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There is a current need to constrain the parameters of gravity wave drag (GWD)
schemes in climate models using observational information instead of tuning them
subjectively. In this work, an inverse technique is developed using data assimilation
principles to estimate gravity wave parameters. Because most GWD schemes assume
instantaneous vertical propagation of gravity waves within a column, observations
in a single column can be used to formulate a one-dimensional assimilation problem
to estimate the unknown parameters. We define a cost function that measures the
differences between the unresolved drag inferred from observations (referred to here
as the ‘observed’ GWD) and the GWD calculated with a parametrisation scheme.
The geometry of the cost function presents some difficulties, including multiple
minima and ill-conditioning because of the non-independence of the gravity wave
parameters. To overcome these difficulties we propose a genetic algorithm to
minimize the cost function, which provides a robust parameter estimation over
a broad range of prescribed ‘true’ parameters. When real experiments using an
independent estimate of the ‘observed’ GWD are performed, physically unrealistic
values of the parameters can result due to the non-independence of the parameters.
However, by constraining one of the parameters to lie within a physically realistic
range, this degeneracy is broken and the other parameters are also found to lie within
physically realistic ranges. This argues for the essential physical self-consistency of
the gravity wave scheme. A much better fit to the observed GWD at high latitudes
is obtained when the parameters are allowed to vary with latitude. However, a close
fit can be obtained either in the upper or the lower part of the profiles, but not in
both at the same time. This result is a consequence of assuming an isotropic launch
spectrum. The changes of sign in the GWD found in the tropical lower stratosphere,
which are associated with part of the quasi-biennial oscillation forcing, cannot be
captured by the parametrisation with optimal parameters. Copyright c© 2011 Royal
Meteorological Society and Crown in the right of Canada.
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1. Introduction

A major challenge in climate prediction is the proper
representation of the impact of small-scale processes on
larger scales (Hurrell et al., 2009). In climate models,
subgrid-scale processes are frequently parameterized in
schemes that involve tunable parameters. Yet climate model
simulations can be sensitive to the values specified for such
parameters. Therefore, there is a need for an objective means
of choosing optimal parameter values as well as obtaining a
range of physically plausible values for ensemble simulations
involving perturbed parameters (e.g. Stainforth et al., 2007).

An example of a subgrid-scale process that requires
parametrisation in weather and climate models that resolve
the middle atmosphere is the forcing of the large-scale
flow by unresolved gravity waves (referred to as ‘gravity
wave drag’ or GWD). Models usually have at least two
GWD parametrisations. One represents forcing due to
gravity waves generated by orography (e.g. Palmer et al.,
1986; McFarlane, 1987), where the characteristics of the so-
generated waves are partly known. A second parametrisation
in the models (e.g. Warner and McIntyre, 1996; Hines, 1997)
represents forcing from the remaining potential sources
of gravity waves such as convection, shear instability and
geostrophic adjustment, and here a priori knowledge is
minimal.

Gravity waves help drive the Brewer–Dobson circulation
(Randel et al., 2008), and an important scientific question
concerns the effect of climate change on this circulation.
Orographic GWD has a strong and robust impact on
changes in the Brewer–Dobson circulation due to climate
change (Li et al., 2008; McLandress and Shepherd, 2009),
although there are large quantitative differences between
individual models that at least partly arise from differences
in implementation of orographic GWD (Butchart et al.,
2006, 2010). In addition, Sigmond and Scinocca (2010)
found that the response of Arctic surface pressure to doubled
CO2 differs enormously between two versions of their model
which differ only in the parameter setting in their orographic
GWD scheme, because of the impact of orographic GWD
on the climatological winds and thus on the response of
planetary wave drag to doubled CO2. Non-orographic GWD
impacts the seasonal cycle of polar temperatures and ozone
(Alexander et al., 2010).

Though climate simulations may be sensitive to GWD, the
tuning of GWD parameters can involve guesswork. Various
parameter settings are selected and the resulting simulations
are then evaluated in terms of their realism. However,
values that lead to reduced biases in surface pressure may
not give the best wind speeds in the lower stratosphere
(Sigmond and Scinocca 2010). Thus a subjective choice is
made. Here we consider an objective method of obtaining
parameter values using data assimilation. The use of data
assimilation to identify biases in climate model forecasts on
short (weather forecasting) time-scales has been advocated
by Phillips et al. (2004), Palmer et al. (2006), and Rodwell
and Palmer (2007) as part of a ‘seamless’ approach to
weather and climate prediction. Brunet et al. (2010) further
acknowledge the value of tuning parameters in a climate
model using data assimilation in order to reduce climate
model errors. The use of data assimilation and forecasts
on short time-scales to identify climate model biases allows
different sources of model errors to be disentangled and
allows model errors to be traced back to the specific time

and location where they are produced. In this way, the
estimation of optimal parameters using data assimilation
may be useful not only for short-term forecasts but also for
climate modelling.

Most GWD schemes are based on a representation of
the gravity wave momentum flux. Currently, observations
of gravity wave momentum flux are very limited as
measurements only detect a part of the gravity wave
spectrum (Preusse et al., 2008), although considerable
progress is expected with the launch of new satellites and
the development of data processing techniques (Alexander
et al., 2010). While the gravity wave spectrum is not well
observed, the large-scale flow which is derived in part from
the forcing due to dissipating gravity waves is easier to
observe. Thus data assimilation can be used to infer the GWD
from observed large-scale fields, if the large-scale GWD
response is predictable. Evidence of this is found in Karlsson
et al. (2009) for a climate model and Ren et al. (2008) for a
data assimilation system. Pulido and Thuburn (2005, 2006,
2008) proposed an inverse technique to estimate the missing
GWD in climate models from the large-scale flow based on
variational data assimilation principles. In their work, the
GWD is estimated using the mismatch between the climate
model and the observations. The main assumption is that the
estimated forcing can be attributed mainly to under-resolved
gravity waves rather than to initial-condition errors or other
sources of model error. This is regarded as a reasonable
assumption in the upper part of the middle atmosphere
once the errors are averaged in space and time.

Pulido and Thuburn (2008) focussed on estimating the
missing forcing due to GWD, which we refer to as the
‘observed’ GWD. In this work the aim is to go further and to
determine an optimal set of parameters in a GWD scheme
such that the drag given by the parametrisation can account
for the observed GWD. A cost function which measures the
departure of the observed GWD from the drag predicted
with a given set of parameters is minimized to obtain an
optimal set of parameter values. Because all current GWD
schemes assume that gravity waves propagate straight up
and instantaneously, it is entirely consistent to formulate the
parameter estimation problem in one dimension, namely a
single column. However, even the one-dimensional problem
can be challenging. If the response to parameter changes
involves switches (discontinuities) or is highly nonlinear,
a meaningful solution is not guaranteed since common
assimilation techniques (e.g. variational assimilation or
the ensemble Kalman Filter) are designed for smooth and
weakly nonlinear problems. While the results of parameter
estimation will always be applicable only to the scheme
considered, the process of applying data assimilation to a
new problem (as is done here) may lead to insights into
the formulation or assumptions of GWD parametrisation
schemes. Although we consider only one GWD scheme here,
McLandress and Scinocca (2005) have shown that different
GWD schemes behave similarly when constrained by the
same source spectrum. Thus, our results are expected to be
relevant to other GWD schemes.

The plan of the paper is as follows. Technical aspects of
the GWD scheme and the inverse technique are provided
in section 2. In section 3, the optimization techniques are
assessed using twin experiments in which the ‘observed’
GWD is produced using the parametrisation with a set
of known parameters. This allows an assessment of the
smoothness and nonlinearity of the problem. In section 4,
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the GWD field obtained by Pulido and Thuburn (2008) using
observations is used to estimate the optimal parameters. A
summary of the results and a discussion of their generality
is given in section 5.

2. Technical details

2.1. Gravity wave drag scheme

In this study we use the Scinocca (2003) GWD scheme. This is
the operational scheme in the Canadian Middle Atmosphere
Model (Scinocca et al., 2008) and is also operational in the
ECMWF model since September 2009 (Orr et al., 2010).
Here we summarize the relevant characteristics of the
scheme, emphasising the free parameters and their role in the
scheme. In order to reduce the number of free parameters
and to concentrate on the most physically relevant ones,
we have considered the simplest version of the gravity wave
scheme which represents the main physical processes of
momentum deposition. In this simple version the reflection
of waves is assumed to be negligible (Scinocca, 2002).

Scinocca (2003) suggests that an efficient non-orographic
gravity wave scheme is obtained if the spectrum of
the Eliassen–Palm (EP) flux is expressed as a function
of the horizontal phase speed c in each azimuthal
direction, φ. This produces an important conceptual and
numerical simplification since the phase speed spectrum
is not altered by horizontal background wind refraction
under conservative propagation. In contrast, the vertical
wavenumber spectrum is affected by changes in horizontal
background wind. The spectrum is launched at some height
zl, which is usually assumed to be between the surface and the
tropopause, i.e. within the region where the actual sources
are expected. The launch EP flux spectral density of the
Desaubies form in terms of the phase speed is

El(̂c, φ) = E(̂c, φ, zl) = E∗
Ẽ

ĉ

1 +
(

ĉ
c∗

)4 , (1)

where ĉ is the horizontal phase speed with respect to the
horizontal wind at the launch height (̂c = c − u(zl, φ); this
being the intrinsic phase speed at launch height, ĉ is constant
with height), c∗ ≡ Nl/m∗ is the characteristic phase speed
(Nl is the Brunt–Väisälä frequency at the launch height and
m∗ is the characteristic vertical wavenumber), and Ẽ is given
by

Ẽ =
∫ ∞

0

ĉ

1 +
(

ĉ
c∗

)4 d̂c = π

4
c2
∗ . (2)

Note from (1) and (2) that E∗ is then the total momentum
flux, i.e.

E∗ ≡
∫

E(̂c, φ, zl) d̂c

(for any azimuthal direction). The momentum flux is
assumed to be isotropic in intrinsic phase speed at the
launch height.

For the waves that propagate conservatively, the EP flux
spectral density is constant, i.e.

E(̂c, φ, z) = E(̂c, φ, zl). (3)

Dissipation of the waves is activated when a component
of the spectrum exceeds a saturation threshold given by

Es(̂c, φ, z) = S∗
E∗
Ẽ

ρ(z)

ρ(zl)

N(zl)

N(z)

{̂c − û(z, φ)}3/2

ĉ1/2
, (4)

where ρ is density, S∗ is the saturation amplitude, and
û(z, φ) is the horizontal wind in the azimuthal direction
φ relative to the horizontal wind at the launch height, viz.
û(z, φ) = u(z, φ) − u(zl, φ). Note that Es(̂c, φ, z) diminishes
with height because of the decreasing density. On the other
hand, the undissipated EP flux is constant with height, so
waves that are propagating upwards will eventually become
saturated at some height. If the saturation amplitude is
S∗ = 1, then the amplitude of the launch spectrum for
ĉ = c∗, El(c∗, φ), is at the threshold value Es(c∗, φ, zl). For
S∗ > 1, the launch spectrum amplitude for ĉ = c∗ is smaller
than the saturation threshold. On the other hand, S∗ < 1
would indicate an oversaturated spectrum; in this case the
parametrisation would produce a physically unrealistic drag
since the EP flux that exceeds the threshold is deposited in
the first layer. Note that the parameter S∗ was not present
(i.e. a fixed S∗ = 1 saturation amplitude was taken) in the
original Scinocca (2003) parametrisation; it was introduced
in McLandress and Scinocca (2005).

The other mechanism that affects the propagation of the
waves is critical-level filtering by the background flow; the
components of the spectrum that are eliminated by filtering
are the ones with slow intrinsic phase speed.

The zonal component of the total momentum flux is
given by

Ex(z) =
∫ 2π

0

∫ ∞

0
E(̂c, φ, z) cos φ d̂c dφ, (5)

and the meridional component of the total momentum flux
by

Ey(z) =
∫ 2π

0

∫ ∞

0
E(̂c, φ, z) sin φ d̂c dφ. (6)

The GWD, i.e. the EP flux divergence divided by density,
is

(X, Y) = (ρ−1∂zEx, ρ−1∂zEy). (7)

To understand the results of the 1D assimilation problem, it
is necessary to consider how the drag is affected by changes
in the tunable parameters of the scheme. For this scheme,
the tunable parameters are: the launch total momentum flux
E∗, the characteristic phase speed c∗, saturation amplitude
S∗, and launch height zl. Although Manzini and McFarlane
(1998) find important sensitivity to the launch height, in
this work we consider a fixed launch height. That is, zl is
not considered in the control space only because it is a non-
smooth parameter and it is not trivial to vary this parameter
in the Scinocca (2003) scheme. Although the computational
code could also work with negative parameters, the physical
interpretation of the four free parameters requires that they
be positive.

Since the tunable parameters are independent of height,
they cannot directly affect the shape of the drag profile. They
only do so indirectly. The EP flux is a linear function of E∗
according to (1) so that the drag is also a linear function of
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E∗ according to (7). The vertical gradient of EP flux depends
on S∗ only when saturation occurs. In this case, the amount
deposited will depend linearly on S∗ (see (4)) for a given
wave. Since all three tunable parameters can control the
vertical gradient of EP flux, changes in one parameter can
be offset by changes in one or more of the other parameters.
Thus, there is no unique set of parameters that will provide
a given drag. This will be manifested in practice as multiple
minima and as long valleys in the cost function of the 1D
assimilation problem.

2.2. Inverse technique

GWD resulting from the parametrisation is used as a forcing
term in the momentum equations of the climate model. A
general inverse technique in which a cost function measuring
the differences between the model state and observations
could be used. Assuming the initial conditions are known,
the cost function can be considered a function only of the
gravity wave parameters. Therefore the minimum of the cost
function determines the optimal parameters –namely those
values that produce the closest match of the model to the
observations.

Because the gravity wave sources in the GWD scheme are
considered constant and do not depend on the background
flow, the estimation problem simplifies greatly. The problem
can then be split into two stages. First, the GWD forcing term
in the momentum equations that drives the model towards
the observations is estimated. Second, the gravity wave
parameters that produce the closest match to the observed
GWD found in the first stage are identified. Because the
resolved wave forcing is already represented by the model,
we can attribute the missing drag to unresolved waves. This
largely removes the feedback between the resolved wave
forcing and the subgrid-scale wave forcing that plagues
other methods of GWD parameter estimation.

In the first stage of the inverse technique, the GWD
estimation is conducted using ASDE (Assimilation System
for Drag Estimation) as in Pulido and Thuburn (2008).
The technique uses 4D variational assimilation principles.
Analyses from the Met Office are taken as the observations.
The height range of the GWD, wind and temperature fields
is from a potential temperature of 414 K (100 hPa) up to
2400 K (0.3 hPa). Note that ASDE does not employ any
GWD parametrisation; it only estimates the missing forcing,
i.e. GWD.

The GWD parametrisation assumes that the wave
propagation is in a vertical column. This implies that a
1D inverse problem can be formulated for the second stage
of the inverse technique. The cost function of the second
stage is defined as

J = 1

2

∑
n

(yo − H[x])TR−1(yo − H[x]), (8)

where x is a vector with the set of free parameters, H is the
GWD scheme and yo is a vertical profile of the estimated
GWD given by ASDE. This vertical profile is taken from
the drag field which was determined in the first stage of
the inverse technique. In what follows, in order to use
the standard terminology in data assimilation we refer to
this estimated GWD as the ‘observed’ GWD. The matrix R
should be positive definite, but otherwise may be chosen by
the user to give different weights to different observations

or to improve the convergence of the minimization. Here R
is taken to be the identity matrix. We return to this point in
a subsequent section.

The control space is formed by x = (E∗, λ∗, S∗), where
λ∗ = 2πc∗/Nl is the characteristic vertical wavelength. We
decided to use λ∗ instead of c∗ because λ∗ is the parameter
usually determined in gravity wave observations (e.g. Allen
and Vincent, 1995).∗

(i) Variational data assimilation. One of the techniques
that we use to estimate the optimal parameters is based on
variational data assimilation principles. The idea is to use the
same framework as the one used for the GWD estimation
(Pulido and Thuburn, 2005) in which the optimization
module uses conjugate gradients with a secant method to
find the root of the cost function gradient in each search
direction. This optimization requires the gradient of the cost
function. The adjoint of the GWD scheme was built with
an automatic adjoint generator: the Tangent and Adjoint
Model Compiler (Giering and Kaminski, 1997).

(ii) Genetic algorithm. Given the problems found with
the variational assimilation technique, which are described
in section 3, a genetic algorithm was also implemented
(Golberg, 1989). This technique is particularly suitable
for constrained minimization problems in which the
model behaves nonlinearly with respect to the parameters.
Convergence towards the global minimum is possible even
if the cost function contains multiple local minima. The
genetic algorithm does not require the evaluation of the
derivative of the cost function with respect to the model
parameters. A drawback of the technique is that it needs a
large number of model evaluations; this is particularly so if
the structure of the cost function is highly complex or for a
large-dimension control space.

The genetic algorithm implemented in this study (Pikaia)
was developed by Charbonneau (2002). This is a basic
algorithm which applies the essential ideas of natural
selection. The algorithm behaves robustly in our application.

3. Twin experiments

There are currently no global estimates of gravity wave
parameters directly from observations (Alexander et al.,
2010). The inverse technique is therefore evaluated by
means of twin experiments in which the observed GWD
is calculated with the Scinocca scheme with a prescribed
set of true parameters using standard winter and summer
midlatitude wind and temperature profiles. Then the
optimization technique, e.g. the variational technique, is
used to estimate the best parameters. These parameters give
the GWD that optimally fits the synthetic observed GWD.
The convergence of the technique towards the known true
parameters can be readily evaluated in these experiments.

The parameters are normalized to the standard values
used in the Scinocca scheme: Ê∗ = E∗/ER, λ̂∗ = λ∗/λR and
Ŝ∗ = S∗/SR where ER = 2.5

√
2×10−4 Pa, λR = 2 km, and

SR = 1. The launch height zl has been fixed to a potential
temperature of 440 K (approximately 100 hPa).

In a first set of experiments, we take standard summer
midlatitude wind and temperature profiles and prescribe as
true parameters the standard values, i.e. ÊT∗ = 1, λ̂T∗ = 1 and

∗The use of m∗ = 2πλ−1∗ instead of λ∗ as free parameter was also
evaluated, but resulted in a slower convergence rate.
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(a) (b) (c)

Figure 1. Cross-sections of the cost function without scaling at (a) λ̂∗ = 1, (b) Ê∗ = 1, and (c) Ŝ∗ = 1.

ŜT∗ = 1. Figure 1 shows the geometry of the cost function
in three cross-sections: λ∗ = λT∗ , E∗ = ET∗ and S∗ = ST∗ . The
cost function is rather convex near the true parameters.
However, there are multiple minima related to unphysical
(negative) parameters. These minima may cause problems
in the convergence with variational optimization schemes.
Note also that elongated valleys are present in the cost
function which make the parameter estimation difficult in
some search directions.

Four optimization techniques were implemented and
evaluated: conjugate gradients (CGs), quasi-Newton with
bounded domain (BQN), the genetic algorithm (GA), and
a hybrid scheme using the genetic algorithm and conjugate
gradients (Mixed). The convergence of the conjugate
gradients method depends on the initial guess parameters.
As shown in Table I, using an initial guess of Ê∗ = 2.08,
λ̂∗ = 2.08, Ŝ∗ = 0.11, the variational technique converges
towards a negative S∗ value. For the BQN technique we chose
the parameter range [0.1, 2.1]. This optimization algorithm
also fails to converge towards the true parameters using the
same initial guess (Table I). The cost function contains local
minima at the low S∗ boundary, i.e. Ŝ∗ = 0.1, and the chosen
initial guess parameters, Ê∗ = 2.08, λ̂∗ = 2.08, Ŝ∗ = 0.11,
are close to these local minima. Note that Ŝ∗ < 1.0 values
may be unphysical, since they indicate oversaturation. The
algorithm also does not converge when the lower limit is
changed to S∗ = 0.9.

The GA is particularly suited for minimization in a
constrained domain. As before, we choose the parameter
range [0.1, 2.1]. Table I shows that the GA gives a good coarse
estimation of the parameters. Moreover, this estimation is
independent of the initial guess parameters. The GA was also
evaluated changing the prescribed true parameters within
the parameter range [0.1, 2.1]. In all cases the algorithm
converged toward the true parameters.

Table I also shows the result of a newly proposed technique
that first uses the genetic algorithm and then, once the
estimation is close to the global minimum, the CG method is
used. This hybrid technique presents very good convergence
taking advantage of both techniques. The GA is able to
select the deepest minimum of the cost function despite its
complex structure, then the CG algorithm is able to exploit
the near-quadratic structure of the cost function near the
minimum to achieve quick and accurate convergence. If
performance is an issue in future applications, then a small
number of generations, say 50, could be used and then the
CGs could be applied to improve the ‘coarse’ estimation of
the GA. For the case-studies shown, we use 200 generations
and 100 individuals as the default configuration. In general,

Table I. Estimation of the parameters for different optimi-
zation techniques.

Parameter

Technique Ê∗ λ̂∗ Ŝ∗
True 1 1 1
Initial 2.08 2.08 0.11
Est CG 0.70 46.16 –8.93
Est BQN 1.44 2.1 0.1
Est GA 1.018 1.001 0.975
Mixed 1.00001 0.99999 0.99999

the GA was stopped because the generation number reached
200 instead of reaching the precision criterion (in particular
for the results in Table I).

In summary, the 1D assimilation problem for estimating
GWD parameters is highly nonlinear, resulting in a poorly
conditioned problem, viz. long elongated valleys are found
in the cost function making the determination of optimal
parameter values difficult and the associated errors of
the estimation large. The problem also contains multiple
minima. Nevertheless, a solution can be obtained with a
new technique which combines variational techniques with
a GA. With these twin experiments, we were able to assess
the potential difficulty of the mathematical problem by
assuming the parametrisation scheme is perfect. In reality,
the assumptions made by non-orographic GWD schemes
are not entirely justifiable so in the next section we relax
this assumption. The parameter estimation problem in this
more realistic context may then lead to insights into the
deficiencies and assumptions of the GWD scheme.

4. Results in real cases

In this section the observed GWD is taken from GWD
estimations constrained by observations using ASDE (Pulido
and Thuburn, 2005). This field represents the drag that the
GWD scheme should approximate. The 3D GWD fields
are averaged zonally, and the resulting GWD fields are also
monthly averages for July 2002. Zonal mean zonal wind and
temperature fields are used as inputs to the GWD scheme
to determine the characteristics of wave propagation. The
GWD estimations used in this work are similar to the ones
shown in Pulido and Thuburn (2008). However, there were
slight changes in ASDE which did not affect appreciably the
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(a) (b)

Figure 2. (a) Observed zonal mean zonal gravity wave drag (m s−1day−1) estimated by ASDE for July 2002, and (b) the corresponding zonal EP flux
divergence (107 Pa m−1). The zero drag contours are shown in bold.

estimated GWD field for the configuration used. Figure 2
shows the zonal GWD used in this study as the ‘observation’
and the corresponding zonal EP flux.

In this realistic experiment, there is no guarantee that a set
of parameters achieves a zero cost function. Parametrisations
are a simplification of the complex nonlinear wave–mean
flow interactions, so that they might not represent exactly
the drag field. Furthermore, the observed drag may be
contaminated with model errors at some heights which the
data assimilation technique will identify as missing forcing
and therefore GWD. Experiments to evaluate the shape of
the cost function in realistic cases were conducted. In all the
cases, the cost function was smooth with a global minimum
in the physical parameter range (not shown).

For the twin experiments, changes in the R−1 matrix
can only improve/degrade the convergence rate since
the observation is exactly reproduced by the model (the
parametrisation). On the other hand, in this realistic
experiment changes in R−1 may give a different set of
optimal parameters since the parametrisation cannot match
exactly the whole observed profile. There are two natural
options for the observed variable yo: GWD, i.e. X from (7),
or EP flux divergence, i.e. ∂zEx = ρX. The latter could also
be thought of as an observed variable of yo = X and a R−1

matrix whose diagonal elements are ρ(zi)2 (see (8)).
Unconstrained positive parameter estimations give

extremely large parameter values which produce a good fit
in the upper part of the drag profile, however breaking and
saturation are completely absent at low levels because of the
combination of large Ŝ∗ and λ̂∗ values. To avoid this artefact,
we conducted constrained optimization experiments, in
which Ŝ∗ was constrained to the range 0.9 to 10, and λ̂∗ to
the range 0.3 to 10.

Optimal parameters are estimated independently for each
latitude, using the zonal mean profiles of GWD, zonal wind
and temperature. Figure 3 shows the estimated parameters
normalized with the standard values, E∗/ER, λ∗/λR and
S∗/SR, as a function of latitude. The estimated parameters
depend on the choice of observed variable. The reason for
this will be explained in detail shortly. A brief explanation
is that neither choice can yield a good fit to both the
lower and upper part of the observed drag profile. Note
that both choices yield parameters that vary considerably
with latitude. We shall show subsequently that allowing the

parameters to vary with latitude is important for obtaining
a good estimation of the observed drag.

For the yo = X case, the total EP flux Ê∗ shows large values
at high latitudes and small values in the Tropics (Figure 3).
The maximum total EP flux in the winter hemisphere at
100 hPa is 4.6×10−3Pa at 60◦S, while it is 2.5×10−3Pa in
the summer hemisphere at 30◦N. The characteristic vertical
wavelength, λ∗ is about 2 km (4 km) in mid (high) latitudes,
while a longer characteristic wavelength is found in the
Tropics. The optimal parameters shown in Figure 3 are
estimated for monthly mean zonally averaged profiles in July
2002. However the parameters may depend on the seasonal
cycle and may vary interanually, so a multiyear analysis
should be performed as future work for a comprehensive
study of parameter statistics.

Figure 4(a) shows the GWD that results from the
optimization using the hybrid algorithm, i.e. the GWD
from the parametrisation with the optimal parameters. This
case uses GWD directly as observed variable yo = X. The
parametrisation does a remarkably good job in reproducing
the zonal mean drag. The winter and summer deceleration
centres are well located and their amplitudes are rather close
to the observed ones (Figure 2(a)). At lower heights, the
change of sign in the drag is also well reproduced. At low
latitudes, the positive zonal forcing that is observed above
10 hPa is also captured by the parametrisation. On the
other hand, the positive zonal forcing at low heights in the
Tropics and the summer hemisphere is not reproduced by
the parametrisation with the optimal parameters.

The EP flux divergence resulting from the parametrisation
with optimal parameters is shown in Figure 4(b). This is
again for the case with GWD as observed variable yo = X.
The observed EP flux divergence presents strong positive
forcing in the winter lower stratosphere and negative forcing
in the summer hemisphere (Figure 2(b)). The positive
forcing in the winter lower stratosphere is underestimated
by a factor of two, while the centres of enhanced forcing
in the Tropics and the summer lower stratosphere are not
reproduced by the GWD parametrisation. (Note that the
shading scales in Figures 4(b) and 2(b) are different.) The
parametrisation does a good job fitting the observed GWD
and EP flux divergence in the upper levels but differs in the
lower levels where enhanced centres of forcing are found in
the observed EP flux divergence.
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(a) (b) (c)

Figure 3. Estimated parameters normalized with the reference values: (a) E∗/ER, (b) λ∗/λR, and (c) S∗/SR, using gravity wave drag (yo = X, solid line)
and EP flux divergence (yo = ∂zEx , dotted line) as the observed variable.

(a) (b)

Figure 4. (a) Zonal mean zonal drag given by the GWD scheme with the optimal parameters using drag as the observed variable and (b) the corresponding
zonal EP flux divergence.

(a) (b)

Figure 5. (a) Zonal mean zonal drag given by the GWD scheme with the optimal parameters using EP flux divergence as the observed variable, and (b)
the corresponding zonal EP flux divergence.

These results suggest that a larger weight at the lower
levels of the observed variable in the cost function could
resolve the differences found between the observed and
estimated EP flux divergence (cf. Figures 2(b) and 4(b)).
Thus we repeated the experiment with yo = ρX (EP flux
divergence) as the observed variable. The EP flux divergence
that results from this experiment is shown in Figure 5(b).
The positive forcing centre at the lower stratosphere of the
winter hemisphere is well reproduced in this experiment.
Furthermore, the negative forcing centre in the summer
hemisphere is also nicely reproduced. On the other hand, in

the Tropics the parametrisation cannot capture the positive
centre at low altitudes even in this experiment where the
lower stratosphere is emphasised in the cost function with
the ρ weight. To examine the estimation at higher altitudes,
GWD is shown in Figure 5(a). The high deceleration centre
in the winter hemisphere and the acceleration centre in
the summer hemisphere are both captured, although the
deceleration centre is stronger for the yo = ρX experiment
reaching over 100 m s−1day−1.

The GWD calculated with the parametrisation using the
standard set of parameters for wind and temperature profiles
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(a) (b)

Figure 6. (a) Zonal gravity wave drag given by the parametrisation with the standard set of parameters using wind and temperature for July 2002 and
(b) the corresponding zonal EP flux divergence. Note that the contours in both panels are different from those used in Figure 2.

in July 2002 is shown in Figure 6. We should not expect
that constant parameters in a gravity wave parametrisation
can exactly reproduce the spatial distribution of gravity
wave sources and therefore of the actual GWD. However,
we do expect that a fairly realistic latitudinal distribution
of the drag given by the parametrisation be found if
the filtering mechanism is the dominant process. The
parameter estimation can give us an objective measure of
the impact of latitudinal variation of the sources compared
to the dependencies produced by the filtering mechanism.
Quantitatively, the magnitude of the forcing found with
the standard set of parameters (Figure 6) is over an order
of magnitude weaker than the observed GWD. Comparing
qualitative features, two drawbacks of the standard set are
evident when this GWD (Figure 6) is compared to the
observed one (Figure 2): the summer deceleration centre
is not well represented, and a new forcing centre appears
in the Tropics which is not present in the observed drag.
These deficiencies show the benefits of objectively estimating
parameter values. Also, the deceleration centres in winter
and summer extend to very low heights. In contrast, the
use of optimal λ∗ and S∗ parameters gives a realistic drag
distribution with a change of sign at 1 hPa (Figure 4) as
found in the observed GWD (Figure 2).

A question arises as to why the inverse technique can
capture the higher part of the drag profile yo = X or
the lower part of the drag profile yo = ρX, but cannot
capture the whole drag profile in a single experiment. This
is related to the physical mechanisms that produce the
momentum deposition. For a standard winter jet profile, the
filtering mechanism is the dominant mechanism between
the launch level and the level of maximum eastward zonal
wind. In this region, eastward waves find their critical levels,
producing an eastward forcing. At higher altitudes the most
important mechanism is wave saturation of the remaining
westward waves which produces a westward forcing. With
the dominant weight in the inverse technique at high
altitudes, yo = X, the estimation is dominated by the fit
to the westward drag, by setting the optimal characteristics
of the westward waves at launch height. Then, since the
spectrum is assumed to be isotropic, the eastward waves will
have the same characteristics (parameters) and therefore a
wrong lower drag profile will likely result. On the other
hand, if the dominant weight is in the lower part of the

drag profile, yo = ρX, the estimation will give optimal
parameters appropriate for the eastward waves (eastward
drag) and because of isotropy, the westward drag will be the
result of these ‘eastward optimal’ parameters.

To illustrate this point, Figure 7 shows zonal wind and
drag profiles at 63◦S. The yo = X case presents a close
fit at high altitudes to the observed drag profile. The
saturation mechanism of westward propagating waves is
fitted so that it closely matches the deceleration forcing
found above the jet. The eastward wave spectrum, as a
result of isotropy, gives the characteristic eastward forcing
at and below the jet maximum. However it does not capture
the lower forcing centre (Figure 7(d)) which is also clearly
visible in Figure 2(b). On the other hand, the yo = ∂zEx case
closely fits this lower part of the drag profile (up to 10 hPa;
Figure 7(d)) where the eastward wave spectrum is strongly
filtered due to the strong eastward wind shear. In this case
the estimation of parameters is dominated by these lower-
level features and therefore the westward forcing produced
at upper levels due to the saturation mechanism is the result
of the remaining waves and is not accurate (Figure 7(b)).

In the summer jet, one would in principle expect a
similar picture to the winter jet: namely a dominant effect
of the saturation mechanism for the yo = X case, and of
the filtering mechanism for the yo = ∂zEx case. The optimal
parameters for the yo = X case are similar to the winter
jet, λ̂∗ ≈ 2 and Ŝ∗ ≈ 10 (Figure 3), and these optimal
parameters give a reasonable fit to the upper part of the
drag distribution (Figure 8(b)). For the yo = ∂zEx case,
there is a good agreement in the lower part of the EP
flux divergence (Figure 8(d)). The optimal parameters,
λ̂∗ ≈ 0.5 and Ŝ∗ ≈ 10, produce the maximum EP flux
divergence at low heights. However there is no sign of the
summer deceleration centre at the upper part of the profile.
Apparently the eastward waves do not saturate within the
estimation height range (Figure 8(c)) and therefore no
positive forcing (deceleration centre) is found in this case
up to the 0.3 hPa top. This behaviour is in fact expected
on physical grounds, since the summer jet core is located at
higher altitudes, thus the waves are expected to saturate at
higher altitudes (e.g. Lindzen, 1981).

Keeping the assumption of an isotropic spectrum raises
the question of whether yo = X or yo = ∂zEx gives the
most appropriate set of parameters. There are two major
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(a) (b) (c) (d)

Figure 7. (a) Monthly averaged zonal wind profile û at 63◦S for July 2002. (b) Observed gravity wave drag profile at 63◦S (solid line), estimated drag using
yo = X (dashed line) and yo = ∂zEx (dotted line). (c) Contribution to the GWD profile from westward and eastward waves (corresponding respectively
to negative and positive drag) for yo = X (dashed lines) and yo = ∂zEx (dotted lines). (d) Observed EP flux divergence (solid line), estimated EP flux
divergence using yo = X (dashed line) and yo = ∂zEx (dotted line).

(a) (b) (c) (d)

Figure 8. As Figure 7, but for 63◦N.

points that lead to the conclusion that yo = X is likely to
be the best choice. Firstly, the most important effect of
non-orographic GWD parametrisations is that produced
around and above the stratospheric jet maximum, while at
lower heights the effect of the forcing by non-orographic
GWD parametrisations generally plays a secondary role.
Secondly, the filtering of the spectrum at low heights is
most likely to be the mechanism responsible for the net
(non-isotropic) momentum flux found in observations
(e.g. Hertzog et al., 2008) and in the data assimilation
technique (Pulido and Thuburn, 2008); also Alexander
et al. (2010). The part of the spectrum corresponding
to waves with slow intrinsic phase speeds must be
correlated with actual sources (these waves have vertical
wavenumber higher than m∗ = 2π/λ∗), while fast waves
are expected to better satisfy the isotropic assumption.
Thus, constraining the drag at high altitudes is more
consistent with an isotropic launch spectrum. The choice
of GWD or EP flux divergence as control variable could
also be evaluated in future work examining the response
to the different sets of optimal parameters in GCM
simulations.

4.1. Global estimation

An estimation of the optimal global parameters was
performed. In this case the observation yo is not a vertical
column of GWD at a single latitude but all the columns. The
optimal parameters are the ones that give the best fit to the
observed GWD for all latitudes at the same time. Profiles
at all latitudes have the same weight in the cost function.
The optimal parameters are E∗/ER = 5.9, λ∗/λR = 2.2 and
S∗/SR = 9.5. Figure 9 shows the GWD and the zonal
EP flux given by the parametrisation with the optimal
set of global parameters. Apparently the parametrisation
cannot reproduce the observed GWD with a single set of
parameters applied globally, whereas a latitude-by-latitude
fit can reproduce the observed drag quite well (Figure 4).
The optimal global parameter set does not give a good
representation of the GWD in the tropical region, though
it does improve the GWD representation compared with
the standard set of parameters (Figure 6). In particular, the
vertical distribution of the deceleration centre above and the
acceleration centre below are better represented.
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(a) (b)

Figure 9. (a) Zonal mean zonal drag given by the GWD scheme with the optimum global parameters using drag in the observation space, and (b) the
corresponding zonal EP flux divergence. Note that the contours in (b) are different from those in Figure 2(b).

Because even the latitude-by-latitude fit cannot reproduce
the observed drag in the Tropics, it might seem inappropriate
to include the Tropics within the global fit. Therefore,
another global optimization was performed, where the cost
function only involved profiles located at latitudes poleward
of 30◦. In this case the optimal parameters are E∗/ER = 8.7,
λ∗/λR = 2.2, and S∗/SR = 9.8. The latter two parameters
are similar to the values in the full global optimization so
the GWD patterns are the same, but the total momentum
flux E∗ is stronger. Therefore the resulting deceleration
centre in the winter lower mesosphere is stronger, reaching
a peak deceleration of 30 m s−1day−1, which is close to
the observed GWD. However an important overestimation
of the drag in the Tropics is found with values that exceed
20 m s−1day−1. This suggests that tropical parameters should
be set differently from extratropical parameters.

5. Conclusions

Physical parametrisations model the nonlinear small-scale
processes in climate models, and they often contain switches
given by threshold values of the state variables. In particular
GWD parametrisations represent saturation and filtering
of the gravity wave spectrum. The sensitivity of the
GWD to changes in the parameters that characterize the
launch spectrum behaves nonlinearly. Furthermore, certain
directions in the parameter space have weak sensitivity, i.e.
large changes in the parameter produce small changes in the
GWD. The estimation problem under these conditions is
challenging. The evaluation of a variational data assimilation
technique shows that it does not converge towards the
global minimum for some cases. The genetic algorithm does
appear to have robust estimations. The use of a hybrid
technique gives the best convergence results. It uses the
genetic algorithm to localize the global minimum and then,
given a good first guess, the variational technique does
converge towards the minimum and it is quite efficient, the
convergence rate being quadratic.

The Scinocca GWD parametrisation with optimal
parameters does a remarkably good job in fitting the
‘observed’ GWD at high latitudes, where the ‘observed’
GWD is determined by an independent data assimilation
technique (Pulido and Thuburn, 2008). At low latitudes,
the parametrisation cannot capture the low positive GWD
which is essential for the positive phase of the quasi-biennial

oscillation (QBO). The parametrisation cannot reproduce
this feature even for a cost function that puts particular
emphasis on the fit to the lower stratosphere. This could
be partially because the fixed launch level of the waves,
100 hPa, in the parameter estimation may be too high in
the Tropics. Also it could indicate a deficiency with the
Scinocca scheme (for the given launch height), or it could
reflect an incorrect representation (in the ASDE model) of
the resolved equatorial planetary waves, especially Kelvin
waves which are known to be crucial for driving the positive
phase of the QBO.

In a sheared mean flow, an inverse technique can capture
the characteristics of the launch spectrum from the filtering
process. A particular drag at a particular height range
due to the filtering process can only be produced by the
waves which have their phase speed equal to the relevant
component of the mean flow. The amplitude of the waves
as a function of phase speed can then be recovered from
an inverse technique. Once the characteristics of the launch
spectrum are estimated by the filtering mechanism (say
the eastward waves in a winter jet), the non-filtered part
of the spectrum (westward waves) is then determined by
the isotropy assumption, and therefore the momentum
deposition aloft is completely determined and it may not fit
the observed drag profile. This is the case when the EP flux
divergence is used as observed variable. On the other hand,
when drag is used as observed variable, the characteristics
of the launch spectrum are determined from the saturation
process that occurs at high altitudes (say for westward waves
in a winter jet) and therefore the lower part of the drag profile
cannot fit the observed drag since the eastward waves are
already set by the isotropy assumption. Future work could
relax the isotropy assumption in the parameter estimation,
independently estimating momentum fluxes, say E∗ and λ∗,
for each direction. The impact of changing the launch height
in an inverse problem context also needs to be evaluated. By
changing the launch height, the anisotropy of the spectrum at
a given level above will also change, so these two sensitivities
are related.

The most reliable parameter in the estimation is
E∗, the drag profile being directly proportional to this
parameter. The global estimation gives a value of Ê∗ of
5.9 (E∗ = 2×10−3Pa) which results in a GWD with a
deceleration peak of 25 m s−1day−1 at 0.3 hPa in the
winter Southern Hemisphere. The estimated values of Ê∗
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are in a range of 2 to 10 in midlatitudes when the parameters
are assumed to depend on latitude for the yo = X case.
Although a completely unconstrained optimization may
yield unrealistically large parameter values because of the low
sensitivity of the drag to a combination of λ∗ and S∗ changes,
by constraining one of the parameters within a physically
reasonable range, i.e. S∗ < 10, the estimation of the other
parameters is then also within a physically reasonable range.
(Although λ̂∗ was also constrained to values smaller than 10,
this constraint is not needed for the yo = X case except for
two profiles at low latitudes.) This ability to approximate the
observed drag profiles with physically reasonable parameter
values demonstrates the basic physical self-consistency of
Scinocca’s scheme for the extratropics.

Scinocca’s parametrisation, as with all non-orographic
GWD parametrisations, has been designed with only a few
free parameters since the launch momentum flux and the
breaking mechanisms were almost completely uncertain in
the past. A consequence of this strategy identified here is the
weak sensitivity to certain combinations of the parameters
and the resulting difficulty in fitting standard high-latitude
drag profiles. This impacts not only the use of inverse
techniques but also observational constraints on the launch
momentum flux. Currently the available observational
information on the GWD and also on the launch momentum
flux, from indirect techniques or from direct observations
(Alexander et al., 2010), is rapidly increasing. Therefore,
a redesign and some relaxation of assumptions in the
parametrisations may be required in order to make optimal
use of the observational information. The main results of
this work in this sense have also been found in preliminary
experiments (not shown) for the Warner and McIntyre
(2001) and Hines (1997) parametrisations, which share the
same philosophy on the launch momentum flux. As has been
shown by McLandress and Scinocca (2005), the differences
of the breaking mechanisms in these parametrisations do
not produce important differences in the resulting GWD.

The estimation of the gravity wave parameters has been
performed with an offline optimization algorithm so that
it did not require the use of a general circulation model.
The impact of the different sets of optimal parameters in
simulations using a general circulation model needs to be
evaluated in future work. Other optimization techniques,
apart from the genetic algorithm used here, that are
suitable for highly nonlinear problems are multiple very
fast simulated annealing or Markov chain Monte Carlo.
Future work could also involve the estimation of the
parameters directly in the general circulation model instead
of using a two-stage estimation. However neither the genetic
algorithm nor Markov chain Monte Carlo appear to be
appropriate for such experiments. For the estimation shown
in Figure 3 about 5 000–20 000 evaluations of the ‘model’
were required. Alternative techniques that are particularly
suitable for large-dimension systems and that converge faster
are therefore needed. Techniques based on the ensemble
Kalman filter (e.g. Evensen, 2003) could be appropriate,
however evaluation of the impact of nonlinearities and
ill-conditioning in these techniques for the gravity wave
problem is required first.
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