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ON THE ENTRAINMENT ASSUMPTION IN SCHATZMANN’S
INTEGRAL PLUME MODEL

MIGUEL A. C. TEIXEIRA and PEDRO M. A. MIRANDA
Centro de Geofisica da Universidade de Lisboa Rua da Fscola Politécnica, 58, 1250 Lisboa, Portugal

January 1997

Abstract. The behaviour of stationary, non-passive plumes can be simulated in a reasonably simple and
accurate way by integral models. One of the key requirements of these models, but also one of their
less well-founded aspects, is the entrainment assumption, which parameterizes turbulent mixing between
the plume and the environment. The entrainment assumption developed by Schatzmann and adjusted to
a set of experimental results requires four constants and an ad hoc hypothesis to eliminate undesirable
terms. With this assumption, Schatzmann’s model exhibits numerical instability for certain cases of plumes
with small velocity excesses, due to very fast radius growth. The purpose of this paper is to present an
alternative entrainment assumption based on a first-order turbulence closure, which only requires two
adjustable constants and seems to solve this problem. The asymptotic behaviour of the new formulation is
studied and compared to previous ones. The validation tests presented by Schatzmann are repeated and it
is found that the new formulation not only eliminates numerical instability but also predicts more plausible
growth rates for jets in co-flowing streams.
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1. Introduction

Integral models have been used for some time in the simulation of jets and plumes. Farly
investigations using them are, for example, those of Priestley and Ball (1955), Priestley
(1956), Morton et al. (1956) and Morton (1959). More recent survey papers were presented
by Briggs (1984) and Weil (1988). Initially, integral models were formulated for vertical
plumes in stagnant environments, but generalizations for plumes in crossflows quickly
followed, one of the most popular being that of Slawson and Csanady (1967).

Integral models are based on the fundamental laws of Fluid Mechanics: conservation of
mass, conservation of momentum, first law of thermodynamics and equation of state. A
steady average flow and a plume with a circular cross-section are assumed. Axisymmetric
average properties are often prescribed, although values averaged over the plume cross-
section or even undefined, self-similar profiles may also be used. After splitting dependent
variables into mean and fluctuating components and averaging, the linear perturbation
terms vanish. The self-similarity assumption enables one to integrate the equations over the
cross-section of the plume and the steady state assumption eliminates all time derivatives.
A set of ordinary differential equations is thus obtained, describing the evolution of certain
integral quantities along the plume axis.

Integral models were designed to simulate the behaviour of plumes characterized by
significant velocity or density perturbations. These perturbations have important conse-
quences to the dynamics, namely through the generation of turbulence. This turbulence is
almost always responsible for the largest amount of mixing close to the source. Since the
source is generally circular, this self-generated turbulence, as well as the mean property
profiles, tend to be initially axisymmetric.

For plumes in cross-flows, there are many factors that contribute to the destruction of
axisymmetry: ambient wind, because the transition between the jet and ambient flows can
never be axisymmetric except when they have the same direction; buoyancy, because it
makes the core of the plume accelerate vertically; ambient stability, because it forces the
plume to spread horizontally; and ambient turbulence, because turbulence in the boundary
layer is highly anisotropic, causing different horizontal and vertical spread rates. The
axisymmetry assumption used in many integral models may only be realistic for plumes
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in stagnant environments or jets in co-flowing, neutrally stratified, streams. Therefore,
integral models including a cross-stream can not be expected to describe accurately local
properties of the flow.

Slawson and Csanady’s model (1967) uses top-hat profiles for plume properties and
extends the theory of Morton et al. (1956) to the case of a moving environment. The 3
equations it comprises can be solved analytically.

Many integral models have been developed making use of gaussian profiles. Fox (1970)
presented a model for a gaussian plume in a still environment with a parameterization of
the entrainment process based on a form of the mechanic energy equation. Hirst (1972)
developed a model which included a crossflow, allowed for three-dimensional trajectories
and generalized Fox’s entrainment hypothesis. Schatzmann (1978) tried to produce a more
rigorous model by taking out the Boussinesq approximation and making a careful analysis
of the implications of the assumed geometry.

This paper is organized as follows: section 2 presents an outline of Schatzmann’s model.
In section 3, some previous entrainment assumptions are discussed. Section 4 presents an
alternative entrainment assumption based on a standard first-order closure scheme for
turbulence. Section 5 includes some validation tests performed using the new assumption.
Section 6 contains the main conclusions of this study.

2. Schatzmann’s model

In the integral model developed by Schatzmann (1978), many of the hypotheses used by
Slawson and Csanady (1967) were maintained, since they are necessary to enable integra-
tion. However, the entrainment assumption became much more complex, the Boussinesq
approximation was not invoked and the profiles used for the plume were gaussian rather
than top-hat. In the curvilinear coordinate-system introduced by Hirst (1971) and adopted
by Schatzmann (Figure 1), the flow field can be expressed as

Us(s,1) = U, cosf(s) + u™(s) exp (—rz/b(s)z)
Tr(s,r, ) = —U,sinf(s) sin ¢ + vq(s, ) (1)
Tg(s, ) = —U,sin 0(s) cos ¢

where v, is the down-axis component of velocity, v, is the radial component, v, is the
component tangent to the cross-section boundary and the overbar denotes average values.
U, is the ambient wind, assumed constant, # is the angle between the plume axis and
the horizontal plane, ¢ is the angle measured around the plume axis, u* is the velocity
excess at the plume centreline, v, is the radial component of the excess velocity and b
is a variable proportional to the plume width. The plume’s radial limit R is defined as
R? = 2b%. Schatzmann’s equation set in its final form comprises: mass conservation

2

d *72 %12 [ 2 A * 2 dpa _
T [pau b+ p*b (/\ U, cos 8+ /\2—|—1u )] + 26U, cos 8 I =2p.v. R (2)

s-momentum budget
2

/\2+1’0

2
dis [bzu*2 (%pa + Q/é\ﬁp*) + b*u*U, cos @ (pa + *)] = —A%%p*gsing  (3)

thermodynamic equation

d b2®*U 0 AZ _I_ AZ * _I_bZG)* * AZ _I_ AZ * _
ds @ €08 Pat 5P AN T )| T
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doO A? A?
= — s 2b2a 0 o __p* b2* a _ o p* 4
(ds)[ U cos (p+2’0)+ “('OJFA?H”)] ()

and the #-equation (momentum budget in a direction perpendicular to s)

dg A2b%p*gcos® 4 p,Uyv.Rsin 6 + %dpaRU(f |sin 4| sin 0 (5)
ds h2yu<2 (%Pa + %p*) + b2u*U, cos @ (pa + /\5\__2'_1,0*)

where p, is ambient density, ©, is ambient potential temperature, p* and ©* are the
density and potential temperature excesses above or below ambient values, A = 1.16 is
the ratio of temperature and momentum plume widths, ¢ is the acceleration of gravity,
cqg = 2.5 is a drag coefficient and v, = —v4(R) is the entrainment velocity. An equation
formally identical to (4) can be used to describe the mass conservation of a tracer, if ©* is
replaced by ¢* and O, by ¢,, where ¢, is the mass ratio of pollutant in the environment and
¢* is the corresponding maximum excess. In the drag term of (5), sin § has been replaced
by |sin 6| to guarantee the appropriate behaviour for both rising and descending plumes.
The equation of state presented in Schatzmann and Policastro (1984) completes the set:

A
0,10 (6)

One advantage of this model over Slawson and Csanady’s model is the ability to simulate
jets in co-flowing streams. In the former case, this is not possible, since the velocity excess
associated to the plume is constrained to be vertical and hence is always perpendicular to
the mean wind.

In the present paper, the above equation set was written in dimensionless form and
solved numerically using a 4th order Runge-Kutta procedure.

3. Some entrainment assumptions

In integral models, the average mass conservation equation does not have any turbulent
terms, since the density-velocity correlations are neglected. The turbulent components of
velocity, which appear in linear form, are unable to cause any organized mass displacement,
since their averaged value is zero. The increasing average mass flux across the plume section
as one moves down-axis, can only be balanced by a non-turbulent (average) lateral mass
inflow. This inflow, called entrainment is, nevertheless, associated with turbulence inside
the plume. If the flow was entirely laminar, the plume edge would be a material surface
and the ambient air would be unable to penetrate it. The radius of the plume only grows
because all ambient air that enters it is effectively mixed by turbulence with the previously
existing plume air. In this sense, the real entrainment parameterization is not the definition
of the mean inflow but the assumption of self-similar profiles, since the maintenance of
those profiles implies a very rapid (in fact instantaneous) mixing.

There are two alternative ways of defining the entrainment inflow . One of them is
viewing it as an external parameter and simply imposing an entrainment assumption
which is dimensionally correct and supported by experimental data. Another possibility
is viewing it as an additional variable in the equation set and treating it accordingly. In
that case, as there are more variables than equations (for example, Schatzmann’s set, as
presented above, contains 5 equations and 6 unknowns: 6, b, u*, ©*, p* and v.), a new
equation is required. The mechanic energy equation, which is obtained by multiplying the
momentum equation by velocity, is often used to close the set. Naturally, this equation
contains a new unknown: v/v/, the correlation of turbulent perturbations of the radial and
down-axis components of velocity, which has to be related to the mean variables of the
model if a unique solution is to be found.
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Many entrainment assumptions have been developed. Using the present notation, Mor-
ton et al. (1956), who treated the case of vertical plumes in stagnant environments, simply
stated that

c=a (7)

where ¢ is the dimensionless entrainment coefficient ¢ = Rv./bu* and « is a dimensionless
constant.
Fox (1970) used the mechanic energy equation and the similarity assumption

vivp = u (s)h(r/b) (8)
where h is an unknown function of /b to obtain the result

Q9 2
E=a1 + ? (9)
where a7 and agy are dimensionless constants depending on the form of function h and
where F is the densimetric Froude number, defined as

€ _ |_|*E
N Irr (o)

Hirst (1971) followed the steps of Fox and generalized his entrainment assumption to
the case of plumes with non-vertical paths:

sy sin 62

= (11)

eE=ao+

The same author (Hirst, 1972) subsequently developed a model of three-dimensional plume
in a crossflow, and further generalized the above equation, but instead of using the same
kind of similarity assumptions, added some empirical terms based on the work of Hoult
et al.(1969). In the present notation, and for the particular case of a plume with a 2-
dimensional trajectory, the resulting entrainment assumption takes the form

i 02 la la
oo (041 Qg sin ) (‘1 — —~cos 0‘ + a3— sin 0) (12)
F u* u*

Schatzmann (1979) introduced a generalized form of Fox’s mechanic energy equation,
taking into account a cross-flow, which for the Boussinesq approximation reads

2 2 x P
d% [bzu*z (u* T %U‘l cos 0)] - _/\26_|_ 1bU*3A ;n@ - 24%/@(5@; exp (—rz/bz) rdr
(13)

0
and eliminated the turbulent correlation inside the integral by using the s-momentum
equation integrated indefinitely with respect to r. His calculations produced an expression
of the form

sin g2 :
4 24,500% 4 (39 4 Ashsingdl) U

2—|—A3%c050

€= (14)
where the A; are constants. But he neglected the terms between brackets in the numerator,
and replaced the first term by a constant, with a value adjusted to the particular case of a
momentum jet in a quiescent atmosphere. He also multiplied this expression by a factor,
to account for the positive contribution to entrainment from the shear perpendicular to
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the plume axis, associated with the vortex pair existing in the real flow field (Moussa et
al., 1977). The final expression obtained was

24, 424,508
) + As Us ¢os @)

U

(1—|—A4£:|sin0|) (15)
u

where A; = 0.057, Ay = —0.67, A3 = 10 and A, = 2 are dimensionless constants.
It is easy to show that an equation relatively similar to (14) can be found with much
less effort, by manipulating equations (2) and (3), with the Boussinesq approximation

db M2sing?2 s Adg U
2 — 2 5RE 4 bsinfer=e
e = ds F ds u* (16)

N 2—|—2%c050

This expression bears a remarkable resemblance to (14), but the constants have been
replaced by particular values. Neglecting the last term in the numerator, as suggested by
Schatzmann, the only difference between (14) and (16) is the value of As, which is 10 in
the first case and 2 in the second. However, for the experiment trajectory shown in Figure
2, it can be seen that it is completely unacceptable to use A3 = 2 and to keep the other
constants unchanged. In that figure, 71/, is the radius where the velocity excess reaches
half of its maximum value and D is the source diameter. The conditions for run 4-1, which
will be analyzed in more detail in a later section, can be found in table I.

Replacing the derivatives in a general definition such as (14) by values found for par-
ticular cases is certainly not a very satisfactory procedure and seems contradictory to the
general approach used. That choice seems to arise because the use of the s-momentum
equation to eliminate the turbulent correlation in (13), without the introduction of any
new hypothesis, does not allow for elimination of all the derivatives in (14). The procedure
followed by Fox (1970) and Hirst (1971) appears to be theoretically much more satisfacto-
ry, because the similarity assumption used by them can be interpreted as an independent
constraint, and the constants a; and as are obtained in a consistent manner as a conse-
quence of this constraint. In the following section, a slightly more specific choice will be
proposed.

4. An alternative entrainment assumption

One possible way of parameterizing the turbulent correlation in the mechanic energy
equation is using a simple first-order turbulence closure scheme. Assuming, consistently
with Schatzmann’s model, that the turbulent fluxes are essentially radial, it follows that
Iy

17
or (17)
where K is a turbulent diffusivity that may depend on coordinate s. The mechanic energy

equation that will be used must be consistent with Schatzmann’s set, which generally does
not assume the Boussinesq approximation. The generalization of (13) to that case is

vivl = —K(s)

i b2u*? (u* + §U cos 0) + 3p*b%u*? Lu* + LU cosf || =
ds | ga P A2 1 Taaryl e -
A2 sin 9 - T
= —/\26+ 1pabu*3 ;n - 24?;—2/11{5@7{ [pa + pTexp (—rz/Azbz)] exp (—rz/bz) rdr
0

(18)
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Inserting (17) into (18), the last term containing the turbulent correlation becomes

6Ku* | p, + I (19)
j— u a —
P (22 + 1)2p

and, provided that a suitable definition is found for K, the equation set, (2)-(3)-(4)-(5)-
(6)-(18) can be solved without problems. When the idea is simply to solve the equation set
numerically, it is unnecessary to derive an explicit expression for €. In fact, that expression
is too complex for the general case and will not be presented here. However, before testing
the new entrainment assumption numerically, it is instructive to compare the behaviour
of Schatzmann’s set subject to the entrainment assumptions of Schatzmann (hereafter
referred to as SE) and to the one presented now (hereafter referred to as FOC), for some
simple asymptotic situations. For that purpose, if is useful to obtain ¢ explicitly. Fortu-
nately, in many simple situations, the Boussinesq approximation is acceptable. With that
approximation, the equation set is simplified and ¢ is found to be

— (2 =L+ (402 + 1) L cos ) g + 35 cos? ] ;mez
(1—|—%c050) (1—|—3%c050)( U;: cos@) —I—( —|—3U“ cos@) < sin’ 4

£ =

( —|—3U“ cos@) 35111 0|sm0|—|— 3K (l—I—QCOSH)
* (1—|—%c050) (1—|—3U“ cos@)( —I—U“ cos@) + (Z—I—g’g,‘: cos@) 2 gin’ @

(20)

On the other hand, the expression relating the radius growth rate db/ds to ¢ is also
relatively simple

db_e[Q(%—l—%cow) (14 L cos) + L sin?]

ds 3 Ly U“ cos 6

3 sin 0|sm0| + A sing Sm@ ( —|—2U“ cos@)

§—|—%c050

(21)
enabling an easy analytical treatment.
4.1. PLUME IN A STILL ENVIRONMENT

Consider a momentum jet in a neutral atmosphere without wind. In that case, Schatz-
mann’s set consists of only two equations: mass conservation

d

2 kY _
% (b U ) = QR?JB (22)
and s—momentum budget
d 2 %2\ _
- (b*u?) =0 (23)

For this particular situation, (15) is equivalent to
e= A= v = (A/V2) (24)
and (20) reduces to

3K N 3K
Vy = —
bu* R

£ =
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(21) can be used to find expressions for the radius growth rate

db

— =24 2
ds ! (26)
db 6K

>~ 2
ds bu* (27)

respectively using SE and FOC. It is known since long ago (Morton et al., 1956) that mea-
surements indicate a constant db/ds for vertical momentum jets. Such result is reproduced
by SE, and may also be reproduced by FOC as long as it is assumed

K = pbu” (28)
where [ is a dimensionless constant. This, in turn, leads to
c=38=>0, = (35/\/5) u* (29)

which is similar to (24) and reproduces the results of Morton et al. (1956).

An expression for the diffusivity like (28) was suggested by Slawson and Csanady (1967)
for the initial phase of plume dispersion, when self-generated turbulence is dominant. This
is clearly the most obvious choice suggested by dimensional analysis. For a momentum jet
in a quiescent atmosphere, bu™* is a constant for each plume under consideration, as can be
seen from (23), although it varies according to the initial conditions. More sophisticated
definitions of K may be searched for, making use of experimental measurements, with a
larger number of parameters being taken into account. It is, in principle, possible to obtain
K, implicitly or explicitly, as a function of coordinate s, in the same way as in classical
dispersion theory. As a first approach, (28) may be generalized to the case of buoyant
plumes in cross-flows.

Having in mind that % = 202, where ¢ is the standard deviation of the velocity profile,
(27) can be expressed in the form

*_ — I/’
u— 6K (30)

which relates the evolution of variance to the diffusion coefficient, as in passive plume
dispersion (Csanady, 1973). The term on the left is the material derivative of variance in
the middle of the plume and K is a diffusivity associated with self-generated turbulence.

If the zero-buoyancy hypothesis is abandoned but all other assumptions remain, (15)
becomes

PRI RN (31)
€= —=
1+ sin
which is Hirst’s entrainment assumption and (20) turns into
207 — 1A%
€:3ﬁ—m? sin 6 (32)

which has the same form. Fox’s entrainment assumption would be found if the plume
trajectory was further constrained to be vertical (sinf = 1). The equivalence between SE,
FOC and Fox’s formulation is not complete because Schatzmann uses an empirical value
for A,.

The main conclusion to take from the above analysis is that, in a still environment, SE
and FOC are formally equivalent and are both consistent with previous work.

4.2. MOMENTUM JET IN A CO-FLOWING STREAM

The second asymptotic situation to be considered is that of a momentum jet in a co-flowing
stream with a relatively small velocity excess (u* < U,). The relevant equations are the
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same as in the previous subsection: conservation of mass and momentum, but the latter
has to be slightly changed to:

dii [zﬂu* (Ua + %u)] =0 (33)

With these conditions, SE and FOC take, respectively, the forms

S A 2w (34)
= —— Ve = —F/———
AS Ua \/§A3 Ua
K u* K u*?
g:?U—a?j?je:EU—g (35)
and, again, the radius growth rate can be determined for each case, yielding
db Ay
Pk el 3
ds A3 (36)
db 2K
ds — b, (37)

respectively for SE and FOC. If the diffusivity definition (28) is accepted to hold, then
(37) can be expressed as

db u*
93—
T, = 20 i (38)
which can also be written
0.9 ok (39)
“ds

again, reproducing the known result from classical dispersion theory.
Using (33) and (38), it can readily be concluded that, with FOC,

% = co%st = b= (const x s+ const)l/3 (40)
and it becomes clear that the two approaches are qualitatively different. When u* — 0, SE
predicts db/ds —const., while FOC leads to db/ds — 0. This last result seems the most
logical in a model where only self-generated turbulence is taken into account, since any
plume growth happening when u* = 0 and U, # 0 could only be attributed to external
turbulence. Besides, the second result is supported by dimensional analysis.

4.3. EVALUATION OF NUMERICAL CONSTANTS

In the first asymptotic situation, the performance of the two entrainment assumptions
was found to be similar. Then, if (26) and (27) are to be perfectly equivalent, one must
have:

Ay =30 (41)

which implies 8 = 0.019, a value to be used in future calculations. On the other hand, for
(31) and (32) to be compatible, it would be necessary that

202 -1
A2 41

This equality is not exactly verified for SE, since the right hand-side takes the value -
0.97, using A = 1.16 and A; = —0,67 in (15), but the sign and the order of magnitude
are correct. A remarkable aspect about this equation is that it relates a constant in the
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entrainment assumption to the ratio of heat and momentum turbulent diffusivities. This
result is by no means new and was obtained, for example, by Hirst (1971).

It may be further referred that the proposed FOC, together with definition (28) of
the diffusion coefficient, is a particular case of Fox’s similarity approach. In fact, (17) is
equivalent to (8) if the similarity function A is defined as

h(r/b) = Qﬁ% exp (—Z—j) (43)

4.4. PLUME IN A CROSS-FLOW

The situations considered up to now do not take into account a crossflow, because its
existence keeps definition (20) in a much more complex form and an analytical treatment
is not feasible. However, numerical tests using the new turbulence closure show that,
while predictions for vertical plumes are very similar to Schatzmann’s and agree well
with experimental data, plumes in cross-flows tend to rise too much (Figure 3). This is
undoubtedly due to insufficient entrainment caused by not taking into consideration the
effects on mixing of the shear associated to the vortex pair in the plume flow. One possible
way of parameterizing this effect would be by including in (20) a factor like the one used in
(15). But this procedure would be against the mathematical rigour of the latter equation,
which must be consistent with the other equations of the set. A more adequate choice seems
to be the introduction of a similar factor in the diffusivity K, which is only constrained
to be a function of coordinate s, that is

K = fbu- (1 7Y% i 0|) (44)
Uu

v is a new dimensionless constant, which the calibration against experimental data showed
to be about 4.5. It is worth noting that this modification does not change any of the
previous asymptotic results, since in one of the situations considered U, = 0 and in the
other sin 8 = 0.

Other, more complicated definitions, may be found, that fit experimental data more
effectively. The present one has the advantage of only requiring the adjustment of two
constants (5 and 7).

As a preliminary numerical test, it would be interesting to investigate if the present
model reproduces the well-known 2/3 and 1/3 power laws, respectively for the rise of
buoyant plumes and momentum jets released into neutrally stratified cross-flows and if
the new entrainment assumption improves the agreement with these laws in any way.
Results intended to clarify this point can be seen in Figure 4, for simple initial conditions.
The trajectories have been represented in graphs with logarithmic axes to facilitate the
analysis. Although these results refer to rather particular situations, the overall qualitative
behaviour was seen to be roughly the same if the conditions were altered.

The main aspects that can be noticed are the apparent agreement with some kind of
power law, in the case of the buoyant plume, specially after y/D > 50, where D is the
source diameter, and the agreement with a power law only for a few initial diameters,
in the case of a momentum jet. The slope of the straight portions of the curves was
evaluated. For buoyant plumes, a linear fit was performed for y/D > 70 and the slope of
the straight line was found to be 0.68 for FOC and 0.683 for SI&. This corresponds to a
deviation of about 2% from the expected 2/3 slope, in both cases. For the momentum jet,
the linear fit was performed for y/D < 5 and the slopes are, in the same order, 0.443 and
0.437 respectively, corresponding to a deviation of about 25% from 1/3. Figure 4 shows
that, for a momentum jet, the slope of the curve decreases for bigger distances from the
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source, thereby approximating the expected slope, but the curve does not become straight,
indicating a dependence of a different kind from a power law.

The 2/3 power law is thus approximately respected by buoyant plumes but the same
does not apply to the 1/3 power law for momentum jets. The differences in the behaviour of
the model subject to the two entrainment formulations may be considered insignificant for
this purpose and it may be concluded that no improvement is achieved using the FOC.

5. Numerical experiments

In this section, Schatzmann’s validation tests are repeated. These are numerical tests per-
formed without the Boussinesq approximation, where the equation set is solved using a
4th-order Runge-Kutta method. In table I, the relevant ambient and initial conditions are
described for each run. All experimental data have been taken from Schatzmann (1979).
The last test included in Schatzmann’s paper was not performed, since the present mod-
el does not allow for a vertically varying ambient stratification. It would be relatively
straightforward to include this capability in the model, but it would not add much to the
conclusions. The initial Froude number is defined as

*

FV=—L (45)

VD

The initial conditions shown are conditions at the source, but the model may only be
applied after the flow establishment zone. The expressions used to relate parameters at
the source and at the end of the flow establishment zone can be found, for example, in
Davidson (1986).

In runs 1-1 to 2-9, results obtained with the FOC are exactly equal to those obtained
with SE, so the corresponding graphs will not be presented. The results of runs 2-10
to 3-7, displayed in Figures 5 and 6, also differ very little between the two entrainment
formulations, although the FOC agrees slightly better with experimental data in some
cases, predicting a slightly faster radius growth. Runs 4-1, 4-2 and 4-3, presented in Figure
7, correspond to a situation where there is an important qualitative difference between the
results obtained with the SE and the FOC. As it was expected from (40), the FOC predicts
a radius growth that is slower, and a centreline velocity decay that is also consistently
slower. The radius growth is somewhat more in agreement with the data, but the same
can not be said about the centreline velocity excess, which in Run 4-3, is more than 4
times the experimental values, far from the source.

In runs 5-1 to 6-7, presented in Figures 8 and 9, the FOC shows in general a slightly
better agreement with experimental data than SE. The same happens in runs 7-14 and 7-
15, of Figure 10, but not in runs 7-17 and 7-18, where the agreement of the FOC is a little
worse. The experimental data of the last 4 runs come from real stack plume measurements
and it appears in some of them that there is influence from ambient large scale turbulence
(see for example run 7-14). Apparently the averaging process that should have been carried
out for these data to be comparable with the model output was inadequate. Therefore,
agreement of theory with data in those cases has a considerable component of luck. The
following sections will discuss some of the results in more detail.

5.1. JET IN A CO-FLOWING STREAM

Although individually the radius and velocity excess behave differently for SE and FOC,
these two variables are closely related. While using SE the velocity excess predictions are
good but the radius growth is excessive, using the FOC the radius growth is acceptable
but the velocity excess is overpredicted, as can be seen in Figure 7. That behaviour may
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be explained making use of the s-momentum equation, which can be expressed as
2 % 1 *
b*u™ | Uy + JU )= const. (46)

For a given U, and given initial conditions, (46) defines a relation between b and u* that
can not be escaped. It can thus be concluded that a good prediction for both variables is
not possible in the framework of this integral model, using the available data. It would be
interesting to understand the reasons of such limitation. For that purpose a more detailed
discussion of the model is required.

The assumptions of axisymmetry and gaussian profiles seem to be acceptable for a
plume in a co-flowing stream. So, one possible explanation for the differences between
theory and datais the neglect of certain terms like those concerning the ambient turbulence
and the longitudinal turbulent fluxes. Including all the turbulent terms in the momentum
equation leads to:

12
ov!

d 2k 1 * _ SIWE 7
E [b u (Ua + ke )] = —2Rviv!(R) -2 s rdr (47)
0

The left-hand side and the last term on the right-hand side of this equation do not depend
on R/b, because the integrals used in their calculation converge as R/b — oo and these
terms are approximated accurately as long as this quantity is sufficiently large. To use for
example, R/b = 10 or R/b = 0o produces almost exactly the same result. But the first term
on the right-hand side depends on R and thus would be different for each ratio R/b chosen,
for a given v/v! distribution. So, this term has to be zero. The physical interpretation of
this constraint is that the assumption of a shear-free environment (U, =const.) used in
the calculation of the left-hand side is inconsistent with a non-zero turbulent correlation
in the environment. In the case of a wind with considerable shear, the left-hand side of
(47) would not be valid, since it was derived taking U, as a constant and a simple mixing-
length reasoning shows that this implies v/v/ = 0. To treat the shear-wind case, a whole
new equation set would be required. Even so, it must be noted that (47) would have limited
applicability since it was derived taking the correlation as axisymmetric, and that kind of
symmetry is very unlikely for ambient turbulence.

The last term on the right-hand side concerns only turbulence inside the plume, because
ambient turbulence is assumed not to change along s. Using dimensional reasoning, that
term may be parametrized as

- c% (bzu*z) (48)

where ¢ > 0 is a constant. Inserting (48) into (47) yields
2 % 1 *
b°u* U, + 3 +c)u*| = const. (49)

But it is easily shown that this even worsens the agreement with experimental data, since,
for the same velocity excess, (49) predicts a faster radius growth than (47).

Therefore, the discrepancy between (49) and experimental results may be attributed to
experimental errors, because this is a situation where Schatzmann’s geometry assumptions
are almost exactly satisfied.

Schatzmann (1979) points out that the experimental data of Fink (1974) indicate a
growth of the type

db  const

ds b

(50)
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for jets in co-flowing streams. It can be shown using (33) that this implies, for relatively
small u*,

db
i const X vu* (51)

S
or

K o Vu* (52)

Although a turbulent diffusivity with this asymptotic behaviour would give results
somewhere in between those of Schatzmann and those obtained with the FOC, it would
not solve the main problem, which is the inability to match simultaneously & and «*,
because these variables are related by the momentum equation and that equation does
not depend on the diffusion coefficient.

5.2. PLUME IN A CROSS-FLOW WITH A SMALL VELOCITY EXCESS

A careful examination of the results displayed in Figure 10 shows that, in some cases, the
solution of the integral model using SE fails to converge before the end of the run. This
happens because at a certain stage the radius begins to grow very fast and the numerical
resolution scheme is forced to adopt increasingly smaller integration steps. Schatzmann
(1979) pointed out that his program tended to be unstable when Ua/u; > 0.7, which may
be a sign of this instability. It can be proved very simply that this behaviour is inherent
to the analytical form of Schatzmann’s entrainment assumption.

Consider a case where u* tends to zero but where the plume is not aligned with the
ambient wind (e.g. a buoyant plume in an unstable atmosphere). Then, (15) takes the
form

in g2\ A
e = (2A1 + zAQSI; ) A—;‘ ltan 6] (53)

and (21) reduces asymptotically to

ES 2
@ = ( & cosd + & sin 6 tan 0) £+ 2X%sin 091)'07/'% + C—d\/iﬁ sin @ |sin 0| tan @ (54)
ds u* u* u*? T ur?
For a sufficiently small u*,using (53), it is obvious that all terms in (54) diverge, imposing
a radius growth that tends to infinite. This causes the plume to spread too quickly when
it does not approach a horizontal trajectory sufficiently fast, particularly for big initial
ratios U, /u*. Such problem does not arise with the new entrainment assumption, since

(53) is replaced by

. bp* U2 . . ’ *
—2)2%gin 0% — %\/5 % sin @ |sin 6| tan 6 + 2K u” 1

u*? bu* Uy cos
€= « 55
2%(:050{—%51110‘5&110 (55)
and hence (54) simply reduces to
db 2K uw* 1
2K u (56)

ds bu*U_aCOSO

forcing a type of growth which is never faster than linear, even when the factor related to
the vortex pair is taken into account in the definition of K. The fact that the buoyancy
and drag terms cancel is surely a consequence of the internal consistency of the FOC,
where the radius growth is essentially related to the diffusivity K. In fact, (56) can be

expressed as
d 2
Y (57)

s cos 0= =
U, cos I
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which is a generalization of (39) to weak plumes in cross-flows. A comparison of SE and
FOC for an ambient wind equal to the initial velocity excess is displayed in Figure 11.
For bigger ratios Ua/u;, the radius explodes even closer to the source, using SE, but
nothing similar happens when the FOC is used instead. It must be stressed that it is
important to use the same kind of approximation in both (2)-(3)-(4)-(5)-(6) and (18) for
these results to hold. If, for example, the main equation set does not assume the Boussinesq
approximation but the kinetic energy equation assumes that approximation, the above-
mentioned cancellation does not happen exactly and numerical problems may persist. That
is why, in this work, the general form (18), not using the Boussinesq approximation, had
to be derived.

6. Conclusions

A first-order turbulence closure (FOC) has been applied to Schatzmann’s integral model in
order to obtain a new entrainment assumption. With the form suggested by Slawson and
Csanady (1967) for the turbulent diffusivity, the FOC was found to be a particular case of
the similarity approach of Fox (1970) and Hirst (1971). Is is, however, applicable to more
general situations, because in its derivation a crossflow was considered and the Boussinesq
approximation was not assumed. In the general case, entrainment is found by solving the
equation set including the mechanic energy equation. For the Boussinesq approximation,
an explicit entrainment formula was derived and studied for some particular cases. It was
concluded that this formula reduced to Hirst’s entrainment formula for a plume in a still
environment, to Fox’s for a vertical plume in a still environment, and to Morton et al.’s for
a momentum jet in a still environment. For a jet in a co-flowing stream, some important
qualitative differences between SE and the FOC have been found, with the FOC predicting
a slower radius growth. The relation between the radius and the velocity excess was found
to depart from measurements for both approaches, and to be constrained by the momen-
tum equation, where the entrainment assumption is not needed. For plumes in cross-flows,
it could be concluded that an additional factor has to be introduced in order to simulate
the mixing associated with the vortex pair in the flow. This factor has been introduced in
the diffusivity definition, without any adverse consequences to the mathematical rigour of
the model. Finally, it was found that the new entrainment assumption enables the simula-
tion of situations with strong cross-flows, unlike what happens with SE, because the cause
of numerical instability was identified and suppressed. Except for the velocity excess of jets
in co-flowing streams, where measurement errors are likely to have affected the data, the
predictions using the FOC are generally slightly better than Schatzmann’s, showing that
this closure is a valid alternative. On the other hand, as the new entrainment assumption
depends strongly upon the definition of K, the results obtained can still be improved if a
better way of relating this diffusivity to the mean variables of the equation set is found.
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FIGURE CAPTIONS

Figure 1. The plume coordinate-system

Figure 2. Radius growth for a momentum jet in a co-flowing stream, when A, =10 and

A, =2, using Schatzmann’s entrainment formula.

Figure 3. Trajectories of buoyant jets discharged into a homogeneous cross-flow, for the

new entrainment definition, with and without taking into account the vortex pair (v. p.).

Figure 4. Dense plumes discharged horizontally into a uniform stagnant ambient fluid.

Figure 5. Buoyant jets discharged at various angles into a stable stratified ambient fluid.

Figure 6. Momentum jets discharged into a co-flowing stream.

Figure 7. Trajectories for momentum jets discharged into homogeneous cross-flows.

Figure 8. Trajectories and centreline concentration decay, for buoyant plumes

discharged into a homogeneous cross-flow.

Figure 9. Trajectories of buoyant chimney plumes discharged into stratified cross-winds.

Figure 10. Same as Figure 6, but with the entrainment definition given by (53)

Figure 11. Trajectory and radius of a weak plume in a cross-flow, for Schatzmann’s
entrainment definition and for the FOC. Conditions at the end of the flow establishment
zoneare:r , =10, U, /u; =1, ,=30", ®,/0, =0.1.
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