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JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 6, Number 1, Winter 1994

ON ASYMPTOTIC BEHAVIOR AT INFINITY
AND THE FINITE SECTION METHOD FOR

INTEGRAL EQUATIONS ON THE HALF-LINE

SIMON N. CHANDLER-WILDE

ABSTRACT. We consider integral equations on the half-

line of the form x(s) −
∫ ∞
0

k(s, t)x(t) dt = y(s) and the

finite section approximation xβ to x obtained by replacing
the infinite limit of integration by the finite limit β. We
establish conditions under which, if the finite section method
is stable for the original integral equation (i.e., xβ exists and
is uniformly bounded in the space of bounded continuous
functions for all sufficiently large β), then it is stable also
for a perturbed equation in which the kernel k is replaced by
k+h. The class of perturbations allowed includes all compact
and some noncompact perturbations of the integral operator.
Using this result we study the stability and convergence of
the finite section method in the space of continuous functions
x for which (1 + s)px(s) is bounded. With the additional
assumption that |k(s, t)| ≤ |κ(s − t)|, where κ ∈ L1(R) and
κ(s) = O(s−q) as s → +∞, for some q > 1, we show that the
finite-section method is stable in the weighted space for 0 ≤
p ≤ q, provided it is stable on the space of bounded continuous
functions. With these results we establish error bounds in
weighted spaces for x − xβ and precise information on the
asymptotic behavior at infinity of x. We consider in particular
the case when the integral operator is a perturbation of a
Wiener-Hopf operator and illustrate this case with a Wiener-
Hopf integral equation arising in acoustics.

1. Introduction. We consider integral equations of the form

(1.1) x(s) −
∫ ∞

0

k(s, t)x(t) dt = y(s), s ∈ R+ := [0,∞),

where x, y ∈ X, the space of bounded continuous functions on R+. We
abbreviate (1.1) by

x−Kx = y

where K is the integral operator defined by

(1.2) Kψ(s) =
∫ ∞

0

k(s, t)ψ(t) dt, s ∈ R+.
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38 S.N. CHANDLER-WILDE

A major concern of the paper is to examine the convergence of xβ to
x as β → ∞, where xβ ∈ X is a finite-section approximation, defined
by

(1.3) xβ(s) −
∫ β

0

k(s, t)xβ(t) dt = y(s), s ∈ R+.

We abbreviate (1.3) in operator form as

xβ −Kβxβ = y,

where Kβ is defined by

(1.4) Kβψ(s) =
∫ β

0

k(s, t)ψ(t) dt, s ∈ R+.

Continuing the studies of [7, 4, 17, 21, 11] we shall be concerned to
establish conditions for the existence and uniform boundedness, for all
sufficiently large β, of (I −Kβ)−1 as an operator on X (or on certain
subspaces of X). Provided this stability property of the approximate
operators can be established, Atkinson [7] and Anselone and Sloan
[4] have shown that, under quite general conditions on the kernel k,
the convergence of xβ to x uniformly on finite intervals of R+ can be
proven, and useful error bounds have been obtained in [17, 21, 20].

Conditions for the existence and uniform boundedness of (I −Kβ)−1

on X have been obtained by Anselone and Sloan [4] for the special case
when K = K+H, where K is a Wiener-Hopf integral operator, defined
by

(1.5) Kψ(s) =
∫ ∞

0

κ(s− t)ψ(t) dt, s ∈ R+,

with κ ∈ L1(R), and H is an integral operator of the form (1.2) which
maps X onto X l := {x ∈ X : lims→+∞ x(s)exists} and is compact.
The results in [11] can be used to establish the uniform boundedness
of (I − Kβ)−1 in the case k(s, t) = κ(s − t)z(t) with κ ∈ L1(R) and
z ∈ L∞(R+).

Sections 2 and 3 of this paper consider the effect of perturbations
on the stability of the finite section method. Given that (I − Kβ)−1
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is uniformly bounded for sufficiently large β, conditions on a sequence
{Hβ} are established such that (I − Kβ − Hβ)−1 is also uniformly
bounded. In particular, defining H and Hβ by (1.2) and (1.4) with k
replaced by h, these results apply provided h satisfies mild regularity
conditions (Assumptions A and B below, which ensure that H is a
bounded operator on X) and provided ||H−Hβ || → 0 as β → ∞. This
latter condition is satisfied if H is compact and is also satisfied by a
class of noncompact integral operators.

In Section 4 we utilize this perturbation result to study the solvability
of (1.1) and (1.3) in the subspaceXp := {x ∈ X : ||x||p := sups∈R+ |(1+
s)px(s)| < ∞}. We make an additional assumption, A′, on the kernel
k: that |k(s, t)| ≤ |κ(s − t)|, s, t ∈ R+, for some κ ∈ L1(R), and
κ(s) = O(s−q), s → +∞, for some q > 1. We show that if I − K is
invertible on X, then I −K is invertible on Xp for 0 ≤ p < q. Further,
if I − K is invertible on X and (I − Kβ)−1 exists and is uniformly
bounded on X for all sufficiently large β, then I −K is invertible and
(I −Kβ)−1 exists and is uniformly bounded for all sufficiently large β
on Xp, for 0 ≤ p ≤ q. Thus, the stability of the finite section method
on X implies its stability on Xp for 0 ≤ p ≤ q.

These results extend and sharpen the previous work of Prössdorf and
Silbermann [20, 21] and of Chandler-Wilde [10], the work of Prössdorf
and Silbermann considering specifically the case when K is a compact
perturbation of a Wiener-Hopf operator.

The solvability of (1.1) in the subspaces X l
p := {x ∈ Xp :

lims→+∞(1 + s)px(s) exists} and X0
p := {x ∈ Xp : lims→+∞(1 +

s)px(s) = 0} is examined in Section 5. Amongst the results obtained
we show that if I −K is invertible on X and k satisfies A′ and B, then
I−K is invertible onX0

p for 0 ≤ p < q and onX l
p if also lims→+∞K1(s)

exists.

To illustrate all the previous results, in Section 6 we study the
important special case K = K +H, with K the Wiener-Hopf operator
(1.5) and H a perturbation of K of the class studied in Section 2 (this
class including all compact and certain noncompact integral operators).
Our first result, on the existence and uniform boundedness of (I−Kβ)−1

on X, is a generalization of that in Anselone and Sloan [4]. We then
show the existence and uniform boundedness of (I − Kβ)−1 on the
weighted spaces Xp, 0 ≤ p ≤ q, if k satisfies the additional assumption
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A′. Our final result considers the pure Wiener-Hopf case K = K and
shows that if κ(s) = as−q + o(s−q), s → +∞, for some constants a
and q > 1, and I − K is invertible on X, then I − K is invertible on
X l

p for 0 ≤ p ≤ q; in particular, if y ∈ X l
q then the solution of (1.1),

x = (I −K)−1y, satisfies

(1.6) x(s) =
y(s) + as−q

∫ ∞
0
x(t) dt

1 − ∫ +∞
−∞ κ(t) dt

+ o(s−q), s→ +∞.

It is an interesting feature of the results in Sections 5 and 6 that such
precise information on the asymptotic behavior of the solution of (1.1)
at infinity can be obtained from general, largely functional analytic
arguments.

In Section 7, illustrating the results of Section 6, we consider a spe-
cific Wiener-Hopf equation arising from a boundary integral equation
reformulation of a mixed impedance boundary value problem for the
Helmholtz equation in a half-plane. This problem has previously been
studied as a model of outdoor sound propagation [14, 12, 15, 16]. In
this case K = K with κ(s) ∼ aeiss−3/2, s → +∞, for some constant
a. We prove stability and derive error estimates for the finite section
method in the space Xp, 0 ≤ p ≤ 3/2, and derive the leading order
asymptotic behavior of the solution at infinity.

2. Operator equations on the half-line. Let {xβ} = {xβ : β ∈
R+} be an ordered family of functions in X with the natural ordering
induced by R+. The following definitions made for {xβ} carry over
directly to {xβ : β ∈ R′} for any unbounded subset R′ ⊂ R+.

We say that {xβ} converges strictly, and write xβ
s→ x if {xβ} is

bounded and xβ(s) → x(s) uniformly on every finite interval. This
is convergence in the strict topology on X of Buck [8]. We shall also
be concerned with ordinary norm convergence in X (|| · || denoting the
supremum norm), and write xβ → x if ||xβ−x|| → 0, i.e., xβ(s) → x(s)
uniformly on R+.

Following Anselone and Lee [3] we call x ∈ X a strict cluster point
of {xβ} if xβ

s→ x with β ∈ R′ for some R′ ⊂ R+, and say that
{xβ} is s-compact if {xβ : β ∈ R′} has a strict cluster point for any
R′ ⊂ R+. The following equivalence follows by a diagonal argument
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from the Arzela-Ascoli theorem (see [4]):

{xβ} bounded, equicontinuous ⇐⇒ {xβ} s-compact.

Let K,Kβ ∈ B(X) for β ∈ R+, where B(X) denotes the space of
bounded linear operators on X. Following [3] call K s-continuous if

xβ
s→ x =⇒ Kxβ

s→ Kx.

Call K sn-continuous if

xβ
s→ x =⇒ Kxβ → Kx,

and s-compact if

{xβ} bounded =⇒ {Kxβ} s-compact.

Call {Kβ} asymptotically compact if

{xβ} bounded =⇒ {Kβxβ} precompact,

and asymptotically s-compact if

{xβ} bounded =⇒ {Kβxβ} s-compact.

Also, write Kβ → K if Kβ converges strongly to K, i.e., Kβx → Kx
for all x ∈ X, in which case also

xβ → x =⇒ Kβxβ → Kx.

Similarly, write Kβ
s→ K if

xβ
s→ x =⇒ Kβxβ

s→ Kx

and Kβ
sn→ K if

xβ
s→ x =⇒ Kβxβ → Kx.

Clearly

(2.1) Kβ
sn→ K =⇒ Kβ

s→ K, Kβ → K.
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If either Kβ
s→ K or Kβ → K, then {Kβ} is bounded by the Banach-

Steinhaus theorem. We have also

Lemma 2.1. {Kβ} asymptotically compact, Kβ
s→ K ⇒ Kβ

sn→ K.

Proof. Since Kβ
s→ K,

(2.2) xβ
s→ x =⇒ Kβxβ

s→ Kx.

We will prove that alsoKβxβ → Kx by showing that every subsequence
has a subsequence converging to Kx.

Let R′ ⊂ R+. Since {Kβ} is asymptotically compact

(2.3) Kβxβ → y, β ∈ R′′,

for some y ∈ X and R′′ ⊂ R′. Comparing (2.2) and (2.3), y = Kx.

Setting Kβ = K, β ∈ R+, in Lemma 2.1, we see that

K compact, s-continuous =⇒ K sn-continuous.

The following condition on operator families {Kβ} will be necessary:

(2.4) For β ∈ R+, I −Kβ injective =⇒ (I −Kβ)−1 ∈ B(X).

Clearly (2.4) is satisfied if each I −Kβ is a Fredholm operator of index
zero, in particular if Kβ is compact.

Our first theorem is an abstraction of Theorems 6.3 and 6.5 in [4]
and is proved in the same way. (Also cf. Theorem 1.6 in [2].)

Theorem 2.2. Suppose that I − K is injective, that {Kβ} is
asymptotically s-compact, that Kβ

s→ K, and that (I −Kβ)−1 ∈ B(X)
and is uniformly bounded for all sufficiently large β. Then (I−K)−1 ∈
B(X) and (I −Kβ)−1 s→ (I −K)−1.

Our next result shows that the uniform boundedness of (I −Kβ)−1

is stable to a class of perturbations of {Kβ}.
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Theorem 2.3. Suppose that {Kβ} satisfies the conditions of The-
orem 2.2, that H,Hβ ∈ B(X) for β ∈ R+, that I − K − H is injec-
tive, that {Kβ + Hβ} satisfies (2.4), and that {Hβ} is asymptotically
s-compact and Hβ

sn→ H. Then (I −Kβ −Hβ)−1 ∈ B(X) and is uni-
formly bounded for all sufficiently large β.

Proof. Suppose that the theorem is false. Then there exists {xβ : x ∈
R′} with ||xβ || = 1, β ∈ R′ such that

(2.5) xβ −Kβxβ −Hβxβ → 0, β ∈ R′.

Since {Kβ +Hβ} is asymptotically s-compact,

Kβxβ +Hβxβ
s→ x, β ∈ R′′,

for some x ∈ X and R′′ ⊂ R′. From (2.5), xβ
s→ x with β ∈ R′′. Since

Kβ
s→ K and Hβ

sn→ H,

(2.6) Kβxβ
s→ Kx, Hβxβ → Hx, β ∈ R′′.

Thus x = Kx + Hx and, since I −K − H is injective, x = 0. Thus,
Hx = 0 and, combining (2.5) and (2.6),

xβ −Kβxβ → 0, β ∈ R′′.

But this is a contradiction since (I − Kβ)−1 ∈ B(X) is uniformly
bounded for sufficiently large β and ||xβ|| = 1.

Combining Theorems 2.2 and 2.3 we have

Corollary 2.4. Suppose that the conditions of Theorem 2.3 are
satisfied. Then (I − K − H)−1 ∈ B(X) and (I − Kβ − Hβ)−1 s→
(I −K −H)−1.

An interesting special case of the above results is obtained by setting
Kβ = K = 0 for β ∈ R+.

Corollary 2.5. Suppose that H,Hβ ∈ B(X) for β ∈ R+, that
I − H is injective, that {Hβ} satisfies (2.4) and is asymptotically s-
compact, and that Hβ

sn→ H. Then (I − Hβ)−1 ∈ B(X) and is
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uniformly bounded for all sufficiently large β, (I −H)−1 ∈ B(X), and
(I −Hβ)−1 s→ (I −H)−1, (I −Hβ)−1 → (I −H)−1.

Proof. Except for (I − Hβ)−1 → (I − H)−1, the result follows
immediately from Theorems 2.2 and 2.3. To see (I − Hβ)−1 →
(I − H)−1, suppose that yβ → y and define xβ := (I − Hβ)−1yβ ,
x := (I −H)−1y. Then (I −Hβ)xβ → (I −H)x. But (I −Hβ)−1 s→
(I −H)−1 ⇒ xβ

s→ x, and Hβ
sn→ H ⇒ Hβxβ → Hβx. Thus, xβ → x.

3. Integral equations on the half-line. We apply the results of
the previous section to the case in which K ∈ B(X) is an integral
operator, defined by (1.2). Let ks(t) = k(s, t). We suppose that
ks ∈ L1(R+) for all s ∈ R+ and impose at least the following conditions
on the kernel k:

A. sups∈R+

∫ ∞
0

|k(s, t)| dt <∞.

B.
∫ ∞
0

|k(s′, t) − k(s, t)| dt→ 0 as s′ → s, for all s ∈ R+.

Throughout the remainder of the paper, for an integral operator K of
the form (1.2), with kernel k, let Kβ , β ∈ R+, denote the finite section
version of K, defined by (1.4).

It is easy to see that if k satisfies A and B, then K,Kβ ∈ B(X),
β ∈ R+, with

(3.1) ||Kβ || ≤ ||K|| = sup
s∈R+

∫ ∞

0

|k(s, t)| dt.

Further

(3.2) {Kx : ||x|| ≤ 1} ∪ {Kβx : β ∈ R+, ||x|| ≤ 1}
is bounded and equicontinuous.

It follows from (3.2) that K is s-compact and {Kβ} is asymptotically
s-compact. Anselone and Sloan [4] also show that

(3.3) A,B =⇒ K s-continuous, Kβ
s→ K.

A and B are not sufficient to ensure that K is compact. But K is
certainly compact if k satisfies A and B and the following additional
hypothesis [4]:
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C.
∫ ∞
0

|k(s, t)| dt→ 0 as s→ ∞.

Alternatively, Anselone and Sloan [5] show that K is compact if k is
uniformly continuous and satisfies

D. sups∈R+

∫ ∞
β

|k(s, t)| dt→ 0 as β → ∞.

From (3.2) and (3.3) we see that Theorem 2.2 applies to K and Kβ

if k satisfies A and B, and this is Theorem 6.5 in Anselone and Sloan
[4]. To apply Theorem 2.3 we need a criterion for Kβ

sn→ K.

Lemma 3.1. Suppose that k satisfies A and B (so that K,Kβ ∈
B(X), β ∈ R+). Then the following are equivalent:

(i) K is sn-continuous and Kβ
sn→ K;

(ii) ||Kβ −K|| → 0;

(iii) k satisfies D.

Proof. (ii) ⇔ (iii). This is immediate since

||Kβ −K|| = sup
s∈R+

∫ ∞

β

|k(s, t)| dt.

(ii) ⇒ (i). Suppose that ||Kβ −K|| → 0 and that xβ
s→ x. Then, for

all α ∈ R+,

||Kx−Kβxβ|| ≤ ||(K−Kβ)xβ||+ ||(K−Kα)(x−xβ)||+ ||Kα(x−xβ)||.
Now, given ε > 0 the second term is ≤ ε/2 provided α is chosen large
enough, and, for any fixed value of α, the remaining terms tend to zero
as β → ∞. Thus Kx−Kβxβ → 0 and we have shown that Kβ

sn→ K.
Similarly we show that K is sn-continuous.

(i) ⇒ (ii). Suppose that K is sn-continuous and Kβ
sn→ K but

||Kβ − K|| �→ 0. Then there exists a bounded sequence {xβ} ⊂ X
such that (Kβ − K)xβ �→ 0. But define {yβ} ⊂ X such that {yβ} is
bounded and

yβ(s) =
{

0, s ≤ β − 1,
xβ(s), s ≥ β.

Then (Kβ − K)yβ = (Kβ − K)xβ �→ 0 but also yβ
s→ 0 so that

(Kβ −K)yβ → 0, a contradiction.
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To illustrate the above result, note that assumptions A, B, and D are
all satisfied if k(s, t) = a(s, t)l(t) with l ∈ L1(R+) and a(s, t) bounded
and continuous. Less obviously we have the following result:

Lemma 3.2. If the integral operator K is a compact operator on X,
then k satisfies A, B and D.

Proof. Let B denote the unit ball in X. If K is compact, then KB
must be bounded and also equicontinuous at every point s ∈ [0,∞):
these requirements necessitate A and B (for more details see [22]).

To show further that k satisfies D note that, from (3.3), Lemma
2.1 and Lemma 3.1, we need only show that {Kβ} is asymptotically
compact. But, if K is compact and k satisfies A and B then [18,
page 306] K : L∞(R+) → X and this mapping is compact. Thus
∪β∈R+KβB ⊂ {Kx : x ∈ L∞(R+), ||x|| ≤ 1} is precompact in X; i.e.,
{Kβ} is collectively compact and so is asymptotically compact.

To see that A, B, and D, while necessary, are not sufficient to ensure
the compactness of K, consider the following example (cf. [5, Example
6]).

Example 3.1. Let k(s, t) = a(s, t)l(t) where a(s, t) = eist,

l(t) =
{

1, 0 ≤ t ≤ 1,
0, t > 1.

Then k satisfies A, B and D, but K is not compact. For, defining {xβ}
by xβ(t) = e−iβt, it follows that Kxβ(s) → 0 as s → ∞ with β fixed
but Kxβ(β) = 1 for β ∈ R+, so that {xβ} is bounded but {Kxβ} has
no convergent subsequence.

The above example also illustrates that Kβ is not necessarily com-
pact, even if k satisfies A and B. However, if k satisfies A and B, the
integral operator K̃β on C[0, β], defined by

K̃βψ(s) =
∫ β

0

k(s, t)ψ(t) dt, 0 ≤ s ≤ β,

is certainly compact and so (I − K̃β)−1 ∈ B(C[0, β])) if I − K̃β is
injective. But observe that the integral equation (1.3) reduces to one
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on [0, β] so that I −Kβ and I − K̃β are equivalent to the extent that
they are injective and surjective together. Thus

(3.4) k satisfies A, B ⇒ {Kβ} satisfies (2.4).

In the following results H is the half-line integral operator with kernel
h(s, t), defined by (1.2) with K and k replaced by H and h. The first
theorem is an immediate consequence of the observations made above
(in particular (3.2), (3.3), and (3.4)), Lemma 3.1, Theorem 2.3, and
Corollary 2.4.

Theorem 3.3. Suppose that k and h satisfy A and B and that h
satisfies in addition D. Suppose that I − K − H is injective and that
I−Kβ is injective and (I−Kβ)−1 uniformly bounded for all sufficiently
large β. Then (I−K−H)−1 ∈ B(X), (I−Kβ −Hβ)−1 ∈ B(X) and is
uniformly bounded for all sufficiently large β, and (I −Kβ −Hβ)−1 s→
(I −K −H)−1.

The above result can certainly be applied if

||K|| = sup
s∈R+

∫ ∞

0

|k(s, t)| dt < 1

for then, by (3.1), ||Kβ || ≤ ||K|| < 1 and (I −Kβ)−1 ∈ B(X), β ∈ R+

with

||(I −Kβ)−1|| ≤ 1
1 − ||K|| .

This observation gives us

Corollary 3.4. Suppose that k satisfies A and B with ||K|| < 1, h
satisfies A, B and D, and I−K−H is injective. Then (I−K−H)−1 ∈
B(X), (I − Kβ − Hβ)−1 ∈ B(X) and is uniformly bounded for all
sufficiently large β, and (I −Kβ −Hβ)−1 s→ (I −K −H)−1.

Applying Corollary 2.5 and Lemma 3.1 we obtain a slightly stronger
conclusion in the case K = Kβ = 0.
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Corollary 3.5. Suppose that h satisfies A, B and D and that I −H
is injective. Then (I − H)−1 ∈ B(X), (I − Hβ)−1 ∈ B(X) and is
uniformly bounded for all sufficiently large β, (I −Hβ)−1 s→ (I −H)−1

and ||(I −Hβ)−1 − (I −H)−1|| → 0.

We can state this as a result about the solvability of equations (1.1)
and (1.3).

Theorem 3.6. Suppose that k satisfies A, B and D (which, by
Lemma 3.2, is certainly the case if K is compact), and that the ho-
mogeneous version of equation (1.1) has only the trivial solution. Then
equation (1.1) has a solution, x, for every y ∈ X, and (1.3) a solution,
xβ, for all sufficiently large β. Moreover, xβ → x (i.e., xβ(s) → x(s)
uniformly on R+).

We remark that the uniform convergence proved in Theorem 3.6 is
at first sight slightly surprising given that the result applies to cases
when x, y and Kx all fail to be uniformly continuous.

4. The finite section method in weighted spaces. We use
the results of the previous section to investigate the solvability of the
half-line integral equation and its finite section approximation in the
subspace Xp of X, where Xp := {x ∈ X : ||x||p := ||wpx|| < ∞},
p ≥ 0, and wp(s) = (1 + |s|)p. Clearly, x ∈ Xp if x is continuous and
x(s) = O(s−p), s→ ∞.

Note first that equation (1.1) is equivalent to the integral equation

(4.1) x(p)(s) −K(p)x(p)(s) = y(p)(s), s ∈ R+,

where x(p) := wpx, y(p) := wpy, and K(p) is the half-line integral
operator of the form (1.2) with kernel

(4.2) k(p)(s, t) = k(p)
s (t) := (wp(s)/wp(t))k(s, t).

From this equivalence it is easy to see that

(4.3) K(p) ∈ B(x) ⇐⇒ K ∈ B(Xp),
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(4.4)

I−K(p) injective on X⇐⇒I−K injective on Xp⇐I−K injective on X,

(4.5) (I −K(p))−1 ∈ B(X) ⇐⇒ (I −K)−1 ∈ B(Xp).

Further, if K(p) ∈ B(X) and K ∈ B(Xp), then ||K(p)|| = ||K|| and, if
(I −K(p))−1 ∈ B(X) and (I −K)−1 ∈ B(Xp), then ||(I −K(p))−1|| =
||(I −K)−1||.

Thus, for R′ ⊂ R+,

(4.6) {(I −K
(p)
β )−1 : β ∈ R′} bounded in B(X)

⇐⇒ {(I −Kβ)−1 : β ∈ R′} bounded in B(Xp).

Consider first the case k(s, t) = κ(s−t) with κ ∈ L1(R). A reasonably
frequent practical case is that in which

|κ(s)| ∼ as−p, s→ +∞,

for some constants a > 0 and p > 1 (see the example in Section 7). It
is easy to see that a necessary condition for K ∈ B(Xq) in this case is
that p ≥ q. This motivates the introduction of the following hypothesis
which implies Assumption A:

A′. |k(s, t)| ≤ |κ(s − t)|, for all s, t ∈ R+, where κ ∈ L1(R) and
κ(s) = O(s−q) as s→ +∞, for some q > 1.

It is easy to see that, if k satisfies A and B, then k(p) satisfies B for
p ≥ 0. Further, if k satisfies A′, then, for some M,C > 0,

(4.7) |k(s, t)| ≤ |κ(s− t)| ≤M(1 + s− t)−q, s− t ≥ C.

The next theorem (cf. [10, Theorem 4]) shows that A′ and B are
sufficient conditions to ensure that K ∈ B(Xp) for 0 ≤ p ≤ q. In this
theorem and throughout the rest of the section, we let, for α, β ≥ 0,
α+ β > 1,
(4.8)

fαβ(s) :=
∫ ∞

0

(1+ t)−α(1+ |s− t|)−β dt=
∫ ∞

0

dt

wα(t)wβ(s− t)
, s ≥ 0,
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and note that

(4.9) Fαβ := sup
s≥0

fαβ(s) <∞

and that, if α, β > 0,

(4.10) fαβ(s) → 0, s→ +∞;

see [10, Lemma 3].

Theorem 4.1. If k satisfies A′ and B and 0 ≤ p ≤ q, then k(p)

satisfies A and B and K ∈ B(Xp), K(p) ∈ B(X).

Proof. In view of the above remarks and (4.3), it only remains to
show that k(p) satisfies A.

Note that wp(s)/wp(t) ≤ 1 for t ≥ s ≥ 0, while, for all s, t ∈ R,

(4.11) wp(s)/wp(t) =
{

1 +
|s| − |t|
1 + |t|

}p

≤ 2p

{
1 +

( |s− t|
1 + |t|

)p}
.

Thus, if k satisfies A′, then, for 0 ≤ p ≤ q and s ≥ 0,

∫ ∞

0

|k(p)(s, t)| dt ≤ 2p

∫ s

0

{
1 +

( |s− t|
1 + |t|

)p}
|κ(s− t)| dt

+
∫ ∞

s

|κ(s− t)| dt

≤ 2p

∫ s

0

|κ(t)|tp(1 + |s− t|)−p dt+ 2p||κ||1

and, using (4.7),

∫ s

0

|κ(t)|tp(1 + |s− t|)−p dt ≤ Cp

∫ C

0

|κ(t)| dt

+M

∫ ∞

C

(1 + t)p−q(1 + |s− t|)−p dt

≤ Cp||κ||1 +MFq−p,p.
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Thus k(p) satisfies A.

Theorem 4.2 shows the much stronger result thatK−K(p) is compact
for 0 ≤ p < q (cf. [10, Theorem 6]).

Theorem 4.2. If k satisfies A′ and B and 0 ≤ p < q, then k − k(p)

satisfies A, B, and C so that K −K(p) is compact.

Proof. We have that k− k(p) satisfies A and B from Theorem 4.1. It
only remains to show that k − k(p) satisfies C.

From Assumption A′, for all s, t ∈ R+,

(4.12) |k(s, t) − k(p)(s, t)| ≤ |κ(s− t)|
∣∣∣∣1 − wp(s)

wp(t)

∣∣∣∣ .
For all sufficiently large s > 1, from (4.7) and (4.11),

∫ s−s1/2

0

|k(s, t) − k(p)(s, t)| dt

≤M

∫ s−s1/2

0

{
2p + 1

(1 + |s− t|)q
+

2p

(1 + |s− t|)q−p(1 + t)p

}
dt

<
(2p + 1)M
q − 1

(1 + s1/2)1−q + 2pMfp,q−p(s) → 0

as s→ ∞ by (4.10). Let

(4.13) cp(s) := sup
|s−t|≤s1/2

∣∣∣∣1 − wp(s)
wp(t)

∣∣∣∣ =
(

1 + s

1 + s− s1/2

)p

− 1.

Then, for s > 1, from (4.12),

∫ s+s1/2

s−s1/2
|k(s, t) − k(p)(s, t)| dt ≤ cp(s)||κ||1 → 0

as s→ ∞. Finally, from (4.12) and since wp(t) ≥ wp(s), t ≥ s,∫ ∞

s+s1/2
|k(s, t) − k(p)(s, t)| dt ≤

∫ ∞

s1/2
|κ(−t)| dt→ 0
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as s→ ∞. Thus k − k(p) satisfies C.

From the above theorem, the representation

I −K(p) = I −K +K −K(p),

(4.4), and the Fredholm alternative, it follows that (I − K)−1 ∈
B(X) ⇒ (I − K(p))−1 ∈ B(X), 0 ≤ p < q. We have shown the
following result:

Theorem 4.3. If k satisfies A′ and B, 0 ≤ p < q, and (I −K)−1 ∈
B(X), then (I −K(p))−1 ∈ B(X) and (I −K)−1 ∈ B(Xp).

We now investigate further the case p = q. We note first that the
proof of Theorem 4.2 shows that

(4.14)
∫ ∞

s−s1/2
|k(s, t) − k(q)(s, t)| dt→ 0, s→ ∞.

Define

(4.15) k̄s(t) = k̄(s, t) :=
{

(wq(s− t)/wq(t))k(s, t), s ≥ t ≥ 0,
0, t ≥ s ≥ 0,

and the half-line integral operator K, with kernel k̄, by (1.2) with
K, k replaced by K, k̄. Recalling that k satisfies (4.7) we see that, for
β, s ≥ 0, writing Sβ,s := [β,∞) ∩ [s− C, s],

∫ ∞

β

|k̄(s, t)| dt ≤
∫

Sβ,s

wq(s− t)
wq(t)

|κ(s− t)| dt+M

∫ ∞

β

dt

(1 + t)q

≤
(

1 + C

1 + β

)q

||κ||1 +M

∫ ∞

β

dt

(1 + t)q

so that k̄ satisfies A and D. It is easy to see that k̄ also satisfies B given
that k does.

We now show that K −K(q) +K is compact so that, by Lemma 3.2,
k − k(q) also satisfies A, B and D.
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Lemma 4.4. If k satisfies A′ and B, then k− k(q) + k̄ satisfies A, B
and C, so that K −K(q) +K is compact.

Proof. It follows from the above remarks and Theorem 4.1 that
k − k(q) + k̄ satisfies A and B. From (4.14) and since k̄ satisfies D,
to establish C we need only show that

I1(s) :=
∫ s−s1/2

0

|k(s, t)| dt→ 0, s→ ∞,

I2(s) :=
∫ s−s1/2

0

|k(q)(s, t) − k̄(s, t)| dt→ 0, s→ ∞.

From (4.7), for all sufficiently large s,

I1(s) ≤M

∫ s−s1/2

0

(1 + s− t)−q dt <
M

q − 1
(1 + s1/2)1−q → 0

as s→ ∞. Also,

I2(s) =
∫ s−s1/2

0

|k(s, t)|wq(s− t)
wq(t)

∣∣∣∣ wq(s)
wq(s− t)

− 1
∣∣∣∣ dt

≤M

∫ s−s1/2

0

∣∣∣∣ wq(s)
wq(s− t)

− 1
∣∣∣∣ dt

wq(t)

for all sufficiently large s, by (4.7). Now, where cp(s) is defined by
(4.13),

∫ s1/2

0

∣∣∣∣ wq(s)
wq(s− t)

− 1
∣∣∣∣ dt

wq(t)
≤ cq(s)

∫ s1/2

0

dt

(1 + t)q
→ 0

as s→ ∞. Further, from (4.11), for s, t ∈ R,∣∣∣∣ wq(s)
wq(s− t)

− 1
∣∣∣∣ 1
wq(t)

≤ (2q + 1)
wq(t)

+
2q

wq(s− t)

so that∫ s−s1/2

s1/2

∣∣∣∣ wq(s)
wq(s− t)

− 1
∣∣∣∣ dt

wq(t)
< 2(2q + 1)

∫ s−s1/2

s1/2

dt

(1 + t)q
→ 0
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as s→ ∞. Thus, I2(s) → 0, s→ ∞.

The following example shows that K is not necessarily compact, even
ifK is compact, It thus follows, from the previous lemma, thatK−K(q)

is not necessarily compact.

Example 4.1. For some q > 1, r ≥ 0, u ∈ R, define

k(s, t) =
exp(i(s2 − ust+ t2))
(1 + |s− t|)q(1 + t)r

, s, t ∈ R+.

Then

k̄(s, t) =
{

exp(i(s2 − ust+ t2))(1 + t)−r−q, s ≥ t ≥ 0,
0, t ≥ s ≥ 0,

k satisfies A′ and B, and k̄ satisfies A, B and D. K is compact only
if u = 0 (cf. Example 3.1). If r > 0, then k satisfies C so that K is
compact. If r = 0 and u = 2, then k is a convolution kernel and K a
Wiener-Hopf operator.

Although K −K(q) is not necessarily compact, k− k(q) satisfies A, B
and D, as does k− k(p) for 0 ≤ p < q, by Theorem 4.3 and Lemma 3.2.
Thus, Theorem 3.3 is applicable, and we obtain the following result
which extends Theorem 4.3 to give a criterion for the invertibility of
I −K on B(Xp) in the case p = q, and at the same time considers the
finite section method for solution of (1.1) in the weighted space Xp.

Theorem 4.5. Suppose that k satisfies A′ and B, that (I −K)−1 ∈
B(X), that (I−Kβ)−1 ∈ B(X) and is uniformly bounded (in B(X)) for
all sufficiently large β, and that 0 ≤ p ≤ q. Then (I−K(p))−1 ∈ B(X),
(I − K

(p)
β )−1 ∈ B(X) and is uniformly bounded for all sufficiently

large β ≥ β0, (I − K)−1 ∈ B(Xp), (I − Kβ)−1 ∈ B(Xp) and is
uniformly bounded (in B(Xp)) for all sufficiently large β ≥ β0, and
(I −K

(p)
β )−1 s→ (I −K(p))−1.

We consider the implications of this result for the convergence of xβ

(defined by (1.3)) to x (defined by (1.1)). Clearly, if the conditions of
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the theorem are satisfied and y ∈ Xp, then x, xβ ∈ Xp for all sufficiently
large β. From the identity

x− xβ = (I −Kβ)−1(K −Kβ)x,

it is easy to see that, for β ≥ β0,

||x− xβ||p ≤Mp||(K −Kβ)x||p,

where Mp is a bound for {(I −Kβ)−1 : β ≥ β0} ⊂ B(Xp). Thus

||x− xβ||p ≤Mp||K(p)|| sup
s≥β

|wp(s)x(s)|.

Combining this inequality with the previous result, we have

Corollary 4.6. Suppose that the conditions of the previous theorem
are satisfied and 0 ≤ p′ ≤ p ≤ q. Then equation (1.1) has a solution,
x ∈ Xp, for every y ∈ Xp, and (1.3) a solution, xβ ∈ Xp, for
all sufficiently large β. Moreover, xβ(s) → x(s) uniformly on finite
intervals of R+ (uniformly on R+ if p > 0) and

sup
s∈R+

|(1 + s)p′
(x(s) − xβ(s))| ≤ Cp′βp′−p.

We will consider the application of Theorem 4.5 to a particular class
of integral operators in Section 6. We point out at this stage that it
certainly applies (cf. Corollary 3.4) if

(4.16) ||K|| = sup
s∈R+

∫ ∞

0

|k(s, t)| dt < 1.

Corollary 4.7. Suppose that k satisfies A′ and B and that (4.16) is
satisfied. Then all the conclusions of Theorem 4.5 apply. In particular,
for 0 ≤ p ≤ q, (I − K)−1 ∈ B(Xp) and (I − Kβ)−1 ∈ B(Xp) and is
uniformly bounded for all sufficiently large β.

5. Invertibility in subspaces of Xp. We extend the results of
the previous section on the invertibility of the operator I − K on X
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or Xp to results on the invertibility of I − K on certain subspaces of
Xp, specifically X l

p := {x ∈ Xp : lims→+∞wp(s)x(s) exists} and X0
p :=

{x ∈ X l
p : lims→+∞wp(s)x(s) = 0}. For p ≥ 0, X0

p and X l
p are closed

subspaces of the Banach space Xp. We will abbreviate X0
0 and X l

0 as
X0 and X l, respectively, and, for x ∈ X l, let x(∞) := lims→∞ x(s).

Note first of all that, where X̃ denotes X0 and X̃p denotes X0
p , or

X̃ denotes X l and X̃p denotes X l
p, (4.3) (4.5) hold with Xp and X

replaced by X̃p and X̃. That is, where K ∈ B(X) and K(p) is defined
by K(p)ψ = wpK(ψ/wp), ψ ∈ X,

(5.1) K(p) ∈ B(X̃) ⇐⇒ K ∈ B(X̃p),

I−K(p) injective on X̃⇐⇒I−K injective on X̃p⇐I−K injective on X,

(5.3) (I −K(p))−1 ∈ B(X̃) ⇔ (I −K)−1 ∈ B(X̃p).

We also have the following straightforward results:

Lemma 5.1. If K,H ∈ B(Xp), H : Xp → X̃p, (I −K)−1 ∈ B(X̃p)
and (I −K −H)−1 ∈ B(Xp), then (I −K −H)−1 ∈ B(X̃p).

Proof. If y ∈ X̃p and x := (I −K −H)−1y, then Hx + y ∈ X̃p and
x = (I −K)−1(Hx+ y) ∈ X̃p.

Lemma 5.2. If K, (I −K)−1 ∈ B(Xp) and K, (I −K)−1 ∈ B(X0
p),

then K, (I −K)−1 ∈ B(X l
p) if and only if K(1/wp) ∈ X l

p.

Proof. In view of (5.1) and (5.3) and, since K(1/wp) ∈ X l
p if and only

if K(p)1 ∈ X l, it is sufficient to consider the case p = 0 when wp = 1.

The necessity of the condition K1 ∈ X l is obvious. To see the
sufficiency, suppose that K, (I−K)−1 ∈ B(X), K, (I−K)−1 ∈ B(X0),
and K1 ∈ X l. Since X l ⊂ X, to show that K, (I −K)−1 ∈ B(X l) we
need only show that K, (I −K)−1 : X l → X l.

For x ∈ X l, x−x(∞)1 ∈ X0 so thatKx = K(x−x(∞)1)+x(∞)K1 ∈
X l. Thus, K : X l → X l and

(5.4) Kx(∞) = x(∞)K1(∞).
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Note that

(5.5) K1(∞) �= 1

for otherwise (I −K)1 ∈ X0 which contradicts (I −K)−1 ∈ B(X0).

If y ∈ X l, then x := (I − K)−1y ∈ X, y∗ := y − (y(∞)/(1 −
K1(∞)))(I − K)1 ∈ X0, x∗ := (I − K)−1y∗ ∈ X0, and x =
x∗ + (y(∞)/(1 −K1(∞)))1 ∈ X l. Thus (I −K)−1 : X l → X l and

(5.6) (I −K)−1y(∞) =
y(∞)

1 −K1(∞)
.

For the remainder of this section let K,K(p) be the half-line integral
operators, with kernels k, k(p) defined in Section 4.

The next result is a criterion for the invertibility of I −K on X0 and
X l. It also relates, through (5.14), the rate of decay of (I −K)−1y to
that of y ∈ X0.

Theorem 5.3. If k satisfies Assumptions A′ and B, then K ∈ B(X)
and K ∈ B(X0); if also K1 ∈ X l, then K ∈ B(X l). If k satisfies
A′ and B and (I − K)−1 ∈ B(X), then (I − K)−1 ∈ B(X0); if also
K1 ∈ X l, then (I −K)−1 ∈ B(X l).

Proof. From Theorem 4.1, K ∈ B(X). Also, if x ∈ X0, then, since k
satisfies A′,

|Kx(s)| ≤
∫ ∞

0

|κ(s− t)| |x(t)| dt

≤ ||x||
∫ s/2

0

|κ(s− t)| dt+ sup
t≥s/2

|x(t)|
∫ ∞

s/2

|κ(s− t)| dt

≤ ||x||
∫ ∞

s/2

|κ(t)| dt+ sup
t≥s/2

|x(t)| ||κ||1

→ 0

as s → ∞. Thus K : X0 → X0 and K ∈ B(X0). That K ∈ B(X l) if
K1 ∈ X l follows as in the proof of Lemma 5.2.
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Suppose that also (I−K)−1 ∈ B(X). We shall show that (I−K)−1 :
X0 → X0. From this it follows that (I − K)−1 ∈ B(X0), and that
(I − K)−1 ∈ B(X l) if K1 ∈ X l from Lemma 5.2. To show that
y ∈ X0 ⇒ (I −K)−1y ∈ X0 we proceed by modifying the argument of
Theorems 4.2 and 4.3.

Suppose that y ∈ X0. Choose ε in the range 0 < ε < min{1/2, (q −
1)/2} and define v ∈ C(R+) by

v(s) := min
(

(1 + s)ε,
||y||

supt≥s |y(t)|
)

so that v(s) → ∞ as s→ ∞,

(5.7) |y(s)| ≤ ||y||/v(s),

and v is monotonic increasing. Define w ∈ C(R+) ∩ C1(0,∞) by

w(s) =

⎧⎨
⎩
v(0), s = 0,
2
s

∫ s

s/2

v(t) dt, s > 0,

and note that

(5.8) 1 ≤ v(s/2) ≤ w(s) ≤ v(s) ≤ (1 + s)ε, s ∈ R+,

and, for s > 0,

w′(s) = (2v(s) − v(s/2) − w(s))/s ≥ 0,

so that w is monotonic increasing. Note also that

(5.9) w′(s)/w(s) ≤ 2v(s)/s = O(sε−1)

as s→ ∞.

Define X̂ ⊂ X0 by

X̂ := {x ∈ X0 : ||x;w|| := sup
s∈R+

|x(s)w(s)| <∞}.

Then, from (5.7) and (5.8), y ∈ X̂. We will show that (I−K)−1 ∈ B(X̂)
so that x ∈ X̂.
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Let K̂ be the half-line integral operator with kernel k̂(s, t) :=
(w(s)/w(t))k(s, t). Then (4.3) (4.5) hold with K(p) and Xp replaced
by K̂ and X̂. Clearly k̂ satisfies B, and k̂ satisfies A if k̂ − k satisfies
C. Now

(5.10)
∫ ∞

0

|k(s, t) − k̂(s, t)| dt ≤
∫ ∞

0

|κ(s− t)|
∣∣∣∣w(s)
w(t)

− 1
∣∣∣∣ dt

and

(5.11)
∫ ∞

s+s1/2
|κ(s− t)|

∣∣∣∣w(s)
w(t)

− 1
∣∣∣∣ dt ≤

∫ ∞

s1/2
|κ(−t)| dt→ 0

as s→ ∞. For all sufficiently large s, from (4.7),
(5.12)∫ s−s1/2

0

|κ(s− t)|
∣∣∣∣w(s)
w(t)

− 1
∣∣∣∣ dt ≤Mw(s)

∫ s−s1/2

0

(1 + |s− t|)−q dt

≤Mw(s)
∫ ∞

s1/2
(1 + t)−q dt

= O(sε−(1−q)/2)

as s→ ∞, by (5.8). Let

Cp(s) := sup
|s−t|≤s1/2

∣∣∣∣w(s)
w(t)

− 1
∣∣∣∣ ≤ w(s+ s1/2)

w(s− s1/2)
− 1

= exp
{ ∫ s+s1/2

s−s1/2

w′(t)
w(t)

dt

}
− 1

and note that

∫ s+s1/2

s−s1/2

w′(t)
w(t)

dt ≤ 2s1/2 sup
|t|≤s1/2

w′(s+ t)
w(s+ t)

= O(sε−1/2)

as s→∞ by (5.9), so that Cp(s)=O(sε−1/2) as s→∞. It follows that

(5.13)
∫ s+s1/2

s−s1/2
|κ(s− t)|

∣∣∣∣w(s)
w(t)

− 1
∣∣∣∣ dt ≤ Cp(s)||κ||1 → 0

as s→ ∞.
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We have shown, in (5.10) (5.13), that k̂ − k satisfies C, and also k̂
satisfies A and B. Thus K̂ ∈ B(X) and K − K̂ is compact. It follows
from the representation I − K̂ = I − K + K − K̂ (cf. Theorem 4.3)
that (I − K̂)−1 ∈ B(X) so that (I −K)−1 ∈ B(X̂) and x ∈ X̂. Thus,
x ∈ X0; in fact, x ∈ X̂ implies rather more, that

(5.14) x(s) = O(s−ε) +O( sup
t≥s/2

|y(t)|)

as s→ ∞.

Note that (see Section 3)

(5.15) k satisfies A, B, C =⇒ K : X → X0 and is compact.

(In fact, ⇒ can be replaced by ⇔; see [4, 22].) Combining this
observation with the above results we obtain the following extension
of Theorem 4.1 to the subspaces X0 and X l. The half-line integral
operator K is defined here as in Section 4 (see (4.15)).

Theorem 5.4. If k satisfies A′ and B, then

(i) For 0 ≤ p < q, K ∈ B(X0
p) and K(p) ∈ B(X0); if also K1 ∈ X l,

then K ∈ B(X l
p) and K(p) ∈ B(X l).

(ii)

K ∈ B(X l
q) ⇐⇒ K(q) ∈ B(X l) ⇐⇒ K : X → X l and K1 ∈ X l

K ∈ B(X0
q ) ⇐⇒ K(q) ∈ B(X0) ⇐⇒ K : X → X0

(iii) If K1 ∈ X l and either: (A) 0 ≤ p < q; or (B) p = q and
K : X → X0; then

(a) for all x ∈ X l, K(p)x ∈ X l and

(5.16) K(p)x(∞) = x(∞)K1(∞);

equivalently

(b) for all x ∈ X l
p, Kx ∈ X l

p and

(5.17) Kx(s) = x(s)K1(∞) + o(s−p), s→ ∞.
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Proof. We have already, from Theorem 4.1, that K(p) ∈ B(X),
0 ≤ p ≤ q, and, from Theorem 5.3, that K ∈ B(X0) and K ∈ B(X l) if
K1 ∈ X l. It follows from the representation K(p) = K + (K(p) −K),
Theorem 4.2, and (5.15), that K(p) ∈ B(X0) for 0 ≤ p < q, and that
K(p) ∈ B(X l) if K1 ∈ X l.

By Lemma 4.4 and (5.15) we have that

(5.18) K(q) −K −K : X → X0.

Thus, and from Theorem 5.3, it follows that K : X → X0 implies
that K(q) : X0 → X0, and that if K : X → X l and K1 ∈ X l then
K(q) : X l → X l.

Conversely, suppose that K(q) : X̃ → X̃ where X̃ denotes X0 or X l.
To see that it follows that K : X → X̃, note that we have shown before
Lemma 4.4 that k̄ satisfies A, B and D. Suppose that x ∈ X and, for
β ≥ 1, define xβ ∈ X0 so that ||xβ|| ≤ ||x|| and

xβ(s) =
{
x(s), s ≤ β − 1,
0, s ≥ β.

Then xβ
s→ x, Kxβ ∈ X0 ⊂ X̃ for all β, since K ∈ B(X0) by Theorem

5.3, thus and by (5.18), Kxβ = (K+K−K(q))xβ −Kxβ +K(q)xβ ∈ X̃

for all β. Now, by Lemma 3.1, xβ
s→ x ⇒ Kxβ → Kx. It follows

that Kx ∈ X̃ since X̃ is a closed subspace of X. Thus K(q) : X̃ → X̃
implies that K : X → X̃ and hence, by (5.18), also that K : X̃ → X̃.
In particular, K(q) ∈ B(X l) implies that K1 ∈ X l.

From (5.4), if the conditions of (iii) are satisfied so that, by (i) and
(ii), K(p) ∈ B(X), B(X0), B(X l), then K(p)x(∞) = x(∞)K(p)1(∞),
for x ∈ X l. Further, from the representation K(p) = (K(p) −K) +K
and Theorem 4.2 if p < q, (5.18) if p = q, K(p)1(∞) = K1(∞).

The remaining results of the theorem follow from (5.1).

We can also extend the results of Theorems 4.3 and 4.5 in part to the
subspaces X0 and X l.
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Theorem 5.5. If k satisfies A′ and B and (I −K)−1 ∈ B(X), then

(i) For 0 ≤ p < q, (I −K)−1 ∈ B(X0
p) and (I −K(p))−1 ∈ B(X0);

if also K1 ∈ X l, then (I −K)−1 ∈ B(X l
p) and (I −K(p))−1 ∈ B(X l).

(ii) If (I −K)−1 ∈ B(Xq), then:

(a) (I −K)−1 ∈ B(X l
q) and (I −K(q))−1 ∈ B(X l) if K : X →

X l and K1 ∈ X l;

(b) (I −K)−1 ∈ B(X0
q ) and (I −K(q))−1 ∈ B(X0) if K : X →

X0.

(iii) If K1 ∈ X l and either:

(A) 0 ≤ p < q; or

(B) p = q, (I −K)−1 ∈ B(Xq) and K : X → X0; then

(a) for all y ∈ X l, (I −K(p))−1y ∈ X l and

(5.19) (I −K(p))−1y(∞) =
y(∞)

1 −K1(∞)
;

equivalently

(b) for all y ∈ X l
p, (I −K)−1y ∈ X l

p and

(5.20) (I −K)−1y(s) =
y(s)

1 −K1(∞)
+ o(s−p), s→ ∞.

Proof. That (I −K)−1 ∈ B(X0
p) if 0 ≤ p < q follows from the same

argument as Theorem 4.3, on noting, from (5.15), that K(p) − K is
compact as an operator onX0 as well as onX. That (I−K)−1 ∈ B(X l

p)
if K1 ∈ X l then follows from Theorems 4.3 and Lemma 5.2.

If (I −K)−1 ∈ B(X), B(Xq) and K : X → X0, then (I −K(q))−1 ∈
B(X) and, from (5.18), it follows that K(q) − K : X → X0. Now,
by Theorem 5.3, (I −K)−1 ∈ B(X0). It follows that (I −K(q))−1 =
(I −K − (K(q) −K))−1 ∈ B(X0) from Lemma 5.1.
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By a similar argument we establish that (I − K(q))−1 ∈ B(X l) in
part (ii)(a), noting that if also K1 ∈ X l then, from Theorem 5.3,
K, (I − K)−1 ∈ B(X l). The remaining results of (i) and (ii) follow
from (5.3).

The conditions of part (iii) ensure that (I −K)−1 ∈ B(Xp), B(X0
p),

B(X l
p) and also, from (5.16), that K(p)1(∞) = K1(∞). Equation

(5.19) then follows from (5.6).

The above result is of interest in that it shows, in part (iii), that if
K1 ∈ X l and y(s) ∼ as−p, s→ ∞ (a �= 0), and either: (A) 0 ≤ p < q;
or (B) p = q, (I −K)−1 ∈ B(Xq) and K : X → X0; then, to leading
order, the asymptotic behavior of (I −K)−1y at infinity depends only
on that of y. This leading order asymptotic behavior is given explicitly
by (5.20). If p = q, (I −K)−1 ∈ B(Xq), K : X → X l, but KX �⊂ X0,
then it is easy to see that (5.20) is replaced by

(5.21) x(s) =
y(s) + s−qK(wqx)(∞)

1 −K1(∞)
+ o(s−q), s→ +∞,

where x := (I −K)−1y. In this case the leading order behavior of x at
infinity is no longer determined by that of y, but depends on the global
values of y on the half-line.

We illustrate the results of this section by a theorem which will find
application in Section 6. We introduce the following stronger version
of Assumption A′.

A′′. |k(s, t)| ≤ |κ(s − t)|, for all s, t ∈ R+, where κ ∈ L1(R) and
κ(s) = o(s−q) as s→ +∞, for some q > 1.

Lemma 5.6. Suppose that k satisfies A′′ and B. Then, for 0 ≤ p ≤ q,
k − k(p) satisfies A, B and C.

Proof. From Theorems 4.1 and 4.2, k − k(p) satisfies A and B for
0 ≤ p ≤ q and C for 0 ≤ p < q. To see that C is satisfied also for
p = q, note (4.14) and that k satisfies a stronger version of (4.7) with
M replaced byM r(s−t), for some r ∈ X0 (and, further, we may choose
r to be monotonic decreasing with r(0) = 1). Making this replacement
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in the proof of Theorem 4.2 we see that,∫ s−s1/2

0

|k(s, t) − k(q)(s, t)| dt

<
(2q + 1)M
q − 1

(1 + s1/2)1−q + 2qMr(s1/2)fq,0(s) → 0

as s→ ∞ by (4.9) and since r ∈ X0.

Theorem 5.7. Suppose that, for some a ∈ C (the set of complex
numbers), k(s, t) := a(1 + |s − t|)−q + k∗(s, t), where k∗ satisfies A′′

and B. Define k̄ by (4.15), and let K∗ denote the half-line integral
operator with kernel k∗. Then K and K−K(p), 0 ≤ p ≤ q, are compact
operators. Moreover, if K∗1 ∈ X l, then K ∈ B(X l

p), 0 ≤ p ≤ q. If
also (I −K)−1 ∈ B(X), then (I −K)−1 ∈ B(X l

p), 0 ≤ p ≤ q and, for
y ∈ X l

p, the asymptotic behavior of x(s) := (I −K)−1y(s) as s→ ∞ is
given by (5.20) for 0 ≤ p < q and, for p = q, by

(5.22) x(s) =
y(s) + as−q

∫ ∞
0
x(t) dt

1 −K1(∞)
+ o(s−q), s→ +∞.

Proof. To show that K and K − K(p) are compact operators we
consider first the two particular cases a = 0 and k∗ = 0.

In the first case (a = 0) it follows from Lemma 5.6, (5.15), and Lemma
4.4 that K,K −K(p) : X → X0 and are compact.

In the case k∗ = 0, K −K(p) : X → X0 and is compact by Theorem
4.2 for 0 ≤ p < q. Further, K = K1 + K2 where K1 and K2 have
kernels k̄1(s, t) := a(1 + t)−q and

k̄2(s, t) =
{

0, s ≥ t ≥ 0,
a(1 + t)−q, t ≥ s ≥ 0.

It is easy to see that k̄2 satisfies A, B and C, so that K2 is compact.
Also, K1 : X → X l and is compact since it has a one-dimensional
range. Thus, and by (5.15) and Lemma 4.4, K and K−K(q) : X → X l

and are compact. Further,

K1(s) = a

∫ ∞

0

(1 + |s− t|)−q dt→ a

∫ +∞

−∞
(1 + |t|)−q dt

as s→ ∞.
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From these particular cases it follows thatK andK−K(p), 0 ≤ p ≤ q,
are compact in the general case and that K : X → X l with

Kx(∞) = K1x(∞) = a

∫ ∞

0

x(t)(1 + t)−q dt, x ∈ X.

Moreover, if K∗1 ∈ X l, then K1 ∈ X l, and, by Theorem 5.4 (i) and
(ii), K ∈ B(X l

p), 0 ≤ p ≤ q. If also (I − K)−1 ∈ B(X) then, by
Theorem 4.3, (I −K)−1 ∈ B(Xp), 0 ≤ p < q, and, since K −K(q) is
compact, (I − K)−1 ∈ B(Xq) by the same argument. The remaining
results then follow from Theorem 5.5 (i), (ii)(a) and (iii)(b), and from
(5.21).

6. Wiener-Hopf and related operators. We apply the results
obtained so far to the case when the integral operator K, defined by
(1.2), is a perturbation of a Wiener-Hopf operator. Precisely, suppose
that

E.

(6.1) k(s, t) = κ(s− t) + h(s, t), s, t ∈ R+,

where κ ∈ L1(R) and h satisfies A, B and D.

We write K = K + H in this case, where K is the Wiener-Hopf
operator, defined by (1.5), and H is a half-line integral operator of
the form (1.2) with kernel h. Note that, from Example 3.1, the
pertrubation H is not necessarily compact, and that the kernel κ(s−t),
with κ ∈ L1(R), satisfies A and B [4].

It is well known that the spectrum of the Wiener-Hopf operator K
can be characterized in terms of the Fourier transform of κ. Let

φ(λ) := 1 −
∫ +∞

−∞
κ(s)eiλs ds, λ ∈ R,

and, in the case φ(λ) �= 0, λ ∈ R, define the integer, wind (φ), to be
the winding number

wind (φ) :=
1
2π

[arg φ(λ)]+∞
−∞.
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Then [19] (I −K)−1 ∈ B(X) if and only if

(6.2) φ(λ) �= 0, λ ∈ R, wind (φ) = 0.

Anselone and Sloan [4] have proved the uniform boundedness of
(I−Kβ)−1 in the case k(s, t) = κ(s−t)+h(s, t)+ l(t), with κ ∈ L1(R),
l ∈ L1(R+), and h satisfying A, B and C, under conditions which imply
(6.2). K is a compact perturbation of K in this case. For the particular
case k(s, t) = κ(s− t) they show the following result in [6]:

Theorem 6.1. Condition (6.2) is satisfied if and only if (I−Kβ)−1 ∈
B(X) and is uniformly bounded for all sufficiently large β.

Combining Theorems 6.1 and 3.3 we have the following generalization
of the results of Anselone and Sloan [4]:

Theorem 6.2. Suppose that k satisfies condition E, that (6.2) is
satisfied, and that I − K is injective. Then (I − K)−1 ∈ B(X),
(I −Kβ)−1 ∈ B(X) and is uniformly bounded for all sufficiently large
β, and (I −Kβ)−1 s→ (I −K)−1.

We now study the uniform boundedness of (I−Kβ)−1 in the weighted
spaces, Xp, of Section 4, and define k(p) (by (4.2)) and K(p) as before.
Combining Theorems 4.5 and 6.2, we have:

Theorem 6.3. Suppose that k satisfies A′ and E, that (6.2) is
satisfied, that 0 ≤ p ≤ q, and that the homogeneous version of equation
(1.1), x = Kx, has only the trivial solution in X. Then (I−K(p))−1 ∈
B(X), (I−K(p)

β )−1 ∈ B(X) and is uniformly bounded for all sufficiently
large β ≥ β0, (I−K)−1 ∈ B(Xp), (I−Kβ)−1 ∈ B(Xp) and is uniformly
bounded (in B(Xp)) for β ≥ β0 and (I −K

(p)
β )−1 s→ (I −K(p))−1.

We remark that Theorem 6.3 remains true under the weaker condition
that x = Kx has only the trivial solution in Xp. To see this, note that
the argument leading up to and including Lemma 4.4 shows that if k
satisfies A′ and B and 0 ≤ p ≤ q, then k − k(p) satisfies A, B and D.
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Thus, if k satisfies A′ and E and 0 ≤ p ≤ q, then k(p) also satisfies
E and can be written in the same form (6.1) as k, and with the same
Wiener-Hopf kernel κ(s− t). Thus, Theorem 6.2 can be applied to k(p)

to give Theorem 6.3 but under the weaker condition that I −K(p) be
injective.

Combining Corollary 4.6 and Theorem 6.2, we have:

Corollary 6.4. Suppose that the conditions of Theorem 6.3 are
satisfied and 0 ≤ p′ ≤ p ≤ q. Then, where x and xβ are the solutions of
equations (1.1) and (1.3), respectively, xβ(s) → x(s) uniformly on finite
intervals of R+ (uniformly on R+ if p > 0) and, for all sufficiently large
β,

sup
s∈R+

|(1 + s)p′
(x(s) − xβ(s))| ≤ Cp′βp′−p.

It is interesting to compare the above to previous results obtained by
Silbermann [21] (or see [20]), who proves that, for q > 0, (I−Kβ)−1 ∈
B(Xq) and is uniformly bounded for all sufficiently large β, provided
that (I −K)−1 ∈ B(Xq), k(s, t) = κ(s− t) + h(s, t),

(6.3)
∫ +∞

−∞
(1 + |t|)q|κ(t)| dt <∞,

and

(6.4) h(q)(s, t) := (wq(s)/wq(t))h(s, t) satisfies A, B and C.

We note that the condition (6.3) on the convolution kernel κ(s − t)
is, in most cases of practical application, a stronger requirement than
Assumption A′. In particular, A′ imposes no requirement on κ(s) for
s < 0 (beyond that κ ∈ L1(R)) and, in the case which most frequently
arises, that |κ(s)| ∼ a|s|−p, s → ∞, for some constants a and p > 1,
κ(s− t) satisfies A′ if p ≥ q but (6.3) only if p > q + 1. As previously
noted, A′ is a necessary and sufficient condition for K ∈ B(Xq) in this
case.

For more general kernels we point out that A′ is a natural condition
in many practical cases (e.g., [10, Section 3]). However, h(s, t) may
satisfy (6.4) but not Assumption A′ as the following example shows.
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Example 6.1. Choose a, b, c > 0 with a+ c− 1 > b > 1 and define

h(s, t) = (1 + |s− t|)−a(1 + t)b−c(1 + s)−b, s, t ∈ R+.

Then
h(q)(s, t) = (1 + |s− t|)−a(1 + t)b−c−q(1 + s)q−b

≤ (1 + |s− t|)|b−q|−a(1 + t)−c,

since {(1 + t)/(1 + s)}±1 ≤ 1 + |s− t|. Thus

∫ ∞

0

h(q)(s, t) dt ≤ fa−|b−q|,c(s),

defined by (4.8), and, from (4.9) and (4.10), h(q) satisfies A, B and C
for 0 ≤ q < c+ b+ a− 1. However,

h(2t, t) = (1 + t)b−a−c(1 + 2t)−b ∼ 2−bt−a−c

as t→ ∞, so that h does not satisfy A′ for q > a+ c.

We can include in our results perturbations satisfying (6.4) by com-
bining Theorems 3.3 and 6.3 to obtain

Corollary 6.5. The conclusions of Theorem 6.3 apply if the con-
ditions of Theorem 6.3 hold but with “k satisfies A′ and E” replaced
by “k = k1 + k2 where k1 satisfies A′ and E and k

(p)
2 (s, t) :=

(wp(s)/wp(t))k2(s, t) satisfies A, B and C.”

We now consider the application of the results of Section 5. Through-
out the rest of the section K, as before, is the half-line integral operator
with kernel k̄ defined by (4.15).

Recall that, if k satisfies E, then k(s, t) = κ(s − t) + h(s, t) with
κ ∈ L1(R) and h satisfying A, B and D. If also k satisfies A′ then
|h(s, t)| ≤ |κ∗(s− t)|, s, t ∈ R+, for some κ∗ ∈ L1(R). Thus, and since
h satisfies D,

∫ ∞

0

|h(s, t)| dt ≤
∫ s/2

0

|κ∗(s−t)| dt+
∫ ∞

s/2

|h(s, t)| dt→ 0, s→ ∞,
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i.e., h satisfies C. Thus, if k satisfies A′ and E, K1 ∈ X l with
K1(∞) =

∫ +∞
−∞ κ(t) dt.

We obtain the following theorem by a straightforward combination
of Theorems 5.4, 5.5 and 6.3.

Theorem 6.6. Suppose that k satisfies A′ and E, that (6.2) is
satisfied, and that the homogeneous version of equation (1.1), x = Kx,
has only the trivial solution in X. Then, where X̃ denotes X0 and X̃p

denotes X0
p or X̃ denotes X l and X̃p denotes X l

p, it follows that K(p),
(I −K(p))−1 ∈ B(X̃) and K, (I −K)−1 ∈ B(X̃p), for 0 ≤ p < q; and
also for p = q if K : X → X̃. For y ∈ X l

p the asymptotic behavior of
x := (I − K)−1y at infinity is given by (5.20) for 0 ≤ p < q and, if
K : X → X l, by (5.21) for p = q, with K1(∞) =

∫ +∞
−∞ κ(t) dt.

Specializing further to the pure Wiener-Hopf case, we can make the
following application of Theorem 5.7:

Theorem 6.7. Suppose that k(s, t) = κ(s − t), s, t ∈ R+, with
κ ∈ L1(R), and that κ(s) = as−q + o(s−q) as s → +∞, for some
constants a ∈ C and q > 1. Then K ∈ B(Xp), B(X l

p), for 0 ≤ p ≤ q.
If also (6.2) is satisfied, then (I−K)−1 ∈ B(Xp), B(X l

p), for 0 ≤ p ≤ q.
For y ∈ X l

p the asymptotic behavior of x := (I −K)−1y at infinity is
given by (5.20) for 0 ≤ p < q and by (1.6) for p = q.

7. An application in acoustics. Consider the following boundary
value problem for the Helmholtz equation in the half-plane R2

+ :=
{(s, t) : s, t ∈ R, t > 0}:
(7.1)⎧⎪⎨

⎪⎩
Δu+ u = F, in R2

+,
∂u

∂n
+ iαu = 0, on R = ∂R2

+,

u satisfies the Somerfeld radiation condition.
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In (7.1), the functions α ∈ L∞(R) and F are supposed given, with
F ∈ L2(R2

+) compactly supported. The function α is defined by

(7.2) α(s) =
{
α1, s < 0,
α2, s > 0,

where α1, α2 ∈ C with Reα1,Reα2 > 0.

The above boundary value problem has been used, for example,
as a model of sound propagation from road traffic over flat ground,
the ground plane consisting of two half-planes, one of relative surface
admittance α1, the other of admittance α2 (see [14, 12, 16, 15]).

Introducing the Green’s function Gα1(r, r0), which satisfies (7.1) with
F (r) = δ(r − r0), and α(s) = α1, s ∈ R, the boundary value problem
can be reformulated, via Green’s theorem, as a boundary integral
equation for x, the restriction of u to the half-line {(s, 0) : s ≥ 0}.
Identifying this half-line with R+, we can write the integral equation
as

(7.3) x(s) = y(s) + i(α1 − α2)
∫ ∞

0

gα1(s− t)x(t) dt, s ∈ R+.

In equation (7.3), gα1 and y are defined by

(7.4) gα1(t) := Gα1((t, 0), (0, 0)), t ∈ R,

(7.5) y(t) :=
∫
R2

+

Gα1((t, 0), r)F (r) dA(r), t ∈ R+.

For Reα > 0, r = (s, 0) ∈ ∂R2
+, and r0 = (s0, t0) ∈ R2

+, the Green’s
function Gα is given explicitly by [12]

(7.6) Gα(r, r0) = − i

2
H

(1)
0

(√
(s− s0)2 + t20

)
+ Pα(s− s0, t0),

where H(1)
0 is the Hankel function of the first kind of order zero and

Pα is defined by



INTEGRAL EQUATIONS ON THE HALF-LINE 71

(7.7)

Pα(s, t) :=
iα

2π

∫ +∞

−∞

exp(i(t(1−λ2)1/2−sλ))
(1−λ2)1/2((1−λ2)1/2 +α)

dλ, s ∈ R, t ∈ R+,

with 0 ≤ arg{(1 − λ2)1/2} ≤ π/2.

Equation (7.3), an equation of Wiener-Hopf type, is identical to
equation (1.1) if we define

(7.8) k(s, t) := κ(s− t) := i(α1−α2)gα1(s−t), s, t ∈ R+.

It is shown in [13] that Pα ∈ C∞(R2
+\{(0, 0)}) ∩ C(R2

+). From [9,
equations (2.1.87), (2.1.91), and (2.1.92)], it follows that

(7.9) Gα((s, 0), r0) =
1√
2π

{
1
α2

− it0
2α

}
ei(s−s0−π/4)s−3/2 +O(s−5/2),

as s → +∞, uniformly in r0 = (s0, t0) ∈ D, where D is any bounded
subset of R2

+. Using these properties and certain standard properties
of the Hankel function [1], it follows that y ∈ X3/2, but y /∈ Xp for
p > 3/2, in general. Further, κ ∈ L1(R),

(7.10) κ(s) ∼ 1√
2π

(
α1 − α2

α2
1

)
ei(s+π/4)s−3/2, s→ +∞,

and, from [10], the Fourier transform of κ is

(7.11) κ̂(λ) =
α1 − α2√

1 − λ2 + α1

,

so that φ(λ) := 1− κ̂(λ) = (
√

1 − λ2 +α2)/(
√

1 − λ2 +α1) and (6.2) is
satisfied.

Let xβ be the finite section approximation to x, which satisfies

(7.12) xβ(s) = y(s)+i(α1−α2)
∫ β

0

gα1(s−t)xβ(t) dt, s ∈ R+.

Applying Theorems 6.3 and 6.4 we have the following result.



72 S.N. CHANDLER-WILDE

Theorem 7.1. Equation (7.3) has precisely one bounded continuous
solution x, and this solution satisfies x(s) = O(s−3/2), s → +∞. For
all sufficiently large β, (7.12) has precisely one bounded continuous
solution xβ, and xβ converges uniformly to x as β → ∞ and satisfies
xβ(s) = O(s−3/2) as s → +∞, uniformly in β. Further, for 0 ≤ p ≤
3/2, the error x− xβ can be bounded by

sup
s∈R+

|(1 + s)p(x(s) − xβ(s))| ≤ Cpβ
p−3/2.

We now apply Theorem 5.7 to obtain more precise information about
the asymptotic behavior of x at infinity. Define x̃, ỹ ∈ X by

x̃(s) := e−isx(s), ỹ(s) := e−isy(s), s ∈ R+.

Then (7.3) is equivalent to

(7.13) x̃(s) = ỹ(s) +
∫ ∞

0

κ̃(s− t)x̃(t) dt, s ∈ R+,

where
κ̃(s) := e−isκ(s), s ∈ R.

From (7.5) and (7.9) it is easy to see that ỹ ∈ X l
3/2; in fact,

(7.14)

y(s) =
e−iπ/4

√
2π

∫
R2

+

{
1
α2

1

− it0
2α1

}
e−is0F (s0, t0) ds0 dt0 eiss−3/2+O(s−5/2),

s→ +∞.

Further, from (7.10),

(7.15) κ̃(s) ∼ as−3/2, s→ +∞, a :=
1√
2π

(
α1 − α2

α2
1

)
eiπ/4.

Now the Fourier transform of κ̂ is ˆ̃κ(λ) = κ̂(λ−1), λ ∈ R, so that (6.2)
is still satisfied by κ̃. Thus Theorem 6.7 can be applied to obtain (on
noting (6.4) and that

∫ +∞
−∞ κ̃(t) dt = ˆ̃κ(0) = κ̂(−1))
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Corollary 7.2. The asymptotic behavior at infinity of the solution
of equation (7.13) is given by

(7.16) x̃(s) =
α1

α2
ỹ(s)+

α1

α2
a

∫ ∞

0

x̃(t) dt s−3/2 + o(s−3/2), s→ +∞,

so that
(7.17)

x(s) =
α1

α2
y(s) +

α1

α2
a

∫ ∞

0

x(t)e−it dt eiss−3/2 + o(s−3/2), s→ +∞.

We point out that the precise information on asymptotic behavior of
x(s) at infinity that this corollary provides is a distinct improvement
on what can be obtained using previous results for integral equations
on the half-line. Applying the results of Chandler-Wilde [10] we obtain
only that x(s) = O(s−p), s→ ∞, for all p < 3/2, and, from the results
of Prössdorf and Silbermann [20, 21], only that x(s) = O(s−p), s→ ∞,
for p < 1/2.
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