vortex; in that case the secular growth is only linear in time. Numerical solutions by 
Allen and Newberger (1993) of an unstable baroclinic jet also indicate a pronounced 
growth of inaccuracy for the second-order quasi-geostrophic model that is consistent with 
our findings. 

Secularities are avoided if, instead of expanding all variables in an asymptotic series, 
only the fast variables are expanded. This is equivalent to introducing a slaving condition 
and then solving the resulting superbalance equation using a perturbation expansion. 
(Thus the accuracy of a given model refers to the accuracy of the balance relation, not 
of the balance dynamics: the problem of long-term accuracy of approximate models has 
not been solved.) Allen’s (1993) ‘iterated geostrophic intermediate models’ represent 
another way of approximating the superbalance equation, with no iteration of the slow 
variables. The resulting models closely resemble ours. In the shallow-water equations, 
potential vorticity is a natural slow variable, whereas the divergence and geostrophic 
imbalance are natural fast variables. Like the bounded derivative method the expansion 
can be carried out to any order, in stark contrast to traditional ‘truncations’, such as the 
Charney balance equations, which are difficult to extend beyond first order. To highlight 
this feature, an explicit system has been presented which is accurate to second order in 
E ,  namely to two orders beyond quasi-geostrophy . 

The notion of a preferred field to which other variables are slaved is, of course, not 
new. Apart from Allen (1993), it is explicit, for instance, in the work of Hoskins et al. 
(1985) and M. E. McIntyre and W. A. Norton (personal communication). The ‘hypo- 
geostrophic’ model of McWilliams and Gent (1980) is also an example of this type of 
expansion; they did not expand the height variable, although they gave no formal 
justification for their procedure. The advantage of the present approach lies in the general 
framework that is presented wherein the expansion may be carried to an arbitrarily high 
order. Although any variable that has a slow component at leading order can be a 
candidate slaving variable, the expansion is likely to be simplest when the slow variable 
is orthogonal to the fast variables in the linear system; i.e. when s = 0 for the fast 
oscillations. For the shallow-water equations, this suggests the choice of potential 
vorticity, or possibly of something that differs from the potential vorticity beyond zeroth 
order-for example the quasi-geostrophic potential vorticity . The interest in potential 
vorticity stems from its advective character, which is entirely consistent with the present 
perspective since advection is unambiguously ‘slow’ for small Rossby number. 
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The modified expansion procedure that we have presented is general, and is currently 
being applied to the stratified primitive equations. Under conventional Rossby number 
scaling, quasi-geostrophy will always emerge at lowest order, independently of the choice 
of the slaving variable, whereas the higher-order systems depend on this choice. This 
lack of uniqueness is highlighted by the fact that most of the conservation properties of 
the original system appear to be lost and only those directly associated with the slaving 
variable (e.g. potential vorticity or height) can easily be retained. This is clearly an 
unsatisfactory aspect of the present theory. It may be that the freedom in the choice of 
the slow variable can be used to enforce additional conservation properties. This is a 
possibility that remains to be explored. 
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