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ABSTRACT

The problem of spurious excitation of gravity waves in the context of four-dimensional data assimilation
is investigated using a simple model of balanced dynamics. The model admits a chaotic vortical mode
coupled to a comparatively fast gravity wave mode, and can be initialized such that the model evolves on
a so-called slow manifold, where the fast motion is suppressed. Identical twin assimilation experiments are
performed, comparing the extended and ensemble Kalman filters (EKF and EnKF, respectively). The EKF
uses a tangent linear model (TLM) to estimate the evolution of forecast error statistics in time, whereas the
EnKF uses the statistics of an ensemble of nonlinear model integrations.

Specifically, the case is examined where the true state is balanced, but observation errors project onto all
degrees of freedom, including the fast modes. It is shown that the EKF and EnKF will assimilate obser-
vations in a balanced way only if certain assumptions hold, and that, outside of ideal cases (i.e., with very
frequent observations), dynamical balance can easily be lost in the assimilation. For the EKF, the repeated
adjustment of the covariances by the assimilation of observations can easily unbalance the TLM, and
destroy the assumptions on which balanced assimilation rests. It is shown that an important factor is the
choice of initial forecast error covariance matrix. A balance-constrained EKF is described and compared to
the standard EKF, and shown to offer significant improvement for observation frequencies where balance
in the standard EKF is lost. The EnKF is advantageous in that balance in the error covariances relies only
on a balanced forecast ensemble, and that the analysis step is an ensemble-mean operation. Numerical
experiments show that the EnKF may be preferable to the EKF in terms of balance, though its validity is
limited by ensemble size. It is also found that overobserving can lead to a more unbalanced forecast
ensemble and thus to an unbalanced analysis.

1. Introduction

Four-dimensional (4D) data assimilation schemes are
ones that use background knowledge from the assimi-
lating model to derive flow-dependent forecast error
statistics. Such flow-dependent forecast error statistics
should also, in principle, contain information about any
dynamical balance that might exist between the mass
and velocity fields. This is important because, since ob-

servation errors project onto all degrees of freedom,
dynamical balance can easily be destroyed by the inser-
tion of observations, causing the excitation of spurious,
unrealistic inertia-gravity waves in the subsequent
model evolution.

In 3D assimilation, imbalance is handled with an ini-
tialization step following the insertion of an observa-
tion, wherein some approximation is made to remove
spurious fast motion (e.g., Daley 1991). However, such
a projection of the analysis onto a so-called slow mani-
fold could result in an analysis that is farther from the
observations than the original forecast, rather than a
balanced state that is the best fit to the observations
(Daley and Puri 1980).
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One might think that the dynamical consistency of
4D error covariance models insures dynamical balance
between model variables. However, the extent to which
4D schemes retain balance within the forecast error
covariance model, given the limitations of a specific
algorithm, is not clear. In fact, every 4D assimilation
algorithm relies on a set of assumptions and approxi-
mations, and while these may be valid for the time scale
of interest, they may not be justified when motions of
different time scales are possible. All 4D schemes use
either a tangent linear model (TLM), or forecast en-
sembles, to spread error statistics in time and space. It
has not yet been entirely clarified how TLM-based and
ensemble methods compare in terms of their ability to
reflect dynamical balance.

In fact, existing studies have shown that balance in-
deed remains a problem in 4D assimilation. While
Cohn and Parrish (1991) showed that the linear Kalman
filter will compute a balanced analysis state if the model
error term is specified to consist of slow variables only,
the problem becomes much more complicated if the
dynamics are nonlinear.

In the context of four-dimensional variational assimi-
lation (4DVAR), Courtier and Talagrand (1990)
showed that, because a standard 4DVAR algorithm
uses all degrees of freedom of the problem to minimize
the cost function, it generates as many gravity waves as
needed in order to best fit the observations. Thus, a
balanced analysis requires the addition of a balance
constraint to the cost function minimization. This issue
has been further studied by Thépaut and Courtier
(1991), Polavarapu et al. (2000), and Gauthier and Thé-
paut (2001).

Tanguay et al. (1995) found that the accuracy of a
TLM depends strongly on scale, declining most quickly
at the smallest scales. They also found, however, that
the assimilation algorithm can transfer information
from the spatial scale of the observations to smaller
scales, in effect filling in the unobserved scales. In the
context of ensemble methods, Mitchell et al. (2002)
found that imbalance in the analysis is a direct conse-
quence of spatial localization of error covariances
(which may be necessary in order to avoid spurious
noise in covariances at large radii).

As 4D data assimilation becomes operationally fea-
sible, the balance problem is changing from one of ini-
tialization to one of representing dynamical balance
within the evolving covariance model. This study aims
to establish the balance properties of 4D schemes in the
most basic way possible, by comparing TLM-based evo-
lution of error covariances to ensemble-based tech-
niques. This will be done by comparing the two most
basic nonlinear approximations to the standard Kalman

filter: the extended Kalman filter (EKF), which uses the
TLM, and the ensemble Kalman filter (EnKF), which
evolves an ensemble of forecasts between observations.

We are thus restricting this study to sequential as-
similation. Variational algorithms are likely to behave
differently in terms of balance, but since 4DVAR still
uses a TLM, the results shown below for the EKF may
have implications for 4DVAR.

The model used is that of Lorenz (1986), as modified
by Wirosoetisno and Shepherd (2000, hereafter WS00),
and will be referred to here as the extended Lorenz
(1986) model or exL86. It has only 4 degrees of free-
dom, but admits both a chaotic vortical mode and a
gravity wave, with an asymptotic, nonlinear balance be-
tween slow and fast variables. The advantage of such a
model is that the balance between fast and slow vari-
ables is well understood, and the assimilated analysis
can thus be easily interpreted in terms of the balanced
and unbalanced components of the motion.

The fact that this model is conservative does not pose
a great difficulty, since the intention here is to use it to
study assimilation algorithms in the context of the free
atmosphere gravity wave/initialization problem, rather
than dissipative processes. As pointed out by Lorenz
(1986) and WS00, dissipation of gravity waves is not the
cause of the existence of a slow manifold, and therefore
models such as this one can be quite representative of
realistic balance dynamics. Another reason for using a
conservative model is that representing dissipation—
especially in a low-order model—requires some form of
parameterization, which further complicates the assimi-
lation process.

This study follows in the spirit of Miller et al. (1994)
and Evensen (1997), who used the celebrated Lorenz
(1963) model to test the EKF and EnKF in the context
of highly nonlinear, chaotic dynamics. These studies
found that the accuracy of both filters depends strongly
on the frequency and accuracy of observations.
Evensen (1997) showed that the EnKF may have an
advantage over the EKF, since it includes nonlinear
evolution of the forecast error distribution, whereas the
EKF assumes that errors evolve linearly in time. The
important difference between those studies and the
present one is the presence of nonlinear balance dy-
namics and the possibility of gravity wave generation.

An important caveat to mention is that we perform
so-called identical twin experiments, where the forecast
and truth are evolved with the same “perfect” model.
We are thus dealing with a case where the dynamics are
completely understood, such that the difference be-
tween a forecast and the truth is due only to initial-state
error, observation error, and accumulated analysis er-
ror. This makes the behavior of each assimilation
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scheme more transparent, and is thus a good place to
begin study. We note, however, that the presence of
model error—and a corresponding model error term in
the error covariance evolution—(as will be discussed in
section 3a) will likely have a significant effect on the
resulting balance results. A study dealing with model
error is a point of future research.

The model and its basic properties are discussed in
section 2, with a detailed derivation provided in the
appendix. Section 3 briefly reviews the Kalman filter
equations, and casts them into the language of balanced
dynamics. In sections 4 and 5, identical twin experi-
ments are performed with the EKF and EnKF, respec-
tively, in order to examine how well the TLM- or en-
semble-predicted forecast error covariances reflect the
true statistics of the balanced state. A discussion and
conclusions are offered in section 6.

2. Model

The exL86 model is given by

d�

dt
� w� � bz� �2.1�

dw�

dt
� �

C

2
sin2�� � �bx� �

�2b

�
x �2.2�

dx

dt
�

bw� � z�

�
�2.3�

dz�

dt
�

�2x

�
. �2.4�

This system admits two kinds of motion (WS00): a cha-
otic slow mode with a time scale of O(1), and a linear
gravity wave with frequency ��1. The time-scale sepa-
ration between these two modes is governed by the
smallness of �; b corresponds to a rotational Froude
number in the original triad expansion (see appendix),
and � � (1 � b2)�(1/2).

The full derivation of (2.1)–(2.4) spans four papers
(Lorenz 1980, 1986; Bokhove and Shepherd 1996;
WS00), each with different notation. A summary deri-
vation, using the notation of the present paper, is given
in the appendix.

The variables � and w	 represent vorticity, and z	 and
x, respectively, geopotential height and divergence. In
the above system, � is an entirely slow variable, corre-
sponding to a geostrophic vortical mode. It is coupled
to a mixed time-scale mode defined by the three re-
maining variables, where (at leading order in �) w	 and
z	 exhibit both time scales, while x is entirely a fast
variable. The parameter C is made artificially time-

dependent (WS00), in order to mimic the presence of
additional vortical modes, and to make the model’s
slow mode chaotic. In WS00, and again in this study,
this time dependence is given by C � a0 � a1 cos(
t),
with a0 � 1, a1 � 0.8, and 
 � 0.92.

Transforming w � w	 � bz	 (corresponding to po-
tential vorticity) and z � z	 � bw	 (corresponding to
geostrophic imbalance), the linear model separates into
normal modes, where x and z contain the gravity wave,
and � and w are entirely slow variables. The normal
mode system is given in the appendix [(A.11)–(A.14)].

One can approximate motion on a slow manifold,
where the evolution of the system depends on the slow
variables. The fast variables are found diagnostically as
functions of the slow variables, and the gravity wave is
suppressed. The lowest order approximation to such a
manifold is found by setting x � z � 0 and evolving
only � and w. For � � 0, this manifold is exact.

For finite �, higher-order slaving relations can be de-
rived, which then asymptotically define a fuzzy mani-
fold (WS00). To second order, the slaving relations are
given by

x � Ux��;�� � �
�

2
Cb sin2� � O��3� �2.5�

z � Uz��, w; �� � �2�Cbw cos2� �
C�

2
b sin2��� O��3�,

�2.6�

where C	 is the time derivative of C.
We define a nonlinear mapping from the slow-

manifold variables y � (�, w)T to the full model state
x � (�, w	, x, z	)T:

x � f�y� � �
�

�2�w � bUz��, w; ��

Ux��; ��

�2�Uz��, w; �� � bw
� . �2.7�

Note that f contains the slaving relations defined to
some order in �, and is thus not invertible. We also
define a mapping y � Fx, which projects some mixed-
variable state, whether it is balanced or not, onto the
slow manifold. For the exL86 model,

F � �1 0 0 0

0 1 0 b�. �2.8�

The nonlinearity of f is important for data assimilation,
as will be shown in subsequent sections, because of
linearity approximations made in modeling the evolu-
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tion of errors. The relative importance of the nonlinear
terms in f depends on the size of �. For increasing �, the
balance relationship becomes more strongly nonlinear,
while the separation between slow and fast variables
becomes concomitantly less well defined.

If a state is initialized using the slaving relations to
some order in �, it will evolve with a gravity wave of
amplitude �n, where n � 1 is the order of initialization.
A measure of the imbalance of the state can be defined
as Imb � (x � Ux)2 � (z � Uz)2. WS00 showed that the
time scale over which Imb grows is proportional to
exp(�2.2/�).

It is important to note that a free gravity wave in this
model can neither propagate away nor interact with
other waves. This study therefore does not address the
effects of phenomena such as geostrophic adjustment in
data assimilation, but focuses instead on the excitation
of spurious gravity waves due to the assimilation, and,
once induced, their effect on the assimilation scheme.

One can derive a single time-scale model by setting
� � 0 (thus assuming that the two modes are perfectly
separated) and setting x � z � 0. This gives the follow-
ing system:

d�

dt
� w �2.9�

dw

dt
� �

C

2
sin2�. �2.10�

In this system the gravity wave is simply not admitted;
it corresponds physically to the quasigeostrophic equa-
tions. Keeping the parameter C time-dependent, this
system is still chaotic.

3. The nonlinear Kalman filter

The Kalman filter (Kalman 1960; Kalman and Bucy
1961; Ghil et al. 1981; Cohn and Parrish 1991) is a dis-
crete time algorithm. It is similar to optimal interpola-
tion (OI), with the special feature that it evolves the
forecast and analysis error covariances in time, using a
dynamical model.

a. Basic equations

If an observation is made at time t � k�t, the analy-
sis, xa

k, is computed as a linear combination of the model
forecast, xf

k, and observation increment (the distance
between the observation, zk, and a transformation Hkxf

k

of the model space to the observation space):

xk
a � xk

f � Kk�zk � Hkxk
f �. �3.1�

Here all vectors are column vectors; xa
k and xf

k are n
vectors, where n is the number of grid points times the
number of variables in the model, and zk is an m vector,
where m is the number of observations.

The forecast at the next time step is given by the
evolution of the analysis state by the model:

xk�1
f � M�xk

a� � qk, �3.2�

where M denotes the discretized nonlinear model, and
qk represents model error.

The (n � m) gain matrix Kk weights the innovations
by the relative magnitudes of the observation and fore-
cast error covariances. It is optimal if chosen as

Kk � Pk
f Hk

T�HkPk
f Hk

T � Rk��1, �3.3�

where Rk is the (m � m) observation error covariance
matrix, and P f

k is the (n � n) forecast error covariance
matrix. The observation errors are typically assumed to
be uncorrelated and white in time (such that Rk � R is
diagonal). Using an approximation of how the model
dynamics cause the error probability distribution func-
tion (PDF) to evolve, P f

k is evolved in time. The par-
ticular way in which this is done characterizes each type
of Kalman filter.

Note that (3.3) includes a mapping HT
k from the ob-

servation space to the analysis space; Kk distributes,
over the forecast state, the information from all obser-
vations made at one time, according to the dynamical
relationships between the variables, which are con-
tained in Pf

k.
Concurrently with the analysis step (3.1), forecast er-

ror covariances are adjusted to contain the new infor-
mation that is given by the observation. The resulting
analysis error covariance matrix then follows from
(3.1):

Pk
a � ��xk

a � �xk
a���xk

a � �xk
a��T� �3.4�

��I � KkHk�Pk
f �I � KkHk�T � KkRKk

T, �3.5�

where I is the n � n identity matrix (e.g., Daley 1991,
chapter 4) and the angle brackets indicate the ensemble
mean value. For the optimal gain matrix (3.3), it can be
shown that (3.5) reduces to

Pk
a � �I � KkHk�Pk

f . �3.6�

Since the observation errors project onto all degrees of
freedom, (3.1) can return an unbalanced analysis state,
unless Pf

k contains sufficient information about balance
such that the observation increment is distributed in a
balanced way.

1) THE EXTENDED KALMAN FILTER

The initial-guess covariance field, Pf
0, can either be

chosen as some arbitrary matrix, with the assumption
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that it will adjust to more physical values as observa-
tions are inserted, or it can be estimated using initial
background knowledge of the covariance field.

The forecast error at each time step is then approxi-
mated using a Taylor expansion of the model about the
previous time step. First defining the error vector at
time step k � 1 as

ek�1
f � xk�1

f � xk�1
t �3.7�

(where xt
k�1 is the truth at time step k � 1), then sub-

stituting (3.2), we have

ek�1
f � M�xk

a� � M�xk
t � � qk �3.8�

� Mkek
a � qk. �3.9�

Here, Mk � �Mk(xa
k)/�x is called the tangent linear

model, which involves a linearization about the analysis
state at time step k. The forecast error covariance ma-
trix is then found by multiplying (3.9) by its transpose
and ensemble averaging, which gives

Pk�1
f � MkPk

aMk
T � Qk, �3.10�

where �qkqT
k� � Qk is the model error covariance ma-

trix. Note that (3.10) assumes that ea
k and qk are uncor-

related, which implies that the qk themselves are se-
quentially uncorrelated. This is an extreme assumption,
since we would expect that a forecast that incorrectly
represents the true dynamical balances will have errors
that are smoothly correlated in space and time. The
representation of balance within Q has been investi-
gated by Cohn and Parrish (1991) for the linear case. In
this study, however, we will restrict ourselves to a per-
fect model, and thus set Qk � 0 in the evolution of
forecast errors, leaving the effect of model error on
balance to future studies.

The forward evolution of Pf, as given by (3.10), ne-
glects third- and higher order moments in the error
covariance field. The ability of the TLM to estimate the
correct forecast error PDF over the interval of time
between two observations, depends both on the accu-
mulated analysis error preceding it, and the nonlinear-
ity of the model evolution between observations. The
repeated addition of observations, followed by forward
evolution of the analysis, is expected to make forecast
errors smaller, which makes (3.10) a more viable as-
sumption.

Divergence of the EKF happens when the estimated
forecast error (and forecast error covariance) is much
smaller than the actual distance from the forecast to the
truth. In this case, observations will be much farther
from the forecast than expected, and will be given too
little weight.

2) THE ENSEMBLE KALMAN FILTER

In the EnKF, the initial-guess covariance field is sim-
ply given by an ensemble of perturbations about the
initial state, and its evolution is approximated by the
evolving ensemble statistics, with Pf at time step k � 1
given by

Pk�1
f � ��xi,k�1

f � �xi,k�1
f ���xi,k�1

f � �xi,k�1
f ��T�,

�3.11�

where the ith member in the ensemble is given by

xi,k�1
f � M�xi,k

a � � qi,k, �3.12�

where qi,k represents a perturbation to qk.
Each ensemble member is adjusted according to

(3.1), with a perturbed observation, zi,k � zk � ri,k, with
random perturbations ri,k representing observation er-
ror. The EnKF analysis is then simply the ensemble
mean:

xk
a � �xi,k

a �, �3.13�

with analysis error covariance matrix

Pk
a � ��xi,k

a � �xi,k
a ���xi,k

a � �xi,k
a ��T�. �3.14�

The EnKF thus preserves nonlinearity in the evolution
of forecast error statistics. However, the accuracy of the
EnKF rests on the assumption that a finite-size forecast
ensemble, and its forward evolution, captures the true
error statistics both between observation times and af-
ter the analysis step. If the ensemble is unable to suffi-
ciently capture the error correlations of a specific prob-
lem, while the linearity assumptions made in the EKF
are justified, the EKF may have the advantage.

Information is lost if the ensemble spreads so much
between observation times that the distribution of fore-
casts does not have a sharp mean. In this case, however,
the ensemble variance reflects the uncertainty in the
forecast and is thus still useful. If some components of
the forecast are better known than others, this infor-
mation is retained.

Divergence of the EnKF occurs when the ensemble
mean is much further from the truth than any of the
ensemble members are from the mean; in this case, the
predicted forecast error variance would reflect a high
confidence in the forecast, and the actual forecast error
would be much larger than the predicted error.

Some argument exists in the literature about how an
ensemble should be initialized (e.g., Houtekamer and
Mitchell 1998). Many variations of the standard EnKF
have been proposed in the literature (Evensen 2003),
and it is likely that the treatment of balance could vary
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greatly between them. As a starting point, this study
uses only the basic, perturbed-observation EnKF, as
introduced by Evensen (1994) and modified by Burgers
et al. (1998) and Houtekamer and Mitchell (1998), and
we leave the comparison of other schemes to future
research.

b. Identical twin experiments

As mentioned above, in this study the truth and fore-
cast are evolved with the same model, and thus Qk � 0.
We return to this point in the final section of the paper.

For one particular solution of the model chosen to be
the truth, xt

0, an initial forecast is given by

x0
f � x0

t � �x0, �3.15�

and observations are generated at time intervals
�tobs, as

zk � Hkxk
t � �xk

obs, �3.16�

where �x0 and �xobs
k are random vectors chosen from

normal distributions, N(0, �2
0I) and N(0, �2

obsI), with
zero means and �2

0 and �2
obs specified initial-state and

observation error variances, respectively.

The performance of either filter is evaluated by com-
puting the true error following each analysis. To sepa-
rate the balance problem from general filter diver-
gence, we separate the total squared error into fast and
slow components:

efast
2 � �xa � xt�2 � �za � zt�2 �3.17�

eslow
2 � ��a � �t�2 � �wa � wt�2. �3.18�

In all examples shown in this paper, we set �2
obs�0.01

and �2
0 � 0.25. Unless otherwise stated, we set � � 0.1,

and compute the slaving relations (2.5)–(2.6) up to the
O(�2) terms. In all experiments shown, the observed
variable is w (in the single time-scale case) or w	 (in the
two time-scale case).

c. Assimilation for a single time scale

To separate the problem of balance from that of gen-
eral nonlinearity and chaos, we first establish how well
the EKF and EnKF estimate the model state in the
single time scale model [(2.9)–(2.10)]. This analysis is
qualitatively similar to that of Miller et al. (1994) and
Evensen (1997).

Figure 1 shows two example assimilation runs for the

FIG. 1. Sample analyses of the single time-scale model, for the (left) EKF and (right) EnKF, at two
observation frequencies, with observations of w (circles) and the same initial perturbation. In all plots,
the true state of w (solid) is compared to the analysis (dashed) and, in the EnKF case, the ensemble
(gray). The forecast error covariance �(ef

w)2� is shown below the respective plots for each case.
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single-time scale model, using the EKF (left) and the
EnKF (right). Observations of w are taken every time
unit (top row) and every six time units (i.e., roughly
once during a typical cycle of the slow mode, bottom
row) in each case, with the same truth for all cases.
Each plot compares the true state to the assimilated
analysis, along with the forecast error variance �(e f

w)2�.
For the EKF cases in this example, the initial forecast
error covariance matrix is estimated by a diagonal ma-
trix,

P0
f � �0

2I, �3.19�

with the expectation that the series of analysis steps will
adjust P f to a more physical value (the criticality of this
assumption, in terms of balance, is explored more thor-
oughly below). An ensemble of N � 20 forecasts is used
for the EnKF. The examples in Fig. 1 illustrate several
key properties of Kalman filter assimilation for nonlin-
ear, chaotic dynamics.

Good analysis increments are made when growth in
the forecast error covariance for each variable reflects
the rate at which the forecast is diverging from the true
state. The forecast error grows when the forecast and
true state diverge, and then decreases sharply when an
observation is made. For the EnKF (Figs. 1b,d), growth
in the forecast error variance term for each variable
reflects the visible spread in the ensemble.

The accuracy of the analysis, in both schemes, de-
creases for �tobs � 6. A difference between the EKF
and EnKF also starts to become clear at larger �tobs: the

spread of the ensemble between observations, in the
EnKF case, becomes less Gaussian, which means that
TLM-predicted error covariances will become less ac-
curate.

Note also that the analyses of w in Fig. 1 depend on
the ability of each Kalman filter to estimate the entire
state (w and � ) from observations of just one compo-
nent of it (w). This is the crux of the overall data as-
similation problem, and will form the basis of the more
specific problem of balance.

A more quantitative comparison of the two filters is
shown in Fig. 2, which shows the analysis error imme-
diately following the insertion of each observation, av-
eraged over 600 runs, for the EKF (left panel) and the
EnKF (right panel), at �tobs � 1–7. For the EnKF case,
errors are shown for runs with ensembles of 4 and 10
forecasts. Comparison of these two figures reveals that
the performance of the EnKF is similar to the EKF if
the forecast ensemble consists of four forecasts, though
the analysis error in the EnKF is somewhat reduced
when the ensemble size is increased to 10 forecasts.
Moreover, analysis errors grow in time for all cases
shown, except for �tobs � 1 for the EKF, and �tobs � 1
and 2 for the 10-forecast EnKF.

d. Balance in the assimilation problem

In light of the single time-scale results, we now ask
whether, and under what conditions, the EKF and
EnKF evolve forecast error covariances that reflect the
dynamical balance in the true state. The degree of bal-

FIG. 2. Comparison of the average state error (over 600 runs) immediately following the
analysis steps with (left) the EKF and (right) the EnKF, for the single time-scale model. For
the EnKF, we also compare ensemble sizes N � 4 (black) and N � 10 (gray). Observation
frequencies shown are �tobs � 1 (x), 2 (circles), 3 (�), 4 (triangles), 5 (inverted triangles), 6
(squares), and 7 (dots). In all runs, the initial true state is randomly generated and then the
forecast and observations are generated using (3.15) and (3.16).
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ance captured by Pf, for both Kalman filters, will de-
pend on each scheme’s treatment of balance in (i) the
initial-guess error covariances, (ii) the evolution of er-
ror covariances, and (iii) the repeated adjustment of
error covariances by the Kalman gain.

To examine what it means for error covariances to
reflect balance, we define a balanced error covariance
matrix as one where the errors in the “slaved” fast vari-
ables are dependent on the errors in the slow “master”
variables. For a perfectly balanced state with zero free
fast motion, the errors in the fast variables will then be
entirely functions of the errors in the slow variables.

Defining e f
y � y f � yt as the forecast error vector in

terms of the slow variables, the forecast error in terms
of mixed time-scale variables can be approximated as a
Taylor expansion of (2.7):

ex
f � x f � xt � Ley

f � nonlinear terms, �3.20�

where L � (�f/�y)|y t is the first derivative of the balance
relationship, evaluated about the slow-manifold fore-
cast state at some point in time. The forecast error
covariances are found by multiplying (3.20) by its trans-
pose, and computing the ensemble mean. Truncating
(3.20) at the linear term, the forecast error covariance
matrix, in terms of the full model state, can be approxi-
mated as

Px
f � �ex

f �ex
f �T� � ��Ley

f ��Ley
f �T�

� L�ey
f �ey

f �T�LT � LPy
f LT, �3.21�

where we have defined

Py
f � �ey

f �ey
f �T� �3.22�

as the error covariance matrix in terms of the slow vari-
ables only. Since (3.21) is a tangent linear operation, a
covariance matrix P f

x that is formulated in this way can
be thought of as tangent to the balance manifold. Thus,
(3.21) will hereafter be referred to as a tangent linear
balance transformation, or TLBT, in analogy to the
TLM (3.10). As in the TLM, this approximation ne-
glects dependence on higher order statistical moments
in the forecast error distribution.

For the exL86 model,

L � �
1 0

��2b
�Uz

��
�2�1 � b

�Uz

�w �
�Ux

��

�Ux

�w
� 0

�2
�Uz

��
�2��Uz

�w
� b� �, �3.23�

and is a function of the slow variable state. The accu-
racy of (3.21) depends (as in the TLM) on the magni-
tude of e f

y, but also on the size of �, and the order of
accuracy in � to which the balance approximation is
made.

4. Balance in the extended Kalman filter

a. Example

Figure 3 shows four example EKF assimilation ex-
periments for the exL86 model, all with the same (bal-
anced) true state and initial perturbation. Observations
in all four cases are taken of w	, and thus contain both
time scales. The initial and final values of Imb (for the
analysis) are shown for each case, and the forecast error
variance �(e f

w	)
2� is shown underneath each analysis.

The forecasts in Figs. 3a,b are initialized using (2.5)–
(2.6), following the initial perturbation, thus reflecting a
case where there is a priori knowledge of the absence of
gravity waves. In Figs. 3c,d, the initial forecasts are un-
balanced, with initial imbalance due only to initial fore-
cast error.

Very frequent observations (�tobs � 1, left column of
plots), are again compared to observations taken on the
order of a typical cycle of the slow mode (�tobs � 6,
right column of plots). In all four cases shown, the ini-
tial covariance field is estimated by (3.19), where I is
now the 4 � 4 identity matrix.

The primary result of this example is that balance in
the EKF analysis depends largely on observation fre-
quency. We note also that very frequent observations
not only retain balance in a balanced initial forecast
(Fig. 3a), but can also establish balance in an unbal-
anced initial forecast (Fig. 3c), despite the fact that no
balance information is contained in the initial forecast
error covariances. For �tobs� 6, on the other hand, bal-
ance deteriorates after a few observations, and most
information from subsequent observations is conse-
quently rejected. In these cases, the covariance model
itself takes on a significant fast oscillation, which is not
removed by the addition of observations.

Though this example depends in detail on the par-
ticular instabilities and realizations of the random er-
rors used, it points out two important factors for bal-
ance in the EKF. The first is observation frequency: For
longer �tobs, the forecast drifts more from the truth,
resulting in a larger analysis increment, which in turn
amplifies any misestimations of the forecast errors and,
more importantly, of the balance relationship in the
error covariances. The second factor is the initialization
of the covariance model, via P f

0. Since the forecast error
covariances in Figs. 3b,d clearly do not adjust to reflect
the balance relationship, it is worth investigating to
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what extent the covariance model may be improved by
providing it with an initial knowledge of balance, as in
(3.21), and the extent to which this information is re-
tained as the assimilation progresses.

b. Balance in the EKF covariance model

How does the EKF covariance model capture the
balance relationship? This problem has three general
components.

1) INITIAL ESTIMATE OF P f

Instead of specifying an initial time error covariance
matrix using (3.19)—that is, with no correlations be-
tween variables—one might instead initialize Pf using
the TLBT (3.21), or some approximation to it. The ac-
curacy of such an initialization depends on how well the
balance relation is known, and the validity of the lin-
earization. For small �, the higher order balance terms

become less important, and the drift of an initialized
state from the slow manifold becomes slower. The non-
linear terms in f also become less important for small �.
Thus, the usefulness of balance-initializing Pf

0 depends
on the smallness of �.

2) TLM EVOLUTION OF P f

It is not clear whether a forecast error covariance
matrix initialized using the TLBT will remain tangent
to the slow manifold as it is evolved in the TLM (3.10).
This question can be examined by comparing the TLM
evolution of the error vector (3.9) to the true error
(3.8). If, at time step k, both the forecast and the true
state are balanced, such that

xk
t � f�yk

t � �4.1�

xk
a � f�yk

a�, �4.2�

and if the model error is zero, then the true error at the
next time step will be given by

FIG. 3. Four sample EKF assimilations for the full (multiple time scale) exL86 model. For each case,
the truth (black) and analysis (gray) of w	 are shown, along with the observations (circles). Underneath
each plot is shown the forecast error variance for w	. (a) Balanced initial forecast, with �tobs � 1. (b)
Balanced initial forecast, with �tobs � 6. (c) Unbalanced initial forecast, with �tobs � 1. (d) Unbalanced
initial forecast, with �tobs � 6. The initial perturbation is �x � (0.450, �0.800, �0.465, 0.725)T. Initial and
final values of Imb are shown on each plot.
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ex,k�1
f � M �f�yk

a� � M �f�yk
t �. �4.3�

If the forecast model evolves a balanced state to pro-
duce a balanced state, then

ex,k�1
f � f�yk�1

f � � f�yk�1
t �. �4.4�

In contrast, if the forecast errors at time step k are
balanced according to (3.21), then the forecast errors at
the next time step are given by

ex,k�1
f � MkLkey,k

a . �4.5�

They remain tangent to the slow manifold if

MkLkey,k
a � Lk�1ey,k�1

f . �4.6�

3) ANALYSIS STEP

For the standard EKF, use of the TLM is justified if
the information brought in from observations in (3.6) is
able to keep the evolving covariance model close to the
true error statistics. Extending this to balance, we ex-
pect that the assimilation of observations can also make
the degree of balance represented in the covariance
model more accurate.

If the forecast error covariance matrix (in terms of
mixed variables) is balanced—that is, if Pf

x,k � LkPf
y,kLT

k—
then the gain matrix becomes

Kx,k � Px,k
f Hk

T�HkPx,k
f Hk

T � R��1 �4.7�

�LkPy,k
f Lk

THk
T�HkLkPy,k

f Lk
THk

T � R��1 �4.8�

�LkPy,k
f Gk

T�GkPy,k
f Gk

T � R��1 �4.9�

� LkKy,k, �4.10�

where we have defined Ky,k as the gain matrix in terms
of the slow variables, and Gk � HkLk as a generalized
observation operator. Note that Gk selects only the
slow-manifold projection of the observed variable, and
Kx,k, consequently, includes the TLBT.

The analysis error covariance matrix is then given by

Px,k
a � �I � Kx,kHk�LkPy,k

f Lk
T �4.11�

�Lk�Py,k
f � Lk

� 1Kx,kHkLkPy,k
f �Lk

T �4.12�

�Lk�I � Ky,kGk�Py,k
f Lk

T �4.13�

�LkPy,k
a Lk

T. �4.14�

Since Pa
x,k can be written as LkPa

y,kLT
k , it is still tangent to

the slow manifold. Thus, (3.6) retains the TLBT, while
still being reduced to include information from the ob-
servations.

The above transformations are equivalent to those
derived by Cohn and Parrish (1991) for the linear case.

For the present (nonlinear) case, balanced forecast er-
rors in the EKF rely on four assumptions. First, the
TLM must be a valid approximation over �tobs, which
depends on the size of the forecast error. Second, the
TLBT must be a valid approximation. This also de-
pends on the size of the forecast error, as well as on the
size of � and the order of accuracy of the slaving rela-
tions. Third, the initial truth and initial forecast must be
balanced. Fourth, the model evolution must preserve
balance. In the exL86 model, this is only true to the
order in � to which the model was initialized.

Therefore, while it makes sense to initialize Pf
0 using

the TLBT, it is not obvious that such an initialization
will ensure a balanced assimilation.

c. Numerical evaluation of the EKF

Figure 4 shows the average, over 600 assimilation
runs, of the fast and slow analysis errors [(3.17)–(3.18)],
immediately following each analysis, as a function of
observation time. The observed variable in all runs is
w	. Both figures compare runs where Pf

0 is initialized
using the TLBT, to ones where Pf

0 is chosen as a diago-
nal matrix (3.19). Also shown are runs where it is as-
sumed that the balance relations are not known, but are
guessed to be functions that are proportional to �, such
that the tangent error covariances are approximated as

P0
f � �0

2�
1 0 � 0

0 1 � 1

� � �2 0

0 1 0 1
	 . �4.15�

For each case, three observation frequencies (�tobs � 2,
4, and 6) are shown.

The first thing to note is that the analysis of the slow
mode is unstable for �tobs � 2; the average slow analysis
errors all grow as the assimilation progresses. Average
fast error does not depend strongly on observation fre-
quency, and in fact tends to level off as the assimilation
progresses. This indicates that the failure of the EKF at
these observation frequencies is due to filter diver-
gence, which can be verified by comparing the forecast
errors and true errors for these cases. Forecast errors
become much smaller than the true errors (not shown),
and observations consequently have no impact on the
forecast. For the chaotic slow mode, this means that the
distance between truth and analysis will then grow in
time, whereas the spurious fast wave, and thus fast er-
ror, neither decays nor grows.

However, initializing Pf
0 with a knowledge of the bal-

ance relationship clearly decreases the overall fast er-
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ror. When Pf
0 is initialized without correlations between

variables, the average fast error immediately exceeds
the magnitude of the slaved mode in the true state
(2.5)–(2.6), which is O(�). If Pf is initialized with the
TLBT, the average fast error (for the assimilation pe-
riods considered) stays below the magnitude of the
slaved fast mode, even for �tobs � 6. Even an educated
guess at balanced error covariances (4.15) improves the
fast error substantially. While the growth of fast error in
each case is similar, the overall imbalance is smaller if
Pf

0 is properly initialized, simply because the spurious
imbalance induced by the first few analysis steps is less.

We note also that the average analysis error for the
slow mode does not depend significantly on the initial-
ization of Pf

0. This means that an EKF initialized with
(3.19) may still succeed in terms of the slow mode, even
while the analysis contains a spurious fast mode.

Figure 5 examines the effectiveness of initializing Pf
0

using the TLBT, as a function of �. It shows the fast
error following the single insertion of an observation at
t � 4 (for 600 different assimilation runs) with varying
values of �, and with Pf

0 initialized either using (3.19) or
(3.21). A curve corresponding to �2 is added to Fig. 5 in
order to emphasize the asymptotic nature of the TLBT.
For � smaller than about 0.3, the initialization of Pf with
the TLBT tends to yield an analysis with smaller fast
error, while as � increases, the initialization of Pf

0 no
longer makes a difference in the fast error. This makes
sense, since the separation of fast and slow modes be-
comes asymptotically less well defined as � → 1.

d. EKF with a balance constraint

A balance constraint can be incorporated into the
EKF, by performing the analysis step in terms of the
projection of the model state onto the slow variables
y � (�, w)T only. Starting from a mixed time-scale
forecast xf

k, the projection onto the slow manifold is
given by

yk
f � Fxk

f �4.16�

Py
f � FPx

f FT. �4.17�

FIG. 5. Fast error immediately following the insertion of an
observation at t � 4, for 600 randomly initialized runs (as in Fig.
4), as a function of �. The x’s are runs where Pf

0 is initialized using
the balance approximation (3.21), and circles where Pf

0 is initialized
as a diagonal matrix (3.19). The �2 curve is also shown (solid line).

FIG. 4. Comparison of the average (left) fast and (right) slow analysis error, following each
analysis step, between three ways of initializing the error covariance matrix: either using the
balance approximation [(3.21), black], or by initializing Pf

0 as a diagonal matrix [(3.19), gray],
or by guessing at a balance relation [(4.15), dashed]. Three observation frequencies are com-
pared for each case: �tobs � 2 (circles), 4 (triangles), and 6 (squares). The average is over 600
assimilation experiments.
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It is followed by the analysis step:

yk
a � yk

f � Ky,k�zk � Hkf�yk
f �, �4.18�

where Ky,k � P f
y,kGT

k(GkP f
y,kGT

k � R)�1. Note that Ky,k

uses the TLBT in order to select the slow-manifold
projection of the observation error. The analysis in
terms of the full model state can then be computed by
mapping the slow state back to a balanced mixed-
variable state, using (2.7).

Alternatively, one could map the gain matrix back to
the mixed-variable state, and update the mixed time-
scale state as

xk
a � xk

f � Kx,k�zk � Hkxk
f  � xk

f � LkKy,k�zk � Hkxk
f ,

� xk
f � Lk	yk, �4.19�

where �yk � ya
k � y f

k � Ky,k(zk � Hkx f
k) is the analysis

increment on the slow manifold. However, this requires
an additional use of the TLBT.

A comparison between these two modified analysis
steps and the regular EKF is shown as before, in the
average fast error (Fig. 6) immediately following each
analysis step, for observation frequencies �tobs � 2, 4,
and 6. For increasing �tobs, the modified schemes offer
a substantial improvement over the TLBT–EKF, with
the direct-transformation analysis [(4.18)] yielding on
average more balanced analyses than the indirect
analysis [(4.19)]. This is not surprising because the in-
direct transformation uses an additional approxima-
tion. However, for frequent observations, the indirect
relationship may be sufficient.

5. Balance in the ensemble Kalman filter

The single time-scale example in section 3 showed
that the EnKF, by preserving the nonlinearity of the
evolving error distribution, may be preferable to the
EKF. The EnKF is a (weakly nonlinear) combination
of model states (Evensen 2003), which suggests that the
EnKF analysis might naturally be more balanced. Also,
the averaging nature of the analysis step in itself implies
a kind of balancing. A balanced analysis state is still not
guaranteed, however, as long as fast waves are allowed
in the individual ensemble members.

How can the EnKF covariance model capture bal-
ance? If Pf is given by an ensemble of balanced fore-
casts, no TLBT approximation is required. Balanced
perturbations for the exL86 model can be generated by
transforming the central forecast to normal modes,
adding random perturbations to � f and wf, and then
transforming back to mixed variables using (2.7). [In
realistic applications, this step is a bit more compli-
cated, but similar. For example, one can randomly per-
turb streamfunction, and then derive wind, tempera-
ture, and pressure perturbations following some bal-
ance assumption (see, e.g., Mitchell et al. 2002). In lieu
of an explicit slow manifold initialization, one might
also integrate the ensemble forward while filtering out
fast waves with, say, a digital filter (Evensen 1997).]

Whether or not the forward evolution of such an
ensemble and the subsequent ensemble analysis indeed
yields a balanced analysis, however, depends on three
assumptions, which in turn depend on observation fre-
quency and the size of the forecast ensemble: First, that
the evolving N-member forecast ensemble sufficiently
represents the full statistics of the true system, including
balance; second, that the analysis step does not destroy
the ensemble’s representativeness; and, third, that the
ensemble analysis step (3.13) yields a balanced state.

a. Example

Figure 7 shows two sample EnKF assimilation runs,
with observations of w	, and all other assimilation pa-
rameters as in the EKF example (section 4). The ob-
servation frequency is �tobs � 1 in Fig. 7a, and �tobs �
6 in Fig. 7b. To illustrate more clearly how the forecast
ensemble captures the balance relationship, the analy-
ses of x are shown for each case along with the analyses
of w	. In both cases shown, the ensemble size is N � 10
forecasts.

For �tobs � 1, the ensemble collapses toward a single
forecast which is often indistinguishable from the true
state, whereas for �tobs � 6, the ensemble diverges sig-
nificantly between observations—though, in both cases,

FIG. 6. As in Fig. 4, but now comparing the two balance-
constraint modifications to the EKF: either by (black, solid) di-
rectly balancing the analysis via (4.18) followed by (2.7), or by
(gray, solid) indirectly mapping the analysis increment as in
(4.19). These modified schemes are compared to the regular EKF
(black, dashed), where Pf

0 is initialized using the tangent approxi-
mation (3.21). As in previous figures, observation frequencies
shown are �tobs � 2 (circles), 4 (triangles), and 6 (squares).
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the analysis of w	 is consistently brought back to the
truth state.

Note, however, that some amount of imbalance is
generated in the individual ensemble members (this can
be seen best in the plots of x in both cases). While the
forecast error covariances contain this imbalance, it is
much smaller than in the EKF example (Fig. 3). More-
over, the net amount of imbalance in the ensemble–
mean analysis is small compared to the magnitude of
the slow variables, simply because the average of the
many unbalanced forecasts is a more balanced state.
Compared to the degrees of freedom of the model, N �
10 is large; the effect of ensemble size is more closely
investigated in the next subsection.

b. Balance in the ensemble covariance model

The example shown illustrates three main compo-
nents of the balance problem in the EnKF.

1) ENSEMBLE REPRESENTATION OF BALANCE

It can be argued that the existence of a balance re-
lation might simplify the EnKF problem, since a bal-
anced model state has fewer degrees of freedom than
an unbalanced state, and therefore fewer ensemble
members will actually be required to represent the er-
ror statistics of a balanced state—if the forecasts in the
ensemble are all balanced. If the assimilation of obser-
vations unbalances the forecasts (as in Fig. 7), however,
then the existence of a true balance will bring about the
additional difficulty that the actual error statistics could
differ greatly from those contained within the en-
semble.

2) EVOLUTION OF ENSEMBLE STATISTICS BETWEEN

OBSERVATION TIMES

As the forecast ensemble evolves between observa-
tion times, imbalance in the error covariances will only

FIG. 7. Two sample assimilation runs with the EnKF, comparing the truth (black), the forecast en-
semble (gray), and the ensemble mean (dashed) of (top) w	 and (bottom) x for each case. (a) The
observation frequency is �tobs � 1, and (b) �tobs � 6. Underneath each plot is shown the corresponding
forecast error covariance. Observations of w	 are indicated with circles. The initial perturbation is, as in
the EKF example, �x � (0.450, �0.800, �0.465, 0.725)T.
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grow as much as the mean imbalance in the ensemble
(as opposed to the unbounded growth that would hap-
pen with the TLM evolution of errors). Even if the
ensemble spread becomes saturated in the slow mode,
it could still contain information about the (slaved) fast
mode (though this is not shown in Fig. 7).

3) ENSEMBLE ANALYSIS STEP

It was shown above that even an ensemble of bal-
anced forecasts will to some extent result in individual
analyses that are unbalanced. The amount of imbalance
remaining in the ensemble mean will then depend on
the magnitude and relative phases of the fast motion in
individual analyses. It may thus be argued that, for
models with a spatial dimension and a spectrum of pos-
sible gravity waves, spurious imbalance in individual
ensemble members will easily disappear in the en-
semble average. The results of Houtekamer and Mitch-
ell (1998) suggest, however, that spurious imbalance in
the ensemble mean analysis is difficult to avoid for re-
alistic ensemble sizes.

It is also important to note that the ensemble can
develop a very small variance (reflecting high confi-
dence in the forecast) around a significantly unbalanced
mean forecast. Thus, a form of filter divergence, in
terms of balance, can happen, wherein the forecast en-
semble has a very narrow distribution, but predicts the
wrong type of motion—in this case, a gravity wave.
Here we note that filter divergence is related to the
details of how the ensemble is generated and how the
analysis step is carried out. While we are aware of the
known caveats of the Burgers et al. (1998) and

Houtekamer and Mitchell (1998) formulation of the
EnKF, it is used here as a first step to illustrating the
balance properties of the EnKF.

The example in Fig. 7 shows that, while the EnKF
may be advantageous for at least two reasons (by al-
lowing for the nonlinear evolution of error statistics,
and because spurious imbalance may be filtered out in
the ensemble mean), even if the assimilation is begun
with an ensemble of balanced forecasts, the repeated
adjustment of these forecasts may not yield an analysis
that is balanced.

c. Numerical evaluation of the EnKF

A comparison of the EnKF and EKF is shown in Fig.
8, again comparing the mean (over 600 runs) fast and
slow errors, for observation frequencies of �tobs � 2, 4,
6. In these experiments, observations of w	 were ran-
domly alternated with observations of �. These experi-
ments thus simulate a case in which we have a variety of
observations, with some of the slow mode only. EnKF
cases with N � 4 and N � 10 forecasts are compared to
the EKF case where P f

0 is initialized using the TLBT.
The performance of the EnKF is comparable to that

of the TLBT-initialized EKF for the first few observa-
tions, but has a slower growth of analysis error as the
assimilation progresses. The EnKF is also, on average,
more accurate for longer �tobs: At t � 10, the fast error
for the EnKF, for both ensemble sizes shown, is con-
sistently smaller than the EKF fast error at correspond-
ing observation frequencies (except at �tobs � 2). The
EnKF slow error levels off for both ensemble sizes,
whereas the corresponding EKF slow error grows in time.

FIG. 8. Comparison of the average (left) fast and (right) slow analysis error, now comparing
the EKF (gray) to the EnKF, for ensembles of N � 4 forecasts (black, solid) and N � 10
forecasts (black, dashed). For the EKF, Pf

0 is initialized using the TLBT (3.21). In these
experiments, observations of w	 were randomly alternated with observations of �.
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It is also interesting to note that increasing observa-
tion frequency improves the EnKF estimate for the
slow mode, but actually seems to worsen the estimate of
the slaved fast mode. This is a robust result for similar
experiments with different ensemble sizes, and is ex-
plainable: more frequent forcing of the forecasts in the
ensemble means that there are more chances to excite
spurious fast motion in individual forecasts and, conse-
quently, balance in the ensemble covariance model de-
teriorates earlier. If observations are less frequent, the
gravity wave in each ensemble member, and hence the
net imbalance in the covariance model, cannot grow as
quickly, and the overall analysis is consequently more
balanced.

The effect of ensemble size is examined in Fig. 9,
which compares the average fast and slow analysis er-
rors for �tobs � 2 and 6, at six different ensemble sizes,
and observations of w	 only. For both observation
frequencies, both the fast and slow mode analyses
are improved by increasing N, but do not improve
significantly for ensemble sizes beyond about 20. It
is also interesting that fast error in the EnKF is con-
trolled more by ensemble size than by observation fre-
quency.

6. Discussion and conclusions

We have examined the performance of the EKF and
EnKF for problems where there exists a separation of
time scales between relatively fast and slow motions,
where the free fast motion is oscillatory, and where the
evolution of the fast variables in the true state is slaved

to that of the slow. Experiments with the exL86 model
showed that the EKF and EnKF have quite different
properties when it comes to preserving balance in the
assimilated analysis. For both Kalman filters, the de-
gree to which balance is preserved in the analysis in-
crement depends on how closely the error covariances
contained in the matrix P f reflect the slaving relation-
ship between the fast and slow variables.

In the EKF, this is dependent on the initial formula-
tion of P f, followed by its forward evolution via the
TLM and subsequent adjustment with new information
from observations. In the ideal case where observations
are very frequent, it is possible that Pf

0 can be estimated
without any knowledge of balance, with the informa-
tion from observations alone ensuring that the analysis
state becomes balanced (e.g., Figs. 3a,c).

Outside of this ideal case, however, the initial covari-
ance field does matter, and should ideally involve some
form of tangent linear balance transformation (TLBT).
Given this, the length of time between observations
determines: (i) the extent to which the forecast drifts
from the truth (which in turn determines the size of the
necessary analysis increment, and hence the impact of a
misestimation of the balance relationship within P f),
and (ii) the validity of the TLM evolution of Pf. The
length of time between observations that is feasible for
the EKF is therefore constrained, not just by the valid-
ity of the TLM, but also by that of the TLBT. A theo-
retical prediction of what this time scale might be for
realistic models is a very interesting question for further
research.

Alternatively, a balance constraint can be added to

FIG. 9. Comparison of the average (left) fast and (right) slow analysis error, now comparing
the EnKF for six different ensemble sizes, and comparing �tobs � 2 (circles) and �tobs � 6
(squares), with observations of w	 only. The same axis has been kept for both plots in order
to facilitate comparison to the other figures.
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the EKF algorithm. This can be done by projecting the
model state onto the slow manifold, performing the
analysis in terms of the slow variables only, and then
using the slaving relationship to compute the analysis in
terms of mixed variables. Numerical experiments
showed that such a constraint can significantly improve
the EKF analysis at observation frequencies where bal-
ance is otherwise lost, but relies upon accurate knowl-
edge of the balance relationship.

The EnKF has two possible advantages for balance:
First, it retains the balance relationship to the extent
that ensemble members themselves are balanced, be-
cause the forecasts in the ensemble use the full nonlin-
ear model and the gravity wave is therefore bounded.
Secondly, the ensemble-averaging in the analysis step
means that a spurious gravity wave in a single forecast
is compared to every other forecast, so that the result-
ing analysis has less net imbalance. Note, however, that
this assumes that the ensemble is sufficiently phase
mixed. If several ensemble members contain the same
gravity wave, this wave will not average out (this can be
seen in Fig. 7).

The accuracy of the EnKF is nonetheless limited by
ensemble size. Numerical experiments showed that,
while the knowledge of a balance relationship reduces
the dimension of the problem, enough ensemble mem-
bers are still required to capture, within the covariance
matrix, the fact that the fast mode is slaved to the slow.
For the exL86 model, the best-possible balanced analy-
sis required an ensemble of at least 20 forecasts, which
is much larger than the degrees of freedom of the prob-
lem (which is four).

A numerical comparison of the EKF and EnKF (Fig.
8) showed that the two schemes seem to perform simi-
larly well, in terms of balance, when the initial covari-
ance model in the EKF is computed using a TLBT, and
when the ensemble in the EnKF is large enough to
capture the slaving of the fast motion. The consequence
of the EnKF’s two additional properties is that (i)
growth of imbalance in the analysis, as the assimilation
progresses, is slower in the EnKF, and (ii) the EnKF
allows for longer time intervals between observations
without a great loss of balance.

This stability of the EnKF reflects the stability of
gravity waves in the exL86 model; whereas, in contrast,
gravity waves can grow in the TLM. The way in which
gravity waves grow in the TLM has been illustrated
numerically but not yet investigated analytically. Fu-
ture work will further investigate the development of
imbalance in the TLM.

Another property to note about the EnKF is that
observing too frequently can overforce the ensemble,
and actually cause greater imbalance, if there are not

enough other gravity waves in the ensemble to elimi-
nate the spurious gravity wave (via phase mixing) in the
ensemble mean.

This study is intended as a complement to similar
studies involving larger, more complicated models, such
as Mitchell et al. (2002). We have highlighted, in a
simple context, several key points of the balance prob-
lem in the still-evolving field of 4D data assimilation.
This extends beyond the problem of spurious gravity
waves, to any problem where there is a time scale of
interest, and a comparatively fast, unobserved scale
(e.g., Lorenz 1995). Our results suggest several inter-
esting points for further research:

More degrees of freedom. An analysis similar to this
one could be carried out with a model that is more
complex than the exL86 model, yet still simple
enough to retain the transparency of this analysis.
A model that admits more than one gravity wave
frequency, or more spatial degrees of freedom,
would make it possible to address the effects of,
say, geostrophic adjustment or localization of error
covariances.

Chaotic (non–gravity wave) fast mode. A model in
which the fast mode is chaotic (in which case slaving
is impossible), such as the two time-scale model of
Lorenz (1995), is another interesting context for ex-
amining assimilation for multiple time scales, and
could address problems of mesoscale and convective-
scale assimilation (e.g., Snyder and Zhang 2003).

Variations on the standard algorithms. Many varia-
tions of the EKF and EnKF have been proposed in
recent years, with the intent of either increasing
cost-efficiency, or of freeing the KF from some of
the assumptions on which it rests. These are well
summarized by Evensen (2003).

Square root filters (SRF) compute analysis en-
sembles deterministically from the analysis covari-
ance matrix given by (3.6), which reduces sampling
error, and thus helps prevent filter divergence
(Tippett et al. 2003, and references therein). This
might prevent undesirable phase locking such as
we see in Fig. 7. The accuracy and possible differ-
ences between the various incarnations of SRFs
schemes, with respect to balance, is, to our knowl-
edge, still to be investigated.

Schemes that rely on fewer linearity assumptions
may also handle balance dynamics more accu-
rately, since (as shown in this study) balance in the
assimilation often fails because of faulty assump-
tions of linearity. A particle filter (Anderson and
Anderson 1999; Pham 2001), for example, departs
from the standard KF linear analysis step (3.1), and
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may thus skirt some of the problems cited in our
study, such as gravity wave explosions in the EKF,
or undesirable phase-locking of the ensemble.

Modifications to the EnKF that are intended to
improve cost-efficiency might turn out to be natu-
rally beneficial for balance, because such schemes
take advantage of the low-dimensionality of the
model attractor, and, in the real atmosphere, the
slow manifold is itself a lower-dimensional attrac-
tor. Examples of such schemes are the singular
evolutive interpolated Kalman (SEIK) filter of
Pham (2001), and schemes in which the ensemble
is constrained by bred vectors (e.g., Toth and Kal-
nay 1997) or singular vectors (e.g., Ehrendorfer
and Tribbia 1997).

Comparison to 4DVAR. This analysis could be ex-
tended from the Kalman filter to 4DVAR assimi-
lation. While 4DVAR also makes use of a TLM, its
analysis cycle, and the formulation of the forecast
error covariance field, is quite different, and it is
unclear how these differences change the treat-
ment of nonlinear balance.

Unclear time-scale separation. We have not yet exam-
ined cases where two different motions are admit-
ted, but not well-separated in time scale. In the
Tropics, for example, Žagar et al. (2004) propose
an approach whereby capturing balance means in-
terpreting the observed field as the right combina-
tion of the different types of tropical waves that are
present. In the exL86 model, this problem can be
approached by letting � → 1.

Unbalanced truth state. It also remains to examine
how the nonlinear KFs perform in the case where
both fast and slow motion is present in the true state,
or rather, where the fast waves carry a significant
amount of energy, such as in the mesosphere.

Effect of model error. This study dealt with a very
specialized situation where both the model dynam-
ics and the balance relationship are perfectly
known. Since this is far from true in realistic cases,
the effect of model error formulation on balance
needs to be investigated. Even in the perfect model
limit, the addition of a model error term in the
EKF forecast error evolution (3.10) may stabilize
the analysis step, and prevent observations from
shocking the system into highly unbalanced states,
as in Fig. 3b. Similarly, adding stochastic errors to
the ensemble in the EnKF (3.12) could prevent the
phase-locking of the ensemble around a spurious
gravity wave.
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APPENDIX

Derivation of the exL86 Model

The following is a summary derivation of the exL86
model, tracing the development of this simple system
through four papers: Lorenz (1980, 1986), Bokhove and
Shepherd (1996), and WS00.

In Lorenz (1980), the f-plane shallow water equa-
tions are nondimensionalized and then simplified by
expanding vorticity, divergence, and height as an inter-
acting resonant wave triad. This yields a system of nine
equations that describe the evolution of the vorticity,
divergence, and height of three interacting waves.
These amplitudes are then transformed into normal
modes, corresponding to potential vorticity, diver-
gence, and geostrophic imbalance. In Lorenz (1986),
the latter two variables are eliminated for two of the
three waves, which leaves two geostrophic vorticity
modes, and a third wave which admits both vortical
motion and a gravity wave. Here, U and V are the
vorticity amplitudes of the two truncated waves; and
W, X, and Z are the potential vorticity, divergence,
and geostrophic imbalance of the third wave, respec-
tively. The equations that describe their evolution are
given by

dU

dT
� �VW � bVZ �A.1�

dV

dT
� UW � bUZ �A.2�

dW

dT
� �UV �A.3�

dX

dT
� �Z �A.4�

dZ

dT
� bUV � X. �A.5�
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These equations describe a nonlinearly interacting vor-
ticity triad (U, V, and W), coupled to an inertia-gravity
wave (X and Z). The parameter b is the rotational
Froude number of the third wave.

Bokhove and Shepherd (1996) emphasize the time-
scale separation between the nonlinear vortical mode
and the gravity wave by scaling the variable amplitudes
U � �u, V � ��, W � �w, X � �x, Z � �z, and scaling
time T � t/�. The scaled system is

du

dt
� �
w � b
z �A.6�

d


dt
� uw � buz �A.7�

dw

dt
� �u
 �A.8�

dx

dt
� �

z

�
�A.9�

dz

dt
� bu
 �

x

�
. �A.10�

For � � 1, x and z vary on a time scale that is fast
compared to the evolution of u, �, and w. From the
dimensions of the original equations, it can be shown
that �, which defines the inverse of the ratio between
the advective time scale (corresponding to t) and that of
the inertia-gravity wave, is given by � � RF/�R2 � F2,
where R is the Rossby number and F the Froude num-
ber.

This system is further simplified by noting the invari-
ant C � u2 � �2, and defining u � �C cos�	,
� � �C sin�	, and � � �	 � �bx. This yields the
following four-variable system:

d�

dt
� w �A.11�

dw

dt
� �

C

2
sin�2� � 2�bx� �A.12�

dx

dt
� �

z

�
�A.13�

dz

dt
�

x

�
�

bC

2
sin�2� � 2�bx�. �A.14�

Bokhove and Shepherd (1996) showed that the vortical
mode in (A.11)–(A.14) has periodic solutions for most
initial conditions. To make the evolution of � and w
sufficiently chaotic, WS00 let the parameter C vary in
time as C(t) � a0 � a1 cos
t.

Since the present study focuses on the treatment of
the given time-scale separation in the Kalman filter,

and since observed quantities are not clearly separated
slow or fast variables, it makes sense to transform w and
z in the above system back to mixed variables. This is
simply done by defining w � w	 � bz	 and z � z	 � bw	,
which yields the following system:

d�

dt
� w� � bz� �A.15�

dw�

dt
� �

C

2
sin2�� � �bx� �

�2b

�
x �A.16�

dx

dt
�

bw� � z�

�
�A.17�

dz�

dt
�

�2x

�
, �A.18�

where � � (1 � b2)�(1/2). In this system, � describes the
(geostrophic) vorticity of modes 1 and 2, and w	, x, and
z	 the (nongeostrophic) vorticity, divergence, and
height, respectively, of mode 3.
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