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[1] The occurrence of mid-latitude windstorms is related
to strong socio-economic effects. For detailed and reliable
regional impact studies, large datasets of high-resolution
wind fields are required. In this study, a statistical downscal-
ing approach in combination with dynamical downscaling is
introduced to derive storm related gust speeds on a high-
resolution grid over Europe. Multiple linear regression mod-
els are trained using reanalysis data and wind gusts from
regional climate model simulations for a sample of 100 top
ranking windstorm events. The method is computationally
inexpensive and reproduces individual windstorm footprints
adequately. Compared to observations, the results for Ger-
many are at least as good as pure dynamical downscaling. This
new tool can be easily applied to large ensembles of general
circulation model simulations and thus contribute to a better
understanding of the regional impact of windstorms based on
decadal and climate change projections. Citation: Haas, R.,
and J. G. Pinto (2012), A combined statistical and dynamical approach
for downscaling large-scale footprints of European windstorms,
Geophys. Res. Lett., 39, 1.23804, doi:10.1029/2012GL054014.

1. Introduction

[2] Windstorms are the main natural hazards affecting
Europe, with a large impact on the societal and economic
sectors [e.g., Fink et al., 2009]. Their occurrence over Western
Europe may increase under future climate conditions [e.g.,
Della-Marta and Pinto, 2009]. Studies quantifying impacts on
regional scales [e.g., Della-Marta et al., 2010; Schwierz et al.,
2010] typically use a combination of large-scale data like
reanalysis datasets or General Circulation Model (GCM)
simulations, and Regional Climate Model (RCM) simulations.
The high resolutions of RCMs (typically 10-50 km) involve
high computational costs. Thus, they only focus on a region of
interest and their applicability to multi-model ensembles is
limited [cf. Kjellstrom et al., 2011].

[3] A computational inexpensive alternative is statistical
downscaling, which relates large-scale predictors and local
predictands by transfer functions. Different statistical down-
scaling techniques have been developed for various atmo-
spheric parameters (e.g., Maraun et al. [2010] for a review).
In recent years, some studies also concentrated on the
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regionalization of wind data. For example, Bernardin et al.
[2009] applied a system of stochastic differential equations
on numerical weather prediction model data for wind refine-
ment. A physical-statistical approach was introduced by De
Rooy and Kok [2004], decomposing the total error between
model and observation into small-scale representation mis-
match and large-scale model error. Pryor et al. [2005] focused
on wind energy applications and downscaled near-surface
wind speed empirically using GCM data. Nevertheless, the
research on statistical downscaling is still very limited for wind
applications and none of the previous studies focused specif-
ically on mid-latitude windstorms.

[4] The objective of this work is to develop and validate
an approach suitable to reproduce dynamical downscaled
RCM gust speeds in a cost-efficient way. This is important
for building a storm catalog of many thousands of events,
required for decadal projections, climate change investiga-
tions or insurance applications. We propose a new statistical
downscaling tool, which is able to generate gust speeds on a
high-resolution grid over Europe by Multiple Linear
Regression (MLR) using RCM output for training purposes.

2. Data

2.1. Reanalysis Data

[5] In this study, ERA-Interim reanalysis data [Dee et al.,
2011] from the European Centre for Medium-Range Weather
Forecasts (ECMWF) is used as large-scale forcing for both
dynamical and statistical downscaling. The dataset has a hori-
zontal resolution of T255 (0.75° x 0.75°) and covers the period
from 1989 until the end of 2010. 6-hourly instantaneous wind
speeds are used to establish a ranking of historical windstorms
(details in Section 3.1.). For each storm, ERA-Interim data with
original resolution within the investigation area (—14.7656°E
to 34.4531°E, 32.6315°N to 66.3155°N; Figure S1 in the
auxiliary material) is compared to dynamically downscaled
high-resolution data.'

2.2. Regional Climate Model Data

[6] The selected historical storms are dynamically down-
scaled with the COSMO-CLM (RCM of the COnsortium for
Small-scale MOdelling in CLimate Mode, hereafter CCLM
[Rockel et al., 2008]). A resolution of 7 km (0.0625°) is
reached by two step nesting using ERA-Interim as initial
and boundary conditions. Wind gusts are estimated with an
approach using friction velocity as a predictor for turbulence
[Schulz, 2008]. For more details on RCM validation against

'Auxiliary materials are available in the HTML. doi:10.1029/
2012GL054014.
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observations and other gust estimation approaches, see Born
et al. [2012]. Each simulation consists of at least 4 days.

3. Methods

3.1.

[7] Several methods have been developed to estimate the
potential impact associated with windstorms based on wind
or gust speeds [e.g., Klawa and Ulbrich, 2003]. Here, we
consider a Meteorological Index (MI) to estimate potential
losses, defined as spatially aggregated cubic exceedances of
the local 98th gust percentile [see Pinto et al., 2012, equa-
tion 3]. This variable is a proxy for the impact of a storm
purely associated with its meteorological characteristics,
without considering exposure or vulnerability. MI is com-
puted over Europe (—9.8438°E to 34.4531°E; 35.4385°N to
64.912°N; Figure S1), but only for land grid points. The 100
top-ranked days in the ERA-Interim period are derived
according to MI (see Table S1). For training and validation
of the statistical downscaling approach, events are defined as
the storm date plus one day before and after. Several well
known historical storms are included [cf. Fink et al., 2009].
Note that some consecutive days may be often attributed to
the same storm (e.g., 20070118 and 20070119 for Kyrill).
However, in order to maintain a consistent database on a
daily basis, those dates are kept separated. A windstorm
footprint (wind signature) for the full extension of a storm
like Kyrill can be obtained by considering the maximum
gust on both days at each grid point.

Selection of Events

3.2. Multiple Linear Regression

[8] The statistical approach relates CCLM simulations and
ERA-Interim data. We estimate a transfer function via MLR.
One regression model is build per CCLM grid point:
i=1,..,e k=1,..

yi=cot+cxig + ...+ X + € 16 (1)

The model includes CCLM daily maximum gust speed
(vmax) values as predictands y,. The event set has been
enlarged to a 300-day-list by adding one day before and after
each event. Due to consecutive days in the 100-day-list (see
Table S1), the 300-day-list includes duplication of calender
days. These days have been excluded, thus e = 240. The
predictors x;; consist of the wind speeds at the 16 ERA-
Interim grid points next to the CCLM grid point. The vector
of regression coefficients ¢ = ¢; can be estimated by the
method of least squares:

&= (x'x)™

X"y (2)
with X = matrix of predictors and y = the vector of pre-
dictands. This transfer function is here reapplied on reanal-
ysis data for cross-validation (see Section 3.3). However, the
regression coefficients can be easily applied to other datasets
(e.g., GCM).

3.3. Validation

[s] The effectiveness of the methodology is evaluated by
cross-validation. Two distinct validation approaches are
performed. First, the ability to reproduce the wind signature
of a single storm with a transfer function estimated from the
other 99 events (leave-one-out validation) is analysed.
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Second, the list is separated into training and validation
datasets according to dates and rank of MI. The separation
can be performed with sequential (first and second 50
values) or disordered (even and odd entry numbers) lists. For
both validation approaches, three-day-signatures are used.

[10] The root mean squared error (RMSE) and the relative
root mean squared error (RMSE,,;) are calculated per event
and per grid point as a measure of skill:

n o 2 =
Eab o) pygsp, - Y )
n

with x = dynamically downscaled CCLM gusts and X =
statistically downscaled gusts. For RMSE and RMSE, ., per
event, n = number of grid points. For RMSE and RMSE, ., per
grid point, n = number of events = 100.

4. Results

[11] The performance of the statistical downscaling is now
compared with dynamical downscaling and forcing ERA-
Interim data (Figure 1). The leave-one-out validation of the
statistically downscaled wind signatures shows that the method
performs best for strong events with a broad wind signature
associated with a typical cyclone propagating eastwards over
the North and/or Baltic Sea (cf. example of storm Wiebke;
Figure 1a). Larger deviations between dynamical and statistical
downscaling are found for uncommon weather situations, e.g.,
days with multiple footprints (cf. Xynthia; Figure 1d) or foot-
prints affecting areas where severe windstorms are unusual
(e.g., Southwestern Europe, cf. Martin; Figure 1b). Due to the
low number of such events, the MLR model has difficulties to
reproduce them adequately. A mismatch also occurs if the
CCLM footprints do not follow the ERA-Interim footprints
tightly, as our method follows the large-scale input (cf. wind
speeds West of Norway for Xynthia; Figure 1d).

[12] The absolute RMSE per event, i.e., the sum over all grid
points, is 2 to 5 ms ™' (not shown). Summed over all events,
the range is 1 to 6 ms™~' at most grid points (Figure 2a). The
results are depicted except for the border of the model area,
where the CCLM produces spurious values (compare, e.g.,
Figure 1c at the Northern and Eastern border). The statistical
method performs best over most European onshore areas
from Portugal to Belarus and results are biased by the number
of events affecting each area. To take this into account, the
number of events per grid point, where vmax exceeds
20ms ™' (corresponding to 8 Bft, a common threshold used by
insurance companies [cf. Klawa and Ulbrich, 2003]) is ana-
lyzed (Figure 2b). As a visible relation between the number
of events and the absolute RMSE is revealed, a subset of
grid points where less than one third of the events (33)
reached this threshold is excluded, thus ensuring a reasonable
sample size. Further, grid points above 2000 m are excluded
to avoid deviations associated with underestimation of the
model topography and unrealistic high dynamically down-
scaled gusts which are not in congruence with the large-scale
forcing. As the absolute RMSE is larger in areas where the
gust speeds are generally higher, Figure 2c displays RMSE, .,
with excluded grid points shaded in grey. Over those areas
the relative errors amount to 20—40 %, except over a small
area over Southeastern France with up to 70 %. Better results
are achieved over the colored area with a 5-30 % range.
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Figure 1. Three-day-signatures of the leave-one-out validation for selected events: (a) Wiebke, (b) Martin, (c) Kyrill, and
(d) Xynthia. Dates are labeled as YYYYMMDD. (left) Original CCLM simulated gusts vmax. (middle) Estimated statistically
downscaled gusts vmax est. (right) ERA-Interim wind speeds and 6-hourly positions of the associated cyclone tracks, marked
as thick lines for the event days and thin lines for following days. UTC is only given for day two of the 3-day-signature.
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Figure 2. (a) Absolute RMSE of leave-one-out validation summed over events in ms™'. (b) Number of events per grid
point with gust speeds greater equal 20 ms™'. (c) Relative RMSE of leave-one-out validation summed over all events in
%. Colored grid points have a model height below 2000 m and are hit by gust speeds greater or equal 20 ms~ "' on at least
33 of the 100 events. All other grid points are shaded in gray. (d) Relative RMSE of leave-one-out validation summed over
the colored grid points in %. Bars are colored according to the rank of MI of each event (red is top rank; blue is low rank).

Dates are given above each (YYYYMMDD).

[13] The 100 events have relative errors of 10-20 % aver-
aged over the colored area (Figure 2d). These deviations are
randomly distributed, which means they are not correlated to
MI or rank according to MI (compare colors of bars). A
detailed analysis of the wind signatures (Figure 1) indicates
that the location of the footprint plays indeed an important
role for the skill of the technique. In fact, RMSE,.; averaged
over all events and grid points decreases from 16 % to 14 %
by the selection of colored areas in Figure 2c.

[14] A second validation approach is to split the dataset
into training and validation period. The periods are separated
sequentially by dates (first and second 50 days) or by MI rank
(more severe events and less severe events). Additionally,
the original dataset is split disordered according to even
and odd entry numbers of the dates or of the MI ranks, thus
each second value will be used for validation. The results are
similar as for the leave-one-out validation: The selection
of colored areas (Figure 2c) brings a slight improvement

of about 2 % for both sequential and disordered periods
(Table 1). Regarding sequential periods, the difference
between choosing higher or lower MIs as training period is
marginal. The separation by dates shows slightly better
results for the estimation of the earlier period than for the
later period. This could be associated with an enhanced
number of difficult cases (e.g., uncommon footprints or mul-
tiple footprints per event) during this later period.

[15] Finally, the quality of the results of the statistical
downscaling is compared exemplary to those of pure
dynamical downscaling against observations in Germany, as
here the dataset of measurements is sufficiently large and
quality-proofed unlike other countries. 39 test sites are selected
according to the best data availability (Table S2). For each test
site, the maximum wind gust observation (1-day- or 3-day-
maxima) is compared to downscaled gusts at the nearest
CCLM grid point. The scattering of the values of both
downscaling methods around the optimal diagonal is similar
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Table 1. RMSE,,; in % for Cross-Validation With Training and Validation Periods®

Sequential Disordered Sequential Selected Disordered Selected
Validation Period Training Period All Grid Points All Grid Points Grid Points Grid Points
dates 1 dates 2 16.56 15.66 14.42 13.84
dates 2 dates 1 17.39 16.12 15.67 14.18
MIs 1 MIs 2 16.37 15.95 14.58 14.08
MIs 2 MIs 1 16.90 16.00 14.77 14.08

“Dates 1 are for the sequential case the first 50 days and dates 2 the 50 later ones. MIs 1 are for the sequential case the more severe events and Mls 2 the
less severe ones. Selected grid points have (i) a model height under 2000 m and (ii) gust speeds reaching 20 ms ™" on at least on 33 of the 100 events.

(see Figure 3a for 3-day-maxima). In fact, the RMSE is
slightly better for the statistical than for the dynamical
downscaling (4.30 ms™' vs. 4.51 ms™'). This tendency is
also found for the mean deviations summed over all events
(Figure 3b). Thus, the results of the statistical approach are at
least as good as the original CCLM values. This demonstrates
the ability of the statistical downscaling to reproduce reliable
gust speeds on a high-resolution grid. As Germany features a
wide range of landscapes from lowland coastal areas to high
alpine regions, the results are assumed to be representative
for other European countries.

5. Summary and Conclusions

[16] We have introduced and validated a new statistical
downscaling tool to derive wind or gust speeds on a small-
scale grid over Europe using CCLM simulations as training
data. ERA-Interim data and CCLM output of 100 selected
windstorm events are related by a MLR model. The cross-
validation shows that the statistical MLR model is able
to reproduce dynamically downscaled wind signatures
well, with relative errors of 10-20 % per event, and is thus a
cost-efficient alternative. Larger deviations are obtained for

(a)
[m/s160 L
RN s
RMSE=4.51m/s
40 L
o 0
=
©
(6]
0
ot
S
a
20 F
0 T T
0 20 40

Observation

60[m/s]

high altitudes [cf. also Bernardin et al., 2009], for events
with multiple footprints or events affecting locations rarely
hit by windstorms. The windstorms associated with untypi-
cal weather situations, which are currently not well captured
by the training dataset of dynamical downscaled footprints,
could be improved by a larger set of events. Compared to
observations, the results of this statistical approach are in
Germany at least as good as the dynamical downscaling.
[17] The proposed combination of statistical and dynami-
cal downscaling permits to apply once obtained regression
coefficients to large datasets to produce a wide sample of
high-resolution wind signatures. This is a clear advantage
to pure dynamical downscaling that is limited by its prohib-
itive computational costs. On the other hand, the use of
dynamical downscaled wind gusts for training the method
enables to overcome the obvious handicaps of a purely sta-
tistical approach, e.g., regarding the representation of smaller
scale effects like flow deviation and channeling due to oro-
graphic features. These effects are included here, provided
they are represented in the RCM simulations. A better repre-
sentation of such effects might be obtained by considering
RCM simulations at higher spatial resolution. Compared to
other statistical downscaling techniques applied on wind or
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Figure 3. (a) Observations of 100 events and 39 test sites against dynamically downscaled values (green) and statistically
downscaled values (red). All values are the maxima of three days. For the calculation of the RMSE n = 390, x = observa-
tions, and x = downscaled values. (b) RMSE of dynamical downscaling (left points) and statistical downscaling (right
points) for daily values (top points) and for 3-day-maxima (bottom points). The errors are calculated as for Figure 3a.
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gusts, this method is quite straightforward to apply on other
datasets and model domains.

[18] The intention of this study was to reproduce the
dynamically downscaled wind signatures. Future investiga-
tions will focus on model output statistics to calibrate the
downscaled wind signatures to observations. The probability
distributions of simulations and observations may be related
by probability mapping [e.g., Haas and Born, 2011]. This
would enable to correct the footprints and apply the approach
on pre-adjusted gust speeds.

[19] Acknowledgments. We thank the ECMWF for the ERA-Interim
Reanalysis dataset. This research was supported by the German Federal
Ministry of Education and Research (BMBF) under the project Probabilistic
Decadal Forecast for Central and Western Europe (MIKLIP-PRODEF, con-
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and M. K. Karremann for help with windstorm ranking. We also thank
two anonymous reviewers for their constructive comments.
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