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Abstract

Although the tube theory is successful in describing entangled polymers qualitatively, a more quan-

titative description requires precise and consistent definitions of its parameters. Here we investigate the

simplest model of entangled polymers, namely a single Rouse chain in a cubic lattice of line obstacles,

and illustrate the typical problems and uncertainties of the tube theory. In particular we show that in gen-

eral one needs 3 entanglement related parameters, but only 2 combinations of them are relevant for the

long-time dynamics. Conversely, the plateau modulus can not be determined from these two parameters

and requires a more detailed model of entanglements with explicit entanglement forces, such as the slip-

springs model. It is shown that for the grid model the Rouse time within the tube is larger than the Rouse

time of the free chain, in contrast to what the standard tube theory assumes.

Introduction

Dynamics of entangled polymers is one of the most intriguing unsolved problems of modern polymer science,

which has a relatively simple formulation and yet immense industrial importance through its direct relevance

to polymer processing. The dynamics of short chains can be qualitatively described by the Rouse model.
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As chains get longer, the stress relaxation slows down significantly and develops a stress plateau at the level

G(0)
N , and finally decays to zero at long time τd ∼M3.4 where M is the polymer molecular weight. Usually

a concept of tube effectively surrounding each chain is used to describe long well entangled polymers. It is

successful and elegant concept which explains many scaling power laws simultaneously with a limited set

of simple assumptions. In particular, it managed to explain why the viscosity of linear chains grows with

molecular weight as η ∼M3.4 whereas for star polymers η ∼ exp(αM).

Such success drove a large scale effort to make the tube theory quantitative,1 which led to some significant

achievements.2 However, the modern tube theory became much more complicated than the original intuitive

picture. Most importantly, it contains many contradicting parts and unverified assumptions, and different

pieces of the tube theory developed by different research groups can not be reconciled against each other.

We think that the origin of such situation lies in the most basic postulates of the tube theory, and in particular

in the fact that there is no clear constructive definition of the tube, which makes the verification of the

assumptions problematic.

One of the problems of the tube theory is the determination of the main parameter of the theory, namely

the number of Kuhn segments between entanglements Ne or the so-called tube diameter a=
√

Neb, where b is

the statistical segment of the chain. In the recent years primitive path analysis (PPA) gained much attention3–5

as a quick method to predict Ne from the shortest path between the chain ends which preserves the topology

of the chains. The PPA method is based on the assumption that the chains are effectively diffusing along the

shortest path available to them, which seems like a lower bound rather than an exact statement. The only

verification provided to PPA is the comparison of its predictions for the plateau modulus G(0)
N , measured in

simulations or in experiment. The scaling dependence on the chain stiffness is captured, but the numerical

precision of the prediction is not clear. Besides, the plateau modulus is not the only quantity one needs to

know to provide the tube theory predictions (see below).

In this paper we consider a simple model of a single entangled chain in an array of line obstacles and study

its static and dynamics properties in great details. Due to the simplicity of the model, we are able to obtain

accurate data for sufficiently long chains and study several ways of obtaining the tube parameters, as well as

test several basic assumptions of the tube theory. We shall use this simple model to develop techniques and

definitions which can then be applied to more complex systems such as molecular dynamics simulations of

polymer melts. In section 2 we shall describe the model and present the standard “experimental” observables.

We will also show that the conventional PPA and tube axis methods give very bad predictions for the plateau

modulus and Ne of this model. In section 3 we reconsider the tube theory assumptions and derive more
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general expressions for the monomer mean-square displacement. In section 4 the results from the static

analysis of chain configurations will be presented, whereas in section 5 we will extract the tube parameters

from dynamic observables. We conclude with a discussion and outlook in section 6.

Model and main observables

We will use one of the simplest models for entanglements to illustrate our ideas about the tube theory.

Namely, we shall consider a single Rouse chain in a cubic mesh of line obstacles; hereafter it will be called

the grid model. The Rouse chain is a chain of massless beads with frictions ζ , connected by linear springs

with spring constant k = 3kBT/b2 where kB is the Boltzmann constant, T the absolute temperature and b3D

the statistical segment of the chain. The subscript 3D is used here to distinguish this case from the one-

dimensional Rouse model parameters introduced later. The equations of motion for the position Ri of the

i’th bead and end beads are

ζ
dR0

dt
=

3kBT
b2

3D
(R1−R0)+ f0(t)

ζ
dRi

dt
=

3kBT
b2

3D
(Ri+1 +Ri−1−2Ri)+ fi(t), 1≤ i≤ N−1 (1)

ζ
dRN

dt
=

3kBT
b2

3D
(RN−1−RN)+ fN(t)

where N is the number of springs, and fi(t) is the random force on a bead number i at time t, which is

assumed to be uncorrelated with the forces on other beads or at different moments of time. According to the

fluctuation-dissipation theorem, the random forces should satisfy

〈
fiα(t) f jβ (t

′)
〉
= 2kBT ζ δi jδαβ δ (t− t ′),

where the Greek indices denote Cartesian components, δi j = 1 if i = j and δi j = 0 otherwise, and δ (· · ·)

denotes the Dirac delta function.

The entanglements are modelled by a set of straight lines creating a simple cubic lattice with grid spacing

g, which is the only entanglement-related parameter of the model. Each line is oriented parallel to one of the

Cartesian coordinate axes. To mimic entangled dynamics, we reject all monomer motions that would result

in polymer bonds crossing any of the lattice lines. We simulated these equations using the predictor-corrector

scheme, following the algorithm below
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1. Generate a list of random permutation of monomer indices [0,1, . . . ,N−1,N]

2. For each bead i from the list do:

3. Calculate the regular force from the neighboring beads on bead i

f(p)
i :=

3kBT
b2

3D
(Ri+1 +Ri−1−2Ri).

Obviously, if i = 0 or i = N then the equation for chain ends is used instead (see eq. 1).

4. Generate the predicted position of bead i using the regular and the random forces

R(p)
i := Ri +

1
ζ

f(p)
i ∆t +

√
2kBT

ζ
∆tξi

where ∆t is the time step and ξi is a vector containing three normally distributed random numbers each

having zero average and unit variance.

5. Calculate the corrected force, which is the force at the predicted position

f(c)i :=
3kBT
b2

3D
(Ri+1 +Ri−1−2R(p)

i ).

6. Calculate the corrected position

R(c)
i := R(p)

i +
∆t
2ζ

(f(c)i − f(p)
i )

7. Verify if moving the bead from Ri to R(c)
i resulted in bonds connecting bead i to beads i−1 and i+1

crossing a line obstacle. If it did not, assign

Ri := R(c)
i

The check has been carried out as follows. The vectors Ri, R(c)
i and either Ri−1 or Ri+1 form a

triangle. For both triangles we check if any violation occurs. If a triangle is entirely within a cell,

there are obviously no constraints violated. Otherwise we determine all the cells any of the sides of the

triangle passes through, and explicitly determine if any of the line obstacles of these cells intersects
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the triangle using an algorithm similar to Refs.6,7 For the primitive path construction (to be discussed

later) we will use a slightly different variant.8

These steps are repeated N + 1 times for each chain each time step, so that every bead is attempted to

move once. Since we have a freedom to choose the units of time, space and energy arbitrarily, we set b3D = 1,

ζ = 1 and kBT = 1, which makes the longest relaxation of the chain without entanglements, or the Rouse

time, equal to

τR ≈
b2

3Dζ (N +1)2

3π2kBT
=

(N +1)2

3π2

Likewise, we can define a natural time unit, independent of chain length, τ0, as

τ0 ≡
τR

(N +1)2 =
1

3π2 . (2)

The main results from the grid model for the middle monomer mean-square displacement g1,mid(t), end-to-

end vector autocorrelation function Φ(t) (normalized such that Φ(0) = 1) and stress auto-correlation function

G(t) are shown in Fig. 1 for different grid sizes g= 1,2,4 and different chain lengths. At early time the results

follow the Rouse model predictions (especially for larger grids), which means that the obstacles do not play

a significant role on small time scale.

The fraction of rejected moves was about 2.3
√

∆t/g, so for large grids and for the timestep we used

(∆t = 0.01) it should not have any significant effect on the fast dynamics. On larger timescales the chains have

to move predominantly parallel to themselves, and therefore show dynamics slower than the Rouse chains:

the stress relaxation develops a plateau, and the mean square monomer displacement a characteristic t1/4

behaviour predicted by Doi and Edwards.9 For long chains the longest relaxation times become proportional

to N3.4 as observed experimentally (Fig. 2), and the deviation from the Rouse predictions happen at larger N

for larger grids. The longest relaxation time was extracted by fitting G(t) and Φ(t) with a sum of exponential

modes (or Maxwell modes) using the Reptate software package.10

The static properties of the chains are unaffected by the obstacles since their volume is infinitely small.

This is illustrated in Fig. 1 (a), where we plotted the average inter-monomer distances defined as

d(s) =
1

N− s+1

N−s

∑
i=0

〈
(Ri+s−Ri)

2〉
s

(3)

All results are in agreement with the Rouse model predictions d(s) = 1 within the statistical noise and small

deviations due to the numerical integration error (less than 1%).
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Figure 1: Main results for the grid model. Symbols correspond to g = 1 with N = 16, 32, 64, 128, lines for
g = 2 with N = 32, 64, 128, 256 and the dashed lines for g = 4 with N = 64, 128, 256, 512.

1 1 0 1 0 0
1 E - 3

0 . 0 1

      τd
G

 g = 1
 g = 2
 g = 4

    τd
Φ

 g = 1
 g = 2
 g = 4

τ dG /N3 , τ dΦ
/N3

N / g 2

g = 1

g = 2

g = 4
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One can see that qualitatively the model reproduces all tube model predictions. It also has an advantage

that for small times it follows the unentangled Rouse dynamics, whereas the tube model only gives the correct

predictions after times t � τe = N2
e τ0. The main question of this paper is: can this model be described

quantitatively by the tube model, and if so, how to obtain the tube model parameters required for such

quantitative description.

Tube theory

In this section we re-derive the main quantitative predictions of the tube theory, paying special attention to

the assumptions and involved approximations. The tube theory of Doi and Edwards is based on two basic

assumptions:

1. There exists a path with the measurable length L, and the chain motion can be projected onto it. In

other words, at every moment of time one can specify each monomer’s one-dimensional position along

this path. On large length-scales this path should follow the chain and therefore should behave as a

random walk. One can not specify small scale statistics of this path without additional approximations.

2. The projected dynamics of the chain along this path is the same as that of the free one-dimensional

Rouse chain stretched by the ends. The stretching force is set to maintain the average path length equal

to L.

These simple assumptions are sufficient to calculate the mean square displacement (MSD) of the middle

monomer. We start from the MSD along the tube. Let’s denote it as gs(t) ≡
〈
(s(t)− s(0))2

〉
, where s(t) is

the one-dimensional position of the middle monomer along the tube. For a Rouse chain, the displacement is

not affected by a constant stretching force, and therefore we can use the results for a free Rouse chain11

gs(t) =
2kBT

(N +1)ζ1D

(
t +2

N/2

∑
p=1

τ2p

[
1− exp

(
− t

τ2p

)])
; τp =

ζ1Db2
1D

12kBT
sin−2

(
π p

2(N +1)

)
(4)

where τp is the relaxation time of the Rouse mode number p. Note that only even Rouse modes contribute

to the middle monomer displacement. Apart from the temperature, this result depends on the friction ζ1D

and statistical segment length b1D, which we mark with the subscript 1D to stress that the friction and the

effective spring constant along the one-dimensional tube path k = 3kBT
b2

1D
might be different from the free Rouse

chain parameters in three dimensions. In our notations the unstretched Rouse chain in one dimension will
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have average squared end-to-end vector: 〈
R2

e,1D
〉
=

Nb2
1D

3
(5)

Eq. 4 contains three time domains separated by two characteristic times: τ1D
R = τ1 is the relaxation time

of the slowest Rouse mode in one dimension, called the Rouse time, and τ1D
0 ≡ τ1D

R /(N+1)2 is the standard

notation for the shortest relaxation time (note, however, that the actual fastest relaxation time τN ≈ ζ b2

12kBT is

about 2.5 times larger than τ0 =
ζ b2

3π2kBT , eq. 2). In these regimes eq. 4 can be simplified as

gs(t)≈
2kBT
ζ1D


t, t� τ1D

0

b1D

√
tζ1D

3πkBT , τ1D
0 � t� τ1D

R

t
(N+1) , t� τ1D

R

The first and third regimes correspond to the single bead and the center of mass diffusion in one dimension,

whereas the second regime shows the famous subdiffusive behaviour.

Eq. 4 can be approximated for t� τ1D
0 by

gs(t)≈
2Nb2

1D
3π2

√
t

τ1D
R

((
t

τ1D
R

)3/2

+π
3/2

)1/3

(6)

Now we define the main parameter a describing the tube statistics as follows: assume the tube path can

be represented as a freely-jointed chain with Z steps of length a. Since the end-to-end vector of the tube and

the chain should coincide for long enough chains, we have two equations

L = Za (7)

R2
e = Za2 = Nb2

3D

This means that once the tube length is defined (see the first assumption of the tube theory), we can define a

and Z as

a≡
Nb2

3D
L

(8)

Z =
L2

Nb2
3D
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It is clear from these definitions that a should be called the tube Kuhn step, i.e., a step length of an equivalent

freely-jointed chain with the same contour length and the same end-to-end distance, and Z is the number of

these Kuhn segments in the chain. This Z is not necessarily the number of entanglements since entanglements

are usually associated with the number of turns of the tube path (see Appendix A for a detailed discussion of

the differences). If the tube path does not have the freely-jointed chain statistics (independent steps of equal

length), then the number of steps will be in general different from Z. We also note that if we use definitions

eq. 8, we should avoid calling a the tube diameter, since it clearly characterizes the tube properties along the

tube path, not perpendicular to it. Below we will sometimes call “tube Kuhn step” by the shorter name “tube

step”.

Using this definition, we deduce that two tube segments with separation ∆s along the tube have the

following mean square distance in real space

〈
∆r2〉= |∆s|a (9)

To calculate the middle monomer mean square displacement in real space g1,mid(t) we start from the proba-

bility to observe the displacement ∆s along the tube, which is Gaussian with zero mean, thus

Ps(∆s,gs(t)) =
1√

2πgs(t)
exp
(
− ∆s2

2gs(t)

)

If two tube segments are separated by the tube length ∆s, their separation in real space r is distributed as

Pr(r,∆s) =
(

3
2π|∆s|a

)3/2

4πr2 exp
(
−3r2

2|∆s|a

)

i.e., standard spherically symmetric Gaussian with
〈
r2〉= |∆s|a (eq. 9).

Thus, the mean square displacement in real space is

g1,mid(t) =
∞∫
−∞

d∆s Ps(∆s,gs(t))
∞∫

0

dr r2Pr(r,∆s) (10)

The inner integral over r gives |∆s|a, and the outer integral then gives

g1,mid(t) = 2a
∞∫

0

d∆s ∆sPs(∆s,gs(t)) = a

√
2
π

gs(t) (11)
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This is a factor of
√

2/π ≈ 0.798 smaller than was sometimes assumed in the tube theory,12 where instead

of integrating over ∆s the most likely value
√

gs(t) was assumed. Note however that in the book of Doi and

Edwards9 (eq. 6.38) correct calculations are reported, giving exactly the same results as eq. 11.

Combining eqs. 4 and 11 leads to

g1,mid(t) = a
√

4kBT
π(N+1)ζ1D

(
t +2∑

N/2
p=1 τ2p

[
1− exp

(
− t

τ2p

)])
(12)

≈ ab1D
√

N 2
31/2π3/2


(

πt
τ1D

R

)1/4
, τ1D

0 � t� τ1D
R(

t
τ1D

R

)1/2
, τ1D

R � t� τ1D
d

(13)

The second part of this equation is written in a form that stresses that the MSD around the Rouse time

depends only on two combinations: ab1D
√

N and τ1D
R , out of the 5 model parameters (a,b1D,ξ1D,N,kBT ).

An important note is due here: the above derivation for eq. 13 does not require the assumption that the

tube is a freely-jointed path of equal segments a. Any other statistics will lead to exactly the same result

for long enough chains. Only the rate of convergence to this result as N→ ∞ will depend on the exact tube

statistics. This is in contrast to the plateau modulus prediction9

G(0)
N =

4
5

c
kBT
Ne

(14)

where c is the monomer number density and Ne, the so-called number of monomers between entanglements,

is defined as

Ne = N/Z = a2/b2
3D (15)

To derive eqs. 14 and 15 a lot of assumptions about the tube on the length scales of a are required, which are

not even specified explicitly.

Equation 13 can be complemented by an early time free Rouse behaviour, which is not affected by

entanglements

g1,mid(t) =
6kBT
ζ3D

 t, t� τ3D
0

b3D

√
tζ3D

3πkBT , τ3D
0 � t� τe

(16)

analogous to eq. 4. The transition between eqs. 16 and 13 is not described by any theory: the tube theory in

present form works only at much longer timescales, and the Rouse theory obviously fails when entanglements

start to play a role. We denote the transition time by τe — the time when entanglements start to play a role

and the dynamics deviate from the Rouse model predictions.
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Figure 3: Tube construction steps illustrated on a simple two-dimensional example.

Static analysis

In order to obtain the tube parameters, one can use static analysis by generating many independent chain

configurations. It is an easy task in our model since the chain statistics are exactly the same as for the free

Rouse chain, namely Gaussian distributed bond distances. For each configuration, we measure the tube

length by two different constructions: the tube axis and the primitive path.

In the tube axis method, used previously in lattice models analytically and numerically,13,14 we construct

the tube by connecting the centers of the cubes belonging to the tube. To find all the cubes belonging to

the tube, we follow the tube construction described in ref.14 We first mark all cubes which the chain crosses

(either having a bead or a bond passing through), deleting repeating segments so that neighbouring cubes

should be different. Then, we remove all the cubes belonging to unentangled loops by a simple algorithm:

if the tube segments i and i+ 2 (two apart) are in the same cell, cubes i+ 1 and i+ 2 are deleted. This

procedure is repeated until there are no more cubes satisfying this condition. The tube length is then just

(Zc− 1)g where Zc is the number of cubes in the tube. The tube construction is illustrated graphically in

Fig. 3.

The primitive path is the shortest distance between the chain ends, which can be obtained by moving the

chain beads without crossing any grid lines. It can be constructed by fixing the chain ends and allowing other

beads to move, slowly reducing the temperature. To make this procedure more effective, some additional

moves along the grid lines, which reduce the chain length, can be introduced. In the context of molecular

dynamics, primitive path algorithms differ from each other in details since all chains are pulled taut simul-

taneously. For our simple single chain model, however, there is only one unique solution, and all literature

algorithms give equivalent results.

As a result of these two procedures, we obtain the probability distribution of the tube length using two
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tube definitions: Pta(L) from the tube axis and Ppp(L) from the primitive path. An example of such distri-

butions is shown in Fig. 4 for g = 4 and N = 512. If the partial tube segments at the end are neglected the

primitive path length is by definition always shorter than the tube axis length. The tube axis method is com-

putationally much cheaper and therefore better statistics can be obtained. Fig. 5(a) shows that Pta(L) deviates

from the standard Gaussian form for L�〈L〉 and L�〈L〉, however these deviations are only visible for very

improbable lengths. It is clear that these deviations are not important for dynamics of long enough linear

chains, whereas for branched chains Pta(0) plays an essential role in predicting the arm retraction time.1

Thus, for the purposes of this paper, P(L) can be characterized by the average length and its variance

〈L〉=
∞∫

0

LP(L)dL

〈
∆L2〉= ∞∫

0

(L−〈L〉)2P(L)dL

Fig. 5 shows P(L) from two methods in a normalized form, where the averages are subtracted and the

horizontal axis is rescaled by ∆L =
√
〈∆L2〉. The solid line shows the Gaussian distribution with zero mean

and unit variance. It is clear that as N → ∞, the Pta(L) approaches a Gaussian distribution. The statistics

for the primitive path is worse and therefore does not reveal any statistically significant deviations from the

Gaussian distribution.

Apart from the total tube length, we can get more detailed information about the tube statistics by con-

structing a function dtube(stube) similar to eq. 3 but for the tube vertices. In this case, stube will have the
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meaning of the distance along the tube. Fig.6 shows tube dtube(stube) for different grids. All curves start

with dtube(stube/g = 1)/g2 = 1 and attain a plateau gtube(stube)/g2 = a/g by definition of tube Kuhn step

a. Deviations at very large stube ∼ L are due to sampling bias and should be ignored. Indeed, since not all

chains have tubes with stube > L, the dtube(stube) is only sampled from the more compact chains which wrap

around the obstacles, thus having longer tube but smaller than average end-to-end distance. One can see that

this bias is pushed to larger stube as the chain length increases. The most interesting feature of these curves

is their qualitatively different shape for g = 1 as compared with the larger grids. Grid g = 1 shows expected

increase from s/g = 1 to s/g = 2 similar to what is expected from the non-returning random walk. After that,

d(s) reaches the plateau straight away. In contrast, d(s) for larger grids has an extended decreasing region

(up to s/g ≈ 20). This is connected with the fact that tube axis has higher than expected probability to do a

90 degrees turn as compared to going straight. For a cubic grid with coordination number 6 we expect the

probability going straight to be 1/5. However, the measured probability is close to 0.1 for large grid sizes.

Fig. 7 shows the tube Kuhn steps ata and app extracted from the average tube lengths using the tube axis

and the primitive path constructions, respectively. The results can be extrapolated to infinite N if plotted vs.

g2/N and follows from the intersection of the linear fit with the vertical axis. If a ≈ g, b2
3D = 1, then g2 is

the expected value of Ne (eq. 15) and g2/N is the expected inverse number of entanglements, ≈ 1/Z. Table

1 and Fig. 8 provide the extrapolated values for different grid sizes. One can see that for large grids both

definitions give the tube step proportional to the grid spacing g, however ata ≈ g/2 whereas app ≈ 2g. Such

a huge difference correspond to a factor of 16 difference in Ne, which means that one or both results do not

make sense. Fig. 9 shows the plateau modulus extracted from G(t) by fitting it with the slip-springs model,15

which provides a convenient extrapolation to N → ∞.16 We compare it with the usual predictions from the

equation

G(0)
N =

4
5

ckBT
a2/b2

3D
(17)

which follows from eq. 14 using Ne = a2/b2
3D and a extracted from the two definitions. It is clear that neither

prediction is satisfactory – the only case where it might work with reasonable accuracy is for large grids

g� 1 if the primitive path construction is used.

Another standard method to extract the tube Kuhn step a is from the monomer MSD. In the conventional

tube theory one assumes that b1D = b3D and ζ1D = ζ3D, and therefore a can be determined by two methods:

from the transition around τe and from the transition around τR. If one fits the middle monomer MSD with

15



Table 1: The extrapolated values of Ne for various grid sizes, obtained by different methods.

g
Ne

TA PP G0
n MSD around τe MSD around τR S(q, t)

1 1.3 8.7 4.0 4.3 3.8 4.84
2 2.7 23.7 12.7 10.7 14.5 14.8
4 6.7 72.7 39 31.1 63.2 54.8
8 18.2 248 119

16 58.1
32 187
64 614

the three predicted power laws in corresponding regimes

g1,mid(t)≈


K0t1/2, t� τe

K1t1/4, τe� t� τ1D
R

K2
t1/2
√

N
t� τ1D

R

one can express the tube parameters from the second and the third regimes as

ab1D =
π
√

3
2

K2
1

K2
(18)

τ
1D
0 =

1
π

(
K1

K2

)4

which for conventional tube theory simplifies to

a =
π
√

3
2

K2
1

K2
(19)

From the first and second regimes one can extract the tube step as

a2 b2
1D

b2
3D

√
τ3D

τ1D
=

3π

2
K2

1
K0

which simplifies for conventional tube theory to

a =

√
3π

2
K1√
K0

(20)

The predictions of Ne = a2/b2
3D from eqs 19 and 20 are also plotted in Fig. 9. We see that neither of them
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Figure 9: Ne for the grid model obtained by a variety of traditional methods from the literature.

agrees with the plateau modulus, and results from eqs. 19 and 20 differ by a factor of 2 for g = 4. The tube

step extracted from the transition around τR (eq. 19) is larger than the one extracted from the transition around

τe (eq. 20). This effect was observed in molecular dynamics simulations in ref.17 and was interpreted as an

increase of tube diameter as time progresses in agreement with the dynamic tube dilution (DTD) picture.1

The dynamic dilution is caused by constraint release from the other chains, which is completely absent in

our model. This means that the DTD interpretation might be ambiguous and an alternative explanation is

needed, at least for the grid model.

For completeness we have added to Fig. 9 two more methods used in the literature as measures of Ne.

One comes just from counting the tube segments. In other words, one sometimes assumes that Z is just the

number of tube segments (cubes making a tube axis in our case) instead of measuring the tube length and

using eq. 8 to compute Z. We indicate Ne obtained this way by triangles in Fig. 9. One can see that this

definition leads to results different from tube axis definition, which is clearly a consequence of non-ideal

statistics of the tube axis (as illustrated in Fig. 6). Another measure of Ne can be obtained by fitting the

dynamic structure S(q, t) with the empirical formula

S(q, t)/S(q,0) =
[

1− exp
(
−g2a2

36

)]
Sloc(q, t)+ exp

(
−q2a2

36

)
Ssec(q, t) (21)

where q is a scattering vector, Sloc(q, t) is the part of structure factor relaxation due to local monomer rear-

rangement inside the tube, and Sesc(q, t) is the part due to escape from the tube. An exact expression in the
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Figure 10: b1D as a function of g2/N from the fluctuations in the tube axis and primitive path length (eq. 22)

limit qa� 1 was derived by de Gennes,18 which had (1− q2a2/36) instead of exponentials. However the

only experimental method to measure S(q, t) is the neutron spin-echo (NSE), which is limited by the longest

time of 200ns. This means that it is only possible to measure relaxation at qa ∼ 1, because the smaller q

values do not show any appreciable signal. Thus eq. 21 is used instead, which should be treated as convenient

fitting formula rather than an exact tube theory result. Ne is then obtained as a2/b2
3D. We see that the value

of Ne obtained by determining a from eq. 21 is about 40% larger than the one obtained from the plateau

modulus. Similar results were reported for NSE measurements of polyethylene.19

Apart from the average tube length, leading to determination of a, one can extract more information from

the variance of the length distribution
〈
∆L2〉. According to the Rouse theory, the variance of the end-to-end

distance of the 1D Rouse chain stretched by the ends does not depend on the stretching force and is equal to

〈
∆L2〉= Nb2

1D
3

(22)

where the factor of 3 is due to the fact that L is measured in one dimension only. Thus, the measured variance

provides a direct measure of b1D independently of a. The results can be again plotted as a function of g2/N

and extrapolated to N → ∞ for each grid size and for both methods (Fig. 10). The extrapolated values are

plotted in Fig. 11, showing that the two methods give drastically different results. The extrapolation to

infinite grid carries large error bars since they are already a result of another extrapolation (N → ∞), but it

looks like for large grids the difference can be around a factor of 7. This means that the amount of contour
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Figure 11: Extrapolated b1D from the tube axis and primitive path.

length fluctuations (CLF) predicted by the two tube constructions is very different, which should reflect in

stress relaxation and all other dynamic quantities.

A solution to this problem is to consider instead the relative amount of tube length fluctuations

∆L
L

=
ab1D

b2
3D(3N)1/2 (23)

which follows from eqs. 7 and 22. This does not depend on the absolute value of L, and therefore the two

differences might cancel out. It only depends on the combination ab1D and on the static properties of the

chain (N and b3D). Moreover, we saw from eq. 13 that the monomer MSD is also only affected by the

combination ab1D. Plotting this combination in Fig. 14, we find that the both tube axis and the primitive path

methods provide almost identical results (if extrapolated values are used). This is very good news: despite

the large uncertainty for each of the parameters individually, their product can be reliably extracted from

either method. Thus, to predict the monomer MSD it does not matter which method of tube construction one

uses. However, we need one more parameter τ1D
0 to give a definite prediction, unless one assumes that it is

equal to τ3D
0 . Next section examines this assumption and tests the static analysis predictions.

Dynamic analysis

We shall examine two different methods of extracting the tube parameters from the dynamic observables,

namely measuring gs(t) (eqs. 4, 6) or directly from g1,mid(t), eq. 13. For the first method (more elaborate

and only possible for some models), we construct the tube axis at every time step during the simulation,

project all beads onto this path, align the tube axis onto the tube axis from the past, and calculate how many

tube segments did the middle monomer travel along the tube. The obtained results are plotted in Fig. 12 for
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Figure 12: (a) gs(t) and the fitting line obtained from eq. 6 for various grid sizes and chain lengths. (b)
g1,mid(t) and the fitting line obtained from eq. 24 for various grid sizes and chain lengths.

different grids and can be fitted with eq. 6 (lines). Notice however that the fit for times before the transition

is not very convincing especially for g = 2 due to the discreteness of the tube segment counting (we only

resolved ∆s = ng with integer n). We found this method very time consuming, and giving the same results

as the computationally cheaper method described below.

Another method is just fitting the g1,mid(t) from Fig. 12 (b) around the transition from t1/4 to t1/2 regimes

with eq. 13, and extract ab1D and τ1D
0 from the fit. In Fig. 12(b) g1,mid(t)/t1/4 is plotted and one can see that

for large grid sizes the data show a small negative slope, meaning that the g1,mid(t) grows slower than the t1/4

power law. This can be easily explained by the motion perpendicular to the tube contour. We can reasonably

assume that MSD can be approximately divided into a sum of displacements parallel and perpendicular to the

tube contour. At times t < τe they will both grow proportional to t1/2. After τe, perpendicular displacement

will saturate at some level of order a2, whereas the parallel displacement will grow as t1/4. Therefore the

appropriate fitting formula in the regime between τe and τ1D
R = N2τ1D

0 is c+K1t1/4, which indeed has a small

negative slope if divided by t1/4. Using the approximate equation for gs(t), eq. 6, we arrive at the following

fitting formula

g1,mid(t)≈ c+ab1D

√
4

3π3

(
t

τ1D
0

)1/4
((

t
N2τ1D

0

)3/2

+π
3/2

)1/6

(24)

The fitting parameter c should be normalized by g2 – the characteristic squared size of perpendicular
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fluctuations. Furthermore ab1D can be normalized by g since the tube theory expects a∼ g and b1D ≈const,

τ1D
0 can be measured in units of τ3D

0 = 1
3π2 in simulation units. Hence τ1D

0 /τ3D
0 =

b2
1Dζ1D

b2
3Dζ3D

, and therefore

ζ1D = ζ3D
b2

3Dτ1D
0

b2
1Dτ3D

0
(25)

The fits to eq. 24 are shown in Fig. 12(b), and the normalized fitting parameters are listed in Table 2 and

plotted in Fig. 13. We also include the value for the 1D friction coefficients for the two tube methods using

eq. 25. We found that for a more consistent and stable fitting we can fix c for each grid independent of N,

and found c ≈ 0 for g = 1, c ≈ 0.5 for g = 2 and c ≈ 3.0 for g = 4. Fig. 14 shows that the values of ab1D

extrapolated to N→ ∞ are in good agreement with static analysis result (within 20% as compared to factors

4−7 differences in a and b1D separately). This provides a consistently check and confirms the universality

of the product ab1D. Note however that there are two remaining discrepancies. The ab1D extracted from the

dynamical analysis is about 10% lower than the one obtained from the primitive path. In contrast, the result

from the tube axis deviates from the monotonic behaviour and increases with increasing grid size, potentially

deviating from two other methods significantly.

Table 2: Extrapolated values of the tube parameters from different methods.

grid
static analysis g1,mid(t) fit

tube axis primitive path
ab1D b2

1Dζ1D
tube axis primitive path

ab1D ab1D a b1D ζ1D a b1D ζ1D
1 2.1 2.48 2.05 2.88 1.15 1.85 0.85 3.0 0.83 4.35
2 4.0 4.0 3.5 3.39 1.65 2.44 0.45 4.8 0.83 3.96
4 8.0 7.5 7.02 4.13 2.59 3.09 0.25 8.7 0.86 3.23
8 16.3 14.8

16 34
32 70
64 142

Fig. 15(a) shows the effective Rouse time in one dimension, τ1D
R which is one of the key results of this

paper. We see that the Rouse time inside the tube is larger than the free Rouse time by a factor of 3–4.

This explains the discrepancy between the tube steps obtained from fitting g1,mid(t) around τe and around τR

(Fig. 9), which was a consequence of the assumption τ1D
0 = τ3D

0 .

This result is independent of the tube construction, but its interpretation of course will be different in

different tubes. If b1D is obtained from the static tube axis analysis, it will result in ζ1D < ζ3D (plotted in

Fig. 15(b)). This means that the motion along the tube axis is faster than expected. Since the motion in the

environment with obstacles can only be slower than the free motion, one has to conclude that the tube axis
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method overestimates the actual distance the chain has to diffuse to escape from the tube. In contrast, if b1D

is extracted from the primitive path analysis, the effective ζ1D is significantly larger than ζ3D. The limiting

value for N→ ∞ is about 4 for g = 1 and 2. This implies that either the diffusion along the primitive path is

slowed down by the obstacles, that the actual diffusion path is longer than the primitive path, or most likely

a combination of both.

Discussion

In the previous sections we showed that the tube model in general has at least three parameters: the tube

Kuhn step a, the one-dimensional statistical segment b1D and the effective one-dimensional friction inside

the tube ζ1D. However, the monomer diffusion inside the tube is controlled by two combinations of these

parameters ab1D and τ1D
0 =

b2
1Dζ1D

3π2kBT ∼ b2
1Dζ1D. Although a and b1D obtained by different tube constructions

are very different, their product is almost the same and agrees well with ab1D obtained by direct fitting

of g1,mid(t). We believe this statement remains valid even at timescales when the chain escapes from the

tube. Indeed, let’s consider predictions of the tube theory with three parameters for reptation time τ
(0)
d (N)

without CLF. Since the result will not depend on b1D, one might wonder if the described invariance is broken.

According to the solution of the simple 1D diffusion equation,9 the escape time from the domain of length L
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with diffusion coefficient Dc is

τ
(0)
d =

L2

π2Dc
= 3τ

1D
R

N
Ñe

(26)

Ñe ≡
a2b2

1D
b4

3D
(27)

where we used the definition of a, eq. 7 and Dc =
kBT

Nζ1D
is the center of mass diffusion coefficient inside the

tube. In this form the equation looks similar to the standard tube theory formula τ
(0)
d = 3τRN/Ne, however

the Rouse time must be one-dimensional, and Ne must be replaced by a combination of a and b1D (instead

of the usual Ne = a2/b2
3D). To find corrections to this expression due to CLF, we replace (following Doi20)

L by L−C′∆L in eq. 26 where ∆L =
√
〈∆L2〉= b1D

√
N/3. This leads to

τd ≈ 3τ
1D
R

N
Ñe

(
1−C′

∆L
L

)2

= 3τ
1D
R

N
Ñe

(
1−C

√
Ñe

N

)2

(28)

where C′ =
√

3C (using eq. 23) and C is a numerical constants of order unity (numerical simulations show

that C≈ 1.712). Thus, the same combination Ñe appears in both the leading term and the first order correction

term as in the g1,mid(t) expression. Note however that the second order corrections to eq. 28 will depend on

the tube properties on the length scale of the tube step a, and will be characterized by other parameters. We

see that the combination Ñe plays an important role in the tube theory. We shall call it the invariant number

of segments between entanglements, or the invariant Ne.

However not all dynamic observables can be predicted from Ñe and τ1D
0 — one notable exception is the

plateau modulus, the amplitude of the stress relaxation function G(t) in the limit of long chains. Let’s recall

the tube theory expression for the stress tensor.9,11 It assumes a picture of slip-links or tube vertices {Vi}

fixed in space, with the chain having to thread through these slip-links and having ni monomers between

slip-links Vi and Vi+1. This leads to the stress expression

σαβ =− 1
V ∑

interacting pairs p
Fα(p)rβ (p) =− 1

V

Nc

∑
j=1

L/a−1

∑
i=0

3kBT
b2

1D

(Vi+1−Vi)α(Vi+1−Vi)β

ni
(29)

Here we used microscopic stress definition as a sum over all pairs p of particles with non-zero pairwise

force F(p) and connector vector r(p). To calculate the force between points Vi+1 and Vi we used the spring

constant 3kBT/(nib2
1D), since b1D is the relevant statistical segment inside the tube. V is the system volume

and Nc is the number of chains in this volume. They are connected with the monomer concentration c by
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Figure 16: g2G(0)
N from the tube axis, primitive path and direct fit of G(t) by the slip-springs model

c =NNc/V . To estimate the amplitude of the plateau modulus G(0)
N ≈G(τe� t� τd) (without the numerical

coefficient), we use the fluctuation-dissipation theorem

G(t) =
V

kBT

〈
σxy(t)σxy(0)

〉
∼ kBT Nc

V b4
1D

L
a

a4
〈

1
ni(t)

1
ni(0)

〉
(30)

Here we have assumed that the different tube segments are uncorrelated with each other and all have

length a, and are not renewed on the time scale t � τd . Now we can assume that ni(t � τe) is uncorrelated

with ni(0). Replacing
〈

1
ni(t)

1
ni(0)

〉
by 1/〈ni〉2 = b4

3D/a4 (eq. 15), we get

G(0)
N ∼ ckBT

b6
3D

b4
1Da2 =

ckBT
Ñe

b2
3D

b2
1D

(31)

This shows that according to the tube theory the plateau modulus depends on a different combination of

a and b1D as compared to all other quantities. Therefore although the shape of G(t) at t � τe will probably

be controlled by Ñe only, its amplitude has an additional factor b2
3D

b2
1D

. This would mean that the tube theory

prediction for the plateau modulus will depend on the tube construction, and two different constructions

considered above will give very different predictions. These predictions are shown in Fig. 16 by lines with

small symbols, ignoring the fact we do not know the prefactor in eq. 31 and setting it to 1. Filled circles

show G(0)
N obtained by fitting G(t) of the grid model with G(t) of the slip-springs model (as described

before). The tube axis predictions are terrible, underestimating plateau modulus by a factor of up to 100

for large grids. Although the prediction from the primitive path construction shows very good agreement
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(solid lines) where the input parameters are a = 4.812,b1D = 0.833,ζ1D = 3.964.

with G(0)
N measurement, we have to be aware that it can be a simple coincidence. Indeed, let’s compare the

assumptions behind this prediction with the assumptions used in the derivation of the monomer MSD. In

obtaining eq. 13 we only used the fact that the tube has random walk statistics at long scales, much larger

than a, and thus if the monomer has moved the distance ∆s along the tube, its real space square displacement

is a∆s. No assumptions on the length scale of the tube were made, and in fact the fits on these length scale

were not satisfactory. Fig. 6 showed significant deviations from the random walk statistics for small ∆s.

In contrast, eq. 29 contains many assumptions exactly on the scale of one tube segment, and these as-

sumptions are quite unphysical. Indeed, it is strange to assume that the chain has to pass exactly through an

infinitely small point in space at all moments of time, and that all tube segments have uncorrelated direc-

tions and equal lengths. Numerically it is easy to show that changing these postulates results in significant

changes of the plateau modulus. Besides, the prefactor in eq. 31 is affected by the longitudinal redistribution

of monomers along the tube and the correlation function of 1/ni(t) must be carefully evaluated and will

depend on the model used. Therefore in our opinion, the described tube theory is adequate to predict the

monomer diffusion and the shape of other relaxation functions for t � τe, but is not microscopic enough to

predict the stress plateau modulus unambiguously. We note however that although the prefactor in eq. 31 is

wrong, it seems that the primitive path is closer to the "real tube" than the tube axis, as shown in Figs. 11, 14

and 16.

Finally, we perform tube model simulations with parameters a, b1D and ξ1D extracted from the primitive

path simulations. The tube model simulation consists of a one-dimensional stretched Rouse chain simulation,
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which is projected every step onto a three dimensional freely-jointed random walk, which represents the

tube. Tube segments are deleted and inserted at the ends depending on the chain end position (see ref.11 for

detailed model description). The results of such tube model simulation are compared with the grid model

results (g = 2) in Fig. 17. We see that although the agreement of stress relaxation is very good, the agreement

for the MSD is surprisingly poor. The two models start to agree only after t ≈ 104. This is about 500 times

larger than τe ≈ 20 defined as a4τ3D
0 . In fact, the tube model simulation hardly shows any sign of t1/4

behaviour for the chain lengths simulated (up to about 10 entanglements). However our mapping procedure

guarantees that these two models will agree perfectly in the limit of very long chains. This indicates that

for the MSD the convergence to this limit is extremely slow. In fact it is quite a surprise that the grid model

agrees with the tube theory predictions, eq. 13, much better than the tube model (dotted line in Fig.17(a)). To

investigate the reasons for the disagreement between the tube model and the tube theory, we perform detailed

analytical calculations of monomer MSD for the freely-jointed tube model, Appendix B. We show that this is

due to next order correction terms in eq. 9. Indeed, replacing it with the exact expression leads to the perfect

agreement with the tube model simulations (dashed line in Fig.17(a)).

Even more surprising is that the grid model shows almost perfect t1/4 behaviour. We believe this is due to

the effect of motion perpendicular to the tube contour, which partly cancels the negative corrections derived

in Appendix B. This means that the apparent t1/4 regime shown by the grid model (as well as by many other

models including the slip-springs model and MD simulations of the Kremer-Grest bead-spring model) is

actually coincidental. Indeed, for larger grid spacing and for slip-springs model we see more pronounced

deviations from the t1/4 scaling. The tube model will show an ideal behaviour only for much longer chains,

but the addition of perpendicular fluctuations makes it look like it is already present for shorter chains of less

than 10 entanglements.

Conclusions

We have reported extensive simulations of a very simple model for an entangled chain: a Rouse chain in a

cubic array of line obstacles. Despite its simplicity, the model has several advantages. At small times the

model exhibits perfect Rouse behavior with the known friction ζ3D and statistical segment b3D. At longer

times it shows the stress relaxation plateau as well as t1/4 and t1/2 regimes of the monomer MSD. The absence

of constraint release (CR) is an additional advantage from the tube theory modelling point of view. Indeed,

the comparison is not obscured by the difficult-to-control CR effect. Thus, our grid model provides a simple
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test ground for modern algorithms of the tube parameter estimation. One expects a perfect correspondence

between this model and the tube theory, with only one parameter a left to determine for each grid size g. In

fact, it is reasonable to anticipate that a≈ g.

Contrary to these expectations, we show that despite the usual believe that the tube theory contains only

one parameter describing entanglements (namely a or Ne), one might have up to three such parameters: tube

Kuhn step a, monomer friction inside the tube ζ1D and statistical segment inside the tube b1D. For each

definition of the tube these parameters will be different. Indeed, we tried two such definitions (the tube

axis and the primitive path) and found that all three parameters are vastly different (factors of 2–5 or even

10 in the limit of large grids). It is not clear to us whether there is a single correct definition of the tube

length. However we noticed that the mean-square monomer displacement at long times t� τe depends only

on two combinations of these three parameters, namely on the Rouse time inside the tube τ1D
R and on the

invariant number of entanglements
√

Ñe =
ab1D
b2

3D
. Moreover, the relative fluctuations in the tube length is only

controlled by this parameter. Interestingly, estimates for Ñe come out almost the same (within 10%) from

three different methods: two tube construction methods and from the direct fitting of the monomer MSD.

This is encouraging news: it may be that the invariant number of entanglements is much less sensitive to the

details of the tube construction as compared to the usual Ne determined from the average tube length only.

Thus, our suggestion to the primitive path analysis is to compute the first two moments of the tube length

distribution 〈L〉 and
〈
L2〉, instead of just 〈L〉 as is routinely done, and therefore determine both a and b1D.

If it happens that b1D = b3D, then the old results obtained from the average length are valid. If it is not the

case, the shapes of all relaxation curves will be affected.

Another major conclusion of our study is that the Rouse time inside the tube τ1D
R might not be equal to

the one of the free chain without entanglements τ3D
R . For our model it is larger by about a factor of 3 in the

long-chain limit. Such large discrepancy strongly affects the shapes of all relaxation curves and invalidates

earlier Ne estimates obtained from the monomer MSD or similar methods. The major challenge now is to

measure τ1D
R for more realistic models. Unfortunately, one requires relatively long chains to identify the t1/4

and t1/2 regimes clearly. The correction due to CR must be also taken into account. We leave these studies

for future publications.

We note here briefly the connection of our parameter b1D with the CLF potential parameter ν used in the

literature. The efective potential controlling CLF, proposed by Doi and Kuzuu,21 has the form

U(L) = νZ
(

1− L
〈L〉

)2

(32)
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Comparing it with the Gaussian distribution P(L)∼ exp(−U(L)/kBT ), we find that in our notations

ν =
3
2

b2
3D

b2
1D

(33)

If, for example, b1D ≈ 3b3D (as for the tube axis construction for g = 4), then this implies that ν ≈ 3
2 ×

1
9 ,

i.e., much smaller than the expected 3
2 . This result, however, does not make much sense. Indeed, we showed

that only the combination
√

Ñe = ab1D/b2
3D has a physical significance, which translates into

Ñe =
a2

b2
3D

3
2ν

This means that if the measured ν is different from 3/2, the invariant number of entanglements Ñe must be

corrected to take this into account. The connection of ν and b1D for slip-link model is discussed in more

detail in Appendix A.

A separate note is due about the stress plateau calculations. The primitive path analysis was invented to

predict the plateau modulus using eq. 17. This equation is based on numerous assumptions which are quite

unphysical. We therefore think that this is not adequate and that the tube theory does not contain enough

details to predict the stress amplitude quantitatively. This is to be contrasted with the shape of the stress

relaxation curve for t � τe, where the tube theory might do a good job. The main reason is that to derive

an equation of the sort of eq. 17 one requires explicit assumptions about the tube configuration and the tube

potential on the length scale of the tube Kuhn step a. It is clear that such information is non-trivial: in

all tube construction algorithms the resulting tube statistics deviates from the ideal random walk on these

lengthscales. More explicitly, the tube steps are variable and the step directions are correlated. Following

a simple calculation outlined in the previous section, it is easy to see that these deviations will affect the

prefactors in eq. 31. Moreover, even the scaling G(0)
N ∼ 1/Ne or G(0)

N ∼ 1/Ñe is not confirmed, and the

plateau modulus might depend on a different combination of a and b1D. Thus, we think that the current

tube theory can not be used for correctly predicting the plateau modulus in a quantitative way. In contrast,

it seems that the slip-spring model22 does a very good job in predicting the stress amplitude of molecular

dynamics data of monodisperse melts, once the monomer MSD is fitted.
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Appendix A: Slip-link model of Schieber et al.

Here we apply our definitions to the slip-link model23 and address some of its unexplained results. The

slip-link model of Schieber et. al.,23 24 assumes the following tube statistics: one first generates a Gaussian

polymer chain, then selects the number of slip-links Zs from the Poisson distribution with the single parame-

ter β determining the average number of slip-links per chain, and then selects Zs monomers from the uniform

distribution [0..N], where N is the number of statistical segments in the polymer chain. (We note in passing

that the notion of a Kuhn segment used in ref.24 does not exist for the Gaussian chain since such chain does

not have a maximum contour length. The statistical segment must be used instead.) The positions of these

Zs monomers then determine the positions of the tube vertices (Vi in our notations). The tube length is then

uniquely determined by this construction as

L =
Zs−1

∑
i=1
|Vi+1−Vi|

The first two moments of the tube length distribution for this model were calculated analytically in ref.24 In

the limit of well entangled chains N/β � 1 they take a very simple form

〈L〉=
√

2
3

Nb3D√
β

;
〈
∆L2〉= Nb2

3D
3

(34)

where ref.24 notations Nk and aK are replaced by our notations N and b3D respectively. Combining this with

our definitions of a and b1D, we get

a≡
Nb2

3D
〈L〉

=

√
3
2

βb3D; b2
1D ≡

3
〈
∆L2〉
N

= b2
3D

The second equation suggests that for the model of Schieber et. al. the statistical segment inside the

tube is equal to the statistical segment of the chain, i.e., the model shares the same assumption as the tube

model. This seem to contradict the main conclusion of ref.24 that the parameter ν of the effective potential

governing CLF is equal to 1 for large Z rather than to 3/2 as expected by the tube theory (see eq. 33).

The confusion is easily resolved by noticing that in the tube theory, once L is defined, the so-called

number of entanglements Z must be defined through the average L using eq. 8. Substituting eq. 34 into eq. 8

leads to

Z =
2
3

N
β
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This should be contrasted with the relation of β and average Zs, which is obtained from the Poisson proba-

bility distribution of Zs given in ref.23 In the limit of large N/β it simplifies to

〈Zs〉=
N
β

and thus

Z =
2
3
〈Zs〉 (35)

Ref.24 used 〈Zs〉 instead of Z in the definition of CLF potential, eq. 32, which explains the paradoxical result

ν = 1. Substituting Z instead leads to the expected result ν = 3/2.

We note that the result eq. 35 shows that the effective number of entanglements as defined in the tube

model is smaller than the average number of slip-links Zs. This conclusion is valid for a broader class of

models such as slip-springs15 and Naples.25 Indeed, the reason for Z < 〈Zs〉 is the broad distribution of

the tube segment lengths, shared by the aforementioned models. For the case of equal size segments we

get Z = 〈Zs〉. This probably explains why Masubuchi et. al. report smaller modulus than expected from the

number of entanglements, and why the slip-springs simulations with Ne = 4 agree with the tube model which

uses Ne ≈ 6.16

Appendix B: Exact mean-square monomer displacement for the freely-

jointed tube model

In this Appendix we derive an exact expression for the monomer MSD for the particular version of the tube

model, where tube is assumed to be made of segments of equal length a, and the directions of different tube

segments are uncorrelated. We will call this model the freely-jointed tube model. We note that the validity

of eq. 13 relies on eq. 9, which is only correct for large curvilinear distances |∆s|. However, for the freely-

jointed tube model one can derive an exact expression for the distance between two points s1 and s2 of the

tube separated by the curvilinear distance ∆s = s2− s1. It will obviously depend on the position of the first

segment along the tube s1. Define the variable x = a×ceil(s1/a)− s1 as the distance between the first point

and the next tube vertex (where ceil(x) is the smallest integer which is larger than x). It is then easy to show

that 〈
∆r2〉=

 ∆s2, ∆s≤ x

x2 +na2 +(∆s−na− x)2, ∆s > x
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where n =floor((∆s− x)/a) is the number of full tube segments between s1 and s2, and floor(x) is the

largest integer which is smaller than x. Here the angular brackets stand for averaging over different tube

conformations.

This can now be averaged over different positions along the tube x

〈∆r2〉= 1
a

∫ a

0

〈
∆r2〉dx =

 ∆s2 (1− ∆s
3a

)
, s≤ a

a∆s− a2

3 , s > a
(36)

This equation should replace eq. 9 for the freely-jointed tube model. As expected, they agree perfectly

for large ∆s. Substituting eq. 36 into eq. 11, we get the exact result

g1,mid(gs) =

(
a2

3
+gs

)
erf
(

a√
2gs

)
+

a
3

√
2gs

π
e−

a2
2gs
(
1+2gs/a2)− 2

3a

√
2
π

g3/2
s − a2

3
(37)

The series expansion for large gs(t) is then

g1,mid(t)≈ a

√
2
π

gs(t)−
a2

3
+

a3

12

√
2

πgs(t)
+O

(
a5

g3/2
s (t)

)
(38)

The first term corresponds to eq. 13 as stated in the main text: it does not depend on particular details of the

tube statistics. The important result is the next order correction term −a2/3, which is negative, meaning that

the tube model results should be smaller than the simple power law prediction. The validity of this term is

illustrated by the dashed line in Fig. 17(a).
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Figure 18: Table of contents graphics

Determination of tube theory parameters using a simple
grid model as an example.
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