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[1] Total ozone trends are typically studied using linear regression models that assume a
first-order autoregression of the residuals [so-called AR(1) models]. We consider total
ozone time series over 60�S–60�N from 1979 to 2005 and show that most latitude bands
exhibit long-range correlated (LRC) behavior, meaning that ozone autocorrelation
functions decay by a power law rather than exponentially as in AR(1). At such latitudes
the uncertainties of total ozone trends are greater than those obtained from AR(1) models
and the expected time required to detect ozone recovery correspondingly longer.
We find no evidence of LRC behavior in southern middle-and high-subpolar latitudes
(45�–60�S), where the long-term ozone decline attributable to anthropogenic chlorine is
the greatest. We thus confirm an earlier prediction based on an AR(1) analysis that this
region (especially the highest latitudes, and especially the South Atlantic) is the
optimal location for the detection of ozone recovery, with a statistically significant ozone
increase attributable to chlorine likely to be detectable by the end of the next decade. In
northern middle and high latitudes, on the other hand, there is clear evidence of LRC
behavior. This increases the uncertainties on the long-term trend attributable to
anthropogenic chlorine by about a factor of 1.5 and lengthens the expected time to detect
ozone recovery by a similar amount (from �2030 to �2045). If the long-term changes in
ozone are instead fit by a piecewise-linear trend rather than by stratospheric chlorine
loading, then the strong decrease of northern middle- and high-latitude ozone during the
first half of the 1990s and its subsequent increase in the second half of the 1990s projects
more strongly on the trend and makes a smaller contribution to the noise. This both
increases the trend and weakens the LRC behavior at these latitudes, to the extent that
ozone recovery (according to this model, and in the sense of a statistically significant
ozone increase) is already on the verge of being detected. The implications of this rather
controversial interpretation are discussed.
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1. Introduction

[2] The problem of the long-term decline of stratospheric
ozone [e.g., Stolarski et al., 1992; World Meteorological
Organization (WMO), 1988] and, in recent years, of ozone
recovery [e.g., Newchurch et al., 2003; Reinsel et al., 2005]
has received wide attention from both the scientific com-
munity and the general public. Statistical models, particu-
larly those based on multilinear regression methods, are
commonly used for the detection of ozone changes [see
SPARC (Stratospheric Processes and Their Role in Climate),
1998, and references therein]. Once a statistical model is
established, it can be combined with other methods, for
example, least squares, to find the best fit to the observa-

tions. Ozone variations are typically represented as a
combination of a long-term trend, natural periodic compo-
nents (seasonal cycle, solar cycle, quasi-biennial oscillation
(QBO), etc.), and a random component (the residuals).
Knowledge about autocorrelations of the residuals of the
regression model is required for a correct estimation of the
model parameter uncertainties. Since the earliest ozone
assessments [e.g., WMO, 1988] it has been assumed that
the residuals can be described by an AR(1) model, i.e., that
the residual for a given month is proportional to the residual
for the previous month plus random uncorrelated noise. In
this case the autocorrelation function of the residuals C(t)
declines exponentially, i.e., C(t) � exp(�at), and the time
series do not contain any significant long-term components
other than those included explicitly in the model. Once the
model parameters and their uncertainties have been esti-
mated, they can be used, for example, to calculate the
number of years required to detect a trend of a given mag-
nitude at a given level of statistical significance [Weatherhead
et al., 1998, 2000; Reinsel et al., 2002].
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[3] Geophysical time series do not always follow the AR(1)
model, however. They commonly exhibit long-range corre-
lated (LRC) behavior, and their autocorrelation functions decay
by a power law, i.e., C(t) �jtj2H�2, where 0.5 < H < 1.
The parameter H is called the Hurst exponent after the British
hydrologist H.E. Hurst, who first observed this phenomenon
[Hurst, 1951].Numerous studies published during the last decade
or so have demonstrated LRCbehavior in variousmeteorological
parameters [e.g., Bloomfield, 1992; Pelletier, 1997; Tsonis et al.,
1999; Stephenson et al., 2000]. All these studies report Hurst
exponents for climate time series, estimated using different
statistical methods, in the range between 0.5 and 1.0.
[4] There are also indications that ozone time series are not

always well described by the AR(1) model. Toumi et al.
[2001] considered daily total ozone records from three west
European stations (Arosa, Lerwick, and Camborne) and
calculated Hurst exponents for deseasonalized and detrended
time series (assuming a linear trend). All three time series
exhibited Hurst exponents of about 0.78. However, the
authors did not remove the QBO- and solar-cycle-related
components, which could affect the estimate of the Hurst
exponent. Varotsos and Kirk-Davidoff [2006] considered
total ozone time series for large spatially averaged areas,
but also removed only the seasonal cycle and the linear trend.
The estimates of the Hurst exponents were calculated
using detrended fluctuation analysis (DFA) of the first order
[Kantelhardt et al., 2001]. The DFA filters out polynomial
trends whose order is less than the order of the DFA applied.
TheHurst exponents for tropical ozone estimated byVarotsos
and Kirk-Davidoff [2006] were about 1.1, which implies an
infinite variance, since, in this case, the integral of spectral
density diverges. However, the presence of periodic signals
such as the QBO and solar cycle tends to increase the DFA
estimate of the Hurst exponent [Jánosi and Müller, 2005].
[5] In recent years it has been established that a sizable

fraction of the long-term ozone changes over northern
midlatitudes can be related to long-term changes in dynam-
ical processes [e.g., Weiss et al., 2001; Randel et al., 2002;
Hadjinicolaou et al., 2005]. Estimation of ozone trends
requires a proper accounting for the effects of these pro-
cesses on ozone. One approach is to add more terms to the
statistical models used for trend calculations [e.g., Reinsel et
al., 2005; Dhomse et al., 2006]. However, the physical
mechanisms behind these dynamical effects on ozone are
often not well understood, and therefore it is difficult to
account for them properly in a statistical model (see further
discussion in section 3.1). Furthermore, such nonperiodic
components cannot be predicted, and thus such models
cannot be used to estimate future behavior. An alternative
approach is to consider the contribution of dynamical
processes to ozone fluctuations to be part of the noise. In
this case, the noise may be LRC and a proper estimation of
the residuals’ autocovariance is required.
[6] In this study we investigate the possible existence of

LRC behavior in total ozone time series and study its effects
on ozone trend significance estimates and on the number of
years required for trend detection. We employ spectral
methods of Hurst exponent estimation instead of DFA
because they have a better mathematical foundation. The
plan of the paper is as follows. The total ozone data used in
the analysis are described in section 2. Section 3 is devoted
to the statistical models and their estimates of the noise. We

review the theoretical background in section 3.1. Long-term
trends in total ozone are represented in terms of either the
equivalent effective stratospheric chlorine (EESC) time
series or a piecewise-linear trend (PWLT) with a turning
point in early 1996. Evidence of LRC behavior in several
total ozone time series, including station data, is given in
section 3.2, while LRC behavior in TOMS (Total Ozone
Mapping Spectrometer)/SBUV (Solar Backscatter Ultravi-
olet) zonal averages is quantified in section 3.3 and
compared with AR(1) behavior. The significance of the
long-term ozone decline is compared under two different
assumptions for the ozone residuals [AR(1) versus LRC]
in section 4.1. The recent positive ozone trend and the
number of years required to detect this trend under the two
different assumptions are compared in section 4.2 for both
the EESC- and PWLT-derived trends. Some results for
TOMS/SBUV-gridded total ozone data, showing longitu-
dinal structure, are discussed in section 5. The main
results are summarized and their implications discussed in
section 6. An introduction to the theory of LRC processes is
given in Appendix A. Some details of the spectral methods
for Hurst exponent estimation are presented in Appendix B.
Formulas elucidating the implications of LRC behavior for
trend uncertainties and for the number of years to detect
linear trends are derived in Appendix C.

2. Data

[7] The merged satellite data set used here is prepared by
NASA and combines version 8 of TOMS and SBUV total
ozone data [Frith et al., 2004; Stolarski and Frith, 2006];
it is available from http://hyperion.gsfc.nasa.gov/Data_
services/merged/mod_data.public.html. The data set pro-
vides a nearly continuous time series of zonal and gridded
(10� latitude by 30� longitude grid) monthly mean total
ozone values between 60�S and 60�N (higher latitudes have
data gaps during polar night) for the period from November
1978 to December 2005. In our study we considered only
the period from January 1979 to December 2005. Some
data, particularly the data for August–September 1995 and
May–June 1996, were missing. Zonal averages estimated
from ground-based total ozone measurements [Fioletov
et al., 2002] were used to fill the gaps. In addition, Dobson
monthly mean total ozone values from three sites (Mauna
Loa, Buenos Aires, and Hohenpeissenberg) were also
analyzed here. These data are available from the WMO
World Ozone and UV Radiation Data Centre (http://www.
woudc.org).

3. Analysis of Long-Range Correlations in Total
Ozone Time Series

3.1. Statistical Methods

[8] A typical statistical model describing observations of
monthly mean total ozone can be expressed in the form

WðtÞ ¼ a0 þ A tð Þ þ Q tð Þ þ S tð Þ þ T tð Þ þ X tð Þ; ð1Þ

where W(t) denotes total ozone, t is the number of months
after the initial time (taken here as January 1979), a0 is the
mean, A(t) represents the seasonal cycle, Q(t) the quasi-
biennial oscillation (QBO), S(t) the solar cycle, T(t) the
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long-term trend, and X(t) are the residuals (noise). We used
A(t) =

P
j=1
4 a2j � 1sin(2pj t/12) + a2jcos(2pj t/12), Q(t) =

(a9 + a10sin(2pt/12) + a11cos(2p t/12))w30(t) + (a12 + a13sin
(2p t/12) + a14cos(2p t/12))w50(t), and S(t) = (a15 + a16sin
(2p t/12) + a17cos(2p t/12))S107(t), where w30(t) and w50(t)
are the equatorial zonally averaged zonal winds at 30 and
50 hPa, respectively (http://www.cpc.ncep.noaa.gov/data/
indices/), and S107(t) is the solar flux at 10.7 cm (http://
www.drao-ofr.hia-iha.nrc-cnrc.gc.ca/icarus/www/sol_home.
shtml). We use winds at both 30 and 50 hPa, because they
are about 90� out of phase, which allows a better repre-
sentation of the QBO signal in total ozone. The sin(2p t/12)
and cos(2p t/12) terms in Q(t) and S(t) represent seasonal
dependence. To describe the long-term trend in total ozone,
two commonly used approaches are the equivalent effective
stratospheric chlorine time series, EESC(t) (http://fmiarc.
fmi.fi/candidoz/proxies.html) [Guillas et al., 2004; Newman
et al., 2004; Fioletov and Shepherd, 2005; Stolarski et al.,
2006; Weatherhead and Andersen, 2006] and a piecewise-
linear trend with a turning point that is typically chosen in
the second half of the 1990s. Similar to Reinsel et al. [2005]
and Miller et al. [2006] we choose a turning point n0 in
January 1996, because of the changes in ozone behavior and
in the EESC tendency in the late 1990s. Therefore we use
either T(t) = (a18 + a19sin(2p t/12) + a20cos(2p t/12))EESC(t)
or T(t) = a18T1(t) + a19T2(t), where T1(t) = t, for 0 < t � n,
where n is the time series length (324 in our case), and

T2 tð Þ ¼ 0; 0 < t � n0;
t � n0; n0 < t � n:

�
ð2Þ

[9] In order to provide analytical expressions for trends
and their uncertainties, we use relatively simple trend
models similar to those used by Reinsel et al. [2002] and
Reinsel et al. [2005]. In addition, one of the key principles
of statistical modeling is that the model be parsimonious,
namely, that it involve a minimum number of free param-
eters [von Storch and Zwiers, 1999]. The more parameters
are introduced, the easier it is to fit the time series and there
is a risk that an improved fit may be fortuitous. This is
particularly critical when the time series are very limited, as
is the case with total ozone. In this study, we therefore
restrict ourselves to equation (1) and do not, for example,
introduce 12 coefficients for each component in equation
(1) to more fully account for seasonal dependences. We
have checked that using 12 coefficients for the QBO and/or
trend terms does not alter the statistical properties of the
residuals.
[10] To test the impact of the El Chichon and Mt.

Pinatubo volcanic eruptions we included SAGE aerosol
optical depth observations into our regression model. For
each eruption, the aerosol loading was added to the model
with the time lag that maximized the correlation between
total ozone residuals and the aerosols. It was found that
inclusion of volcanic aerosols only slightly decreases the
Hurst exponent north of 30�S. Qualitatively, the Hurst
exponent distribution and other results stay the same.
[11] There are several reasons why we included the solar

cycle and QBO into equation (1) but not other explanatory
variables, for example, EP flux or tropopause height [see
also WMO, 1998]. First, ozone changes could affect tem-
perature and other dynamical variables. Clearly, the solar

cycle is not affected by ozone. In addition, QBO and solar
variations are reasonably well-explained variations; EP-
flux-forcing variations are not, they are part of the climate
noise. If LRC manifest themselves through the EP flux
forcing and we remove this forcing, then we just transfer the
problem to that of understanding LRC in EP flux forcing.
Furthermore, the correlation between ozone and dynamical
variables could be different at different spectral intervals.
The ozone-temperature correlation is a good example:
The two fields are positively correlated on daily and
monthly timescales but negatively correlated on an annual
basis during major volcanic eruptions [Randel and Cobb,
1994]. So the relationship between ozone and such variables
cannot be described by a single regression coefficient. This
is not an issue for QBO and solar forcing because the
variability of the QBO and the solar signal is located in a
narrow spectral range. The QBO and solar cycles create
maxima in the ozone time series power spectrum that could
affect LRC estimates [Jánosi and Müller, 2005]. Since we
also want to estimate the number of years that is required to
detect future changes, we have to make some assumptions
about the statistical model terms. We cannot predict the
future solar and QBO signals, but we know their power
spectra. So their impact on the future trend errors can be
estimated. It is hard to make any predictions of dynamical
variables or even about their spectral characteristics.
[12] The parameters aj of the model (1) are unknown

coefficients identified by multilinear regression on the total
ozone observations using least squares. The autocovariance
of the residuals X(t) affects the variance of aj and should be
properly accounted for. Certain assumptions are typically
made about the behavior of X(t). For example, the AR(1)
model assumes that X(t) = fX(t � 1) + e(t), where e(t)
are independent, normally distributed random errors. Simi-
larly, the AR(k) model assumes that X(t) = f1X(t� 1) + . . . +
fkX(t � k) + e(t). The parameter f can be estimated after
the estimation of the parameters aj as the lag-one autocor-
relation coefficient of the residuals, or it can be included in
the model (1) directly and estimated simultaneously with the
parameters aj. In this study we follow the first approach, i.e.,
sequential estimation.
[13] A different methodology is used if the autocorrelation

function of X(t) decays by a power law, i.e., C(t) �jtj2H � 2,
where 0.5 <H < 1. The methods we use here are based on the
fact that long-range correlations (dependence) in the time
domain translate into a particular behavior of the spectral
density around the origin. It follows from the Abelian
theorem that, if the autocovariance g(t) � jtj2H � 2 as t !
1, where 0.5 <H < 1, the spectral density f(l)� bjlj1 � 2H as
l ! 0 [see Taqqu, 2002], where, by definition,

f lð Þ ¼ 1

2p

X1
t¼�1

g tð Þe�itl:

In particular, the log of the spectral density is a linear
function of log(l) as l ! 0. In contrast, the spectral density
of an AR(1) process is a constant function of l under the
same conditions and can be considered as a particular case
of a more general power law model. Thus, as shown in
Appendix C, the results we obtain for the LRC model are
generalizations of those for the AR(1) model and reduce to
the latter when H tends to 0.5.
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[14] The Geweke-Porter-Hudak estimator (GPHE) and
the Gaussian semiparametric estimator (GSPE) are the two
methods used in this study to estimate the two parameters, b
and H, of the spectral density approximation, as described in
Appendix B. GPHE estimates b and H by means of a linear
regression of the log(periodogram) on log(l). GSPE is a
maximum likelihood estimator. The variances of the coef-
ficients aj of the statistical model (1) can be expressed as a
function of b and H, as discussed in Appendix C. Further-
more, they can be used to estimate the number of years that
is required to detect a statistically significant trend of a
given magnitude (see Appendix C).
[15] The integral of the autocorrelation function from

negative infinity to positive infinity, which is one way of
quantifying a decorrelation time, is finite for an AR process
and infinite for an LRC process. This means that, in contrast
to the case with an AR process where the limit t �
tdecorrelation is well defined, two observations of an LRC
process do not become statistically independent in the limit
of arbitrarily large time separations [von Storch and Zwiers,
1999]. There are at least two possible physical origins of
LRC behavior. One is based on the aggregation of an
infinite number of AR(1) processes whose timescales satisfy

certain conditions [Granger, 1980]. In practice, apparent
LRC behavior may obtain from the aggregation of a finite
number of AR(1) processes whose longest timescale is
comparable to the length of the time series [Maraun et
al., 2004]. This is a definite possibility in the case of ozone
time series where the records are comparatively short. A
second possible origin of LRC behavior is a sequence of
shocks or pulses with stochastic magnitudes and durations
[Parke, 1999]. Volcanic eruptions could play such a role,
although, as noted earlier, a direct link between aerosol
loading and total ozone for the time period 1979–2005 does
not appear to be associated with LRC behavior. The
attribution of LRC behavior in total ozone is a separate
topic which is not addressed here.

3.2. Illustrations of Long-Range Correlations

[16] Figure 1 shows time series of the residuals X(t) for
(1), obtained by filtering out the mean, seasonal cycle,
QBO, solar flux, and EESC trend, for zonal and monthly
mean total ozone in various latitude bands from 1979 to
2005. The corresponding Hurst exponents H, estimated
using the Gaussian semiparametric estimator (GSPE), are
also indicated. The latitude bands correspond to local
maxima or minima of H (see Figure 4b below) and have
been chosen to illustrate the different temporal behavior
that is exemplified by large or small values of H. The time
series with larger values of H tend to exhibit greater low-
frequency variability with more instances of strong apparent
‘‘trends’’ over decadal timescales. Values of H that are close
to 0.5 correspond to behavior that is not significantly
different from AR(1), while the larger values of H are clear
indicators of LRC behavior.
[17] To illustrate how the Hurst exponent is calculated by

the Geweke-Porter-Hudak estimator we show power spectra
of monthly mean total ozone residuals for three ground-
based stations, Mauna Loa (19.5�N, 155.6�W), Buenos
Aires (34.6�S, 58.5�W), and Hohenpeissenberg (47.8�N,
11.0�E), as well as for the corresponding nearest grid points
and zonal averages from the merged satellite data set. For
the purpose of comparison the period was limited to 1979–
2005 for all data sets. Several months with missing data
were filled by linear interpolation in time. Figure 2 shows
the periodograms in log-log coordinates of the total ozone
residuals for station data (Figures 2a, 2b, and 2c), for the
nearest grid points from the merged data set (Figures 2d, 2e,
and 2f), and for the corresponding zonal averages from the
merged data set (Figures 2g, 2h, and 2i). The periodograms
show an increase in variability with a decrease of frequency,
which, as noted earlier, is a manifestation of LRC behavior.
The solid straight lines are the best linear fits of the
periodogram in log-log coordinates, corresponding to
power law approximations in ordinary coordinates for the
frequency bandwidth 1–27 years. The dashed straight lines
represent the one sigma uncertainty envelope defined by the
standard errors for slope and intercept. The linear fit of the
periodogram represents the calculation of the Hurst expo-
nent using the Geweke-Porter-Hudak estimator (GPHE, see
Appendix B for details). Apart from Figures 2e, all slopes
are statistically significantly less than zero, meaning that H
is statistically significantly greater than 0.5 (H = (1 �
slope)/2). Therefore eight out of the nine power spectra

Figure 1. Monthly and zonal mean total ozone residuals in
Dobson units obtained by filtering out the seasonal cycle,
QBO, solar cycle, and EESC fit for various 5� latitude
bands, as indicated. The Hurst exponent for each time series
is indicated in the top left corner of each panel. Note the
differences in the extent of low-frequency behavior in the
time series with different Hurst exponents.
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shown reveal that the corresponding total ozone residuals
are LRC (and the slopes for Figures 2b and 2e, which
should be comparable, agree within the error bars). The
zonal average time series typically have slightly greater
Hurst exponents than the grid point time series from the
same latitudinal belt since the average of several time series
tends to have a Hurst exponent equal to the maximum of the
Hurst exponents of the individual time series [Granger,
1980]. Additional evidence that this is the case for total
ozone will be provided in section 5.
[18] To illustrate why it can be important to allow for

LRC behavior in a statistical model, Figure 3a shows the
autocorrelation function of the residuals X(t) for 50�–55�N
as well as the fits produced by various statistical models. In
this case, H is significantly different from 0.5. Figure 3a
shows that the AR(1) model (the short dashed curve) does
not fit well the autocorrelation function of the total ozone
residuals (the solid circles) for periods longer than several
months. Even using higher order AR models such as AR(3)
(the long dashed curve) does not improve the fit. The most
parsimonious approximation of the solid circles is a simple
power law function ajtj2H�2 (the solid curve). Autocorrelation
functions of the AR(1) and AR(3) models rapidly decay, while
the power law function decays slowly and follows the auto-
correlation function of the original time series.

[19] However, as seen in Figure 1, there are latitude bands
where LRC behavior is not evident. For example, over 50�–
55�S, where H is not significantly different from 0.5 (see the
appropriate panel of Figure 1), the power law function does
not provide a superior fit to the autocorrelation function
of the total ozone residuals, whereas a reasonably good fit
is provided by the AR(3) model (Figure 3b). Thus it is
important to establish where LRC behavior is evident and
where it is not.

3.3. Quantification of Long-Range Correlations in
Zonally Averaged Ozone

[20] Ozone trend studies are typically performed using
zonally averaged data. Part of the motivation for this lies in
the approximate zonal symmetry of the stratosphere and
thus of quantities such as ozone trends. By taking a zonal
average of the data, longitudinal fluctuations (eddies) are
removed, thereby reducing the standard deviation (noise
level) of the time series while keeping the zonally symmet-
ric trend unchanged. Thus zonal averaging usually leads to
an increase of the signal-to-noise ratio. However, a draw-
back of zonal averaging is an increase in the strength of
serial correlations.
[21] In this subsection we systematically analyze the

zonally averaged total ozone residuals in the merged satel-
lite data set as a function of latitude. What is considered a

Figure 2. The periodograms in log-log coordinates for monthly mean total ozone residuals obtained by
filtering out the seasonal cycle, QBO, solar flux, and EESC fit. The solid lines are the best linear fits,
while the dashed lines represent the one sigma uncertainty envelope. (a, b, and c) Ground-based station
data as indicated, (d, e, and f) the merged satellite data from the grid point nearest to the corresponding
station, and (g, h, and i) the corresponding zonal averages from the merged satellite data.
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residual depends on how the trend contribution is defined.
We thus consider (and compare) the following two versions
of the residuals, which represent the trend contribution in
different ways: one with the EESC function and the other
with the PWLT. The residuals are then analyzed using the
AR(1), GPHE, and GSPE approaches. The GPHE and
GSPE were applied to the frequency bandwidth from 1 to
27 years. The estimates for the square root of b and H for
the case where the EESC trend is removed are shown in
Figures 4a and 4b, respectively. The GPHE and GSPE
provide consistent estimates for the Hurst exponents, al-
though GPHE is more spatially noisy. All but one Hurst
exponent shown in Figure 4b is less than one, i.e., the
corresponding time series are second order stationary with

finite and time-independent mean and standard deviation.
The estimates of s (standard deviation of the residuals) and
f (lag-one autocorrelation of the residuals) for the AR(1)
model are also shown in Figure 4. Although

ffiffiffi
b

p
and s, as

well as H and f, cannot be compared directly, they represent
similar quantities as follows: the first pair is a measure of
the variability of the residuals, while the second pair is an
indicator of the persistence in the time series. It is interest-
ing to note that the maxima and minima of b and s, as well
as of H and f, tend to occur in roughly the same latitude
bands.
[22] The theory for the distributions of H estimated by

GPHE and GSPE exists only for the asymptotic case m !
1, where m is the number of frequencies used, with some
other additional conditions [see Robinson, 1995a, 1995b].
Under these conditions the theorems proved by Robinson
state that the estimates of H obtained by GPHE and GSPE
are distributed normally with a mean equal to the true value
of H and variances equal to p2/24m and 1/4m, respectively.
Therefore GSPE has a smaller asymptotic variance than

Figure 3. Autocorrelation function for two sample latitude
bands (solid circles) of monthly and zonal mean total ozone
residuals obtained by filtering out the seasonal cycle, QBO,
solar flux, and EESC fit, together with that of various
approximations (lines). The autocorrelation function of the
best fit AR(1) model is shown by the short dashed curve,
that of the AR(3) model by the long dashed curve, and that
of the best fit power law function by the solid curve. The
50�–55�N latitude band (Figure 3a) shows clear evidence of
LRC, while the 50�–55�S latitude band (Figure 3b) shows
no such evidence.

Figure 4. Estimates of various statistical parameters for
monthly and zonal mean total ozone residuals obtained by
filtering out the seasonal cycle, QBO, solar flux, and EESC
fit, shown as functions of latitude. (a) Standard deviation s
calculated by AR(1) (red circles) and the square root of the
parameter b calculated by GPHE (violet circles) and GSPE
(blue circles) applied to the frequency bandwidth 1–
27 years. (b) Month-to-month lag-one autocorrelation f
calculated by AR(1) (red circles) and the Hurst exponents
calculated by GPHE (violet circles) and GSPE (blue circles).
The violet (blue) dashed lines in Figure 4b indicate the 95%
confidence intervals for GPHE (GSPE). Note that the lower
95% limit for GPHE is outside the figure frame. Thus time
series for which the Hurst exponents lie above the dashed
lines may be considered as LRC at the 95% significance
level.
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GPHE by a factor of p2/6. The values 0.5 ± 1.96 p/
ffiffiffiffiffiffiffiffiffi
24m

p

and 0.5 ± 1.96/(2
ffiffiffiffi
m

p
) are indicated in Figure 4b by dashed

violet and blue lines, respectively. All Hurst exponent
estimates located above these lines may be considered as
greater than 0.5 with 95% statistical significance, meaning
that the corresponding time series may be parsimoniously
described by an LRC model. This applies to just over half
the latitudes analyzed. There is clear evidence of LRC at
certain latitude bands, while at other latitude bands the
autocorrelation behavior is not significantly different from
the AR model. Interestingly, the latitudinal structure of LRC
behavior is quite different in the two hemispheres.
[23] It should be emphasized that the LRC methods

discussed here are based on asymptotic approximations at
low frequencies, and therefore they could be sensitive to the
frequency interval used for the parameter estimation as
follows: a wider interval may yield a bias in the estimates,
while a narrower interval results in larger uncertainties of
the estimates. Figure 5 is similar to Figure 4, except that
GPHE and GSPE were applied to the entire frequency
bandwidth from 2 months to 27 years [The results for the
AR(1) model (red circles) are identical to those shown in
Figure 4]. The Hurst exponents shown in Figure 5b are
almost everywhere greater than one; that is, they belong to
a nonstationary range. However, Figures 2g, 2h, and 2i
demonstrate that the periodograms for the zonal averages
have steeper slopes for the bandwidth 2 months to 1 year
than for the bandwidth 1–27 years. Therefore the fact
that the calculated Hurst exponents are greater than one in

this case is an artifact of including the high-frequency
(subannual) part of the spectrum in the fit.
[24] To investigate the dependence of the residuals on the

definition of the long-term trend, the calculations were
repeated but with the residuals defined by using the PWLT
in (1) instead of the EESC time series. The results are
shown in Figure 6 and may be compared with Figure 4. In
the Southern Hemisphere the statistical parameters (and
their latitudinal variations) are very similar in the two cases.
However, there is a distinct change in the Northern Hemi-
sphere, where the Hurst exponents decrease by about 0.1.
Over a broad region of the midlatitudes H is no longer
significantly different from 0.5, implying the loss of LRC in
this region, and at the highest subpolar latitudes, the extent
of LRC behavior is strongly reduced. Inspecting Figure 1f,
corresponding to 55�–60�N, it is evident that the major low-
frequency variation in the residual defined relative to EESC
projects strongly on a piecewise-linear trend with a turning
point in early 1996, and its contribution to the residual is
therefore substantially reduced when the PWLT function is
used to define the long-term trend. This is illustrated by
Figure 7, which shows the ozone time series for 55�–60�N
(with mean, solar, QBO, and seasonal cycle filtered out)
together with the EESC and PWLT fits (Figure 7a) and the
PWLT residual (Figure 7b); the latter may be compared with
the EESC residual shown in Figure 1f.

4. Significance of Long-Term Trends in
Zonal-Mean Total Ozone

4.1. Long-Term Ozone Decline

[25] The statistical model used to describe the noise does
not affect the mean trend estimated by equation (1), but it

Figure 5. Same as Figure 4, but with GPHE and GSPE
applied to the frequency bandwidth 2 months to 27 years.
Note the different vertical scale in Figure 5b compared with
Figure 4b. This analysis yields spurious results, namely,
Hurst exponents greater than unity (indicating nonstationary
behavior). The figure is included to highlight the importance
of choosing an appropriate bandwidth (see text for further
discussion).

Figure 6. Same as Figure 4, but with PWLT filtered out
instead of EESC to describe the long-term trend. The Hurst
exponents are similar to those in Figure 4 in the Southern
Hemisphere, but are reduced in magnitude by about 0.1 in
the Northern Hemisphere.
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does affect the estimated uncertainty of the trend. The
regression coefficient of the total ozone anomalies on the
EESC time series is shown in Figure 8a as a function of
latitude for the period 1979–2005. The magnitude of the
regression coefficient basically displays the sensitivity of
total ozone in that latitude band to the stratospheric abun-
dance of ozone-depleting substances as represented by the
EESC. For comparison with other estimates the result is
presented in Dobson units per year for the time period
1979–1995, during which the EESC time series is nearly
linear with a net change of approximately 1.6 ppb of
chlorine. As is well known, the long-term ozone decline
has a minimum in the tropics and increases toward the poles,
with larger values in the Southern Hemisphere as compared
with the Northern Hemisphere midlatitudes. The strong
increase of the Southern Hemisphere trend with latitude is
indicative of the large influence of Antarctic ozone loss on the
Southern Hemisphere midlatitude long-term decline [e.g.,
Chipperfield, 2003, Fioletov and Shepherd, 2005].
[26] The error bars in Figure 8a indicate the 95% confi-

dence intervals estimated under AR(1) and LRC hypotheses
concerning autocorrelation of the residuals. The trend uncer-
tainties under the LRC hypothesis are evidently wider than
those under the AR(1) hypothesis. The differences are partic-
ularly large where H exceeds 0.7, which, from Figure 4b,
occurs basically everywhere north of 35�S. In this region
the standard deviation of the trend under the LRC hypoth-
esis is up to 1.5 times larger than that under the AR(1)
hypothesis. This broadens the range of tropical latitudes
over which the trend is not significant at the 95% level and
substantially increases the already large trend uncertainty in
northern middle and high latitudes. In contrast, the Hurst
exponent is about 0.5–0.6 over the southern middle and
high latitudes, i.e., the residuals have relatively weak long-

range correlations, and in this region, the trend uncertainties
estimated under the LRC and AR(1) hypotheses are nearly
identical.
[27] Figure 8b shows the corresponding results for the

linear trend from 1979 to 1995 (the declining part of the
PWLT function). The means and standard deviations [inclu-
ding the differences between the latter for LRC and AR(1)
hypotheses for the residuals] are very similar to those
obtained using the EESC fit in Figure 8a, except in northern
middle and high latitudes where the PWLT-derived trend is
larger. This is consistent with the behavior already noted in
section 3.3, where the strong decline in total ozone in
northern middle and high latitudes in the early 1990s and
its subsequent increase in the late 1990s is interpreted as
LRC noise relative to the EESC time series, but contributes
to the long-term decline (with weaker LRC behavior in the
noise) under PWLT.

4.2. Recent and Future Ozone Increase

[28] The EESC time series can be well approximated
by two linear functions, with the first slope equal to about
1 ppb/decade for the period before the EESC maximum in
the second half of the 1990s and the second slope equal to
about �0.34 ppb/decade for the period after the EESC
maximum.
[29] Therefore it is possible to estimate the expected rate

of ozone increase after the late 1990s from the EESC fit: It
is just the regression coefficient plotted in Figure 8a
multiplied by �0.34. The result is shown in Figure 9 by
the dotted-dashed curve. For comparison, the positive trend
estimated from PWLT, which is the observed linear trend
over the time period 1996–2005, is shown by the diamonds
connected by the solid curve together with its uncertainties
under both the AR(1) and LRC hypotheses. The two trends

Figure 7. (a) Monthly and zonal mean total ozone anomalies for the 55�–60�N latitude band obtained
by filtering out the seasonal cycle, QBO, and solar flux, together with the EESC (solid) and PWLT
(dashed) fits. (b) The corresponding total ozone residuals when the PWLT fit is removed. Figure 7b may
be compared directly with the EESC-based residuals shown in Figure 1f.
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are fairly similar in southern middle and high latitudes,
although the uncertainties on the observed trends encom-
pass zero. In northern middle and high latitudes, however,
the observed linear trend is roughly four times the EESC-
predicted trend and is actually statistically significant over
40�–50�N according to the PWLT estimate of the noise.
Thus, once again in northern middle and high latitudes, we
have a major difference between the analysis provided by
the EESC- and PWLT-based models, although this differ-
ence is within the 95% error bars.
[30] Once the analytical relation between the trend uncer-

tainty and the length of the time series is known, it is
possible to calculate the number of years required to detect a
certain trend with a given error and its dependence on
location. This is important from a practical point of view
for designing an ozone-monitoring strategy. The number of
years required to detect future ozone trends was studied by
Weatherhead et al. [2000] using the AR(1) model. Here we
expand on Weatherhead et al.’s results by including an
allowance for LRC behavior. The methods and formulas
used here to calculate the number of years are described in
Appendix C.
[31] We first consider the number of years required to

detect a trend of a given magnitude, without reference to the
magnitude of the expected trend. With the noise estimated

relative to the EESC trend function (as in Figure 4), the
number of years required to detect a 1 DU/year trend in
zonal mean total ozone at the 95% significance level under
the AR(1) and the LRC hypotheses is shown in Figure 10a.
The latitudinal structure primarily reflects that of the vari-
ability (cf. Figure 4a), with the shortest number of years
being required in the tropics (30�S–30�N). However, the
impact of long-term memory (cf. Figure 4b) mainly
accounts for the hemispheric asymmetry in Figure 10a,
increasing the number of years required in northern as
compared with southern latitudes. In those latitude bands
for which the Hurst exponents are below 0.7, both the
AR(1) and LRC models give consistent estimates of the
number of years required, whereas, in other latitude bands,
and especially in northern subtropical and high-subpolar
latitudes, LRC behavior considerably lengthens the time
required to detect a given trend by a factor of up to 1.5 or so.
[32] If the noise is estimated according to the PWLT trend

function (as in Figure 6), then the number of years required
to detect a 1 DU/year trend is virtually identical to that
shown in Figure 10a in the Southern Hemisphere, but is, as
expected, reduced and closer to that estimated from the
AR(1) model in the Northern Hemisphere (not shown).
Figure 10b shows the same estimates as in Figure 10a,
except that, in estimating the statistical parameters b and H
under the LRC hypothesis, GPHE and GSPE were applied
to the frequency bandwidth from 2 months to 27 years (cf.
Figure 5). The number of years in this case is several
times larger than for the proper bandwidth (1–27 years).
We include Figure 10b here to emphasize the importance

Figure 8. (a) Regression coefficients of monthly and zonal
mean total ozone anomalies (obtained by filtering out the
seasonal cycle, QBO, and solar flux) on EESC for the
period 1979–2005. (b) The first (declining) slope of
the PWLT fit for the period 1979–1995. The regression
coefficients in Figure 8a are scaled so as to be comparable to
the linear trend over 1979–1995; thus the two panels
represent, respectively, the EESC-based and PWLT-based
estimates of the long-term ozone decline. The 95%
confidence intervals shown are calculated under the follow-
ing two alternative assumptions: AR(1) (light grey region)
and LRC (dark grey region). Details of the confidence-
interval calculations can be found in Appendix C.

Figure 9. The EESC-based linear trend calculated for the
declining part of EESC (solid circles connected by the
dashed line) is compared to the second (increasing) slope of
the PWLT fit for the period 1996–2005 (diamonds
connected by the solid line), the latter with 95% confidence
intervals calculated under the AR(1) (light grey region) and
LRC assumptions (dark grey region).
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of a correct bandwidth choice for Hurst exponent estima-
tion under the LRC model.
[33] We now consider the latitudinal dependence of the

expected trends, and estimate the number of years required
to detect a statistically significant ozone increase if the
positive trends are those estimated in Figure 9 according
to either the EESC or PWLT models. In both cases the
‘‘detection’’ is made here under the assumption that the
trend is independent of the past trend (prior to 2000 for
EESC, prior to 1996 for PWLT), and both AR(1) and LRC
estimates are computed. Consider first the detection of the
positive ozone trend expected from the EESC decline,
shown in Figure 11a. As was noted by Weatherhead et al.
[2000], southern middle and high latitudes are the best
places to detect ozone recovery according to the AR(1)
model; the same is seen to be true for the LRC model. In the
Northern Hemisphere, there appears to be an optimal region
for detection of ozone recovery around 30�–40�N; on either
side, there is a strong effect of LRC behavior on the number
of years required, especially at northern middle and high
latitudes where, according to the LRC model, it should take
about 1.5 times longer to detect the expected trends than
estimated under the AR(1) model.

[34] The number of years required to detect the observed
trend from 1996 to 2005 at the 95% significance level,
according to the PWLT analysis, is shown in Figure 11b.
The length of the observed record (10 years) is indicated by
the dotted line; at latitudes with points lying below this line,
a significant trend has therefore already been detected
(cf. Figure 9). The result is completely different from
Figure 11a. According to the PWLT analysis, the best
place to detect ozone recovery is northern middle and high
latitudes (moreover, in this region, a positive trend is either
on the verge of being detected or has already been
detected) and the second best region is in the equatorial
zone. However, at southern high latitudes, the number of
years required, �18, is similar between the EESC and
PWLT analyses and is well estimated by the AR(1) model
in both cases. This is expected given the consistency at
these latitudes of the EESC-predicted and observed recent
trends, the consistency of the EESC- and PWLT-derived
noise estimates, and the absence of LRC.

5. Longitudinal Structure

[35] In this section we present the latitude-longitude
distributions of some of the statistical parameters discussed
above for zonal averages. Figures 12a and 12b show the
spatial distributions of the AR(1) month-to-month autocor-
relation parameter f and the Hurst exponent H, respectively,

Figure 10. (a) The number of years required to detect a
1 DU/year trend at the 95% significance level under the
AR(1) (red curve) and LRC assumptions (violet curve
shows GPHE, blue curve shows GSPE) applied to the
frequency bandwidth 1–27 years of the monthly mean total
ozone residuals obtained by filtering out the seasonal cycle,
QBO, solar flux, and EESC fit. (b) The same as Figure 10a,
but using the frequency bandwidth 2 months to 27 years for
the LRC estimates (the red curve is the same in both
panels). Note the different vertical scales in the two panels.
Figure 10b is a spurious result (cf. Figure 5) and is shown to
highlight the importance of choosing an appropriate
bandwidth for the analysis.

Figure 11. (a) The number of years since 2000 required to
detect the EESC-based linear trend calculated for the
declining part of EESC at the 95% significance level under
the following two alternative assumptions: AR(1) (red
curve) and LRC (blue curve, based on GSPE). (b) The same
as Figure 11a, but for the PWLT-based trend calculated for
the period 1996–2005, so the value represents the number
of years after 1996. Values higher than 100 years are plotted
as 100 years. Note the similarity of the two estimates in
southern middle and high latitudes, but the large differences
in the Northern Hemisphere. See text for details.
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when the trend is defined by the EESC function. Both f and
H reflect ‘‘memory’’ in the total ozone time series but there
is a distinct difference in their spatial structure. The auto-
correlation parameter has its maximum at the equator and
decreases toward the poles; the values are very similar to
those reported by Weatherhead et al. [2000, Figure 4,
Plate 3] for 1979–1998. In contrast, the spatial distribution
of the Hurst exponent has two maxima, around 15�S over
the Pacific and 20�N over the Pacific, eastern Atlantic, and
Africa. For both f and H, the maxima have pronounced
longitudinal structure. The values of H for zonal-mean
ozone (Figure 4b) are approximately equal to the maximum
values of H for gridded ozone at the given latitude,
consistent with the arguments of Granger [1980]. The
spatial distribution of the Hurst exponent when the
PWLT is filtered out instead of EESC (not shown) is similar
to Figure 12b, except that the values are lower in the
Northern Hemisphere.

[36] Figures 13a and 13b show the spatial distributions of
the recent trends according to the EESC and PWLT func-
tions, respectively; they correspond to the curves in Figure 9
for zonal-mean ozone. In the case of EESC, this represents
the positive linear trend expected since the late 1990s based
on the fitting of the entire 1979–2005 record by the EESC
time series. On the basis of EESC, the ozone recovery rate
should be strongest in the Southern Hemisphere subpolar
regions, apart from the south-west Pacific. In the Northern
Hemisphere the recovery rate is predicted to be relatively
strong over northern Europe and over eastern Siberia. In the
tropics and subtropics the expected recovery rate is weak
and very zonal. As can be anticipated from Figure 9, the
ozone recovery rates based on PWLT (i.e., the observed
linear trend from 1996–2005) are also positive everywhere
but have a very different spatial distribution and strength.
In particular, the PWLT recovery rates are greater in the
Northern Hemisphere midlatitudes and subpolar regions than

Figure 12. Spatial distribution of the month-to-month autocorrelation parameter f (top panel) and the
Hurst exponent (bottom panel) calculated by GSPE for monthly mean total ozone residuals obtained by
filtering out the seasonal cycle, QBO, solar flux, and EESC fit. This is the two-dimensional version of
Figure 4b.
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in the Southern Hemisphere; the trends are especially strong
over Siberia, the North Pacific, the northern midlatitude
Atlantic, and Europe. The only place in the Northern Hemi-
sphere midlatitudes and subpolar regions where the trends are
relatively weak is the subpolar North Atlantic. The spatial
distribution of the recent PWLT over the southern ocean is
opposite to that for the EESC trend, with a maximum rather
than a minimum over the south-west Pacific.
[37] Finally, Figure 14 presents the number of years from

the year 2000 required to detect the expected EESC-based
ozone trends shown in Figure 13a, based on the LRC noise
estimates computed from the entire time series (with the EESC
trend filtered out). The Figure allows us to identify the optimal
locations to make long-term ground-based total ozone obser-
vations. For example, it would be desirable to have some
stations in the southern subpolar Atlantic since the number of
years required to detect ozone recovery has a minimum in that
region, where it varies between 12 and 20 years. In the

Northern Hemisphere the minimum is located in the zonal
band around 35�N and varies between 20 and 30 years.

6. Summary and Discussion

[38] The statistical analysis of long-term changes in total
ozone has traditionally been performed assuming that the
residuals, which represent the noise in the system, are well
described by an AR(1) model. In this study the total ozone
record from 1979 to 2005 has been examined for the
existence of long-range correlations (LRC), implying a
deviation from AR(1) behavior with an unbounded decor-
relation time. The existence of LRC behavior in total ozone
would reduce the statistical significance of a given trend,
and lengthen the number of years required to detect a trend,
from that estimated using an AR(1) model. We employ the
merged satellite data set prepared by NASA which com-
bines version 8 of TOMS and SBUV total ozone data [Frith
et al., 2004; Stolarski and Frith, 2006], use well-based
spectral estimation techniques to quantify LRC paying

Figure 13. Spatial distribution of the EESC-based linear trend calculated for the declining part of EESC
in DU/year (top panel) and the second (increasing) slope of the PWLT fit for the period 1996–2005
(bottom panel). This is the two-dimensional version of Figure 9.
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proper attention to the frequency bandwidth, and filter long-
term time periodic signals (QBO, solar) which can give
spurious indications of LRC behavior. The analysis mainly
concerns zonal-mean ozone, although some station data and
gridded satellite data are also considered. However, the
analysis is restricted to 60�S–60�N, as, in polar regions,
the satellite data have gaps during polar night.
[39] We first summarize the results obtained when the

long-term total ozone changes are represented in terms of
the EESC time series. Clear evidence of LRC is found
basically everywhere north of 35�S. In the southern middle
and high latitudes the correlation behavior is not signifi-
cantly different (at the 95% significance level) from that of
the AR(1) model. In the regions with strong LRC behavior,
uncertainties in the magnitude of the long-term ozone
decline attributable to EESC are increased by about a factor
of 1.5 compared with those estimated from AR(1); this
includes the northern middle and high latitudes, where the
AR(1)-based uncertainties are already quite large. However,
the strongest long-term ozone decline is found at the
southern middle and high latitudes, and there, the AR(1)
estimates are found to be reliable.
[40] Analogous results are found for the number of years

(from 2000) required to detect the increase of ozone
expected from the anticipated decline of EESC. We confirm
Weatherhead et al.’s [2000] finding, on the basis of the
AR(1) model, that southern middle and high latitudes
should be the optimal place (within the 60�S–60�N region)
to detect ozone increase; at these latitudes, we have the
combination of the strongest expected trend, the apparent
absence of LRC behavior, and the shortest autocorrelation
times. The required detection time (to 95% significance) is
about 18 years for zonal-mean ozone at 60�S, but is even a
few years shorter in the subpolar South Atlantic. While
limited regions have higher noise levels, they also have
weaker serial correlations. The recent observed behavior of
total ozone in these regions is consistent with the EESC-
predicted trend, but detection of an ozone increase attributable
to EESC is not expected until sometime late in the decade

2010–2020. In the Northern Hemisphere, detection of ozone
increase is more challenging. There appears to be a narrow
band around 35�N where LRC behavior is relatively weak and
the required number of years is around 30, but in northern
middle and high latitudes, the required number of years is
increased from around 25–35 to around 30–60 by LRC.
[41] Although the representation of long-term ozone

changes in terms of the EESC time series is preferred, given
the a priori nature of the representation, a commonly used
alternative is a piecewise-linear trend (PWLT) with a
turning point in the second half of the 1990s. Therefore
we compared the results obtained using the two different
representations of the long-term changes. In our implemen-
tation of PWLT we use a turning point in early 1996.
The estimates of the noise and the long-term ozone decline
are essentially the same for the two cases in the Southern
Hemisphere, but there is a notable discrepancy in the
Northern Hemisphere (particularly at northern middle and
high latitudes) where the strong decrease in ozone in the
early 1990s, and its subsequent increase in the late 1990s,
are interpreted mainly as LRC noise relative to EESC, but
project strongly on the long-term changes (thereby reducing
the strength of the LRC behavior) relative to the PWLT.
This difference affects all subsequent estimates. For exam-
ple, according to PWLT, the long-term ozone decline in
northern middle and high (subpolar) latitudes is comparable
in magnitude to that in the Southern Hemisphere; the recent
ozone increase (since 1996) is strongest in this region, and
marginally statistically significant (at the 95% significance
level) indicating that a positive ozone trend is already on the
verge of being detected.
[42] The natural question is, then, which representation of

the long-term changes (and thus of the noise) is correct? We
do not attempt to answer this question definitively, but a few
comments may be in order. If one adopts the EESC
perspective, then the results seem physically sensible as
follows: we know that the annual-mean long-term ozone
decline, from pre-1980 levels to those characteristic of the
2000 time period, over the middle and high (subpolar)

Figure 14. The number of years since 2000 required to detect the EESC-based linear trend calculated
for the declining part of EESC at the 95% significance level under the LRC assumption (based on GSPE).
This is the two-dimensional version of Figure 11a.
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latitudes has been much greater in the Southern Hemisphere
as compared with the Northern Hemisphere, roughly 6% as
compared with 3% [WMO, 2003]. Furthermore, we know
that the Northern Hemisphere ozone exhibits more interan-
nual variability than the Southern Hemisphere ozone be-
cause of the greater stratospheric dynamical variability in
the Northern Hemisphere, which is for well-understood
reasons. What remains then to be understood is the physical
origin of the LRC, especially in northern middle and high
latitudes. If it is the existence of AR timescales comparable
to the 27-year observational record, then are these time-
scales associated with natural variability or with climate
change? These questions can likely only be answered with
climate models.
[43] If, on the other hand, one adopts the PWLT perspec-

tive, then one is forced to consider the strong decline of
northern middle and high latitude ozone in the early 1990s,
and its subsequent increase in the late 1990s, as part of the
signal and account for it. One possibility often considered
[e.g., Solomon et al., 1996] is that the increased strato-
spheric aerosol from the Mount Pinatubo volcanic eruption
in 1991 amplified the EESC-associated ozone loss. The
problem with this argument is that there was no corres-
ponding ozone decrease observed in the Southern Hemi-
sphere, even though EESC and aerosol abundances were
comparable [Bodeker et al., 2001]. Another argument is that
the behavior reflects decadal-scale variations in strato-
spheric wave forcing [e.g.,Randel et al., 2002;Hadjinicolaou
et al., 2005], which would affect ozone both through changes
in transport and changes in chemical ozone loss, especially in
the Arctic which would then affect the annual mean subpolar
ozone abundances through the transport of ozone-depleted
air. The impact of long-term changes in stratospheric wave
forcing on both polar and midlatitude ozone is well estab-
lished [WMO, 2003]. However, attributing the ozone changes
to changes in wave forcing merely changes the problem to
that of accounting for the variations in wave forcing. In
principle, they could be part of the signal or part of the noise.
Yet the use of PWLT involves the implicit assumption that the
recent strong positive trend in northern middle- and high-
latitude ozone is secular and can be extrapolated; moreover,
by regarding this trend as part of the signal rather than part of
the noise, the estimated noise is reduced and the LRC
behavior weakened, and the estimated significance of the
trend thereby increased. So far, no mechanism that could give
such a statistically significant positive trend in the northern
middle and high latitude ozone has been put forward.

Appendix A: Introduction to Long-Range
Correlated Processes

[44] Development of the theory for a class of stochastic
processes with long-range correlated increments was origina-
ted by Kolmogorov in two short notes [Kolmogorov, 1940a,
1940b] during his studies of turbulence. The seminal paper of
Mandelbrot and Van Ness [1968] developed many of its
properties and named it by the class of self-similar processes.
[45] A real-valued stochastic process Z={Z(t)} t2R is self-

similar with index H > 0 if, for any a > 0,

Z atð Þf gt2R ¼d aHZðtÞ
� �

t2R; ðA1Þ

where ¼d denotes the equality of the finite-dimensional
distributions [Taqqu, 2002]. In this article we use incre-
ments of a self-similar process for modeling residuals of the
total ozone time series. The autocovariance of the increment
sequence Xi = Zi � Zi�1 of a self-similar process

g tð Þ ¼ cov Xi;Xiþtð Þ ¼ s2

2
jt þ 1j2H � 2jtj2H þ jt � 1j2H
h i

asymptotically decays by a power law [e.g., Beran, 1994]

g tð Þ � s 2H 2H � 1ð Þjtj2H�2; as t ! 1: ðA2Þ

[46] The increments of a self-similar stochastic process
for 1/2 < H < 1 have long-range correlated behavior, since
g(t) decays to zero so slowly that

P1
t¼�1 g tð Þ diverges.

There are no long-range correlations in the ‘‘blue’’ noise
case (H < 0.5). Usually for climatic time series 0.5 � H <
1.0. The case H = 0.5 corresponds to short-memory pro-
cesses, which can be well modeled by conventional auto-
regressive moving average (ARMA) models. Spectral
density of the increment sequence of a self-similar process
scales by a power law in the vicinity of the origin

fX lð Þ ¼ bjlj1�2H ; as l ! 0: ðA3Þ

[47] The next appendix provides an overview of spectral
statistical methods for estimating parameters b and H of a
given time series.

Appendix B: Statistical Methods for Estimation
of b and H

[48] In the beginning of the estimation process, one calcu-
lates the discrete Fourier transform of a given time series

w jð Þ ¼ 1ffiffiffiffiffiffiffiffi
2pn

p
Xn
t¼1

X tð Þeit
2p j

n ; j ¼ 1:: n=2½ �; ðB1Þ

where square brackets denote rounding toward zero, and the
periodogram—an estimate of the spectral density

I jð Þ ¼ w jð Þj j2¼ 1

2pn

Xn
t¼1

X tð Þe it
2pj
n

					
					
2

; ðB2Þ

where n is the time series length. The goal is to approximate
the estimate of the spectral density I(j) by an analytical form
for the spectral density, in our case f (b, H, l) = bjlj1 � 2H,
where l = 2pj/n. There are several semiparametric methods
for estimating b and H. For a recent review, see for instance
Moulines and Soulier [2002]. Many of them might be
described in terms of the so-called contrast function k (u, v),
which can be thought of as a distance between functions u
and v. Then the approximation process reduces to mini-
mization of the following functional

K b;Hð Þ ¼ 1

m

Xm
j¼1

k IðjÞ; f b;H ;
2pj
n


 �
 �
; ðB3Þ

where 1 < m � [n/2] is an index of the highest frequency
used. The meaning of the free parameter m is similar to the
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order of autoregressive fractionally integrated moving
average (ARFIMA) model. However, in contrast to the
order of ARFIMA, m has a clear physical sense. For
instance, in our study, we focus mainly on interannual
variability of the monthly resolved total ozone and thus
choose m = n/12. In sections 3.3 and 4.2, we compared
some results for m = n/2 (full spectrum) and m = n/12. In
this article we apply the following two methods of
semiparametric estimation: Geweke-Porter-Hudak estimator
(GPHE) and Gaussian semiparametric estimator (GSPE).
GPHE was originally proposed by Geweke and Porter-
Hudak [1983] and probably is the most popular, because of
its simple realization, semiparametric estimator used in
applications. GPHE corresponds to the contrast function
k(u, v) = (log(u) � log(v))2. Therefore it simply performs a
log linear regression of the periodogram. For GPHE
parameters b and H, which minimize K(b, H), can be
found in a closed form. The graphical illustration of GPHE
is shown in Figure 2. A more advanced estimator, GSPE,
was introduced by Fox and Taqqu [1988]. Its contrast
function is k(u, v) = log(u) + u/v. GSPE is a maximum
likelihood estimator. For GSPE the problem of minimiza-
tion of K(b, H) can be reduced to a one-dimensional
minimization problem and solved using standard optimiza-
tion technique. Rigorous mathematical justification of GPHE
and GSPE was given by Robinson [1995a, 1995b],
respectively. Robinson showed that GSPE is superior to
GPHE. For instance, it has by a factor of p2/6 smaller
asymptotic variance. In practice, we find that GSPE gives less
noisy (spatially) and more robust estimates than GPHE.

Appendix C: Trend Variance and the Number
of Years Required to Detect a Trend

[49] For the purpose of trend analysis, memory is an
issue. It is hard to distinguish a trend from natural variability
in case time series is strongly serially correlated. The
importance of taking into account LRC in trend analysis
was first realized by Bloomfield [1992] during his studies of
trends in surface air temperature. He proposed to use
autoregressive fractionally integrated moving average
(ARFIMA) model, introduced independently by Granger
and Joyeux [1980] and Hosking [1981], for modeling
temperature residuals. The idea is to fit the residuals,
obtained after filtering out deterministic components of tem-
perature time series such as seasonal cycle and trend, by
ARFIMA and, knowing analytical expression for the vari-
ance of ARFIMA, calculate the variance of the trend.
Bloomfield’s approach can be classified as sequential full
parametric estimation, since one first estimates and filters out
the trend and then estimates the parameters of ARFIMA.
Joint full parametric estimation, when the trend and the
parameters of ARFIMA are estimated simultaneously, was
theoretically justified by Robinson [2005] and was applied
to Northern Hemisphere SAT anomalies by Gil-Alana
[2005]. The disadvantage of full parametric approach for
trend detection studies is a problem of choosing the correct
order of the ARFIMA, which itself is an issue [Beran et al.,
1998]. An appealing way to overcome the issue of model
selection was proposed by Smith [1993]. He showed that it is
important to fit only the low-frequency part of the residuals’
spectrum using an asymptotic form of LRC spectral density

f (l) = bjlj1 � 2H with only two unknown parameters. Then
the variance of the trend can be calculated on the basis of
these two parameters. We follow this direction in our paper.
This approach is classified as semiparametric since it
requires estimation only of a part of the whole parameter
set. Smith and Chen [1996] advocated for joint estimation of
the trend and the parameters b and H. Unfortunately, this
theoretically more correct approach is still missing a solid
mathematical foundation. Therefore, in our article, we im-
plement sequential semiparametric estimation; that is, we
first estimate and filter out the trend from the time series and
then find b and H for the residuals using semiparametric
estimation. The general theoretical justification of this meth-
od is given by Yajima [1988].

C1. Estimation of Trend Variance
Through Autocovariance

[50] Let’s consider a general linear estimator

x̂ ¼
Xn
t¼1

l tð ÞY tð Þ: ðC1Þ

Variance of x̂ may be expressed through autocovariance g of
Y(t)

s 2 x̂
� 

¼
Xn
t¼1

Xn
s¼1

l tð Þl sð Þg t � sð Þ: ðC2Þ

For example, for the statistical model

Y tð Þ ¼ aþ by tð Þ þ X tð Þ; ðC3Þ

where y(t) is a certain explanatory variable (covariate) with
zero mean and X(t) is a noise, the slope estimator b̂ and its
variance s2(b̂) may be written as follows

b̂ ¼

Xn

t¼1
y tð ÞY tð ÞXn

t¼1
y2 tð Þ

; ðC4Þ

s2 b̂
� 

¼
g 0ð Þ

Xn

t¼1
y2 tð Þ þ 2

Xn�1

k¼1
g kð Þ

Xn�k

j¼1
y jð Þy jþ kð ÞXn

t¼1
y2 tð Þ

� 2
;

ðC5Þ

where n is the time series length; g(t) is the residuals’
autocovariance function.

C2. Approximation of Autocovariance by
Exponential Function

[51] The most conventional way to proceed from this
point is to use an exponential approximation for the resid-
uals’ autocovariance function g(t) for deriving an asymp-
totic formula for s(b̂). In principle, one can use the estimate
of g(t) to numerically evaluate s(b̂). However, because
of poor sampling properties of autocovariance function
estimates, statisticians prefer to use a certain approximation
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of sample autocovariance function. To obtain an expo-
nential approximation for the autocovariance function,
one can fit an autoregressive model of the first order
[AR(1)] to the noise. Symbolically, AR(1) can be written
as follows:

X tð Þ ¼ fX t � 1ð Þ þ e tð Þ; ðC6Þ

where �1 < f < 1 is month-to-month autocorrelation
(lag-one autocorrelation coefficient) and e(t) is a Gaussian
white noise. Let’s review some of the AR(1) model
properties. Autocovariance function of AR(1) decays
exponentially

gAR1ðtÞ ¼ s 2
Xf

jtj: ðC7Þ

Spectral density of AR(1)

fAR1 lð Þ ¼ s 2
X

2p
1� f2

j1� fe�ilj2
! s2

X

2p
1þ f
1� f

; as l ! 0;

where sX is the standard deviation of X(t).
[52] In case we assume an AR(1) model for the monthly

resolved residuals X(t) and take y(t) = t � (n + 1)/2, we
have

sAR1 ŵð Þ � sX

N 3=2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ f
1� f

s
; ðC8Þ

where ŵ ¼ 12b̂ is the estimate of the linear trend in unit y(t)
per year; N is the length of a considered period in years
[Weatherhead et al., 1998].

C3. Approximation of Autocovariance by Power Law
Function

[53] The alternative approach is to use a power law
approximation of the sample autocovariance function whose
coefficients can be obtained by various estimation methods
(see Appendix B). Substituting g(0) = sX

2, g(t) = at2H�2 for t
> 0, and y(t) = t � (n + 1)/2 into equation (C5) and
performing asymptotic derivations we obtain

s 2 b̂
� 

� 36a 1� Hð Þ
H 1þ Hð Þ 2H � 1ð Þ n

2H�4: ðC9Þ

Scaling factors of the autocovariance and the spectral
density, a and b, are related as follows [e.g., Smith, 1993]:

a ¼ pb
G 2H � 1ð Þ sin pHð Þ : ðC10Þ

Using this relation and some properties of the gamma
function we can rewrite the asymptotic formula for sðb̂Þ in
terms of b and H

sLRC b̂
� 

� B b;Hð ÞnH�2; ðC11Þ

where sLRC(b̂) is the standard deviation of the estimated
trend under the LRC hypothesis and

B b;Hð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72bp 1� Hð Þ

1þ Hð ÞG 2H þ 1ð Þ sin pHð Þ

s
: ðC12Þ

Equations (C8) and (C11) were used in Figures 8b and 9.

C4. Estimation of Trend Variance Through
Spectral Density

[54] Asymptotic formulas can be derived only in cases
when the explanatory variable y(t) has a relatively simple
form such as a linear trend. In other cases, one can estimate
the standard deviation of a slope only numerically. From the
numerical point of view, it is more convenient to express the
autocovariance through the spectral density. Thus replacing
in formula (C2) the autocovariance by its expression
through the spectral density of X(t)

g kð Þ ¼
Z p

�p
e ilk f lð Þdl; ðC13Þ

we obtain

s 2 x̂
� 

¼
Z p

�p
U lð Þ f lð Þdl; ðC14Þ

where

U lð Þ ¼
Xn
t¼1

l tð Þe ilt
					

					
2

: ðC15Þ

The important thing is that almost all weight of the function
U(l) is concentrated near the origin. Therefore, for the
calculation of the trend uncertainty, the high-frequency part
of the spectrum is not important. This fact motivates the
implementation of semiparametric (local) instead of full
parametric (global) statistical models [Smith, 1993].
For example, in order to calculate the slope uncertainty in
case y(t) = EESC(t) � EESCðtÞ, where EESC(t) is the
equivalent effective stratospheric chlorine time series, and
f (l) = bjlj1 � 2H, we used the following formula:

s 2 b̂EESC

� 
¼ b

Z p=12

�p=12
UEESC lð Þjlj1�2H

dl; ðC16Þ

where

UEESC lð Þ ¼
Xn
t¼1

EESC tð Þ � EESC tð ÞXn

s¼1
EESC sð Þ � EESC sð Þ

� 2
e ilt

							
							
2

:

Therefore we could neglect intra-annual variability [fre-
quency ranges (�p/2, �p/12) and (p/12, p/2)] of the total
ozone anomalies. Equation (C16) was used in Figure 8a.
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C5. Estimation of the Number of Years Required to
Detect a Trend

[55] The number of years required to detect a trend of
specified magnitude jwj under the hypothesis that X(t) can
be well described by an AR(1) model according to
Weatherhead et al. [1998] is as follows

N*
AR1 �

2þ zp
� �

sX

jwj

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ f
1� f

s" #2=3

; ðC17Þ

where N*
AR1 is the number of years required to detect a trend

of specified magnitude jwj (in particular, one may choose
w ¼ ŵ) and zp is the p percentile of the standard normal
distribution.
[56] In this setup the probability to reject the test hypoth-

esis of zero trend when it is true is equal to 5% and the
probability to accept the hypothesis of zero trend when it is
false is equal to p. The number of years required to detect a
linear trend of specified magnitude jwj depends on three key
parameters in the AR(1) case (w, s, f).
[57] From (C11) we derive an analogous equation for the

case when X(t) are long-range correlated

n*LRC �
2þ zp
� �

B b;Hð Þ
jbj

� � 1
2�H

: ðC18Þ

In the above equation, n is expressed in basic time units of
time series, i.e., days or months, and b has a unit y(t) per
year. Let’s now transform this equation to the form which is
conventionally used in ozone trend analysis when the time
to detect the trend has units of years and the trend has units
of Dobson units per year. Let n = TN and b = w/T, where T
is the length of year in basic time units, i.e., T = 365 or T =
12, N is the length of the time series in years, and w is the
trend in Dobson units per year. Then from equation (C18)
we get

N*
LRC �

2þ zp
� �

B b;Hð Þ
jwjT1�H

� � 1
2�H

: ðC19Þ

[58] This formula is somewhat similar to formula (C17).
However, because of the fact that the exponent in formula
(C19) is greater than the corresponding exponent in formula
(C17), trend error bars tend to be larger under LRC
hypothesis than under AR(1) hypothesis. It means we have
to observe the time series longer in order to detect the trend
with the same statistical significance. The number of years
required to detect a linear trend of specified magnitude jwj,
in case X(t) are LRC, also depends on the following three
key parameters: magnitude of the trend jwj, spectral scaling
factor b, and the Hurst exponent. It is worth to note that
formula (C19) is a generalization of formula (C17). Thus,
for monthly resolved time series (T = 12) under assumption
of AR(1) model, we get that HLRC ! HAR1 =

1
2
,

bLRC ! bAR1 ¼
s2
X

2p
1þ f
1� f

; ðC20Þ

and BLRC ! BAR1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24pbAR1

p
. Therefore formula (C19)

reduces to formula (C17). The numerical validation of this
fact can be noticed by looking at the Southern Hemisphere
middle and high latitudes in Figures 4b, 6b, 8, 9, and 11.
The Hurst exponent converges to 0.5 as one moves from
30� to 60�S as shown in Figures 4b and 6b. Simultaneously,
the LRC trend error bars converge to the AR(1) errors bars
in Figures 8 and 9, and the number of years to detect the
trend under LRC hypothesis converges to the one under
AR(1) hypothesis in Figures 10a and 11.
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